diff --git a/paddle/fluid/platform/flags.cc b/paddle/fluid/platform/flags.cc index f916567d99b1628443329744059194f0418997d5..bcf4bd9e2f6d455ef350e69c8d3fc9b5a23febd3 100644 --- a/paddle/fluid/platform/flags.cc +++ b/paddle/fluid/platform/flags.cc @@ -312,11 +312,19 @@ static constexpr char kDefaultAllocatorStrategy[] = "naive_best_fit"; #else static constexpr char kDefaultAllocatorStrategy[] = "auto_growth"; #endif -DEFINE_string(allocator_strategy, kDefaultAllocatorStrategy, - "The allocation strategy. naive_best_fit means the original best " - "fit allocator of Fluid. " - "auto_growth means the experimental auto-growth allocator. " - "Enum in [naive_best_fit, auto_growth]."); +DEFINE_string( + allocator_strategy, kDefaultAllocatorStrategy, + "The allocation strategy, enum in [naive_best_fit, auto_growth]. " + "naive_best_fit means the original pre-allocated allocator of Paddle. " + "auto_growth means the auto-growth allocator. " + "These two strategies differ in GPU memory allocation. " + "naive_best_fit strategy would occupy almost all GPU memory by default, " + "which prevents users from starting several Paddle jobs on the same GPU " + "card but leads to less memory fragmentation (i.e., maximum batch " + "size of models may be larger). auto_growth strategy would allocate " + "GPU memory on demand, which allows users to start several Paddle jobs " + "on the same GPU card but may lead to more memory fragmentation " + "(i.e., maximum batch size of models may be smaller)."); /** * Memory related FLAG