From 9707ded37ec64acfcd96e92096a9b9b0d29d49a9 Mon Sep 17 00:00:00 2001 From: hong19860320 <9973393+hong19860320@users.noreply.github.com> Date: Sat, 12 Oct 2019 06:54:20 +0800 Subject: [PATCH] Fix the error message of assign op (#20508) * Fix the error message of assign op test=develop * Refine input type checking for assign op test=develop * Refine unittest of assign op test=develop --- python/paddle/fluid/layers/tensor.py | 24 ++++++++++--- .../fluid/tests/unittests/test_assign_op.py | 35 +++++++++++++++++-- 2 files changed, 52 insertions(+), 7 deletions(-) diff --git a/python/paddle/fluid/layers/tensor.py b/python/paddle/fluid/layers/tensor.py index 8f086952a4..8d1f0bf4f6 100644 --- a/python/paddle/fluid/layers/tensor.py +++ b/python/paddle/fluid/layers/tensor.py @@ -400,9 +400,17 @@ def assign(input, output=None): fluid.layers.assign(hidden, out) """ helper = LayerHelper('assign', **locals()) - if output is None: - output = helper.create_variable_for_type_inference(dtype=input.dtype) if isinstance(input, Variable): + if convert_dtype(input.dtype) not in [ + 'float32', 'float64', 'int32', 'int64' + ]: + raise TypeError( + "When the type of 'input' in assign is Variable, the data " + "type of 'input' must be float32, float64, int32 or int64, " + "but received %s." % convert_dtype(input.dtype)) + if output is None: + output = helper.create_variable_for_type_inference( + dtype=input.dtype) helper.append_op( type='assign', inputs={'X': [input]}, outputs={'Out': [output]}) elif isinstance(input, numpy.ndarray): @@ -414,11 +422,16 @@ def assign(input, output=None): value_name = "int32_values" values = [int(v) for v in input.flat] else: - raise ValueError("Unsupported dtype %s", input.dtype) + raise TypeError( + "When the type of 'input' in assign is numpy.ndarray, " + "the data type of 'input' must be float32 or int32, but " + "received %s." % convert_dtype(dtype)) if input.size > 1024 * 1024: raise ValueError("The size of input is too big. Please consider " "saving it to file and 'load_op' to load it") - + if output is None: + output = helper.create_variable_for_type_inference( + dtype=input.dtype) helper.append_op( type='assign_value', outputs={'Out': [output]}, @@ -428,7 +441,8 @@ def assign(input, output=None): value_name: values }) else: - raise ValueError("Wrong type for assign input: %s" % type(input)) + raise TypeError("The type of 'input' in assign must be Variable or " + "numpy.ndarray, but received %s" % type(input)) return output diff --git a/python/paddle/fluid/tests/unittests/test_assign_op.py b/python/paddle/fluid/tests/unittests/test_assign_op.py index ba2eecfaf1..fce7331f50 100644 --- a/python/paddle/fluid/tests/unittests/test_assign_op.py +++ b/python/paddle/fluid/tests/unittests/test_assign_op.py @@ -15,14 +15,18 @@ from __future__ import print_function import op_test -import numpy +import numpy as np import unittest +import paddle.fluid.core as core +from paddle.fluid.op import Operator +import paddle.fluid as fluid +from paddle.fluid import compiler, Program, program_guard class TestAssignOp(op_test.OpTest): def setUp(self): self.op_type = "assign" - x = numpy.random.random(size=(100, 10)) + x = np.random.random(size=(100, 10)) self.inputs = {'X': x} self.outputs = {'Out': x} @@ -33,5 +37,32 @@ class TestAssignOp(op_test.OpTest): self.check_grad(['X'], 'Out') +class TestAssignOpError(op_test.OpTest): + def test_errors(self): + with program_guard(Program(), Program()): + # The type of input must be Variable or numpy.ndarray. + x1 = fluid.create_lod_tensor( + np.array([[-1]]), [[1]], fluid.CPUPlace()) + self.assertRaises(TypeError, fluid.layers.assign, x1) + # When the type of input is Variable, the dtype of input must be float32, float64, int32, int64. + x2 = fluid.layers.data(name='x2', shape=[4], dtype="bool") + self.assertRaises(TypeError, fluid.layers.assign, x2) + x3 = fluid.layers.data(name='x3', shape=[4], dtype="float16") + self.assertRaises(TypeError, fluid.layers.assign, x3) + x4 = fluid.layers.data(name='x4', shape=[4], dtype="uint8") + self.assertRaises(TypeError, fluid.layers.assign, x4) + # When the type of input is numpy.ndarray, the dtype of input must be float32, int32. + x5 = np.array([[2.5, 2.5]], dtype='bool') + self.assertRaises(TypeError, fluid.layers.assign, x5) + x6 = np.array([[2.5, 2.5]], dtype='float16') + self.assertRaises(TypeError, fluid.layers.assign, x6) + x7 = np.array([[2.5, 2.5]], dtype='float64') + self.assertRaises(TypeError, fluid.layers.assign, x7) + x8 = np.array([[2.5, 2.5]], dtype='int64') + self.assertRaises(TypeError, fluid.layers.assign, x8) + x9 = np.array([[2.5, 2.5]], dtype='uint8') + self.assertRaises(TypeError, fluid.layers.assign, x9) + + if __name__ == '__main__': unittest.main() -- GitLab