提交 9643f906 编写于 作者: Z zhoukunsheng

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into rsqrt

......@@ -31,8 +31,8 @@ namespace paddle {
namespace framework {
namespace ir {
namespace {
void SortHelper(
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list,
void SortHelper(const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>,
ir::NodeComp> &adj_list,
ir::Node *node, std::unordered_set<ir::Node *> *visited,
std::vector<ir::Node *> *ret) {
visited->insert(node);
......@@ -50,7 +50,8 @@ void SortHelper(
bool HasCircleHelper(
ir::Node *node,
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list,
const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
&adj_list,
std::unordered_set<ir::Node *> *visited,
std::unordered_set<ir::Node *> *in_trace,
std::vector<std::vector<ir::Node *>> *circles) {
......@@ -84,7 +85,8 @@ bool HasCircleHelper(
}
bool HasCircleInternal(
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list,
const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
&adj_list,
std::vector<std::vector<ir::Node *>> *circles) {
std::unordered_set<ir::Node *> visited;
std::unordered_set<ir::Node *> in_trace;
......@@ -107,8 +109,8 @@ bool FindCircleSubGraph(const Graph &graph,
}
std::vector<ir::Node *> TopologySortOperations(const Graph &graph) {
std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list =
BuildOperationAdjList(graph);
std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
adj_list = BuildOperationAdjList(graph);
PADDLE_ENFORCE(!HasCircleInternal(adj_list, nullptr));
std::unordered_set<ir::Node *> visited;
std::vector<ir::Node *> ret;
......@@ -117,34 +119,30 @@ std::vector<ir::Node *> TopologySortOperations(const Graph &graph) {
SortHelper(adj_list, adj.first, &visited, &ret);
}
}
return ret;
}
// Build operator inlink edge table.
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
const Graph &graph) {
std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list;
std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
BuildOperationAdjList(const Graph &graph) {
std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
adj_list;
for (auto &n : graph.Nodes()) {
if (!n->IsOp()) continue;
if (adj_list.find(n) == adj_list.end()) {
adj_list[n] = std::unordered_set<ir::Node *>();
adj_list[n] = std::set<ir::Node *, ir::NodeComp>();
}
std::vector<ir::Node *> nodes;
for (auto &var : n->inputs) {
for (auto &adj_n : var->inputs) {
PADDLE_ENFORCE(adj_n->NodeType() == ir::Node::Type::kOperation);
VLOG(4) << "adj " << adj_n->Name() << reinterpret_cast<void *>(adj_n)
<< " -> " << n->Name() << reinterpret_cast<void *>(n)
<< " via " << var->Name() << reinterpret_cast<void *>(var);
nodes.push_back(adj_n);
adj_list[n].insert(adj_n);
}
}
std::sort(nodes.begin(), nodes.end(), [](ir::Node *node1, ir::Node *node2) {
return node1->id() > node2->id();
});
adj_list[n].insert(std::make_move_iterator(nodes.begin()),
std::make_move_iterator(nodes.end()));
}
return adj_list;
}
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include <map>
#include <memory>
#include <set>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
......@@ -25,6 +26,13 @@ namespace paddle {
namespace framework {
namespace ir {
// Compare nodes via node id.
struct NodeComp {
bool operator()(ir::Node *const &node1, ir::Node *const &node2) const {
return node1->id() < node2->id();
}
};
// Test if the graph contains circle.
bool HasCircle(const Graph &graph);
......@@ -57,8 +65,8 @@ std::vector<Node *> TopologyVarientSort(const Graph &graph, SortKind sort_kind);
void CleanIndividualNodes(Graph *graph);
// Build an adjacency list of operations for the `graph`.
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
const Graph &graph);
std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
BuildOperationAdjList(const Graph &graph);
template <typename T>
std::vector<T *> FilterByNodeWrapper(const Graph &graph) {
......
......@@ -241,6 +241,7 @@ OpDesc::OpDesc(const std::string &type, const VariableNameMap &inputs,
outputs_ = outputs;
attrs_ = attrs;
need_update_ = true;
block_ = nullptr;
}
OpDesc::OpDesc(const OpDesc &other, BlockDesc *block) {
......
......@@ -259,6 +259,9 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
return false;
}
PADDLE_ENFORCE_NOT_NULL(input_ptr);
PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
......
......@@ -54,6 +54,7 @@ PaddleBuf &PaddleBuf::operator=(const PaddleBuf &other) {
memory_owned_ = other.memory_owned_;
} else {
Resize(other.length());
PADDLE_ENFORCE(!(other.length() > 0 && other.data() == nullptr));
memcpy(data_, other.data(), other.length());
length_ = other.length();
memory_owned_ = true;
......
......@@ -169,6 +169,7 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
// Hot fix the bug that result diff in multi-thread.
// TODO(Superjomn) re-implement a real clone here.
PADDLE_ENFORCE_NOT_NULL(dynamic_cast<NativePaddlePredictor *>(cls.get()));
if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) {
LOG(ERROR) << "fail to call Init";
return nullptr;
......@@ -210,6 +211,8 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
return false;
}
PADDLE_ENFORCE_NOT_NULL(input_ptr);
PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
......@@ -316,6 +319,8 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
}
std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
PADDLE_ENFORCE_NOT_NULL(
dynamic_cast<NativePaddlePredictor *>(predictor.get()));
if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
return nullptr;
}
......
......@@ -47,6 +47,7 @@ struct DataRecord {
num_lines++;
std::vector<std::string> data;
split(line, '\t', &data);
PADDLE_ENFORCE(data.size() >= 4);
// load title1 data
std::vector<int64_t> title1_data;
split_to_int64(data[0], ' ', &title1_data);
......
......@@ -214,28 +214,23 @@ TEST(Analyzer_Transformer, fuse_statis) {
}
// Compare result of NativeConfig and AnalysisConfig
// void compare(bool use_mkldnn = false) {
// AnalysisConfig cfg;
// SetConfig(&cfg);
// if (use_mkldnn) {
// cfg.EnableMKLDNN();
// }
//
// std::vector<std::vector<PaddleTensor>> input_slots_all;
// SetInput(&input_slots_all);
// CompareNativeAndAnalysis(
// reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
// input_slots_all);
// }
// TODO(yihuaxu):
// Disable compare and compare_mkldnn temporary, see
// https://github.com/paddlePaddle/Paddle/issues/16316 for details.
// TEST(Analyzer_Transformer, compare) { compare(); }
// #ifdef PADDLE_WITH_MKLDNN
// TEST(Analyzer_Transformer, compare_mkldnn) { compare(true /* use_mkldnn */);
// }
// #endif
void compare(bool use_mkldnn = false) {
AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
cfg.EnableMKLDNN();
}
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
TEST(Analyzer_Transformer, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_Transformer, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
} // namespace inference
} // namespace paddle
......@@ -29,6 +29,8 @@ pool3d
prelu
quantize
rank_loss
reduce_all
reduce_any
reduce_max
reduce_mean
reduce_min
......
......@@ -24,6 +24,7 @@
**/
#include "paddle/fluid/operators/detection/gpc.h"
#include "paddle/fluid/platform/enforce.h"
namespace gpc {
......@@ -689,6 +690,7 @@ static bbox *create_contour_bboxes(gpc_polygon *p) {
gpc_malloc<bbox>(box, p->num_contours * sizeof(bbox),
const_cast<char *>("Bounding box creation"));
PADDLE_ENFORCE_NOT_NULL(box);
/* Construct contour bounding boxes */
for (c = 0; c < p->num_contours; c++) {
......@@ -852,6 +854,7 @@ void gpc_add_contour(gpc_polygon *p, gpc_vertex_list *new_contour, int hole) {
/* Create an extended hole array */
gpc_malloc<int>(extended_hole, (p->num_contours + 1) * sizeof(int),
const_cast<char *>("contour hole addition"));
PADDLE_ENFORCE_NOT_NULL(extended_hole);
/* Create an extended contour array */
gpc_malloc<gpc_vertex_list>(extended_contour,
......@@ -969,6 +972,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
/* Build scanbeam table from scanbeam tree */
gpc_malloc<double>(sbt, sbt_entries * sizeof(double),
const_cast<char *>("sbt creation"));
PADDLE_ENFORCE_NOT_NULL(sbt);
build_sbt(&scanbeam, sbt, sbtree);
scanbeam = 0;
free_sbtree(&sbtree);
......@@ -1604,6 +1608,7 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
/* Build scanbeam table from scanbeam tree */
gpc_malloc<double>(sbt, sbt_entries * sizeof(double),
const_cast<char *>("sbt creation"));
PADDLE_ENFORCE_NOT_NULL(sbt);
build_sbt(&scanbeam, sbt, sbtree);
scanbeam = 0;
free_sbtree(&sbtree);
......
......@@ -77,6 +77,9 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_NOT_NULL(x_g);
PADDLE_ENFORCE_NOT_NULL(y_g);
auto sub_result = EigenMatrix<T>::From(*in0);
auto out_grad = EigenMatrix<T>::From(*in1);
......@@ -92,16 +95,14 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
// propagate back to input
auto& eigen_place =
*context.template device_context<DeviceContext>().eigen_device();
if (x_g) {
x_g->mutable_data<T>(context.GetPlace());
// eigen matrix
auto x_grad =
EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
// dimensions are same with subResult
x_grad.device(eigen_place) = grad_mat;
}
if (y_g) {
y_g->mutable_data<T>(context.GetPlace());
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
......@@ -118,7 +119,6 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
y_grad.device(eigen_place) = col_sum_res;
}
}
}
};
} // namespace operators
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册