From 965b45e8c5c063f8d2233db2f18a1a740e06e256 Mon Sep 17 00:00:00 2001 From: juncaipeng <52520497+juncaipeng@users.noreply.github.com> Date: Thu, 17 Oct 2019 10:21:14 +0800 Subject: [PATCH] Move pool2d to add_quant_dequant_pass, test=develop (#20586) (#20675) * move pool2d to add_quant_dequant_pass, test=develop --- .../slim/quantization/quantization_pass.py | 27 ++++---- .../slim/tests/test_quantization_pass.py | 65 ++++++++++++------- 2 files changed, 57 insertions(+), 35 deletions(-) diff --git a/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py b/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py index 15a91c063d..39473773f4 100644 --- a/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py +++ b/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py @@ -26,7 +26,7 @@ __all__ = [ 'AddQuantDequantPass' ] -_quantizable_op_list = ['conv2d', 'depthwise_conv2d', 'mul', 'pool2d'] +_quantizable_op_list = ['conv2d', 'depthwise_conv2d', 'mul'] _fake_quant_op_list = [ 'fake_quantize_abs_max', 'fake_quantize_range_abs_max', @@ -161,13 +161,11 @@ class QuantizationTransformPass(object): persistable_vars = [p.name() for p in graph.all_persistable_nodes()] def _quant_preprocess(op_node): - pool_skipped = op_node.op().has_attr("pooling_type") and \ - op_node.op().attr("pooling_type") == 'avg' user_skipped = isinstance(self._skip_pattern, str) and \ op_node.op().has_attr("op_namescope") and \ op_node.op().attr("op_namescope").find(self._skip_pattern) != -1 - if pool_skipped or user_skipped: + if user_skipped: op_node.op()._set_attr("skip_quant", True) def _transform_forward(graph, op): @@ -1163,10 +1161,15 @@ class ScaleForInferencePass(object): class AddQuantDequantPass(object): - def __init__(self, scope=None, place=None, moving_rate=0.9, quant_bits=8): + def __init__(self, + scope=None, + place=None, + moving_rate=0.9, + quant_bits=8, + skip_pattern='skip_quant'): """ This pass is used to add quant_dequant op for some ops, such as the - 'elementwise_add' and 'average pool2d' op. + 'elementwise_add' and 'pool2d' op. """ self._scope = scope self._place = place @@ -1175,11 +1178,12 @@ class AddQuantDequantPass(object): self._is_test = None self._target_ops = ["elementwise_add", "pool2d"] self._target_grad_ops = ['%s_grad' % (op) for op in self._target_ops] + self._skip_pattern = skip_pattern def apply(self, graph): """ Add quant_dequant before some ops, such as the 'elementwise_add' - and 'average pool2d' op. + and 'pool2d' op. Args: graph(IrGraph): the target graph. """ @@ -1191,6 +1195,11 @@ class AddQuantDequantPass(object): for op_node in ops: if op_node.name() in self._target_ops: + if isinstance(self._skip_pattern, str) and \ + op_node.op().has_attr("op_namescope") and \ + op_node.op().attr("op_namescope").find(self._skip_pattern) != -1: + continue + in_nodes_all_not_persistable = True for input_name in op_node.input_arg_names(): in_node = graph._find_node_by_name(op_node.inputs, @@ -1201,10 +1210,6 @@ class AddQuantDequantPass(object): if not in_nodes_all_not_persistable: continue - if op_node.op().has_attr("pooling_type") and \ - op_node.op().attr("pooling_type") == 'max': - continue - input_names = op_node.input_arg_names() for input_name in input_names: in_node = graph._find_node_by_name(op_node.inputs, diff --git a/python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py b/python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py index 162048d744..c1f03999bc 100644 --- a/python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py +++ b/python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py @@ -42,7 +42,7 @@ def linear_fc(num): return loss -def residual_block(num): +def residual_block(num, quant_skip_pattern=None): def conv_bn_layer(input, ch_out, filter_size, @@ -67,8 +67,14 @@ def residual_block(num): conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True) short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None) hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu') - pool = fluid.layers.pool2d( - input=hidden, pool_size=2, pool_type='avg', pool_stride=2) + + if quant_skip_pattern: + with fluid.name_scope(quant_skip_pattern): + pool = fluid.layers.pool2d( + input=hidden, pool_size=2, pool_type='avg', pool_stride=2) + else: + pool = fluid.layers.pool2d( + input=hidden, pool_size=2, pool_type='avg', pool_stride=2) fc = fluid.layers.fc(input=pool, size=10) loss = fluid.layers.cross_entropy(input=fc, label=label) loss = fluid.layers.mean(loss) @@ -134,7 +140,10 @@ class TestQuantizationTransformPass(unittest.TestCase): arg_name.endswith('.quantized.dequantized')) self.assertTrue(arg_name in quantized_ops) - def linear_fc_quant(self, activation_quant_type, for_ci=True): + def linear_fc_quant(self, + activation_quant_type, + weight_quantize_type, + for_ci=True): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): @@ -146,7 +155,8 @@ class TestQuantizationTransformPass(unittest.TestCase): transform_pass = QuantizationTransformPass( scope=fluid.global_scope(), place=place, - activation_quantize_type=activation_quant_type) + activation_quantize_type=activation_quant_type, + weight_quantize_type=weight_quantize_type) transform_pass.apply(graph) if not for_ci: marked_nodes = set() @@ -167,15 +177,19 @@ class TestQuantizationTransformPass(unittest.TestCase): val_marked_nodes) def test_linear_fc_quant_abs_max(self): - self.linear_fc_quant('abs_max', for_ci=True) + self.linear_fc_quant('abs_max', 'abs_max', for_ci=True) def test_linear_fc_quant_range_abs_max(self): - self.linear_fc_quant('range_abs_max', for_ci=True) + self.linear_fc_quant('range_abs_max', 'abs_max', for_ci=True) def test_linear_fc_quant_moving_average_abs_max(self): - self.linear_fc_quant('moving_average_abs_max', for_ci=True) + self.linear_fc_quant( + 'moving_average_abs_max', 'channel_wise_abs_max', for_ci=True) - def residual_block_quant(self, activation_quant_type, for_ci=True): + def residual_block_quant(self, + activation_quant_type, + weight_quantize_type, + for_ci=True): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): @@ -187,7 +201,8 @@ class TestQuantizationTransformPass(unittest.TestCase): transform_pass = QuantizationTransformPass( scope=fluid.global_scope(), place=place, - activation_quantize_type=activation_quant_type) + activation_quantize_type=activation_quant_type, + weight_quantize_type=weight_quantize_type) transform_pass.apply(graph) if not for_ci: marked_nodes = set() @@ -208,13 +223,14 @@ class TestQuantizationTransformPass(unittest.TestCase): val_marked_nodes) def test_residual_block_abs_max(self): - self.residual_block_quant('abs_max', for_ci=True) + self.residual_block_quant('abs_max', 'abs_max', for_ci=True) def test_residual_block_range_abs_max(self): - self.residual_block_quant('range_abs_max', for_ci=True) + self.residual_block_quant('range_abs_max', 'abs_max', for_ci=True) def test_residual_block_moving_average_abs_max(self): - self.residual_block_quant('moving_average_abs_max', for_ci=True) + self.residual_block_quant( + 'moving_average_abs_max', 'channel_wise_abs_max', for_ci=True) class TestQuantizationFreezePass(unittest.TestCase): @@ -494,11 +510,14 @@ class TestAddQuantDequantPass(unittest.TestCase): self._target_ops = {'elementwise_add', 'pool2d'} self._target_grad_ops = {'elementwise_add_grad', 'pool2d_grad'} - def check_graph(self, graph): + def check_graph(self, graph, skip_pattern=None): ops = graph.all_op_nodes() - for op_node in ops: if op_node.name() in self._target_ops: + if skip_pattern and op_node.op().has_attr("op_namescope") and \ + op_node.op().attr("op_namescope").find(skip_pattern) != -1: + continue + in_nodes_all_not_persistable = True for input_name in op_node.input_arg_names(): in_node = graph._find_node_by_name(op_node.inputs, @@ -508,20 +527,15 @@ class TestAddQuantDequantPass(unittest.TestCase): not in_node.persistable()) if not in_nodes_all_not_persistable: continue - - if op_node.op().has_attr("pooling_type") and \ - op_node.op().attr("pooling_type") == 'max': - continue - input_names = op_node.input_arg_names() for input_name in input_names: self.assertTrue(input_name.endswith('.quant_dequant')) - def residual_block_quant(self, for_ci=True): + def residual_block_quant(self, skip_pattern=None, for_ci=True): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): - loss = residual_block(1) + loss = residual_block(2, skip_pattern) opt = fluid.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) place = fluid.CPUPlace() @@ -535,7 +549,7 @@ class TestAddQuantDequantPass(unittest.TestCase): if op.name().find('quant') > -1: marked_nodes.add(op) graph.draw('.', 'add_quant_dequant_graph', marked_nodes) - self.check_graph(graph) + self.check_graph(graph, skip_pattern) program = graph.to_program() val_graph = IrGraph(core.Graph(program.desc), for_test=False) if not for_ci: @@ -546,7 +560,10 @@ class TestAddQuantDequantPass(unittest.TestCase): val_graph.draw('.', 'val_add_quant_dequant_graph', val_marked_nodes) def test_residual_block(self): - self.residual_block_quant(for_ci=True) + self.residual_block_quant(skip_pattern=None, for_ci=True) + + def test_residual_block_skip_pattern(self): + self.residual_block_quant(skip_pattern='skip_quant', for_ci=True) if __name__ == '__main__': -- GitLab