提交 9643f906 编写于 作者: Z zhoukunsheng

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into rsqrt

...@@ -31,8 +31,8 @@ namespace paddle { ...@@ -31,8 +31,8 @@ namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {
namespace { namespace {
void SortHelper( void SortHelper(const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>,
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list, ir::NodeComp> &adj_list,
ir::Node *node, std::unordered_set<ir::Node *> *visited, ir::Node *node, std::unordered_set<ir::Node *> *visited,
std::vector<ir::Node *> *ret) { std::vector<ir::Node *> *ret) {
visited->insert(node); visited->insert(node);
...@@ -50,7 +50,8 @@ void SortHelper( ...@@ -50,7 +50,8 @@ void SortHelper(
bool HasCircleHelper( bool HasCircleHelper(
ir::Node *node, ir::Node *node,
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list, const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
&adj_list,
std::unordered_set<ir::Node *> *visited, std::unordered_set<ir::Node *> *visited,
std::unordered_set<ir::Node *> *in_trace, std::unordered_set<ir::Node *> *in_trace,
std::vector<std::vector<ir::Node *>> *circles) { std::vector<std::vector<ir::Node *>> *circles) {
...@@ -84,7 +85,8 @@ bool HasCircleHelper( ...@@ -84,7 +85,8 @@ bool HasCircleHelper(
} }
bool HasCircleInternal( bool HasCircleInternal(
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list, const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
&adj_list,
std::vector<std::vector<ir::Node *>> *circles) { std::vector<std::vector<ir::Node *>> *circles) {
std::unordered_set<ir::Node *> visited; std::unordered_set<ir::Node *> visited;
std::unordered_set<ir::Node *> in_trace; std::unordered_set<ir::Node *> in_trace;
...@@ -107,8 +109,8 @@ bool FindCircleSubGraph(const Graph &graph, ...@@ -107,8 +109,8 @@ bool FindCircleSubGraph(const Graph &graph,
} }
std::vector<ir::Node *> TopologySortOperations(const Graph &graph) { std::vector<ir::Node *> TopologySortOperations(const Graph &graph) {
std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list = std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
BuildOperationAdjList(graph); adj_list = BuildOperationAdjList(graph);
PADDLE_ENFORCE(!HasCircleInternal(adj_list, nullptr)); PADDLE_ENFORCE(!HasCircleInternal(adj_list, nullptr));
std::unordered_set<ir::Node *> visited; std::unordered_set<ir::Node *> visited;
std::vector<ir::Node *> ret; std::vector<ir::Node *> ret;
...@@ -117,34 +119,30 @@ std::vector<ir::Node *> TopologySortOperations(const Graph &graph) { ...@@ -117,34 +119,30 @@ std::vector<ir::Node *> TopologySortOperations(const Graph &graph) {
SortHelper(adj_list, adj.first, &visited, &ret); SortHelper(adj_list, adj.first, &visited, &ret);
} }
} }
return ret; return ret;
} }
// Build operator inlink edge table. // Build operator inlink edge table.
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList( std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
const Graph &graph) { BuildOperationAdjList(const Graph &graph) {
std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list; std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
adj_list;
for (auto &n : graph.Nodes()) { for (auto &n : graph.Nodes()) {
if (!n->IsOp()) continue; if (!n->IsOp()) continue;
if (adj_list.find(n) == adj_list.end()) { if (adj_list.find(n) == adj_list.end()) {
adj_list[n] = std::unordered_set<ir::Node *>(); adj_list[n] = std::set<ir::Node *, ir::NodeComp>();
} }
std::vector<ir::Node *> nodes;
for (auto &var : n->inputs) { for (auto &var : n->inputs) {
for (auto &adj_n : var->inputs) { for (auto &adj_n : var->inputs) {
PADDLE_ENFORCE(adj_n->NodeType() == ir::Node::Type::kOperation); PADDLE_ENFORCE(adj_n->NodeType() == ir::Node::Type::kOperation);
VLOG(4) << "adj " << adj_n->Name() << reinterpret_cast<void *>(adj_n) VLOG(4) << "adj " << adj_n->Name() << reinterpret_cast<void *>(adj_n)
<< " -> " << n->Name() << reinterpret_cast<void *>(n) << " -> " << n->Name() << reinterpret_cast<void *>(n)
<< " via " << var->Name() << reinterpret_cast<void *>(var); << " via " << var->Name() << reinterpret_cast<void *>(var);
nodes.push_back(adj_n); adj_list[n].insert(adj_n);
} }
} }
std::sort(nodes.begin(), nodes.end(), [](ir::Node *node1, ir::Node *node2) {
return node1->id() > node2->id();
});
adj_list[n].insert(std::make_move_iterator(nodes.begin()),
std::make_move_iterator(nodes.end()));
} }
return adj_list; return adj_list;
} }
......
...@@ -16,6 +16,7 @@ limitations under the License. */ ...@@ -16,6 +16,7 @@ limitations under the License. */
#include <map> #include <map>
#include <memory> #include <memory>
#include <set>
#include <vector> #include <vector>
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
...@@ -25,6 +26,13 @@ namespace paddle { ...@@ -25,6 +26,13 @@ namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {
// Compare nodes via node id.
struct NodeComp {
bool operator()(ir::Node *const &node1, ir::Node *const &node2) const {
return node1->id() < node2->id();
}
};
// Test if the graph contains circle. // Test if the graph contains circle.
bool HasCircle(const Graph &graph); bool HasCircle(const Graph &graph);
...@@ -57,8 +65,8 @@ std::vector<Node *> TopologyVarientSort(const Graph &graph, SortKind sort_kind); ...@@ -57,8 +65,8 @@ std::vector<Node *> TopologyVarientSort(const Graph &graph, SortKind sort_kind);
void CleanIndividualNodes(Graph *graph); void CleanIndividualNodes(Graph *graph);
// Build an adjacency list of operations for the `graph`. // Build an adjacency list of operations for the `graph`.
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList( std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
const Graph &graph); BuildOperationAdjList(const Graph &graph);
template <typename T> template <typename T>
std::vector<T *> FilterByNodeWrapper(const Graph &graph) { std::vector<T *> FilterByNodeWrapper(const Graph &graph) {
......
...@@ -241,6 +241,7 @@ OpDesc::OpDesc(const std::string &type, const VariableNameMap &inputs, ...@@ -241,6 +241,7 @@ OpDesc::OpDesc(const std::string &type, const VariableNameMap &inputs,
outputs_ = outputs; outputs_ = outputs;
attrs_ = attrs; attrs_ = attrs;
need_update_ = true; need_update_ = true;
block_ = nullptr;
} }
OpDesc::OpDesc(const OpDesc &other, BlockDesc *block) { OpDesc::OpDesc(const OpDesc &other, BlockDesc *block) {
......
...@@ -259,6 +259,9 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs, ...@@ -259,6 +259,9 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
return false; return false;
} }
PADDLE_ENFORCE_NOT_NULL(input_ptr);
PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());
if (platform::is_cpu_place(place_)) { if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy. // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(), std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
......
...@@ -54,6 +54,7 @@ PaddleBuf &PaddleBuf::operator=(const PaddleBuf &other) { ...@@ -54,6 +54,7 @@ PaddleBuf &PaddleBuf::operator=(const PaddleBuf &other) {
memory_owned_ = other.memory_owned_; memory_owned_ = other.memory_owned_;
} else { } else {
Resize(other.length()); Resize(other.length());
PADDLE_ENFORCE(!(other.length() > 0 && other.data() == nullptr));
memcpy(data_, other.data(), other.length()); memcpy(data_, other.data(), other.length());
length_ = other.length(); length_ = other.length();
memory_owned_ = true; memory_owned_ = true;
......
...@@ -169,6 +169,7 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() { ...@@ -169,6 +169,7 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_)); std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
// Hot fix the bug that result diff in multi-thread. // Hot fix the bug that result diff in multi-thread.
// TODO(Superjomn) re-implement a real clone here. // TODO(Superjomn) re-implement a real clone here.
PADDLE_ENFORCE_NOT_NULL(dynamic_cast<NativePaddlePredictor *>(cls.get()));
if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) { if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) {
LOG(ERROR) << "fail to call Init"; LOG(ERROR) << "fail to call Init";
return nullptr; return nullptr;
...@@ -210,6 +211,8 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs, ...@@ -210,6 +211,8 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
return false; return false;
} }
PADDLE_ENFORCE_NOT_NULL(input_ptr);
PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());
if (platform::is_cpu_place(place_)) { if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy. // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(), std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
...@@ -316,6 +319,8 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor< ...@@ -316,6 +319,8 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
} }
std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config)); std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
PADDLE_ENFORCE_NOT_NULL(
dynamic_cast<NativePaddlePredictor *>(predictor.get()));
if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) { if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
return nullptr; return nullptr;
} }
......
...@@ -47,6 +47,7 @@ struct DataRecord { ...@@ -47,6 +47,7 @@ struct DataRecord {
num_lines++; num_lines++;
std::vector<std::string> data; std::vector<std::string> data;
split(line, '\t', &data); split(line, '\t', &data);
PADDLE_ENFORCE(data.size() >= 4);
// load title1 data // load title1 data
std::vector<int64_t> title1_data; std::vector<int64_t> title1_data;
split_to_int64(data[0], ' ', &title1_data); split_to_int64(data[0], ' ', &title1_data);
......
...@@ -214,28 +214,23 @@ TEST(Analyzer_Transformer, fuse_statis) { ...@@ -214,28 +214,23 @@ TEST(Analyzer_Transformer, fuse_statis) {
} }
// Compare result of NativeConfig and AnalysisConfig // Compare result of NativeConfig and AnalysisConfig
// void compare(bool use_mkldnn = false) { void compare(bool use_mkldnn = false) {
// AnalysisConfig cfg; AnalysisConfig cfg;
// SetConfig(&cfg); SetConfig(&cfg);
// if (use_mkldnn) { if (use_mkldnn) {
// cfg.EnableMKLDNN(); cfg.EnableMKLDNN();
// } }
//
// std::vector<std::vector<PaddleTensor>> input_slots_all; std::vector<std::vector<PaddleTensor>> input_slots_all;
// SetInput(&input_slots_all); SetInput(&input_slots_all);
// CompareNativeAndAnalysis( CompareNativeAndAnalysis(
// reinterpret_cast<const PaddlePredictor::Config *>(&cfg), reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
// input_slots_all); }
// }
TEST(Analyzer_Transformer, compare) { compare(); }
// TODO(yihuaxu): #ifdef PADDLE_WITH_MKLDNN
// Disable compare and compare_mkldnn temporary, see TEST(Analyzer_Transformer, compare_mkldnn) { compare(true /* use_mkldnn */); }
// https://github.com/paddlePaddle/Paddle/issues/16316 for details. #endif
// TEST(Analyzer_Transformer, compare) { compare(); }
// #ifdef PADDLE_WITH_MKLDNN
// TEST(Analyzer_Transformer, compare_mkldnn) { compare(true /* use_mkldnn */);
// }
// #endif
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -29,6 +29,8 @@ pool3d ...@@ -29,6 +29,8 @@ pool3d
prelu prelu
quantize quantize
rank_loss rank_loss
reduce_all
reduce_any
reduce_max reduce_max
reduce_mean reduce_mean
reduce_min reduce_min
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
**/ **/
#include "paddle/fluid/operators/detection/gpc.h" #include "paddle/fluid/operators/detection/gpc.h"
#include "paddle/fluid/platform/enforce.h"
namespace gpc { namespace gpc {
...@@ -689,6 +690,7 @@ static bbox *create_contour_bboxes(gpc_polygon *p) { ...@@ -689,6 +690,7 @@ static bbox *create_contour_bboxes(gpc_polygon *p) {
gpc_malloc<bbox>(box, p->num_contours * sizeof(bbox), gpc_malloc<bbox>(box, p->num_contours * sizeof(bbox),
const_cast<char *>("Bounding box creation")); const_cast<char *>("Bounding box creation"));
PADDLE_ENFORCE_NOT_NULL(box);
/* Construct contour bounding boxes */ /* Construct contour bounding boxes */
for (c = 0; c < p->num_contours; c++) { for (c = 0; c < p->num_contours; c++) {
...@@ -852,6 +854,7 @@ void gpc_add_contour(gpc_polygon *p, gpc_vertex_list *new_contour, int hole) { ...@@ -852,6 +854,7 @@ void gpc_add_contour(gpc_polygon *p, gpc_vertex_list *new_contour, int hole) {
/* Create an extended hole array */ /* Create an extended hole array */
gpc_malloc<int>(extended_hole, (p->num_contours + 1) * sizeof(int), gpc_malloc<int>(extended_hole, (p->num_contours + 1) * sizeof(int),
const_cast<char *>("contour hole addition")); const_cast<char *>("contour hole addition"));
PADDLE_ENFORCE_NOT_NULL(extended_hole);
/* Create an extended contour array */ /* Create an extended contour array */
gpc_malloc<gpc_vertex_list>(extended_contour, gpc_malloc<gpc_vertex_list>(extended_contour,
...@@ -969,6 +972,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip, ...@@ -969,6 +972,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
/* Build scanbeam table from scanbeam tree */ /* Build scanbeam table from scanbeam tree */
gpc_malloc<double>(sbt, sbt_entries * sizeof(double), gpc_malloc<double>(sbt, sbt_entries * sizeof(double),
const_cast<char *>("sbt creation")); const_cast<char *>("sbt creation"));
PADDLE_ENFORCE_NOT_NULL(sbt);
build_sbt(&scanbeam, sbt, sbtree); build_sbt(&scanbeam, sbt, sbtree);
scanbeam = 0; scanbeam = 0;
free_sbtree(&sbtree); free_sbtree(&sbtree);
...@@ -1604,6 +1608,7 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip, ...@@ -1604,6 +1608,7 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
/* Build scanbeam table from scanbeam tree */ /* Build scanbeam table from scanbeam tree */
gpc_malloc<double>(sbt, sbt_entries * sizeof(double), gpc_malloc<double>(sbt, sbt_entries * sizeof(double),
const_cast<char *>("sbt creation")); const_cast<char *>("sbt creation"));
PADDLE_ENFORCE_NOT_NULL(sbt);
build_sbt(&scanbeam, sbt, sbtree); build_sbt(&scanbeam, sbt, sbtree);
scanbeam = 0; scanbeam = 0;
free_sbtree(&sbtree); free_sbtree(&sbtree);
......
...@@ -77,6 +77,9 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> { ...@@ -77,6 +77,9 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
auto* x_g = context.Output<Tensor>(framework::GradVarName("X")); auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
auto* y_g = context.Output<Tensor>(framework::GradVarName("Y")); auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_NOT_NULL(x_g);
PADDLE_ENFORCE_NOT_NULL(y_g);
auto sub_result = EigenMatrix<T>::From(*in0); auto sub_result = EigenMatrix<T>::From(*in0);
auto out_grad = EigenMatrix<T>::From(*in1); auto out_grad = EigenMatrix<T>::From(*in1);
...@@ -92,16 +95,14 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> { ...@@ -92,16 +95,14 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
// propagate back to input // propagate back to input
auto& eigen_place = auto& eigen_place =
*context.template device_context<DeviceContext>().eigen_device(); *context.template device_context<DeviceContext>().eigen_device();
if (x_g) {
x_g->mutable_data<T>(context.GetPlace()); x_g->mutable_data<T>(context.GetPlace());
// eigen matrix // eigen matrix
auto x_grad = auto x_grad =
EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols})); EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
// dimensions are same with subResult // dimensions are same with subResult
x_grad.device(eigen_place) = grad_mat; x_grad.device(eigen_place) = grad_mat;
}
if (y_g) {
y_g->mutable_data<T>(context.GetPlace()); y_g->mutable_data<T>(context.GetPlace());
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0], PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
...@@ -118,7 +119,6 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> { ...@@ -118,7 +119,6 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
y_grad.device(eigen_place) = col_sum_res; y_grad.device(eigen_place) = col_sum_res;
} }
} }
}
}; };
} // namespace operators } // namespace operators
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册