Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
97cebfa4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
97cebfa4
编写于
8月 27, 2020
作者:
Z
Zhang Ting
提交者:
GitHub
8月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dtype for unique (#26655)
* update doc, test=document_fix * add attr(dtype) * refine code
上级
07e3b9a3
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
178 addition
and
57 deletion
+178
-57
paddle/fluid/operators/unique_op.cc
paddle/fluid/operators/unique_op.cc
+32
-0
paddle/fluid/operators/unique_op.h
paddle/fluid/operators/unique_op.h
+112
-42
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+2
-8
python/paddle/fluid/tests/unittests/test_unique.py
python/paddle/fluid/tests/unittests/test_unique.py
+21
-0
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+11
-7
未找到文件。
paddle/fluid/operators/unique_op.cc
浏览文件 @
97cebfa4
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/unique_op.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -149,3 +150,34 @@ REGISTER_OP_CPU_KERNEL(
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
>
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_VERSION
(
unique
)
.
AddCheckpoint
(
R"ROC(
Upgrade unique, add 2 outputs [Indices, Counts] and 5 attribute
[return_index, return_inverse, return_counts, axis, is_sorted].
)ROC"
,
paddle
::
framework
::
compatible
::
OpVersionDesc
()
.
NewOutput
(
"Indices"
,
"The indices of the input tensor that result in the "
"unique tensor."
)
.
NewOutput
(
"Counts"
,
"The counts for each unique element."
)
.
NewAttr
(
"return_index"
,
"If True, also return the indices of the input"
" tensor that result in the unique Tensor."
,
false
)
.
NewAttr
(
"return_inverse"
,
"If True, also return the indices for where elements"
" in the original input ended up in the returned unique "
"tensor."
,
false
)
.
NewAttr
(
"return_counts"
,
"If True, also return the counts for each unique element."
,
false
)
.
NewAttr
(
"axis"
,
"The axis to apply unique. If None, the input will be "
"flattened."
,
{})
.
NewAttr
(
"is_sorted"
,
"If True, the unique elements of X are in ascending order."
"Otherwise, the unique elements are not sorted."
,
false
));
paddle/fluid/operators/unique_op.h
浏览文件 @
97cebfa4
...
...
@@ -131,22 +131,22 @@ static bool Equal(const framework::Tensor& a, const framework::Tensor& b) {
return
true
;
}
template
<
typename
T
>
template
<
typename
InT
,
typename
Index
T
>
static
void
UniqueFlattendTensor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
)
{
const
T
*
in_data
=
in
.
data
<
T
>
();
std
::
set
<
T
>
unique
(
in_data
,
in_data
+
in
.
numel
());
const
InT
*
in_data
=
in
.
data
<
In
T
>
();
std
::
set
<
In
T
>
unique
(
in_data
,
in_data
+
in
.
numel
());
out
->
Resize
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
unique
.
size
())}));
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_data
=
out
->
mutable_data
<
In
T
>
(
context
.
GetPlace
());
std
::
copy
(
unique
.
begin
(),
unique
.
end
(),
out_data
);
if
(
return_index
)
{
auto
*
indices
=
context
.
Output
<
framework
::
Tensor
>
(
"Indices"
);
indices
->
Resize
(
framework
::
make_ddim
({
out
->
numel
()}));
auto
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
indices_map
;
auto
indices_data
=
indices
->
mutable_data
<
IndexT
>
(
context
.
GetPlace
());
std
::
unordered_map
<
InT
,
IndexT
>
indices_map
;
indices_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
in
.
numel
();
++
i
)
{
if
(
indices_map
.
find
(
in_data
[
i
])
!=
indices_map
.
end
())
continue
;
...
...
@@ -160,8 +160,8 @@ static void UniqueFlattendTensor(const framework::ExecutionContext& context,
if
(
return_inverse
)
{
auto
*
inverse
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
inverse
->
Resize
(
framework
::
make_ddim
({
in
.
numel
()}));
auto
inverse_data
=
inverse
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
inverse_map
;
auto
inverse_data
=
inverse
->
mutable_data
<
IndexT
>
(
context
.
GetPlace
());
std
::
unordered_map
<
InT
,
IndexT
>
inverse_map
;
inverse_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
inverse_map
[
out_data
[
i
]]
=
i
;
...
...
@@ -174,8 +174,8 @@ static void UniqueFlattendTensor(const framework::ExecutionContext& context,
if
(
return_counts
)
{
auto
*
count
=
context
.
Output
<
framework
::
Tensor
>
(
"Counts"
);
count
->
Resize
(
framework
::
make_ddim
({
out
->
numel
()}));
auto
count_data
=
count
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
counts_map
;
auto
count_data
=
count
->
mutable_data
<
IndexT
>
(
context
.
GetPlace
());
std
::
unordered_map
<
InT
,
IndexT
>
counts_map
;
counts_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
counts_map
[
out_data
[
i
]]
=
0
;
...
...
@@ -189,13 +189,13 @@ static void UniqueFlattendTensor(const framework::ExecutionContext& context,
}
}
template
<
class
ForwardIt
,
typename
T
>
template
<
class
ForwardIt
,
typename
InT
,
typename
Index
T
>
static
ForwardIt
UniqueDimImpl
(
const
framework
::
ExecutionContext
&
context
,
ForwardIt
first
,
ForwardIt
last
,
const
std
::
vector
<
int64_t
>&
sorted_indices_vec
,
std
::
vector
<
int64_t
>*
inverse_vec
,
std
::
vector
<
int64_t
>*
counts_vec
,
std
::
vector
<
int64_t
>*
indices_vec
)
{
const
std
::
vector
<
IndexT
>&
sorted_indices_vec
,
std
::
vector
<
IndexT
>*
inverse_vec
,
std
::
vector
<
IndexT
>*
counts_vec
,
std
::
vector
<
IndexT
>*
indices_vec
)
{
if
(
first
==
last
)
{
return
last
;
}
...
...
@@ -210,7 +210,7 @@ static ForwardIt UniqueDimImpl(const framework::ExecutionContext& context,
while
(
++
first
!=
last
)
{
int64_t
idx_first
=
std
::
distance
(
begin
,
first
);
int64_t
idx_result
=
std
::
distance
(
begin
,
result
);
if
(
!
Equal
<
T
>
(
*
result
,
*
first
))
{
if
(
!
Equal
<
In
T
>
(
*
result
,
*
first
))
{
if
(
++
result
!=
first
)
{
*
result
=
std
::
move
(
*
first
);
}
...
...
@@ -223,7 +223,7 @@ static ForwardIt UniqueDimImpl(const framework::ExecutionContext& context,
return
++
result
;
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
InT
,
typename
Index
T
>
static
void
UniqueDim
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_index
,
bool
return_inverse
,
...
...
@@ -239,9 +239,9 @@ static void UniqueDim(const framework::ExecutionContext& context,
framework
::
Tensor
in_trans
;
framework
::
DDim
in_trans_dims
=
framework
::
make_ddim
(
in_trans_dims_vec
);
in_trans
.
Resize
(
in_trans_dims
);
in_trans
.
mutable_data
<
T
>
(
context
.
GetPlace
());
in_trans
.
mutable_data
<
In
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
TransCompute
<
DeviceContext
,
T
>
(
in
.
dims
().
size
(),
dev_ctx
,
in
,
&
in_trans
,
TransCompute
<
DeviceContext
,
In
T
>
(
in
.
dims
().
size
(),
dev_ctx
,
in
,
&
in_trans
,
permute
);
// reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
framework
::
DDim
in_trans_flat_dims
=
...
...
@@ -249,15 +249,15 @@ static void UniqueDim(const framework::ExecutionContext& context,
in_trans
.
Resize
(
in_trans_flat_dims
);
// sort indices
std
::
vector
<
int64_t
>
sorted_indices_vec
(
in_trans
.
dims
()[
0
]);
std
::
vector
<
IndexT
>
sorted_indices_vec
(
in_trans
.
dims
()[
0
]);
std
::
iota
(
sorted_indices_vec
.
begin
(),
sorted_indices_vec
.
end
(),
0
);
int64_t
col
=
in_trans
.
dims
()[
1
];
const
T
*
in_trans_data
=
in_trans
.
data
<
T
>
();
const
InT
*
in_trans_data
=
in_trans
.
data
<
In
T
>
();
std
::
sort
(
sorted_indices_vec
.
begin
(),
sorted_indices_vec
.
end
(),
[
&
](
int64_t
a
,
int64_t
b
)
->
bool
{
for
(
int64_t
i
=
0
;
i
<
col
;
++
i
)
{
T
lhs
=
in_trans_data
[
i
+
a
*
col
];
T
rhs
=
in_trans_data
[
i
+
b
*
col
];
In
T
lhs
=
in_trans_data
[
i
+
a
*
col
];
In
T
rhs
=
in_trans_data
[
i
+
b
*
col
];
if
(
lhs
<
rhs
)
{
return
true
;
}
else
if
(
lhs
>
rhs
)
{
...
...
@@ -270,18 +270,19 @@ static void UniqueDim(const framework::ExecutionContext& context,
// sort tensor according to indices
framework
::
Tensor
input_sorted
;
input_sorted
.
Resize
(
in_trans_dims
);
input_sorted
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_sorted_data
=
input_sorted
.
data
<
T
>
();
input_sorted
.
mutable_data
<
In
T
>
(
context
.
GetPlace
());
InT
*
input_sorted_data
=
input_sorted
.
data
<
In
T
>
();
for
(
size_t
i
=
0
;
i
<
sorted_indices_vec
.
size
();
++
i
)
{
memcpy
(
input_sorted_data
+
i
*
col
,
in_trans_data
+
sorted_indices_vec
[
i
]
*
col
,
col
*
sizeof
(
T
));
in_trans_data
+
static_cast
<
int64_t
>
(
sorted_indices_vec
[
i
])
*
col
,
col
*
sizeof
(
InT
));
}
std
::
vector
<
framework
::
Tensor
>
input_unbind
=
Unbind
(
input_sorted
);
std
::
vector
<
int64_t
>
inverse_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
int64_t
>
counts_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
int64_t
>
indices_vec
(
sorted_indices_vec
.
size
(),
0
);
auto
last
=
UniqueDimImpl
<
std
::
vector
<
framework
::
Tensor
>::
iterator
,
T
>
(
std
::
vector
<
IndexT
>
inverse_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
IndexT
>
counts_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
IndexT
>
indices_vec
(
sorted_indices_vec
.
size
(),
0
);
auto
last
=
UniqueDimImpl
<
std
::
vector
<
framework
::
Tensor
>::
iterator
,
In
T
>
(
context
,
input_unbind
.
begin
(),
input_unbind
.
end
(),
sorted_indices_vec
,
&
inverse_vec
,
&
counts_vec
,
&
indices_vec
);
input_unbind
.
erase
(
last
,
input_unbind
.
end
());
...
...
@@ -289,17 +290,17 @@ static void UniqueDim(const framework::ExecutionContext& context,
indices_vec
.
erase
(
indices_vec
.
begin
()
+
input_unbind
.
size
(),
indices_vec
.
end
());
math
::
ConcatFunctor
<
DeviceContext
,
T
>
concat_functor
;
math
::
ConcatFunctor
<
DeviceContext
,
In
T
>
concat_functor
;
framework
::
Tensor
out_trans
;
std
::
vector
<
int64_t
>
out_trans_dims_vec
=
in_trans_dims_vec
;
out_trans_dims_vec
[
0
]
=
input_unbind
.
size
();
out_trans
.
Resize
(
framework
::
make_ddim
(
out_trans_dims_vec
));
out_trans
.
mutable_data
<
T
>
(
context
.
GetPlace
());
out_trans
.
mutable_data
<
In
T
>
(
context
.
GetPlace
());
std
::
swap
(
out_trans_dims_vec
[
0
],
out_trans_dims_vec
[
axis
]);
out
->
Resize
(
framework
::
make_ddim
(
out_trans_dims_vec
));
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
mutable_data
<
In
T
>
(
context
.
GetPlace
());
concat_functor
(
dev_ctx
,
input_unbind
,
0
,
&
out_trans
);
TransCompute
<
DeviceContext
,
T
>
(
out_trans
.
dims
().
size
(),
dev_ctx
,
out_trans
,
TransCompute
<
DeviceContext
,
In
T
>
(
out_trans
.
dims
().
size
(),
dev_ctx
,
out_trans
,
out
,
permute
);
if
(
return_inverse
)
{
...
...
@@ -318,15 +319,80 @@ static void UniqueDim(const framework::ExecutionContext& context,
}
}
template
<
typename
DeviceContext
,
typename
InT
>
struct
UniqueFlattendTensorFunctor
{
const
framework
::
ExecutionContext
&
ctx_
;
const
framework
::
Tensor
&
in_
;
framework
::
Tensor
*
out_
;
const
bool
return_index_
;
const
bool
return_inverse_
;
const
bool
return_counts_
;
UniqueFlattendTensorFunctor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
)
:
ctx_
(
context
),
in_
(
in
),
out_
(
out
),
return_index_
(
return_index
),
return_inverse_
(
return_inverse
),
return_counts_
(
return_counts
)
{}
template
<
typename
IndexT
>
void
apply
()
const
{
UniqueFlattendTensor
<
InT
,
IndexT
>
(
ctx_
,
in_
,
out_
,
return_index_
,
return_inverse_
,
return_counts_
);
}
};
template
<
typename
DeviceContext
,
typename
InT
>
struct
UniqueDimFunctor
{
const
framework
::
ExecutionContext
&
ctx_
;
const
framework
::
Tensor
&
in_
;
framework
::
Tensor
*
out_
;
const
int
axis_
;
const
bool
return_index_
;
const
bool
return_inverse_
;
const
bool
return_counts_
;
UniqueDimFunctor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
const
int
axis
,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
)
:
ctx_
(
context
),
in_
(
in
),
out_
(
out
),
axis_
(
axis
),
return_index_
(
return_index
),
return_inverse_
(
return_inverse
),
return_counts_
(
return_counts
)
{}
template
<
typename
IndexT
>
void
apply
()
const
{
UniqueDim
<
DeviceContext
,
InT
,
IndexT
>
(
ctx_
,
in_
,
out_
,
return_index_
,
return_inverse_
,
return_counts_
,
axis_
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
UniqueKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
if
(
!
context
.
Attr
<
bool
>
(
"is_sorted"
))
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
context
.
Attr
<
int
>
(
"dtype"
));
if
(
data_type
==
framework
::
proto
::
VarType
::
INT32
)
{
PADDLE_ENFORCE_LE
(
x
->
numel
(),
INT_MAX
,
platform
::
errors
::
InvalidArgument
(
"The number of elements in Input(X) should be less than or "
"equal to INT_MAX, but received num is %d. Please set `dtype` to "
"int64."
,
x
->
numel
()));
}
if
(
!
context
.
Attr
<
bool
>
(
"is_sorted"
))
{
auto
*
index
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
framework
::
VisitDataType
(
data_type
,
UniqueOpFunctor
<
T
>
(
out
,
index
,
x
));
...
...
@@ -339,12 +405,16 @@ class UniqueKernel : public framework::OpKernel<T> {
bool
return_counts
=
context
.
Attr
<
bool
>
(
"return_counts"
);
if
(
axis_vec
.
empty
())
{
UniqueFlattendTensor
<
T
>
(
context
,
*
x
,
out
,
return_index
,
return_inverse
,
return_counts
);
framework
::
VisitDataTypeSmall
(
data_type
,
UniqueFlattendTensorFunctor
<
DeviceContext
,
T
>
(
context
,
*
x
,
out
,
return_index
,
return_inverse
,
return_counts
));
}
else
{
int
axis
=
axis_vec
[
0
];
UniqueDim
<
DeviceContext
,
T
>
(
context
,
*
x
,
out
,
return_index
,
return_inverse
,
return_counts
,
axis
);
framework
::
VisitDataTypeSmall
(
data_type
,
UniqueDimFunctor
<
DeviceContext
,
T
>
(
context
,
*
x
,
out
,
axis
,
return_index
,
return_inverse
,
return_counts
));
}
}
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
97cebfa4
...
...
@@ -14098,17 +14098,11 @@ def sign(x):
def unique(x, dtype='int32'):
"""
:alias_main: paddle.unique
:alias: paddle.unique,paddle.tensor.unique,paddle.tensor.manipulation.unique
:old_api: paddle.fluid.layers.unique
**unique**
Return a unique tensor for `x` and an index tensor pointing to this unique tensor.
Args:
x(
Variable): A 1-D input tensor
.
dtype(np.dtype|
core.VarDesc.VarType|str): The type of index tensor: int32, int64
.
x(
Tensor): A 1-D input tensor, it's data type should be float32, float64, int32, int64
.
dtype(np.dtype|
str, optional): The type of index tensor: int32, int64. Default: int32
.
Returns:
tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
...
...
python/paddle/fluid/tests/unittests/test_unique.py
浏览文件 @
97cebfa4
...
...
@@ -233,6 +233,24 @@ class TestUniqueAPI(unittest.TestCase):
self
.
assertTrue
((
counts
.
numpy
()
==
np_counts
).
all
(),
True
)
paddle
.
enable_static
()
def
test_dygraph_attr_dtype
(
self
):
paddle
.
disable_static
()
x_data
=
x_data
=
np
.
random
.
randint
(
0
,
10
,
(
120
))
x
=
paddle
.
to_tensor
(
x_data
)
out
,
indices
,
inverse
,
counts
=
paddle
.
unique
(
x
,
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
dtype
=
"int32"
)
expected_out
,
np_indices
,
np_inverse
,
np_counts
=
np
.
unique
(
x_data
,
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
)
self
.
assertTrue
((
out
.
numpy
()
==
expected_out
).
all
(),
True
)
self
.
assertTrue
((
indices
.
numpy
()
==
np_indices
).
all
(),
True
)
self
.
assertTrue
((
inverse
.
numpy
()
==
np_inverse
).
all
(),
True
)
self
.
assertTrue
((
counts
.
numpy
()
==
np_counts
).
all
(),
True
)
paddle
.
enable_static
()
def
test_static_graph
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
...
...
@@ -282,6 +300,9 @@ class TestUniqueError(unittest.TestCase):
def
test_axis
():
result
=
paddle
.
unique
(
x
,
axis
=
'12'
)
def
test_dtype
():
result
=
paddle
.
unique
(
x
,
dtype
=
'float64'
)
self
.
assertRaises
(
TypeError
,
test_axis
)
...
...
python/paddle/tensor/manipulation.py
浏览文件 @
97cebfa4
...
...
@@ -612,6 +612,7 @@ def unique(x,
return_inverse
=
False
,
return_counts
=
False
,
axis
=
None
,
dtype
=
"int64"
,
name
=
None
):
"""
Returns the unique elements of `x` in ascending order.
...
...
@@ -625,6 +626,8 @@ def unique(x,
return_counts(bool, optional): If True, also return the counts for each unique element.
axis(int, optional): The axis to apply unique. If None, the input will be flattened.
Default: None.
dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
Default: int64.
name(str, optional): Name for the operation. For more information, please refer to
:ref:`api_guide_Name`. Default: None.
...
...
@@ -650,6 +653,7 @@ def unique(x,
np_counts = counts.numpy() # [1 1 3 1]
x_data = np.array([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
x = paddle.to_tensor(x_data)
unique = paddle.unique(x)
np_unique = unique.numpy() # [0 1 2 3]
...
...
@@ -662,11 +666,10 @@ def unique(x,
axis
=
[]
else
:
axis
=
[
axis
]
attr_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
in_dygraph_mode
():
out
,
inverse
,
indices
,
counts
=
core
.
ops
.
unique
(
x
,
'dtype'
,
convert_np_dtype_to_dtype_
(
'int32'
),
'return_index'
,
return_index
,
x
,
'dtype'
,
attr_dtype
,
'return_index'
,
return_index
,
'return_inverse'
,
return_inverse
,
'return_counts'
,
return_counts
,
'axis'
,
axis
,
"is_sorted"
,
True
)
outs
=
[
out
]
...
...
@@ -687,12 +690,13 @@ def unique(x,
check_type
(
return_index
,
'return_index'
,
bool
,
'unique'
)
check_type
(
return_inverse
,
'return_inverse'
,
bool
,
'unique'
)
check_type
(
return_counts
,
'return_counts'
,
bool
,
'unique'
)
check_dtype
(
dtype
,
'dtype'
,
[
'int32'
,
'int64'
],
'unique'
)
if
len
(
axis
)
!=
0
:
check_type
(
axis
[
0
],
'axis'
,
int
,
'unique'
)
helper
=
LayerHelper
(
'unique'
,
**
locals
())
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)
,
'dtype'
:
attr_dtype
,
"return_index"
:
return_index
,
"return_inverse"
:
return_inverse
,
"return_counts"
:
return_counts
,
...
...
@@ -702,19 +706,19 @@ def unique(x,
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
inverse
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
dtype
=
attr_dtype
,
stop_gradient
=
True
)
outputs
=
{
"Out"
:
out
,
"Index"
:
inverse
}
outs
=
[
out
]
if
return_index
:
indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
dtype
=
attr_dtype
,
stop_gradient
=
True
)
outputs
[
"Indices"
]
=
indices
outs
.
append
(
indices
)
if
return_inverse
:
outs
.
append
(
inverse
)
if
return_counts
:
counts
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
dtype
=
attr_dtype
,
stop_gradient
=
True
)
outputs
[
"Counts"
]
=
counts
outs
.
append
(
counts
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录