Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
943dedec
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
943dedec
编写于
3月 01, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add sgd kernel; test=develop
上级
a4bccde0
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
380 addition
and
364 deletion
+380
-364
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+5
-1
paddle/phi/core/kernel_registry.h
paddle/phi/core/kernel_registry.h
+6
-0
paddle/phi/kernels/gpu/sgd_kernel.cu
paddle/phi/kernels/gpu/sgd_kernel.cu
+1
-1
paddle/phi/ops/compat/sgd_sig.cc
paddle/phi/ops/compat/sgd_sig.cc
+0
-2
python/paddle/fluid/tests/unittests/test_sgd_op.py
python/paddle/fluid/tests/unittests/test_sgd_op.py
+368
-360
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
943dedec
...
@@ -2048,7 +2048,11 @@ void OperatorWithKernel::BuildPhiKernelContext(
...
@@ -2048,7 +2048,11 @@ void OperatorWithKernel::BuildPhiKernelContext(
// deal with optional here
// deal with optional here
if
((
it
==
ctx
.
inputs
.
end
()
||
it
->
second
.
size
()
==
0
)
&&
if
((
it
==
ctx
.
inputs
.
end
()
||
it
->
second
.
size
()
==
0
)
&&
(
input_defs
[
i
].
type_index
==
(
input_defs
[
i
].
type_index
==
std
::
type_index
(
typeid
(
paddle
::
optional
<
const
phi
::
DenseTensor
&>
))))
{
std
::
type_index
(
typeid
(
paddle
::
optional
<
const
phi
::
DenseTensor
&>
))
||
input_defs
[
i
].
type_index
==
std
::
type_index
(
typeid
(
paddle
::
optional
<
const
phi
::
SelectedRows
&>
))))
{
pt_kernel_context
->
EmplaceBackInputWithoutSetRange
(
nullptr
);
pt_kernel_context
->
EmplaceBackInputWithoutSetRange
(
nullptr
);
auto
end_idx
=
start_idx
+
1
;
auto
end_idx
=
start_idx
+
1
;
pt_kernel_context
->
AssignInputRange
(
std
::
make_pair
(
start_idx
,
end_idx
),
pt_kernel_context
->
AssignInputRange
(
std
::
make_pair
(
start_idx
,
end_idx
),
...
...
paddle/phi/core/kernel_registry.h
浏览文件 @
943dedec
...
@@ -81,6 +81,12 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> {
...
@@ -81,6 +81,12 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> {
default_tensor_layout
,
default_tensor_layout
,
default_key
.
dtype
(),
default_key
.
dtype
(),
arg_type
);
arg_type
);
}
else
if
(
arg_type
==
std
::
type_index
(
typeid
(
paddle
::
optional
<
const
SelectedRows
&>
)))
{
args_def
->
AppendInput
(
default_key
.
backend
(),
default_tensor_layout
,
default_key
.
dtype
(),
arg_type
);
}
else
if
(
arg_type
==
}
else
if
(
arg_type
==
std
::
type_index
(
typeid
(
const
std
::
vector
<
DenseTensor
>&
)))
{
std
::
type_index
(
typeid
(
const
std
::
vector
<
DenseTensor
>&
)))
{
args_def
->
AppendInput
(
default_key
.
backend
(),
args_def
->
AppendInput
(
default_key
.
backend
(),
...
...
paddle/phi/kernels/gpu/sgd_kernel.cu
浏览文件 @
943dedec
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_helper.h"
#include "paddle/phi/backends/gpu/gpu_helper.h"
...
@@ -72,7 +73,6 @@ void SGDDenseKernel(const Context& dev_ctx,
...
@@ -72,7 +73,6 @@ void SGDDenseKernel(const Context& dev_ctx,
bool
multi_precision
,
bool
multi_precision
,
DenseTensor
*
param_out
,
DenseTensor
*
param_out
,
DenseTensor
*
master_param_out
)
{
DenseTensor
*
master_param_out
)
{
LOG
(
ERROR
)
<<
"run here"
;
using
MPDType
=
typename
paddle
::
operators
::
details
::
MPTypeTrait
<
T
>::
Type
;
using
MPDType
=
typename
paddle
::
operators
::
details
::
MPTypeTrait
<
T
>::
Type
;
// do check here
// do check here
// if (multi_precision) {
// if (multi_precision) {
...
...
paddle/phi/ops/compat/sgd_sig.cc
浏览文件 @
943dedec
...
@@ -17,9 +17,7 @@
...
@@ -17,9 +17,7 @@
namespace
phi
{
namespace
phi
{
KernelSignature
SGDOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
KernelSignature
SGDOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
LOG
(
ERROR
)
<<
"11"
;
if
(
ctx
.
IsDenseTensorInput
(
"Grad"
))
{
if
(
ctx
.
IsDenseTensorInput
(
"Grad"
))
{
LOG
(
ERROR
)
<<
"dense"
;
return
KernelSignature
(
"sgd"
,
return
KernelSignature
(
"sgd"
,
{
"Param"
,
"LearningRate"
,
"Grad"
,
"MasterParam"
},
{
"Param"
,
"LearningRate"
,
"Grad"
,
"MasterParam"
},
{
"multi_precision"
},
{
"multi_precision"
},
...
...
python/paddle/fluid/tests/unittests/test_sgd_op.py
浏览文件 @
943dedec
...
@@ -24,366 +24,374 @@ import paddle
...
@@ -24,366 +24,374 @@ import paddle
paddle
.
enable_static
()
paddle
.
enable_static
()
# class TestSGDOp(OpTest):
# def setUp(self):
class
TestSGDOp
(
OpTest
):
# self.op_type = "sgd"
def
setUp
(
self
):
# self.conf()
self
.
op_type
=
"sgd"
# w = np.random.random((self.h, self.w)).astype("float32")
self
.
conf
()
# g = np.random.random((self.h, self.w)).astype("float32")
w
=
np
.
random
.
random
((
self
.
h
,
self
.
w
)).
astype
(
"float32"
)
# lr = np.array([0.1]).astype("float32")
g
=
np
.
random
.
random
((
self
.
h
,
self
.
w
)).
astype
(
"float32"
)
lr
=
np
.
array
([
0.1
]).
astype
(
"float32"
)
# self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
# self.outputs = {'ParamOut': w - lr * g}
self
.
inputs
=
{
'Param'
:
w
,
'Grad'
:
g
,
'LearningRate'
:
lr
}
self
.
outputs
=
{
'ParamOut'
:
w
-
lr
*
g
}
# def conf(self):
# self.h = 102
def
conf
(
self
):
# self.w = 105
self
.
h
=
102
self
.
w
=
105
# def test_check_output(self):
# self.check_output()
def
test_check_output
(
self
):
self
.
check_output
()
# class TestSGDOpCase8X(TestSGDOp):
# def conf(self):
# self.h = 10
class
TestSGDOpCase8X
(
TestSGDOp
):
# self.w = 64
def
conf
(
self
):
self
.
h
=
10
# class TestSparseSGDOp(unittest.TestCase):
self
.
w
=
64
# def check_with_place(self, place):
# scope = core.Scope()
class
TestSparseSGDOp
(
unittest
.
TestCase
):
# # create and initialize Grad Variable
def
check_with_place
(
self
,
place
):
# height = 10
scope
=
core
.
Scope
()
# rows = [0, 4, 7]
# self.conf()
# create and initialize Grad Variable
height
=
10
# grad_selected_rows = scope.var('Grad').get_selected_rows()
rows
=
[
0
,
4
,
7
]
# grad_selected_rows.set_height(height)
self
.
conf
()
# grad_selected_rows.set_rows(rows)
# np_array = np.ones((len(rows), self.row_numel)).astype("float32")
grad_selected_rows
=
scope
.
var
(
'Grad'
).
get_selected_rows
()
# np_array[0, 0] = 2.0
grad_selected_rows
.
set_height
(
height
)
# np_array[2, 8] = 4.0
grad_selected_rows
.
set_rows
(
rows
)
np_array
=
np
.
ones
((
len
(
rows
),
self
.
row_numel
)).
astype
(
"float32"
)
# grad_tensor = grad_selected_rows.get_tensor()
np_array
[
0
,
0
]
=
2.0
# grad_tensor.set(np_array, place)
np_array
[
2
,
8
]
=
4.0
# # create and initialize Param Variable
grad_tensor
=
grad_selected_rows
.
get_tensor
()
# param = scope.var('Param').get_tensor()
grad_tensor
.
set
(
np_array
,
place
)
# param_array = np.full((height, self.row_numel), 5.0).astype("float32")
# param.set(param_array, place)
# create and initialize Param Variable
param
=
scope
.
var
(
'Param'
).
get_tensor
()
# # create and initialize LeraningRate Variable
param_array
=
np
.
full
((
height
,
self
.
row_numel
),
5.0
).
astype
(
"float32"
)
# lr = scope.var('LearningRate').get_tensor()
param
.
set
(
param_array
,
place
)
# lr_array = np.full((1), 2.0).astype("float32")
# lr.set(lr_array, place)
# create and initialize LeraningRate Variable
lr
=
scope
.
var
(
'LearningRate'
).
get_tensor
()
# # create and run sgd operator
lr_array
=
np
.
full
((
1
),
2.0
).
astype
(
"float32"
)
# sgd_op = Operator(
lr
.
set
(
lr_array
,
place
)
# "sgd",
# Param='Param',
# create and run sgd operator
# Grad='Grad',
sgd_op
=
Operator
(
# ParamOut='Param',
"sgd"
,
# LearningRate='LearningRate')
Param
=
'Param'
,
# sgd_op.run(scope, place)
Grad
=
'Grad'
,
ParamOut
=
'Param'
,
# # get and compare result
LearningRate
=
'LearningRate'
)
# result_array = np.array(param)
sgd_op
.
run
(
scope
,
place
)
# # rows[0] = 0, 5.0 - 2.0 * 2.0
# get and compare result
# self.assertAlmostEqual(1.0, result_array[rows[0], 0])
result_array
=
np
.
array
(
param
)
# # rows[0] = 0, 5.0 - 2.0 * 1.0
# self.assertAlmostEqual(3.0, result_array[rows[0], 2])
# rows[0] = 0, 5.0 - 2.0 * 2.0
# # 5.0 - 2.0 * 0.0
self
.
assertAlmostEqual
(
1.0
,
result_array
[
rows
[
0
],
0
])
# self.assertAlmostEqual(5.0, result_array[1, 0])
# rows[0] = 0, 5.0 - 2.0 * 1.0
# # rows[1] = 4, 5.0 - 2.0 * 1.0
self
.
assertAlmostEqual
(
3.0
,
result_array
[
rows
[
0
],
2
])
# self.assertAlmostEqual(3.0, result_array[rows[1], 10])
# 5.0 - 2.0 * 0.0
# # 5.0 - 2.0 * 0.0
self
.
assertAlmostEqual
(
5.0
,
result_array
[
1
,
0
])
# self.assertAlmostEqual(5.0, result_array[5, 8])
# rows[1] = 4, 5.0 - 2.0 * 1.0
# # rows[2] = 7, 5.0 - 2.0 * 1.0
self
.
assertAlmostEqual
(
3.0
,
result_array
[
rows
[
1
],
10
])
# self.assertAlmostEqual(3.0, result_array[rows[2], 1])
# 5.0 - 2.0 * 0.0
# # rows[2] = 7, 5.0 - 2.0 * 4.0
self
.
assertAlmostEqual
(
5.0
,
result_array
[
5
,
8
])
# self.assertAlmostEqual(-3.0, result_array[rows[2], 8])
# rows[2] = 7, 5.0 - 2.0 * 1.0
self
.
assertAlmostEqual
(
3.0
,
result_array
[
rows
[
2
],
1
])
# def test_sparse_sgd(self):
# rows[2] = 7, 5.0 - 2.0 * 4.0
# places = [core.CPUPlace()]
self
.
assertAlmostEqual
(
-
3.0
,
result_array
[
rows
[
2
],
8
])
# if core.is_compiled_with_cuda():
# places.append(core.CUDAPlace(0))
def
test_sparse_sgd
(
self
):
# for place in places:
places
=
[
core
.
CPUPlace
()]
# self.check_with_place(place)
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
# def conf(self):
for
place
in
places
:
# self.row_numel = 12
self
.
check_with_place
(
place
)
# class TestSparseSGDOpCase8X(TestSparseSGDOp):
def
conf
(
self
):
# def conf(self):
self
.
row_numel
=
12
# self.row_numel = 16
# class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
class
TestSparseSGDOpCase8X
(
TestSparseSGDOp
):
# def check_with_place(self, place):
def
conf
(
self
):
# scope = core.Scope()
self
.
row_numel
=
16
# row_width = 12
# # create and initialize Grad Variable
class
TestSGDOpOptimizeSelectedRows
(
unittest
.
TestCase
):
# grad_height = 10
def
check_with_place
(
self
,
place
):
# grad_rows = [0, 4, 7]
scope
=
core
.
Scope
()
# grad_selected_rows = scope.var('Grad').get_selected_rows()
row_width
=
12
# grad_selected_rows.set_height(grad_height)
# create and initialize Grad Variable
# grad_selected_rows.set_rows(grad_rows)
grad_height
=
10
# grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
grad_rows
=
[
0
,
4
,
7
]
# grad_array[0, 0] = 2.0
# grad_array[2, 8] = 4.0
grad_selected_rows
=
scope
.
var
(
'Grad'
).
get_selected_rows
()
grad_selected_rows
.
set_height
(
grad_height
)
# grad_tensor = grad_selected_rows.get_tensor()
grad_selected_rows
.
set_rows
(
grad_rows
)
# grad_tensor.set(grad_array, place)
grad_array
=
np
.
ones
((
len
(
grad_rows
),
row_width
)).
astype
(
"float32"
)
grad_array
[
0
,
0
]
=
2.0
# # create and initialize Param Variable
grad_array
[
2
,
8
]
=
4.0
# # create and initialize W Variable
# param_rows = [0, 1, 2, 3, 4, 5, 6, 7]
grad_tensor
=
grad_selected_rows
.
get_tensor
()
grad_tensor
.
set
(
grad_array
,
place
)
# # init Param
# w_selected_rows = scope.var('Param').get_selected_rows()
# create and initialize Param Variable
# w_selected_rows.set_height(len(param_rows))
# create and initialize W Variable
# w_selected_rows.set_rows(param_rows)
param_rows
=
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
]
# w_selected_rows.sync_index()
# w_array = np.ones((len(param_rows), row_width)).astype("float32")
# init Param
# for i in range(len(param_rows)):
w_selected_rows
=
scope
.
var
(
'Param'
).
get_selected_rows
()
# w_array[i] *= i
w_selected_rows
.
set_height
(
len
(
param_rows
))
# w_tensor = w_selected_rows.get_tensor()
w_selected_rows
.
set_rows
(
param_rows
)
# w_tensor.set(w_array, place)
w_selected_rows
.
sync_index
()
w_array
=
np
.
ones
((
len
(
param_rows
),
row_width
)).
astype
(
"float32"
)
# w_before_optimize = np.array(w_tensor)
for
i
in
range
(
len
(
param_rows
)):
w_array
[
i
]
*=
i
# # create and initialize LeraningRate Variable
w_tensor
=
w_selected_rows
.
get_tensor
()
# lr_value = 0.1
w_tensor
.
set
(
w_array
,
place
)
# lr = scope.var('LearningRate').get_tensor()
# lr_array = np.full((1), lr_value).astype("float32")
w_before_optimize
=
np
.
array
(
w_tensor
)
# lr.set(lr_array, place)
# create and initialize LeraningRate Variable
# # optimize with Python
lr_value
=
0.1
# w_after_optimize = np.copy(w_before_optimize)
lr
=
scope
.
var
(
'LearningRate'
).
get_tensor
()
# for index, id in enumerate(grad_rows):
lr_array
=
np
.
full
((
1
),
lr_value
).
astype
(
"float32"
)
# w_after_optimize[id] = w_before_optimize[
lr
.
set
(
lr_array
,
place
)
# id] - lr_value * grad_array[index]
# optimize with Python
# # create and run sgd operator
w_after_optimize
=
np
.
copy
(
w_before_optimize
)
# sgd_op = Operator(
for
index
,
id
in
enumerate
(
grad_rows
):
# "sgd",
w_after_optimize
[
id
]
=
w_before_optimize
[
# Param='Param',
id
]
-
lr_value
*
grad_array
[
index
]
# Grad='Grad',
# ParamOut='Param',
# create and run sgd operator
# LearningRate='LearningRate')
sgd_op
=
Operator
(
# sgd_op.run(scope, place)
"sgd"
,
Param
=
'Param'
,
# # get and compare result
Grad
=
'Grad'
,
# result_array = np.array(w_tensor)
ParamOut
=
'Param'
,
# assert (result_array == w_after_optimize).all()
LearningRate
=
'LearningRate'
)
sgd_op
.
run
(
scope
,
place
)
# def test_sparse_parameter_sgd(self):
# places = [core.CPUPlace()]
# get and compare result
# # do not support GPU kernel currently
result_array
=
np
.
array
(
w_tensor
)
# for place in places:
assert
(
result_array
==
w_after_optimize
).
all
()
# self.check_with_place(place)
def
test_sparse_parameter_sgd
(
self
):
# class TestSGDOpWithLargeInput(unittest.TestCase):
places
=
[
core
.
CPUPlace
()]
# def runTest(self):
# do not support GPU kernel currently
# paddle.enable_static()
for
place
in
places
:
# data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
self
.
check_with_place
(
place
)
# label = fluid.layers.fill_constant(
# shape=[1, 150], value=0.5, dtype='float32')
# emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32')
class
TestSGDOpWithLargeInput
(
unittest
.
TestCase
):
# out = fluid.layers.l2_normalize(x=emb, axis=-1)
def
runTest
(
self
):
paddle
.
enable_static
()
# cost = fluid.layers.square_error_cost(input=out, label=label)
data
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
128
,
dtype
=
'int64'
)
# avg_cost = fluid.layers.mean(cost)
label
=
fluid
.
layers
.
fill_constant
(
# sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
shape
=
[
1
,
150
],
value
=
0.5
,
dtype
=
'float32'
)
# sgd_optimizer.minimize(avg_cost)
emb
=
fluid
.
embedding
(
input
=
data
,
size
=
(
10000000
,
150
),
dtype
=
'float32'
)
out
=
fluid
.
layers
.
l2_normalize
(
x
=
emb
,
axis
=-
1
)
# place = fluid.CPUPlace()
# exe = fluid.Executor(place)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
out
,
label
=
label
)
# exe.run(fluid.default_startup_program())
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# compiled_prog = fluid.compiler.CompiledProgram(
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
# fluid.default_main_program())
sgd_optimizer
.
minimize
(
avg_cost
)
# result = exe.run(compiled_prog, fetch_list=[avg_cost])
place
=
fluid
.
CPUPlace
()
# class TestSGDV2(unittest.TestCase):
exe
=
fluid
.
Executor
(
place
)
# def test_sgd_dygraph(self):
exe
.
run
(
fluid
.
default_startup_program
())
# paddle.disable_static()
compiled_prog
=
fluid
.
compiler
.
CompiledProgram
(
# value = np.arange(26).reshape(2, 13).astype("float32")
fluid
.
default_main_program
())
# a = paddle.to_tensor(value)
result
=
exe
.
run
(
compiled_prog
,
fetch_list
=
[
avg_cost
])
# linear = paddle.nn.Linear(13, 5)
# # This can be any optimizer supported by dygraph.
# adam = paddle.optimizer.SGD(learning_rate=0.01,
class
TestSGDV2
(
unittest
.
TestCase
):
# parameters=linear.parameters(),
def
test_sgd_dygraph
(
self
):
# weight_decay=0.01)
paddle
.
disable_static
()
# out = linear(a)
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
# out.backward()
a
=
paddle
.
to_tensor
(
value
)
# adam.step()
linear
=
paddle
.
nn
.
Linear
(
13
,
5
)
# adam.clear_gradients()
# This can be any optimizer supported by dygraph.
adam
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
,
# def test_sgd(self):
parameters
=
linear
.
parameters
(),
# paddle.enable_static()
weight_decay
=
0.01
)
out
=
linear
(
a
)
# def check_sgd_optimizer(optimizer_attr):
out
.
backward
()
# init_program = paddle.static.Program()
adam
.
step
()
# program = paddle.static.Program()
adam
.
clear_gradients
()
# block = program.global_block()
# mul_x = block.create_parameter(
def
test_sgd
(
self
):
# dtype="float32",
paddle
.
enable_static
()
# shape=[5, 10],
# lod_level=0,
def
check_sgd_optimizer
(
optimizer_attr
):
# name="mul.x",
init_program
=
paddle
.
static
.
Program
()
# optimize_attr=optimizer_attr)
program
=
paddle
.
static
.
Program
()
# mul_y = block.create_var(
block
=
program
.
global_block
()
# dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_x
=
block
.
create_parameter
(
# mul_out = block.create_var(
dtype
=
"float32"
,
# dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
shape
=
[
5
,
10
],
# mean_out = block.create_var(
lod_level
=
0
,
# dtype="float32", shape=[1], lod_level=0, name="mean.out")
name
=
"mul.x"
,
# block.append_op(
optimize_attr
=
optimizer_attr
)
# type="mul",
mul_y
=
block
.
create_var
(
# inputs={"X": mul_x,
dtype
=
"float32"
,
shape
=
[
10
,
8
],
lod_level
=
0
,
name
=
"mul.y"
)
# "Y": mul_y},
mul_out
=
block
.
create_var
(
# outputs={"Out": mul_out},
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out"
)
# attrs={"x_num_col_dims": 1})
mean_out
=
block
.
create_var
(
# block.append_op(
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
# type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
block
.
append_op
(
# sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.01)
type
=
"mul"
,
# opts, _ = sgd_optimizer.minimize(mean_out, init_program)
inputs
=
{
"X"
:
mul_x
,
# return opts
"Y"
:
mul_y
},
outputs
=
{
"Out"
:
mul_out
},
# opts = check_sgd_optimizer({'learning_rate': 1.1})
attrs
=
{
"x_num_col_dims"
:
1
})
# self.assertEqual(len(opts), 2)
block
.
append_op
(
# self.assertEqual([op.type for op in opts], ["scale", "sgd"])
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
sgd_optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
# opts = check_sgd_optimizer({'learning_rate': 1.0})
opts
,
_
=
sgd_optimizer
.
minimize
(
mean_out
,
init_program
)
# self.assertEqual(len(opts), 1)
return
opts
# self.assertEqual([op.type for op in opts], ["sgd"])
opts
=
check_sgd_optimizer
({
'learning_rate'
:
1.1
})
# def test_raise_error(self):
self
.
assertEqual
(
len
(
opts
),
2
)
# self.assertRaises(ValueError, paddle.optimizer.SGD, learning_rate=None)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"sgd"
])
# def test_sgd_group_dygraph(self):
opts
=
check_sgd_optimizer
({
'learning_rate'
:
1.0
})
# paddle.disable_static()
self
.
assertEqual
(
len
(
opts
),
1
)
# value = np.arange(26).reshape(2, 13).astype("float32")
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"sgd"
])
# a = paddle.to_tensor(value)
# linear_1 = paddle.nn.Linear(13, 5)
def
test_raise_error
(
self
):
# linear_2 = paddle.nn.Linear(5, 3)
self
.
assertRaises
(
ValueError
,
paddle
.
optimizer
.
SGD
,
learning_rate
=
None
)
# # This can be any optimizer supported by dygraph.
# adam = paddle.optimizer.SGD(learning_rate=0.01,
def
test_sgd_group_dygraph
(
self
):
# parameters=[{
paddle
.
disable_static
()
# 'params': linear_1.parameters()
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
# }, {
a
=
paddle
.
to_tensor
(
value
)
# 'params': linear_2.parameters(),
linear_1
=
paddle
.
nn
.
Linear
(
13
,
5
)
# 'weight_decay': 0.001,
linear_2
=
paddle
.
nn
.
Linear
(
5
,
3
)
# 'learning_rate': 0.1
# This can be any optimizer supported by dygraph.
# }],
adam
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
,
# weight_decay=0.01)
parameters
=
[{
# out = linear_1(a)
'params'
:
linear_1
.
parameters
()
# out = linear_2(out)
},
{
# out.backward()
'params'
:
linear_2
.
parameters
(),
# adam.step()
'weight_decay'
:
0.001
,
# adam.clear_gradients()
'learning_rate'
:
0.1
}],
# class TestSGDMultiPrecision2_0(unittest.TestCase):
weight_decay
=
0.01
)
# def dygraph_sgd_mp(self, mp):
out
=
linear_1
(
a
)
# paddle.disable_static()
out
=
linear_2
(
out
)
# paddle.seed(10)
out
.
backward
()
# paddle.set_device('gpu')
adam
.
step
()
# input = paddle.randn((2, 2))
adam
.
clear_gradients
()
# model = paddle.nn.Linear(2, 2)
# optimizer = paddle.optimizer.SGD(parameters=model.parameters(),
# multi_precision=mp)
class
TestSGDMultiPrecision2_0
(
unittest
.
TestCase
):
# if mp == True:
def
dygraph_sgd_mp
(
self
,
mp
):
# model = paddle.amp.decorate(models=model, level='O2')
paddle
.
disable_static
()
# scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
paddle
.
seed
(
10
)
paddle
.
set_device
(
'gpu'
)
# for idx in range(5):
input
=
paddle
.
randn
((
2
,
2
))
# if mp == True:
model
=
paddle
.
nn
.
Linear
(
2
,
2
)
# with paddle.amp.auto_cast(level='O2'):
optimizer
=
paddle
.
optimizer
.
SGD
(
parameters
=
model
.
parameters
(),
# output = model(input)
multi_precision
=
mp
)
# loss = paddle.mean(output)
if
mp
==
True
:
# scaled = scaler.scale(loss)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
)
# scaled.backward()
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
1024
)
# scaler.minimize(optimizer, scaled)
# optimizer.clear_grad()
for
idx
in
range
(
5
):
# else:
if
mp
==
True
:
# output = model(input)
with
paddle
.
amp
.
auto_cast
(
level
=
'O2'
):
# loss = paddle.mean(output)
output
=
model
(
input
)
# optimizer.step()
loss
=
paddle
.
mean
(
output
)
# optimizer.clear_grad()
scaled
=
scaler
.
scale
(
loss
)
scaled
.
backward
()
# return output, model.parameters()
scaler
.
minimize
(
optimizer
,
scaled
)
optimizer
.
clear_grad
()
# def static_sgd_mp(self, mp):
else
:
# paddle.enable_static()
output
=
model
(
input
)
# paddle.seed(10)
loss
=
paddle
.
mean
(
output
)
# np.random.seed(10)
optimizer
.
step
()
# exe = paddle.static.Executor('gpu')
optimizer
.
clear_grad
()
# train_program = paddle.static.Program()
# startup_program = paddle.static.Program()
return
output
,
model
.
parameters
()
# optimizer = paddle.optimizer.SGD(multi_precision=mp)
def
static_sgd_mp
(
self
,
mp
):
# if mp:
paddle
.
enable_static
()
# optimizer = paddle.static.amp.decorate(
paddle
.
seed
(
10
)
# optimizer,
np
.
random
.
seed
(
10
)
# init_loss_scaling=128.0,
exe
=
paddle
.
static
.
Executor
(
'gpu'
)
# use_dynamic_loss_scaling=True,
train_program
=
paddle
.
static
.
Program
()
# use_pure_fp16=True,
startup_program
=
paddle
.
static
.
Program
()
# use_fp16_guard=False)
optimizer
=
paddle
.
optimizer
.
SGD
(
multi_precision
=
mp
)
# with paddle.static.program_guard(train_program, startup_program):
# if mp:
if
mp
:
# data = paddle.static.data(
optimizer
=
paddle
.
static
.
amp
.
decorate
(
# shape=[2, 2], name='X', dtype='float16')
optimizer
,
# else:
init_loss_scaling
=
128.0
,
# data = paddle.static.data(
use_dynamic_loss_scaling
=
True
,
# shape=[2, 2], name='X', dtype='float32')
use_pure_fp16
=
True
,
# hidden = paddle.static.nn.fc(x=data, size=10)
use_fp16_guard
=
False
)
# loss = paddle.fluid.layers.mean(hidden)
with
paddle
.
static
.
program_guard
(
train_program
,
startup_program
):
# optimizer.minimize(loss)
if
mp
:
# exe.run(startup_program)
data
=
paddle
.
static
.
data
(
shape
=
[
2
,
2
],
name
=
'X'
,
dtype
=
'float16'
)
# if mp:
else
:
# optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
data
=
paddle
.
static
.
data
(
# x = np.random.random(size=(2, 2)).astype('float16')
shape
=
[
2
,
2
],
name
=
'X'
,
dtype
=
'float32'
)
# else:
hidden
=
paddle
.
static
.
nn
.
fc
(
x
=
data
,
size
=
10
)
# x = np.random.random(size=(2, 2)).astype('float32')
loss
=
paddle
.
fluid
.
layers
.
mean
(
hidden
)
# out = []
optimizer
.
minimize
(
loss
)
# for idx in range(5):
exe
.
run
(
startup_program
)
# loss_data, = exe.run(train_program,
# feed={"X": x},
if
mp
:
# fetch_list=[loss.name])
optimizer
.
amp_init
(
place
=
'gpu'
,
scope
=
paddle
.
static
.
global_scope
())
# out.append(loss_data)
x
=
np
.
random
.
random
(
size
=
(
2
,
2
)).
astype
(
'float16'
)
# return out
else
:
x
=
np
.
random
.
random
(
size
=
(
2
,
2
)).
astype
(
'float32'
)
# def test_main(self):
out
=
[]
# if not paddle.is_compiled_with_cuda():
for
idx
in
range
(
5
):
# return
loss_data
,
=
exe
.
run
(
train_program
,
# "Test dygraph mode"
feed
=
{
"X"
:
x
},
# output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
fetch_list
=
[
loss
.
name
])
# output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
out
.
append
(
loss_data
)
# self.assertEqual(
return
out
# np.allclose(
# output1_dy.astype('float32').numpy(),
def
test_main
(
self
):
# output2_dy.astype('float32').numpy(),
if
not
paddle
.
is_compiled_with_cuda
():
# atol=1e-01),
return
# True)
"Test dygraph mode"
# for idx in range(len(params1_dy)):
output1_dy
,
params1_dy
=
self
.
dygraph_sgd_mp
(
mp
=
True
)
# self.assertEqual(
output2_dy
,
params2_dy
=
self
.
dygraph_sgd_mp
(
mp
=
False
)
# np.allclose(
self
.
assertEqual
(
# params1_dy[idx].astype('float32').numpy(),
np
.
allclose
(
# params2_dy[idx].astype('float32').numpy(),
output1_dy
.
astype
(
'float32'
).
numpy
(),
# atol=1e-01),
output2_dy
.
astype
(
'float32'
).
numpy
(),
# True)
atol
=
1e-01
),
# "Test static mode"
True
)
# output1_st = self.static_sgd_mp(mp=True)
for
idx
in
range
(
len
(
params1_dy
)):
# output2_st = self.static_sgd_mp(mp=False)
self
.
assertEqual
(
# for idx in range(len(output1_st)):
np
.
allclose
(
# self.assertEqual(
params1_dy
[
idx
].
astype
(
'float32'
).
numpy
(),
# np.allclose(
params2_dy
[
idx
].
astype
(
'float32'
).
numpy
(),
# output1_st[idx].astype('float32'),
atol
=
1e-01
),
# output2_st[idx].astype('float32'),
True
)
# atol=1e-01),
"Test static mode"
# True)
output1_st
=
self
.
static_sgd_mp
(
mp
=
True
)
output2_st
=
self
.
static_sgd_mp
(
mp
=
False
)
for
idx
in
range
(
len
(
output1_st
)):
self
.
assertEqual
(
np
.
allclose
(
output1_st
[
idx
].
astype
(
'float32'
),
output2_st
[
idx
].
astype
(
'float32'
),
atol
=
1e-01
),
True
)
class
TestSGDMultiPrecision1_0
(
unittest
.
TestCase
):
class
TestSGDMultiPrecision1_0
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录