From 9666979d8db9421fdfe2a97c0ef700de4f5eb642 Mon Sep 17 00:00:00 2001 From: ccrrong <101700995+ccrrong@users.noreply.github.com> Date: Wed, 23 Nov 2022 11:31:44 +0800 Subject: [PATCH] move conv2d_transpose and conv3d_transpose (#48198) --- python/paddle/fluid/layers/nn.py | 727 ----------------- .../test_mkldnn_conv_bias_fuse_pass.py | 3 +- .../inference/test_trt_conv3d_transpose_op.py | 5 +- .../ir/inference/test_trt_conv_pass.py | 3 +- .../test_trt_conv_quant_dequant_pass.py | 2 +- .../mlu/test_conv2d_transposed_op_mlu.py | 26 +- .../npu/test_conv2d_transpose_op_npu.py | 14 +- .../unittests/test_conv2d_transpose_layer.py | 3 +- .../unittests/test_conv2d_transpose_op.py | 30 +- .../unittests/test_conv3d_transpose_layer.py | 3 +- .../test_conv3d_transpose_part2_op.py | 23 +- .../unittests/test_conv_transpose_nn_grad.py | 10 +- .../test_functional_conv2d_transpose.py | 2 +- .../test_functional_conv3d_transpose.py | 4 +- .../test_imperative_load_static_param.py | 8 +- .../fluid/tests/unittests/test_layers.py | 6 +- python/paddle/static/nn/__init__.py | 4 +- python/paddle/static/nn/common.py | 729 +++++++++++++++++- 18 files changed, 804 insertions(+), 798 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 1f74a79a91..4d188228bf 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -77,8 +77,6 @@ __all__ = [ 'inplace_abn', 'instance_norm', 'data_norm', - 'conv2d_transpose', - 'conv3d_transpose', 'reduce_sum', 'reduce_mean', 'reduce_max', @@ -3811,731 +3809,6 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None): return out -def conv2d_transpose( - input, - num_filters, - output_size=None, - filter_size=None, - padding=0, - stride=1, - dilation=1, - groups=None, - param_attr=None, - bias_attr=None, - use_cudnn=True, - act=None, - name=None, - data_format='NCHW', -): - r""" - :api_attr: Static Graph - - The convolution2D transpose layer calculates the output based on the input, - filter, and dilations, strides, paddings. Input(Input) and output(Output) - are in NCHW or NHWC format. Where N is batch size, C is the number of channels, - H is the height of the feature, and W is the width of the feature. - Parameters(dilations, strides, paddings) are two elements. These two elements - represent height and width, respectively. The details of convolution transpose - layer, please refer to the following explanation and references - `therein `_. - If bias attribution and activation type are provided, bias is added to - the output of the convolution, and the corresponding activation function - is applied to the final result. - - For each input :math:`X`, the equation is: - - .. math:: - - Out = \sigma (W \\ast X + b) - - Where: - - * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format. - * :math:`W`: Filter value, a 4-D Tensor with MCHW format. - * :math:`\\ast`: Convolution operation. - * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. - * :math:`\\sigma`: Activation function. - * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different. - - Example: - - - Input: - - Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` - - Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` - - - Output: - - Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` - - Where - - .. math:: - - H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\ - W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\ - H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\ - W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] - - Note: - The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, - when stride > 1, conv2d maps multiple input shape to the same output shape, - so for conv2d_transpose, when stride > 1, input shape maps multiple output shape. - If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; - else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` - and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must - between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, - conv2d_transpose can compute the kernel size automatically. - - Args: - input(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format, - its data type is float32 or float64. - num_filters(int): The number of the filter. It is as same as the output - image channel. - output_size(int|tuple, optional): The output image size. If output size is a - tuple, it must contain two integers, (image_height, image_width). None if use - filter_size, padding, and stride to calculate output_size. - If output_size and filter_size are specified at the same time, They - should follow the formula above. Default: None. output_size and filter_size - should not be None at the same time. - filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_height, filter_size_width). - Otherwise, filter_size_height = filter_size_width = filter_size. None if - use output size to calculate filter_size. Default: None. filter_size and - output_size should not be None at the same time. - stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. - If stride is a tuple, it must contain two integers, (stride_height, stride_width). - Otherwise, stride_height = stride_width = stride. Default: stride = 1. - padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings - on both sides for each dimension. If `padding` is a string, either 'VALID' or - 'SAME' which is the padding algorithm. If `padding` is a tuple or list, - it could be in three forms: `[pad_height, pad_width]` or - `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, - and when `data_format` is `"NCHW"`, `padding` can be in the form - `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. - when `data_format` is `"NHWC"`, `padding` can be in the form - `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. - Default: padding = 0. - dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. - If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). - Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1. - filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_height, filter_size_width). - Otherwise, filter_size_height = filter_size_width = filter_size. None if - use output size to calculate filter_size. Default: None. - groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by - grouped convolution in Alex Krizhevsky's Deep CNN paper, in which - when group=2, the first half of the filters is only connected to the - first half of the input channels, while the second half of the - filters is only connected to the second half of the input channels. - Default: groups = 1. - param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights - of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose - will create ParamAttr as param_attr. If the Initializer of the param_attr - is not set, the parameter is initialized with Xavier. Default: None. - bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose. - If it is set to False, no bias will be added to the output units. - If it is set to None or one attribute of ParamAttr, conv2d_transpose - will create ParamAttr as bias_attr. If the Initializer of the bias_attr - is not set, the bias is initialized zero. Default: None. - use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn - library is installed. Default: True. - act (str, optional): Activation type, if it is set to None, activation is not appended. - Default: None. - name(str, optional): For detailed information, please refer - to :ref:`api_guide_Name`. Usually name is no need to set and - None by default. - data_format (str, optional): Specify the data format of the input, and the data format of the output - will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. - The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: - `[batch_size, input_channels, input_height, input_width]`. - - Returns: - A Tensor representing the conv2d_transpose, whose - data type is the same with input and shape is (num_batches, channels, out_h, - out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor - storing the transposed convolution result, and if act is not None, the - tensor storing transposed convolution and non-linearity activation - result. - - Raises: - ValueError: If the type of `use_cudnn` is not bool. - ValueError: If `data_format` is not "NCHW" or "NHWC". - ValueError: If `padding` is a string, but not "SAME" or "VALID". - ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 - or the element corresponding to the input's channel is not 0. - ValueError: If `output_size` and filter_size are None at the same time. - ShapeError: If the input is not 4-D Tensor. - ShapeError: If the input's dimension size and filter's dimension size not equal. - ShapeError: If the dimension size of input minus the size of `stride` is not 2. - ShapeError: If the number of input channels is not equal to filter's channels. - ShapeError: If the size of `output_size` is not equal to that of `stride`. - - Examples: - .. code-block:: python - - import paddle - paddle.enable_static() - - data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32') - conv2d_transpose = paddle.static.nn.conv2d_transpose(input=data, num_filters=2, filter_size=3) - print(conv2d_transpose.shape) # [-1, 2, 34, 34] - """ - assert ( - param_attr is not False - ), "param_attr should not be False in conv2d_transpose." - if len(input.shape) != 4: - raise ValueError( - "Input size should be 4, " - "but received {}".format(len(input.shape)) - ) - - if data_format not in ['NCHW', 'NHWC']: - raise ValueError( - "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received " - + data_format - + " but only NCHW or NHWC supported." - ) - - input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1] - op_type = 'conv2d_transpose' - if ( - input_channel == groups - and num_filters == input_channel - and not use_cudnn - ): - op_type = 'depthwise_conv2d_transpose' - - helper = LayerHelper(op_type, **locals()) - if not isinstance(input, Variable): - raise TypeError("Input of conv2d_transpose must be Variable") - - stride = utils.convert_to_list(stride, 2, 'stride') - dilation = utils.convert_to_list(dilation, 2, 'dilation') - - if not isinstance(use_cudnn, bool): - raise ValueError("use_cudnn should be True or False") - - def _update_padding(padding, data_format): - def is_list_or_tuple(ele): - if isinstance(ele, list) or isinstance(ele, tuple): - return True - return False - - if is_list_or_tuple(padding) and len(padding) == 4: - if is_list_or_tuple(padding[0]) and (data_format == "NCHW"): - if not (padding[0] == [0, 0] and padding[1] == [0, 0]): - raise ValueError( - "Non-zero padding(%s) in the batch or channel dimensions " - "is not supported." % str(padding) - ) - padding = padding[2:4] - padding = [ele for a_list in padding for ele in a_list] - elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"): - if not (padding[0] == [0, 0] and padding[3] == [0, 0]): - raise ValueError( - "Non-zero padding(%s) in the batch or channel dimensions " - "is not supported." % str(padding) - ) - padding = padding[1:3] - padding = [ele for a_list in padding for ele in a_list] - padding = utils.convert_to_list(padding, 4, 'padding') - else: - padding = utils.convert_to_list(padding, 2, 'padding') - padding = [padding[0], padding[0], padding[1], padding[1]] - return padding - - padding_algorithm = "EXPLICIT" - if isinstance(padding, str): - padding = padding.upper() - if padding not in ["SAME", "VALID"]: - raise ValueError( - "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." - % str(padding) - ) - if padding == "VALID": - padding_algorithm = "VALID" - padding = [0, 0, 0, 0] - elif padding == "SAME": - padding_algorithm = "SAME" - padding = [0, 0, 0, 0] - - padding = _update_padding(padding, data_format) - - if output_size is None: - output_size = [] - elif isinstance(output_size, (list, tuple)): - if utils._contain_var(output_size): - output_size = utils._convert_to_tensor_list(output_size) - else: - output_size = utils.convert_to_list(output_size, 2, 'output_size') - elif isinstance(output_size, int): - output_size = utils.convert_to_list(output_size, 2, 'output_size') - elif isinstance(output_size, Variable): - check_dtype( - output_size.dtype, - 'output_size', - ['int32', 'int64'], - 'conv2d_transpose', - ) - if len(output_size.shape) == 1 and ( - output_size.shape[0] == 1 or output_size.shape[0] == 2 - ): - if output_size.shape[0] == 1: - output_size = [output_size, output_size] - else: - raise ValueError("output_size must contain one or two integers.") - else: - raise ValueError( - "output_size should be int, list[int] or tuple[int] or Tensor" - ) - - if filter_size is None: - if output_size is []: - raise ValueError("output_size must be set when filter_size is None") - if not _non_static_mode(): - if isinstance(output_size, Variable) or utils._contain_var( - output_size - ): - raise ValueError( - "filter_size should not be None when output_size is Variable or contain Variable in static mode." - ) - else: - output_size = utils.convert_shape_to_list(output_size) - if len(output_size) == 1: - output_size = utils.convert_to_list( - output_size[0], 2, 'output_size' - ) - - h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1] - w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2] - - filter_size_h = ( - output_size[0] - - (h_in - 1) * stride[0] - + padding[0] - + padding[1] - - 1 - ) // dilation[0] + 1 - filter_size_w = ( - output_size[1] - - (w_in - 1) * stride[1] - + padding[2] - + padding[3] - - 1 - ) // dilation[1] + 1 - filter_size = [filter_size_h, filter_size_w] - else: - filter_size = utils.convert_to_list( - filter_size, 2, 'conv2d_transpose.filter_size' - ) - - if len(padding) == 4 and utils._is_symmetric_padding(padding, 2): - padding = [padding[0], padding[2]] - - if groups is None: - groups = 1 - elif groups <= 0: - raise ValueError( - "the groups of input must be greater than 0, " - "but received the groups of input is {}".format(groups) - ) - - filter_shape = [input_channel, num_filters // groups] + filter_size - - img_filter = helper.create_parameter( - dtype=input.dtype, shape=filter_shape, attr=helper.param_attr - ) - - pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) - helper.append_op( - type=op_type, - inputs={'Input': [input], 'Filter': [img_filter]}, - outputs={'Output': pre_bias}, - attrs={ - 'output_size': output_size, - 'strides': stride, - 'paddings': padding, - 'padding_algorithm': padding_algorithm, - 'dilations': dilation, - 'groups': groups, - 'use_cudnn': use_cudnn, - 'data_format': data_format, - }, - ) - - if data_format == 'NCHW': - pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) - else: - pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4) - out = helper.append_activation(pre_act) - return out - - -def conv3d_transpose( - input, - num_filters, - output_size=None, - filter_size=None, - padding=0, - stride=1, - dilation=1, - groups=None, - param_attr=None, - bias_attr=None, - use_cudnn=True, - act=None, - name=None, - data_format='NCDHW', -): - r""" - :api_attr: Static Graph - - The convolution3D transpose layer calculates the output based on the input, - filter, and dilations, strides, paddings. Input(Input) and output(Output) - are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels, - D is the depth of the feature, H is the height of the feature, and W - is the width of the feature. Parameters(dilations, strides, paddings) are - two elements. These two elements represent height and width, respectively. - The details of convolution transpose layer, please refer to the following - explanation and references `therein `_. - If bias attribution and activation type are provided, bias is added to - the output of the convolution, and the corresponding activation function - is applied to the final result. - - For each input :math:`X`, the equation is: - - .. math:: - - Out = \sigma (W \ast X + b) - - In the above equation: - - * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format. - * :math:`W`: Filter value, a Tensor with MCDHW format. - * :math:`\ast`: Convolution operation. - * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. - * :math:`\sigma`: Activation function. - * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. - - Example: - - - Input: - - Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` - - Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)` - - - Output: - - Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` - - Where - - .. math:: - - D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\ - H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\ - W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\ - D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\ - H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\ - W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ] - - Note: - The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, - when stride > 1, conv3d maps multiple input shape to the same output shape, - so for conv3d_transpose, when stride > 1, input shape maps multiple output shape. - If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \ - H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output - size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, - the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` - and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must - between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, - conv3d_transpose can compute the kernel size automatically. - - Args: - input(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type - of input is float32 or float64. - num_filters(int): The number of the filter. It is as same as the output - image channel. - output_size(int|tuple, optional): The output image size. If output size is a - tuple, it must contain three integers, (image_depth, image_height, image_width). This - parameter only works when filter_size is None. If output_size and filter_size are - specified at the same time, They should follow the formula above. Default: None. - Output_size and filter_size should not be None at the same time. - filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, - it must contain three integers, (filter_size_depth, filter_size_height, - filter_size_width). Otherwise, filter_size_depth = filter_size_height = \ - filter_size_width = filter_size. None if use output size to - calculate filter_size. Default: None. filter_size and output_size should not be - None at the same time. - padding(int|list|str|tuple, optional): The padding size. The padding argument effectively - adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string, - either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding` - is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or - `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, - and when `data_format` is `'NCDHW'`, `padding` can be in the form - `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. - when `data_format` is `'NDHWC'`, `padding` can be in the form - `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. - Default: padding = 0. - stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. - If stride is a tuple, it must contain three integers, (stride_depth, stride_height, - stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. - Default: stride = 1. - dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. - If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, - dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. - Default: dilation = 1. - groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by - grouped convolution in Alex Krizhevsky's Deep CNN paper, in which - when group=2, the first half of the filters is only connected to the - first half of the input channels, while the second half of the - filters is only connected to the second half of the input channels. - Default: groups=1 - param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights - of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose - will create ParamAttr as param_attr. If the Initializer of the param_attr - is not set, the parameter is initialized with Xavier. Default: None. - bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose. - If it is set to False, no bias will be added to the output units. - If it is set to None or one attribute of ParamAttr, conv3d_transpose - will create ParamAttr as bias_attr. If the Initializer of the bias_attr - is not set, the bias is initialized zero. Default: None. - use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn - library is installed. Default: True - act (str, optional): Activation type, if it is set to None, activation is not appended. - Default: None. - name(str, optional): For detailed information, please refer - to :ref:`api_guide_Name`. Usually name is no need to set and - None by default. - data_format (str, optional): Specify the data format of the input, and the data format of the output - will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. - The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: - `[batch_size, input_channels, input_height, input_width]`. - - Returns: - A Variable holding Tensor representing the conv3d_transpose, whose data - type is the same with input and shape is (num_batches, channels, out_d, out_h, - out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor - variable storing the transposed convolution result, and if act is not None, the tensor - variable storing transposed convolution and non-linearity activation result. - - Raises: - ValueError: If the type of `use_cudnn` is not bool. - ValueError: If `data_format` is not "NCDHW" or "NDHWC". - ValueError: If `padding` is a string, but not "SAME" or "VALID". - ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 - or the element corresponding to the input's channel is not 0. - ValueError: If `output_size` and filter_size are None at the same time. - ShapeError: If the input is not 5-D Tensor. - ShapeError: If the input's dimension size and filter's dimension size not equal. - ShapeError: If the dimension size of input minus the size of `stride` is not 2. - ShapeError: If the number of input channels is not equal to filter's channels. - ShapeError: If the size of `output_size` is not equal to that of `stride`. - - Examples: - .. code-block:: python - - import paddle - import numpy as np - - paddle.enable_static() - data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32') - param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001) - res = paddle.static.nn.conv3d_transpose(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr) - place = paddle.CPUPlace() - exe = paddle.static.Executor(place) - exe.run(paddle.static.default_startup_program()) - x = np.random.rand(1, 3, 12, 32, 32).astype("float32") - output = exe.run(feed={"data": x}, fetch_list=[res]) - print(output) - """ - assert ( - param_attr is not False - ), "param_attr should not be False in conv3d_transpose." - if data_format not in ['NCDHW', 'NDHWC']: - raise ValueError( - "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received " - + data_format - + " but only NCDHW or NDHWC supported." - ) - - l_type = "conv3d_transpose" - helper = LayerHelper(l_type, **locals()) - if not isinstance(input, Variable): - raise TypeError("Input of conv3d_transpose must be Variable") - if len(input.shape) != 5: - raise ValueError( - "Input should be 5D tensor, but received input with the shape of {}".format( - input.shape - ) - ) - input_channel = ( - input.shape[1] if data_format == 'NCDHW' else input.shape[-1] - ) - - stride = utils.convert_to_list(stride, 3, 'stride') - dilation = utils.convert_to_list(dilation, 3, 'dilation') - - if not isinstance(use_cudnn, bool): - raise ValueError("use_cudnn should be True or False") - - def _update_padding(padding, data_format): - def is_list_or_tuple(ele): - if isinstance(ele, list) or isinstance(ele, tuple): - return True - return False - - if is_list_or_tuple(padding) and len(padding) == 5: - if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"): - if not (padding[0] == [0, 0] and padding[1] == [0, 0]): - raise ValueError( - "Non-zero padding(%s) in the batch or channel dimensions " - "is not supported." % str(padding) - ) - padding = padding[2:5] - padding = [ele for a_list in padding for ele in a_list] - elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"): - if not (padding[0] == [0, 0] and padding[4] == [0, 0]): - raise ValueError( - "Non-zero padding(%s) in the batch or channel dimensions " - "is not supported." % str(padding) - ) - padding = padding[1:4] - padding = [ele for a_list in padding for ele in a_list] - padding = utils.convert_to_list(padding, 6, 'padding') - - elif is_list_or_tuple(padding) and len(padding) == 6: - padding = utils.convert_to_list(padding, 6, 'padding') - - else: - padding = utils.convert_to_list(padding, 3, 'padding') - padding = [ - padding[0], - padding[0], - padding[1], - padding[1], - padding[2], - padding[2], - ] - return padding - - padding_algorithm = "EXPLICIT" - if isinstance(padding, str): - padding = padding.upper() - if padding not in ["SAME", "VALID"]: - raise ValueError( - "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." - % str(padding) - ) - if padding == "VALID": - padding_algorithm = "VALID" - padding = [0, 0, 0, 0, 0, 0] - elif padding == "SAME": - padding_algorithm = "SAME" - padding = [0, 0, 0, 0, 0, 0] - - padding = _update_padding(padding, data_format) - - if filter_size is None: - if output_size is None: - raise ValueError("output_size must be set when filter_size is None") - if isinstance(output_size, int): - output_size = [output_size, output_size, output_size] - - d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1] - h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2] - w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3] - - filter_size_d = ( - output_size[0] - - (d_in - 1) * stride[0] - + padding[0] - + padding[1] - - 1 - ) // dilation[0] + 1 - filter_size_h = ( - output_size[1] - - (h_in - 1) * stride[1] - + padding[2] - + padding[3] - - 1 - ) // dilation[1] + 1 - filter_size_w = ( - output_size[2] - - (w_in - 1) * stride[2] - + padding[4] - + padding[5] - - 1 - ) // dilation[2] + 1 - filter_size = [filter_size_d, filter_size_h, filter_size_w] - else: - filter_size = utils.convert_to_list( - filter_size, 3, 'conv3d_transpose.filter_size' - ) - - if len(padding) == 6 and utils._is_symmetric_padding(padding, 3): - padding = [padding[0], padding[2], padding[4]] - - if output_size is None: - output_size = [] - elif isinstance(output_size, (list, tuple, int)): - output_size = utils.convert_to_list(output_size, 3, 'output_size') - else: - raise ValueError("output_size should be int, list[int] or tuple[int]") - - groups = 1 if groups is None else groups - if groups <= 0: - raise ValueError( - "the groups of conv3d_transpose should be greater than 0. Received groups: {}".format( - groups - ) - ) - if num_filters % groups != 0: - raise ValueError( - "Attr(num_filters) must be divisible by groups," - "Received: Attr(num_filters) is {}, the groups is {}".format( - num_filters, groups - ) - ) - - filter_shape = [input_channel, num_filters // groups] + filter_size - img_filter = helper.create_parameter( - dtype=input.dtype, shape=filter_shape, attr=helper.param_attr - ) - - if data_format == 'NCDHW': - data_format = 'NCHW' - if data_format == 'NDHWC': - data_format = 'NHWC' - - pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) - helper.append_op( - type=l_type, - inputs={'Input': [input], 'Filter': [img_filter]}, - outputs={'Output': pre_bias}, - attrs={ - 'output_size': output_size, - 'strides': stride, - 'paddings': padding, - 'padding_algorithm': padding_algorithm, - 'dilations': dilation, - 'groups': groups, - 'use_cudnn': use_cudnn, - 'data_format': data_format, - }, - ) - - if data_format == 'NCHW': - pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) - else: - pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5) - out = helper.append_activation(pre_act) - return out - - def reduce_sum(input, dim=None, keep_dim=False, name=None): """ diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_conv_bias_fuse_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_conv_bias_fuse_pass.py index 6c667ac08d..517d826a7c 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_conv_bias_fuse_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_conv_bias_fuse_pass.py @@ -15,6 +15,7 @@ import unittest import numpy as np from inference_pass_test import InferencePassTest +import paddle import paddle.fluid as fluid from paddle.fluid.core import PassVersionChecker @@ -173,7 +174,7 @@ class ConvTransposeMkldnnFusePassDialtionsGroupsTest(InferencePassTest): initializer=fluid.initializer.Xavier(uniform=False), learning_rate=0.001, ) - conv_out = fluid.layers.conv2d_transpose( + conv_out = paddle.static.nn.conv2d_transpose( input=data, num_filters=3, filter_size=3, diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv3d_transpose_op.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv3d_transpose_op.py index 9beabe5505..491cbe80b3 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv3d_transpose_op.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv3d_transpose_op.py @@ -15,6 +15,7 @@ import unittest import numpy as np from inference_pass_test import InferencePassTest +import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.core import PassVersionChecker @@ -28,7 +29,7 @@ class TensorRTSubgraphPassConv3dTransposeTest(InferencePassTest): data = fluid.data( name="data", shape=[-1, 4, 4, 32, 32], dtype="float32" ) - conv_out = fluid.layers.conv3d_transpose( + conv_out = paddle.static.nn.conv3d_transpose( input=data, num_filters=self.conv_num_filters, filter_size=self.conv_filter_size, @@ -95,7 +96,7 @@ class DynamicShapeTensorRTSubgraphPassConv3dTransposeTest(InferencePassTest): data = fluid.data( name="data", shape=[-1, 6, -1, -1, -1], dtype="float32" ) - conv_out = fluid.layers.conv3d_transpose( + conv_out = paddle.static.nn.conv3d_transpose( input=data, num_filters=self.conv_num_filters, filter_size=self.conv_filter_size, diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_pass.py index 90dbed96f9..0d2b314db4 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_pass.py @@ -16,6 +16,7 @@ import os import unittest import numpy as np from inference_pass_test import InferencePassTest +import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.core import PassVersionChecker @@ -109,7 +110,7 @@ class TensorRTSubgraphPassConvTransposeTest(InferencePassTest): data = fluid.data( name="data", shape=[-1, 6, 64, 64], dtype="float32" ) - conv_out = fluid.layers.conv2d_transpose( + conv_out = paddle.static.nn.conv2d_transpose( input=data, num_filters=self.conv_num_filters, filter_size=self.conv_filter_size, diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_quant_dequant_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_quant_dequant_pass.py index 8ca6bbad04..7ef60536ca 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_quant_dequant_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_quant_dequant_pass.py @@ -237,7 +237,7 @@ class QuantDequantTensorRTSubgraphPassConvTransposeTest(QuantDequantTest): data_reshape = paddle.reshape(self.data, shape=[1, 4, 14, 14]) self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') label_shape = paddle.reshape(self.label, shape=[1, 1, 1]) - conv_out = fluid.layers.conv2d_transpose( + conv_out = paddle.static.nn.conv2d_transpose( input=data_reshape, num_filters=self.conv_num_filters, filter_size=self.conv_filter_size, diff --git a/python/paddle/fluid/tests/unittests/mlu/test_conv2d_transposed_op_mlu.py b/python/paddle/fluid/tests/unittests/mlu/test_conv2d_transposed_op_mlu.py index 076c6e2ca3..a24206e090 100644 --- a/python/paddle/fluid/tests/unittests/mlu/test_conv2d_transposed_op_mlu.py +++ b/python/paddle/fluid/tests/unittests/mlu/test_conv2d_transposed_op_mlu.py @@ -499,21 +499,21 @@ class TestConv2DTransposeAPI(unittest.TestCase): data2 = fluid.layers.data( name='data2', shape=[5, 5, 3], dtype='float32' ) - out1 = fluid.layers.conv2d_transpose( + out1 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, filter_size=3, data_format='NCHW', ) - out2 = fluid.layers.conv2d_transpose( + out2 = paddle.static.nn.conv2d_transpose( input=data2, groups=1, num_filters=6, filter_size=3, data_format='NHWC', ) - out3 = fluid.layers.conv2d_transpose( + out3 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, @@ -521,7 +521,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding=[[0, 0], [1, 1], [1, 1], [0, 0]], data_format='NHWC', ) - out4 = fluid.layers.conv2d_transpose( + out4 = paddle.static.nn.conv2d_transpose( input=data1, groups=3, num_filters=6, @@ -529,7 +529,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding=[[0, 0], [0, 0], [2, 1], [0, 0]], data_format='NCHW', ) - out5 = fluid.layers.conv2d_transpose( + out5 = paddle.static.nn.conv2d_transpose( input=data2, groups=1, num_filters=6, @@ -537,7 +537,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding='SAME', data_format='NCHW', ) - out6 = fluid.layers.conv2d_transpose( + out6 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, @@ -545,7 +545,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding='VALID', data_format='NHWC', ) - out7 = fluid.layers.conv2d_transpose( + out7 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, @@ -586,7 +586,7 @@ class TestConv2DTransposeOpException(unittest.TestCase): data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32") def attr_data_format(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -597,7 +597,7 @@ class TestConv2DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_data_format) def attr_padding_str(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -608,7 +608,7 @@ class TestConv2DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_padding_str) def attr_padding_list(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -619,7 +619,7 @@ class TestConv2DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_padding_list) def attr_padding_with_data_format(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -635,14 +635,14 @@ class TestConv2DTransposeOpException(unittest.TestCase): ) def error_input_size(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=error_input, groups=1, num_filters=6, filter_size=3 ) self.assertRaises(ValueError, error_input_size) def error_groups(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=0, num_filters=6, diff --git a/python/paddle/fluid/tests/unittests/npu/test_conv2d_transpose_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_conv2d_transpose_op_npu.py index d27c98b270..aae34ebfb5 100644 --- a/python/paddle/fluid/tests/unittests/npu/test_conv2d_transpose_op_npu.py +++ b/python/paddle/fluid/tests/unittests/npu/test_conv2d_transpose_op_npu.py @@ -435,21 +435,21 @@ class TestConv2DTransposeAPI(unittest.TestCase): data2 = fluid.layers.data( name='data2', shape=[5, 5, 3], dtype='float32' ) - out1 = fluid.layers.conv2d_transpose( + out1 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, filter_size=3, data_format='NCHW', ) - out2 = fluid.layers.conv2d_transpose( + out2 = paddle.static.nn.conv2d_transpose( input=data2, groups=1, num_filters=6, filter_size=3, data_format='NHWC', ) - out3 = fluid.layers.conv2d_transpose( + out3 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, @@ -457,7 +457,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding=[[0, 0], [1, 1], [1, 1], [0, 0]], data_format='NHWC', ) - out4 = fluid.layers.conv2d_transpose( + out4 = paddle.static.nn.conv2d_transpose( input=data1, groups=3, num_filters=6, @@ -465,7 +465,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding=[[0, 0], [0, 0], [2, 1], [0, 0]], data_format='NCHW', ) - out5 = fluid.layers.conv2d_transpose( + out5 = paddle.static.nn.conv2d_transpose( input=data2, groups=1, num_filters=6, @@ -473,7 +473,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding='SAME', data_format='NCHW', ) - out6 = fluid.layers.conv2d_transpose( + out6 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, @@ -481,7 +481,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding='VALID', data_format='NHWC', ) - out7 = fluid.layers.conv2d_transpose( + out7 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, diff --git a/python/paddle/fluid/tests/unittests/test_conv2d_transpose_layer.py b/python/paddle/fluid/tests/unittests/test_conv2d_transpose_layer.py index 79a90046bf..266543bf16 100644 --- a/python/paddle/fluid/tests/unittests/test_conv2d_transpose_layer.py +++ b/python/paddle/fluid/tests/unittests/test_conv2d_transpose_layer.py @@ -13,6 +13,7 @@ # limitations under the License. import numpy as np +import paddle from paddle import fluid, nn import paddle.fluid.dygraph as dg import paddle.nn.functional as F @@ -104,7 +105,7 @@ class Conv2DTransposeTestCase(unittest.TestCase): else: bias_attr = I.NumpyArrayInitializer(self.bias) - y_var = fluid.layers.conv2d_transpose( + y_var = paddle.static.nn.conv2d_transpose( x_var, self.num_filters, filter_size=self.filter_size, diff --git a/python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py b/python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py index 482da8164b..f22a536cda 100644 --- a/python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py +++ b/python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py @@ -835,21 +835,21 @@ class TestConv2DTransposeAPI(unittest.TestCase): data2 = fluid.layers.data( name='data2', shape=[5, 5, 3], dtype='float32' ) - out1 = fluid.layers.conv2d_transpose( + out1 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, filter_size=3, data_format='NCHW', ) - out2 = fluid.layers.conv2d_transpose( + out2 = paddle.static.nn.conv2d_transpose( input=data2, groups=1, num_filters=6, filter_size=3, data_format='NHWC', ) - out3 = fluid.layers.conv2d_transpose( + out3 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, @@ -857,7 +857,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding=[[0, 0], [1, 1], [1, 1], [0, 0]], data_format='NHWC', ) - out4 = fluid.layers.conv2d_transpose( + out4 = paddle.static.nn.conv2d_transpose( input=data1, groups=3, num_filters=6, @@ -865,7 +865,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding=[[0, 0], [0, 0], [2, 1], [0, 0]], data_format='NCHW', ) - out5 = fluid.layers.conv2d_transpose( + out5 = paddle.static.nn.conv2d_transpose( input=data2, groups=1, num_filters=6, @@ -873,7 +873,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding='SAME', data_format='NCHW', ) - out6 = fluid.layers.conv2d_transpose( + out6 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, @@ -881,7 +881,7 @@ class TestConv2DTransposeAPI(unittest.TestCase): padding='VALID', data_format='NHWC', ) - out7 = fluid.layers.conv2d_transpose( + out7 = paddle.static.nn.conv2d_transpose( input=data1, groups=1, num_filters=6, @@ -919,7 +919,7 @@ class TestConv2DTransposeOpException(unittest.TestCase): data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32") def attr_data_format(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -930,7 +930,7 @@ class TestConv2DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_data_format) def attr_padding_str(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -941,7 +941,7 @@ class TestConv2DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_padding_str) def attr_padding_list(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -952,7 +952,7 @@ class TestConv2DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_padding_list) def attr_padding_with_data_format(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -968,14 +968,14 @@ class TestConv2DTransposeOpException(unittest.TestCase): ) def error_input_size(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=error_input, groups=1, num_filters=6, filter_size=3 ) self.assertRaises(ValueError, error_input_size) def error_groups(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=0, num_filters=6, @@ -1064,7 +1064,7 @@ class TestTensorOutputSize3(TestTensorOutputSize1): def call_func(self, x): w_var = paddle.randn((3, 6, 3, 3), dtype='float32') output_size = paddle.assign([17]) - out = paddle.fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( x, num_filters=6, output_size=output_size, filter_size=3, stride=2 ) return out @@ -1076,7 +1076,7 @@ class TestTensorOutputSize4(TestTensorOutputSize1): def call_func(self, x): output_size = [17, paddle.assign([17])] - out = paddle.fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( x, num_filters=6, output_size=output_size, filter_size=3, stride=2 ) return out diff --git a/python/paddle/fluid/tests/unittests/test_conv3d_transpose_layer.py b/python/paddle/fluid/tests/unittests/test_conv3d_transpose_layer.py index 87511cb0fa..6c690595a0 100644 --- a/python/paddle/fluid/tests/unittests/test_conv3d_transpose_layer.py +++ b/python/paddle/fluid/tests/unittests/test_conv3d_transpose_layer.py @@ -13,6 +13,7 @@ # limitations under the License. import numpy as np +import paddle from paddle import fluid, nn import paddle.fluid.dygraph as dg import paddle.nn.functional as F @@ -101,7 +102,7 @@ class Conv3DTransposeTestCase(unittest.TestCase): bias_attr = False else: bias_attr = I.NumpyArrayInitializer(self.bias) - y_var = fluid.layers.conv3d_transpose( + y_var = paddle.static.nn.conv3d_transpose( x_var, self.num_filters, filter_size=self.filter_size, diff --git a/python/paddle/fluid/tests/unittests/test_conv3d_transpose_part2_op.py b/python/paddle/fluid/tests/unittests/test_conv3d_transpose_part2_op.py index 0aed6c1c51..80fb35f902 100644 --- a/python/paddle/fluid/tests/unittests/test_conv3d_transpose_part2_op.py +++ b/python/paddle/fluid/tests/unittests/test_conv3d_transpose_part2_op.py @@ -15,6 +15,7 @@ import unittest import numpy as np +import paddle import paddle.fluid.core as core import paddle.fluid as fluid from test_conv3d_transpose_op import TestConv3DTransposeOp @@ -91,21 +92,21 @@ class TestConv3DTransposeAPI(unittest.TestCase): name='data2', shape=[5, 5, 5, 3], dtype='float32' ) - out1 = fluid.layers.conv3d_transpose( + out1 = paddle.static.nn.conv3d_transpose( input=data1, groups=1, num_filters=6, filter_size=3, data_format='NCDHW', ) - out2 = fluid.layers.conv3d_transpose( + out2 = paddle.static.nn.conv3d_transpose( input=data2, groups=1, num_filters=6, filter_size=3, data_format='NDHWC', ) - out3 = fluid.layers.conv3d_transpose( + out3 = paddle.static.nn.conv3d_transpose( input=data1, groups=1, num_filters=6, @@ -113,7 +114,7 @@ class TestConv3DTransposeAPI(unittest.TestCase): padding=[[0, 0], [0, 0], [1, 1], [0, 0], [1, 1]], data_format='NCDHW', ) - out4 = fluid.layers.conv3d_transpose( + out4 = paddle.static.nn.conv3d_transpose( input=data2, groups=3, num_filters=6, @@ -121,7 +122,7 @@ class TestConv3DTransposeAPI(unittest.TestCase): padding=[[0, 0], [0, 0], [1, 1], [1, 2], [0, 0]], data_format='NDHWC', ) - out5 = fluid.layers.conv3d_transpose( + out5 = paddle.static.nn.conv3d_transpose( input=data2, groups=1, num_filters=6, @@ -129,7 +130,7 @@ class TestConv3DTransposeAPI(unittest.TestCase): padding='SAME', data_format='NCDHW', ) - out6 = fluid.layers.conv3d_transpose( + out6 = paddle.static.nn.conv3d_transpose( input=data2, groups=1, num_filters=6, @@ -137,7 +138,7 @@ class TestConv3DTransposeAPI(unittest.TestCase): padding='VALID', data_format='NDHWC', ) - out7 = fluid.layers.conv3d_transpose( + out7 = paddle.static.nn.conv3d_transpose( input=data2, groups=1, num_filters=6, @@ -177,7 +178,7 @@ class TestConv3DTransposeOpException(unittest.TestCase): ) def attr_data_format(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -188,7 +189,7 @@ class TestConv3DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_data_format) def attr_padding_str(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -199,7 +200,7 @@ class TestConv3DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_padding_str) def attr_padding_list(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, @@ -210,7 +211,7 @@ class TestConv3DTransposeOpException(unittest.TestCase): self.assertRaises(ValueError, attr_padding_list) def attr_padding_with_data_format(): - out = fluid.layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=data, groups=1, num_filters=6, diff --git a/python/paddle/fluid/tests/unittests/test_conv_transpose_nn_grad.py b/python/paddle/fluid/tests/unittests/test_conv_transpose_nn_grad.py index f4c139a546..c37394ed83 100644 --- a/python/paddle/fluid/tests/unittests/test_conv_transpose_nn_grad.py +++ b/python/paddle/fluid/tests/unittests/test_conv_transpose_nn_grad.py @@ -36,7 +36,7 @@ class TestConvTransposeDoubleGradCheck(unittest.TestCase): if core.is_compiled_with_rocm(): dtype = np.float32 x = layers.data('x', shape, False, dtype) - y = layers.conv2d_transpose( + y = paddle.static.nn.conv2d_transpose( x, 2, filter_size=1, groups=1, bias_attr=False ) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) @@ -92,7 +92,7 @@ class TestConvTranspose2DoubleGradCheck_AsyPadding( if core.is_compiled_with_rocm(): dtype = np.float32 x = layers.data('x', shape, False, dtype) - y = layers.conv2d_transpose( + y = paddle.static.nn.conv2d_transpose( input=x, num_filters=2, filter_size=1, @@ -145,7 +145,7 @@ class TestConvTranspose2DoubleGradCheck_PaddingSAME( if core.is_compiled_with_rocm(): dtype = np.float32 x = layers.data('x', shape, False, dtype) - y = layers.conv2d_transpose( + y = paddle.static.nn.conv2d_transpose( input=x, num_filters=2, filter_size=1, @@ -198,7 +198,7 @@ class TestConvTranspose2DoubleGradCheck_PaddingVALID( if core.is_compiled_with_rocm(): dtype = np.float32 x = layers.data('x', shape, False, dtype) - y = layers.conv2d_transpose( + y = paddle.static.nn.conv2d_transpose( input=x, num_filters=2, filter_size=1, @@ -251,7 +251,7 @@ class TestConvTranspose2DoubleGradCheck_ChannelLast( if core.is_compiled_with_rocm(): dtype = np.float32 x = layers.data('x', shape, False, dtype) - y = layers.conv2d_transpose( + y = paddle.static.nn.conv2d_transpose( input=x, num_filters=2, filter_size=1, diff --git a/python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py b/python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py index d377be24dd..d45f13e4c9 100644 --- a/python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py +++ b/python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py @@ -89,7 +89,7 @@ class TestFunctionalConv2D(TestCase): (-1, self.in_channels, -1, -1), dtype=self.dtype, ) - y = fluid.layers.conv2d_transpose( + y = paddle.static.nn.conv2d_transpose( x, self.out_channels, output_size=self.output_size, diff --git a/python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py b/python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py index d9ee049535..3c013fe873 100644 --- a/python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py +++ b/python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py @@ -89,7 +89,7 @@ class TestFunctionalConv3DTranspose(TestCase): (-1, self.in_channels, -1, -1, -1), dtype=self.dtype, ) - y = fluid.layers.conv3d_transpose( + y = paddle.static.nn.conv3d_transpose( x, self.out_channels, output_size=self.output_size, @@ -550,7 +550,7 @@ class TestFunctionalConv3DTransposeErrorCase10(TestCase): with fluid.unique_name.guard(): with fluid.program_guard(main, start): x = fluid.data("input", self.input.shape, dtype=paddle.float32) - y = fluid.layers.conv3d_transpose( + y = paddle.static.nn.conv3d_transpose( x, self.num_filters, self.filter_size, diff --git a/python/paddle/fluid/tests/unittests/test_imperative_load_static_param.py b/python/paddle/fluid/tests/unittests/test_imperative_load_static_param.py index c0f6badfe2..c96fe97fac 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_load_static_param.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_load_static_param.py @@ -103,20 +103,20 @@ class TestDygraphLoadStatic(unittest.TestCase): name="conv2d_trans_in", shape=[None, 10, 10, 10] ) - conv2d_trans_out_1 = fluid.layers.conv2d_transpose( + conv2d_trans_out_1 = paddle.static.nn.conv2d_transpose( conv2d_trans_in, num_filters=10, filter_size=5, act="relu" ) - conv2d_trans_out_2 = fluid.layers.conv2d_transpose( + conv2d_trans_out_2 = paddle.static.nn.conv2d_transpose( conv2d_trans_in, num_filters=10, filter_size=5, act="relu" ) conv3d_trans_in = fluid.data( name='conv3d_trans_in', shape=[None, 3, 12, 32, 32], dtype='float32' ) - conv3d_trans_out_1 = fluid.layers.conv3d_transpose( + conv3d_trans_out_1 = paddle.static.nn.conv3d_transpose( input=conv3d_trans_in, num_filters=2, filter_size=3, act="relu" ) - conv3d_trans_out_2 = fluid.layers.conv3d_transpose( + conv3d_trans_out_2 = paddle.static.nn.conv3d_transpose( input=conv3d_trans_in, num_filters=2, filter_size=3, act="relu" ) diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 1d892e76c9..8b6c2ada2d 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -716,7 +716,7 @@ class TestLayer(LayerTest): inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32') with self.static_graph(): img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32') - out = layers.conv2d_transpose( + out = paddle.static.nn.conv2d_transpose( input=img, num_filters=10, filter_size=27, @@ -2270,7 +2270,7 @@ class TestLayer(LayerTest): with self.static_graph(): img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32') - out = layers.conv3d_transpose( + out = paddle.static.nn.conv3d_transpose( input=img, num_filters=12, filter_size=12, use_cudnn=False ) static_rlt = self.get_static_graph_result( @@ -3062,7 +3062,7 @@ class TestBook(LayerTest): fluid.default_main_program(), fluid.default_startup_program() ): img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32') - return layers.conv2d_transpose( + return paddle.static.nn.conv2d_transpose( input=img, num_filters=10, output_size=28 ) diff --git a/python/paddle/static/nn/__init__.py b/python/paddle/static/nn/__init__.py index 64e079ae37..7f695a4821 100755 --- a/python/paddle/static/nn/__init__.py +++ b/python/paddle/static/nn/__init__.py @@ -14,15 +14,15 @@ from .common import fc # noqa: F401 from .common import deform_conv2d # noqa: F401 +from .common import conv2d_transpose # noqa: F401 +from .common import conv3d_transpose # noqa: F401 from ...fluid.layers import batch_norm # noqa: F401 from ...fluid.layers import bilinear_tensor_product # noqa: F401 from ...fluid.layers import case # noqa: F401 from ...fluid.layers import cond # noqa: F401 from ...fluid.layers import conv2d # noqa: F401 -from ...fluid.layers import conv2d_transpose # noqa: F401 from ...fluid.layers import conv3d # noqa: F401 -from ...fluid.layers import conv3d_transpose # noqa: F401 from ...fluid.layers import create_parameter # noqa: F401 from ...fluid.layers import crf_decoding # noqa: F401 from ...fluid.layers import data_norm # noqa: F401 diff --git a/python/paddle/static/nn/common.py b/python/paddle/static/nn/common.py index 9c0e1114f7..aee2009edd 100755 --- a/python/paddle/static/nn/common.py +++ b/python/paddle/static/nn/common.py @@ -13,7 +13,9 @@ # limitations under the License. import paddle -from paddle.fluid.framework import static_only +from paddle.fluid.framework import static_only, Variable, _non_static_mode + +from paddle.fluid.data_feeder import check_dtype from paddle.common_ops_import import ( check_type, @@ -174,6 +176,731 @@ def fc( ) +def conv2d_transpose( + input, + num_filters, + output_size=None, + filter_size=None, + padding=0, + stride=1, + dilation=1, + groups=None, + param_attr=None, + bias_attr=None, + use_cudnn=True, + act=None, + name=None, + data_format='NCHW', +): + r""" + :api_attr: Static Graph + + The convolution2D transpose layer calculates the output based on the input, + filter, and dilations, strides, paddings. Input(Input) and output(Output) + are in NCHW or NHWC format. Where N is batch size, C is the number of channels, + H is the height of the feature, and W is the width of the feature. + Parameters(dilations, strides, paddings) are two elements. These two elements + represent height and width, respectively. The details of convolution transpose + layer, please refer to the following explanation and references + `therein `_. + If bias attribution and activation type are provided, bias is added to + the output of the convolution, and the corresponding activation function + is applied to the final result. + + For each input :math:`X`, the equation is: + + .. math:: + + Out = \sigma (W \\ast X + b) + + Where: + + * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format. + * :math:`W`: Filter value, a 4-D Tensor with MCHW format. + * :math:`\\ast`: Convolution operation. + * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. + * :math:`\\sigma`: Activation function. + * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different. + + Example: + + - Input: + + Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` + + Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` + + - Output: + + Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` + + Where + + .. math:: + + H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\ + W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\ + H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\ + W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] + + Note: + The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, + when stride > 1, conv2d maps multiple input shape to the same output shape, + so for conv2d_transpose, when stride > 1, input shape maps multiple output shape. + If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; + else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` + and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must + between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, + conv2d_transpose can compute the kernel size automatically. + + Args: + input(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format, + its data type is float32 or float64. + num_filters(int): The number of the filter. It is as same as the output + image channel. + output_size(int|tuple, optional): The output image size. If output size is a + tuple, it must contain two integers, (image_height, image_width). None if use + filter_size, padding, and stride to calculate output_size. + If output_size and filter_size are specified at the same time, They + should follow the formula above. Default: None. output_size and filter_size + should not be None at the same time. + filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_height, filter_size_width). + Otherwise, filter_size_height = filter_size_width = filter_size. None if + use output size to calculate filter_size. Default: None. filter_size and + output_size should not be None at the same time. + stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. + If stride is a tuple, it must contain two integers, (stride_height, stride_width). + Otherwise, stride_height = stride_width = stride. Default: stride = 1. + padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings + on both sides for each dimension. If `padding` is a string, either 'VALID' or + 'SAME' which is the padding algorithm. If `padding` is a tuple or list, + it could be in three forms: `[pad_height, pad_width]` or + `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, + and when `data_format` is `"NCHW"`, `padding` can be in the form + `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. + when `data_format` is `"NHWC"`, `padding` can be in the form + `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. + Default: padding = 0. + dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. + If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). + Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1. + filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_height, filter_size_width). + Otherwise, filter_size_height = filter_size_width = filter_size. None if + use output size to calculate filter_size. Default: None. + groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by + grouped convolution in Alex Krizhevsky's Deep CNN paper, in which + when group=2, the first half of the filters is only connected to the + first half of the input channels, while the second half of the + filters is only connected to the second half of the input channels. + Default: groups = 1. + param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights + of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose + will create ParamAttr as param_attr. If the Initializer of the param_attr + is not set, the parameter is initialized with Xavier. Default: None. + bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose. + If it is set to False, no bias will be added to the output units. + If it is set to None or one attribute of ParamAttr, conv2d_transpose + will create ParamAttr as bias_attr. If the Initializer of the bias_attr + is not set, the bias is initialized zero. Default: None. + use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True. + act (str, optional): Activation type, if it is set to None, activation is not appended. + Default: None. + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + data_format (str, optional): Specify the data format of the input, and the data format of the output + will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. + The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: + `[batch_size, input_channels, input_height, input_width]`. + + Returns: + A Tensor representing the conv2d_transpose, whose + data type is the same with input and shape is (num_batches, channels, out_h, + out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor + storing the transposed convolution result, and if act is not None, the + tensor storing transposed convolution and non-linearity activation + result. + + Raises: + ValueError: If the type of `use_cudnn` is not bool. + ValueError: If `data_format` is not "NCHW" or "NHWC". + ValueError: If `padding` is a string, but not "SAME" or "VALID". + ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 + or the element corresponding to the input's channel is not 0. + ValueError: If `output_size` and filter_size are None at the same time. + ShapeError: If the input is not 4-D Tensor. + ShapeError: If the input's dimension size and filter's dimension size not equal. + ShapeError: If the dimension size of input minus the size of `stride` is not 2. + ShapeError: If the number of input channels is not equal to filter's channels. + ShapeError: If the size of `output_size` is not equal to that of `stride`. + + Examples: + .. code-block:: python + + import paddle + paddle.enable_static() + + data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32') + conv2d_transpose = paddle.static.nn.conv2d_transpose(input=data, num_filters=2, filter_size=3) + print(conv2d_transpose.shape) # [-1, 2, 34, 34] + """ + assert ( + param_attr is not False + ), "param_attr should not be False in conv2d_transpose." + if len(input.shape) != 4: + raise ValueError( + "Input size should be 4, " + "but received {}".format(len(input.shape)) + ) + + if data_format not in ['NCHW', 'NHWC']: + raise ValueError( + "Attr(data_format) of Op(paddle.static.nn.layers.conv2d_transpose) got wrong value: received " + + data_format + + " but only NCHW or NHWC supported." + ) + + input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1] + op_type = 'conv2d_transpose' + if ( + input_channel == groups + and num_filters == input_channel + and not use_cudnn + ): + op_type = 'depthwise_conv2d_transpose' + + helper = LayerHelper(op_type, **locals()) + if not isinstance(input, Variable): + raise TypeError("Input of conv2d_transpose must be Variable") + + stride = utils.convert_to_list(stride, 2, 'stride') + dilation = utils.convert_to_list(dilation, 2, 'dilation') + + if not isinstance(use_cudnn, bool): + raise ValueError("use_cudnn should be True or False") + + def _update_padding(padding, data_format): + def is_list_or_tuple(ele): + if isinstance(ele, list) or isinstance(ele, tuple): + return True + return False + + if is_list_or_tuple(padding) and len(padding) == 4: + if is_list_or_tuple(padding[0]) and (data_format == "NCHW"): + if not (padding[0] == [0, 0] and padding[1] == [0, 0]): + raise ValueError( + "Non-zero padding(%s) in the batch or channel dimensions " + "is not supported." % str(padding) + ) + padding = padding[2:4] + padding = [ele for a_list in padding for ele in a_list] + elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"): + if not (padding[0] == [0, 0] and padding[3] == [0, 0]): + raise ValueError( + "Non-zero padding(%s) in the batch or channel dimensions " + "is not supported." % str(padding) + ) + padding = padding[1:3] + padding = [ele for a_list in padding for ele in a_list] + padding = utils.convert_to_list(padding, 4, 'padding') + else: + padding = utils.convert_to_list(padding, 2, 'padding') + padding = [padding[0], padding[0], padding[1], padding[1]] + return padding + + padding_algorithm = "EXPLICIT" + if isinstance(padding, str): + padding = padding.upper() + if padding not in ["SAME", "VALID"]: + raise ValueError( + "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." + % str(padding) + ) + if padding == "VALID": + padding_algorithm = "VALID" + padding = [0, 0, 0, 0] + elif padding == "SAME": + padding_algorithm = "SAME" + padding = [0, 0, 0, 0] + + padding = _update_padding(padding, data_format) + + if output_size is None: + output_size = [] + elif isinstance(output_size, (list, tuple)): + if utils._contain_var(output_size): + output_size = utils._convert_to_tensor_list(output_size) + else: + output_size = utils.convert_to_list(output_size, 2, 'output_size') + elif isinstance(output_size, int): + output_size = utils.convert_to_list(output_size, 2, 'output_size') + elif isinstance(output_size, Variable): + check_dtype( + output_size.dtype, + 'output_size', + ['int32', 'int64'], + 'conv2d_transpose', + ) + if len(output_size.shape) == 1 and ( + output_size.shape[0] == 1 or output_size.shape[0] == 2 + ): + if output_size.shape[0] == 1: + output_size = [output_size, output_size] + else: + raise ValueError("output_size must contain one or two integers.") + else: + raise ValueError( + "output_size should be int, list[int] or tuple[int] or Tensor" + ) + + if filter_size is None: + if output_size is []: + raise ValueError("output_size must be set when filter_size is None") + if not _non_static_mode(): + if isinstance(output_size, Variable) or utils._contain_var( + output_size + ): + raise ValueError( + "filter_size should not be None when output_size is Variable or contain Variable in static mode." + ) + else: + output_size = utils.convert_shape_to_list(output_size) + if len(output_size) == 1: + output_size = utils.convert_to_list( + output_size[0], 2, 'output_size' + ) + + h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1] + w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2] + + filter_size_h = ( + output_size[0] + - (h_in - 1) * stride[0] + + padding[0] + + padding[1] + - 1 + ) // dilation[0] + 1 + filter_size_w = ( + output_size[1] + - (w_in - 1) * stride[1] + + padding[2] + + padding[3] + - 1 + ) // dilation[1] + 1 + filter_size = [filter_size_h, filter_size_w] + else: + filter_size = utils.convert_to_list( + filter_size, 2, 'conv2d_transpose.filter_size' + ) + + if len(padding) == 4 and utils._is_symmetric_padding(padding, 2): + padding = [padding[0], padding[2]] + + if groups is None: + groups = 1 + elif groups <= 0: + raise ValueError( + "the groups of input must be greater than 0, " + "but received the groups of input is {}".format(groups) + ) + + filter_shape = [input_channel, num_filters // groups] + filter_size + + img_filter = helper.create_parameter( + dtype=input.dtype, shape=filter_shape, attr=helper.param_attr + ) + + pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) + helper.append_op( + type=op_type, + inputs={'Input': [input], 'Filter': [img_filter]}, + outputs={'Output': pre_bias}, + attrs={ + 'output_size': output_size, + 'strides': stride, + 'paddings': padding, + 'padding_algorithm': padding_algorithm, + 'dilations': dilation, + 'groups': groups, + 'use_cudnn': use_cudnn, + 'data_format': data_format, + }, + ) + + if data_format == 'NCHW': + pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) + else: + pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4) + out = helper.append_activation(pre_act) + return out + + +def conv3d_transpose( + input, + num_filters, + output_size=None, + filter_size=None, + padding=0, + stride=1, + dilation=1, + groups=None, + param_attr=None, + bias_attr=None, + use_cudnn=True, + act=None, + name=None, + data_format='NCDHW', +): + r""" + :api_attr: Static Graph + + The convolution3D transpose layer calculates the output based on the input, + filter, and dilations, strides, paddings. Input(Input) and output(Output) + are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels, + D is the depth of the feature, H is the height of the feature, and W + is the width of the feature. Parameters(dilations, strides, paddings) are + two elements. These two elements represent height and width, respectively. + The details of convolution transpose layer, please refer to the following + explanation and references `therein `_. + If bias attribution and activation type are provided, bias is added to + the output of the convolution, and the corresponding activation function + is applied to the final result. + + For each input :math:`X`, the equation is: + + .. math:: + + Out = \sigma (W \ast X + b) + + In the above equation: + + * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format. + * :math:`W`: Filter value, a Tensor with MCDHW format. + * :math:`\ast`: Convolution operation. + * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. + * :math:`\sigma`: Activation function. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. + + Example: + + - Input: + + Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` + + Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)` + + - Output: + + Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` + + Where + + .. math:: + + D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\ + H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\ + W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\ + D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\ + H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\ + W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ] + + Note: + The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, + when stride > 1, conv3d maps multiple input shape to the same output shape, + so for conv3d_transpose, when stride > 1, input shape maps multiple output shape. + If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \ + H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output + size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, + the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` + and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must + between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, + conv3d_transpose can compute the kernel size automatically. + + Args: + input(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type + of input is float32 or float64. + num_filters(int): The number of the filter. It is as same as the output + image channel. + output_size(int|tuple, optional): The output image size. If output size is a + tuple, it must contain three integers, (image_depth, image_height, image_width). This + parameter only works when filter_size is None. If output_size and filter_size are + specified at the same time, They should follow the formula above. Default: None. + Output_size and filter_size should not be None at the same time. + filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, + it must contain three integers, (filter_size_depth, filter_size_height, + filter_size_width). Otherwise, filter_size_depth = filter_size_height = \ + filter_size_width = filter_size. None if use output size to + calculate filter_size. Default: None. filter_size and output_size should not be + None at the same time. + padding(int|list|str|tuple, optional): The padding size. The padding argument effectively + adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string, + either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding` + is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or + `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, + and when `data_format` is `'NCDHW'`, `padding` can be in the form + `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. + when `data_format` is `'NDHWC'`, `padding` can be in the form + `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. + Default: padding = 0. + stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. + If stride is a tuple, it must contain three integers, (stride_depth, stride_height, + stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. + Default: stride = 1. + dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. + If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, + dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. + Default: dilation = 1. + groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by + grouped convolution in Alex Krizhevsky's Deep CNN paper, in which + when group=2, the first half of the filters is only connected to the + first half of the input channels, while the second half of the + filters is only connected to the second half of the input channels. + Default: groups=1 + param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights + of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose + will create ParamAttr as param_attr. If the Initializer of the param_attr + is not set, the parameter is initialized with Xavier. Default: None. + bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose. + If it is set to False, no bias will be added to the output units. + If it is set to None or one attribute of ParamAttr, conv3d_transpose + will create ParamAttr as bias_attr. If the Initializer of the bias_attr + is not set, the bias is initialized zero. Default: None. + use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + act (str, optional): Activation type, if it is set to None, activation is not appended. + Default: None. + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + data_format (str, optional): Specify the data format of the input, and the data format of the output + will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. + The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: + `[batch_size, input_channels, input_height, input_width]`. + + Returns: + A Variable holding Tensor representing the conv3d_transpose, whose data + type is the same with input and shape is (num_batches, channels, out_d, out_h, + out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor + variable storing the transposed convolution result, and if act is not None, the tensor + variable storing transposed convolution and non-linearity activation result. + + Raises: + ValueError: If the type of `use_cudnn` is not bool. + ValueError: If `data_format` is not "NCDHW" or "NDHWC". + ValueError: If `padding` is a string, but not "SAME" or "VALID". + ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 + or the element corresponding to the input's channel is not 0. + ValueError: If `output_size` and filter_size are None at the same time. + ShapeError: If the input is not 5-D Tensor. + ShapeError: If the input's dimension size and filter's dimension size not equal. + ShapeError: If the dimension size of input minus the size of `stride` is not 2. + ShapeError: If the number of input channels is not equal to filter's channels. + ShapeError: If the size of `output_size` is not equal to that of `stride`. + + Examples: + .. code-block:: python + + import paddle + import numpy as np + + paddle.enable_static() + data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32') + param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001) + res = paddle.static.nn.conv3d_transpose(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr) + place = paddle.CPUPlace() + exe = paddle.static.Executor(place) + exe.run(paddle.static.default_startup_program()) + x = np.random.rand(1, 3, 12, 32, 32).astype("float32") + output = exe.run(feed={"data": x}, fetch_list=[res]) + print(output) + """ + assert ( + param_attr is not False + ), "param_attr should not be False in conv3d_transpose." + if data_format not in ['NCDHW', 'NDHWC']: + raise ValueError( + "Param(data_format) of Op(paddle.static.nn.conv3d_transpose) got wrong value: received " + + data_format + + " but only NCDHW or NDHWC supported." + ) + + l_type = "conv3d_transpose" + helper = LayerHelper(l_type, **locals()) + if not isinstance(input, Variable): + raise TypeError("Input of conv3d_transpose must be Variable") + if len(input.shape) != 5: + raise ValueError( + "Input should be 5D tensor, but received input with the shape of {}".format( + input.shape + ) + ) + input_channel = ( + input.shape[1] if data_format == 'NCDHW' else input.shape[-1] + ) + + stride = utils.convert_to_list(stride, 3, 'stride') + dilation = utils.convert_to_list(dilation, 3, 'dilation') + + if not isinstance(use_cudnn, bool): + raise ValueError("use_cudnn should be True or False") + + def _update_padding(padding, data_format): + def is_list_or_tuple(ele): + if isinstance(ele, list) or isinstance(ele, tuple): + return True + return False + + if is_list_or_tuple(padding) and len(padding) == 5: + if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"): + if not (padding[0] == [0, 0] and padding[1] == [0, 0]): + raise ValueError( + "Non-zero padding(%s) in the batch or channel dimensions " + "is not supported." % str(padding) + ) + padding = padding[2:5] + padding = [ele for a_list in padding for ele in a_list] + elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"): + if not (padding[0] == [0, 0] and padding[4] == [0, 0]): + raise ValueError( + "Non-zero padding(%s) in the batch or channel dimensions " + "is not supported." % str(padding) + ) + padding = padding[1:4] + padding = [ele for a_list in padding for ele in a_list] + padding = utils.convert_to_list(padding, 6, 'padding') + + elif is_list_or_tuple(padding) and len(padding) == 6: + padding = utils.convert_to_list(padding, 6, 'padding') + + else: + padding = utils.convert_to_list(padding, 3, 'padding') + padding = [ + padding[0], + padding[0], + padding[1], + padding[1], + padding[2], + padding[2], + ] + return padding + + padding_algorithm = "EXPLICIT" + if isinstance(padding, str): + padding = padding.upper() + if padding not in ["SAME", "VALID"]: + raise ValueError( + "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." + % str(padding) + ) + if padding == "VALID": + padding_algorithm = "VALID" + padding = [0, 0, 0, 0, 0, 0] + elif padding == "SAME": + padding_algorithm = "SAME" + padding = [0, 0, 0, 0, 0, 0] + + padding = _update_padding(padding, data_format) + + if filter_size is None: + if output_size is None: + raise ValueError("output_size must be set when filter_size is None") + if isinstance(output_size, int): + output_size = [output_size, output_size, output_size] + + d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1] + h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2] + w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3] + + filter_size_d = ( + output_size[0] + - (d_in - 1) * stride[0] + + padding[0] + + padding[1] + - 1 + ) // dilation[0] + 1 + filter_size_h = ( + output_size[1] + - (h_in - 1) * stride[1] + + padding[2] + + padding[3] + - 1 + ) // dilation[1] + 1 + filter_size_w = ( + output_size[2] + - (w_in - 1) * stride[2] + + padding[4] + + padding[5] + - 1 + ) // dilation[2] + 1 + filter_size = [filter_size_d, filter_size_h, filter_size_w] + else: + filter_size = utils.convert_to_list( + filter_size, 3, 'conv3d_transpose.filter_size' + ) + + if len(padding) == 6 and utils._is_symmetric_padding(padding, 3): + padding = [padding[0], padding[2], padding[4]] + + if output_size is None: + output_size = [] + elif isinstance(output_size, (list, tuple, int)): + output_size = utils.convert_to_list(output_size, 3, 'output_size') + else: + raise ValueError("output_size should be int, list[int] or tuple[int]") + + groups = 1 if groups is None else groups + if groups <= 0: + raise ValueError( + "the groups of conv3d_transpose should be greater than 0. Received groups: {}".format( + groups + ) + ) + if num_filters % groups != 0: + raise ValueError( + "Attr(num_filters) must be divisible by groups," + "Received: Attr(num_filters) is {}, the groups is {}".format( + num_filters, groups + ) + ) + + filter_shape = [input_channel, num_filters // groups] + filter_size + img_filter = helper.create_parameter( + dtype=input.dtype, shape=filter_shape, attr=helper.param_attr + ) + + if data_format == 'NCDHW': + data_format = 'NCHW' + if data_format == 'NDHWC': + data_format = 'NHWC' + + pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) + helper.append_op( + type=l_type, + inputs={'Input': [input], 'Filter': [img_filter]}, + outputs={'Output': pre_bias}, + attrs={ + 'output_size': output_size, + 'strides': stride, + 'paddings': padding, + 'padding_algorithm': padding_algorithm, + 'dilations': dilation, + 'groups': groups, + 'use_cudnn': use_cudnn, + 'data_format': data_format, + }, + ) + + if data_format == 'NCHW': + pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) + else: + pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5) + out = helper.append_activation(pre_act) + return out + + def deformable_conv( input, offset, -- GitLab