From 97d4622bdbfcca5e0372e9b58dd68cca7780296c Mon Sep 17 00:00:00 2001 From: phlrain Date: Thu, 11 Apr 2019 12:19:47 +0000 Subject: [PATCH] add softmax test unit test=develop --- .../test_softmax_with_cross_entropy_op.py | 139 ++++++++++++++++++ 1 file changed, 139 insertions(+) diff --git a/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py b/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py index b0494f114c..b06b52f75d 100644 --- a/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py +++ b/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py @@ -195,5 +195,144 @@ class TestSoftmaxWithCrossEntropyOp3NoCudnn(TestSoftmaxWithCrossEntropyOp3): self.numeric_stable_mode = True +class TestSoftmaxWithCrossEntropyOp5(OpTest): + """ + Test softmax with cross entropy operator with ignore_index. + """ + + def initParams(self): + self.numeric_stable_mode = False + + def setUp(self): + self.initParams() + self.op_type = "softmax_with_cross_entropy" + batch_size = [6, 10] + class_num = 47 + + logits = np.random.uniform( + 0.1, 1.0, tuple(batch_size + [class_num])).astype("float64") + softmax = np.apply_along_axis(stable_softmax, 2, logits) + labels = np.random.randint( + 0, class_num, tuple(batch_size + [1]), dtype="int64") + ignore_index = 7 + + softmax_2d = np.reshape(softmax, [-1, class_num]) + labels_2d = np.reshape(labels, [-1, 1]) + cross_entropy = np.asmatrix( + [[-np.log(softmax_2d[i][labels_2d[i][0]])] + if labels_2d[i] != ignore_index else [0] + for i in range(softmax_2d.shape[0])], + dtype="float64") + + cross_entropy = np.reshape(cross_entropy, batch_size) + + output_shape = tuple(batch_size + [1]) + output_res = cross_entropy.astype("float64") + output_res = np.expand_dims(output_res, axis=2) + self.inputs = {"Logits": logits, "Label": labels} + self.outputs = { + "Softmax": softmax.astype("float64"), + "Loss": output_res, + } + self.attrs = { + "ignore_index": ignore_index, + "numeric_stable_mode": self.numeric_stable_mode + } + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["Logits"], "Loss") + + +class TestSoftmaxWithCrossEntropyOp5NoCudnn(TestSoftmaxWithCrossEntropyOp5): + def initParams(self): + self.numeric_stable_mode = True + + +class TestSoftmaxWithCrossEntropyOp6(OpTest): + """ + Test softmax with cross entropy operator with soft labels. + """ + + def setUp(self): + self.op_type = "softmax_with_cross_entropy" + batch_size = [6, 10] + class_num = 37 + + logits = np.random.uniform( + 0.1, 1.0, tuple(batch_size + [class_num])).astype("float64") + softmax = np.apply_along_axis(stable_softmax, 2, logits) + labels = np.random.uniform( + 0.1, 1.0, tuple(batch_size + [class_num])).astype("float64") + labels /= np.sum(labels, axis=2, keepdims=True) + + cross_entropy = (-labels * np.log(softmax)).sum( + axis=2, keepdims=True).astype("float64") + + self.inputs = {"Logits": logits, "Label": labels} + self.outputs = { + "Softmax": softmax.astype("float64"), + "Loss": cross_entropy.astype("float64") + } + self.attrs = {"soft_label": True} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["Logits"], "Loss") + + +class TestSoftmaxWithCrossEntropyOpFp16_2(TestSoftmaxWithCrossEntropyOp): + def initParams(self): + self.numeric_stable_mode = False + self.dtype = np.float16 + + def setUp(self): + self.initParams() + self.op_type = "softmax_with_cross_entropy" + batch_size = [64, 10] + class_num = 37 + + # NOTE: numpy float16 have very low accuracy, use float32 for numpy check. + logits = np.random.uniform( + 0.1, 1.0, tuple(batch_size + [class_num])).astype(np.float32) + softmax = np.apply_along_axis(stable_softmax, 2, logits) + labels = np.random.randint( + 0, class_num, tuple(batch_size + [1]), dtype="int64") + + softmax_2d = np.reshape(softmax, [-1, class_num]) + labels_2d = np.reshape(labels, [-1, 1]) + + cross_entropy = np.asmatrix( + [[-np.log(softmax_2d[i][labels_2d[i][0]])] + for i in range(softmax_2d.shape[0])], + dtype=np.float32) + + cross_entropy = np.reshape(cross_entropy, batch_size) + output_shape = tuple(batch_size + [1]) + output_res = cross_entropy.astype(self.dtype) + output_res = np.expand_dims(output_res, axis=2) + self.inputs = {"Logits": logits, "Label": labels} + + self.inputs = { + "Logits": logits.astype(self.dtype).view(np.uint16), + "Label": labels + } + self.outputs = { + "Softmax": softmax.astype(self.dtype), + "Loss": output_res, + } + self.attrs = {"numeric_stable_mode": self.numeric_stable_mode} + + def test_check_output(self): + self.check_output(atol=1e-2) + + def test_check_grad(self): + self.check_grad(["Logits"], "Loss", max_relative_error=0.1) + + if __name__ == "__main__": unittest.main() -- GitLab