提交 93845c8f 编写于 作者: T Travis CI

Deploy to GitHub Pages: 5cb29a8f

上级 a52dfc60
...@@ -105,6 +105,11 @@ cross_channel_norm ...@@ -105,6 +105,11 @@ cross_channel_norm
.. autoclass:: paddle.v2.layer.cross_channel_norm .. autoclass:: paddle.v2.layer.cross_channel_norm
:noindex: :noindex:
row_l2_norm
-----------
.. autoclass:: paddle.v2.layer.row_l2_norm
:noindex:
Recurrent Layers Recurrent Layers
================ ================
......
...@@ -964,6 +964,52 @@ factors which dimensions equal to the channel&#8217;s number.</p> ...@@ -964,6 +964,52 @@ factors which dimensions equal to the channel&#8217;s number.</p>
</table> </table>
</dd></dl> </dd></dl>
</div>
<div class="section" id="row-l2-norm">
<h3>row_l2_norm<a class="headerlink" href="#row-l2-norm" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">row_l2_norm</code></dt>
<dd><blockquote>
<div><p>A layer for L2-normalization in each row.</p>
<div class="math">
\[out[i] =\]</div>
</div></blockquote>
<p>rac{in[i]}{sqrt{sum_{k=1}^N in[k]^{2}}}</p>
<blockquote>
<div><p>where the size of <span class="math">\(in\)</span> is (batchSize x dataDim) ,
and the size of <span class="math">\(out\)</span> is a (batchSize x dataDim) .</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">row_l2_norm</span> <span class="o">=</span> <span class="n">row_l2_norm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">Input layer.</td>
</tr>
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">Layer name.</td>
</tr>
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td>
</tr>
<tr class="field-odd field"><th class="field-name" colspan="2">param layer_attr:</th></tr>
<tr class="field-odd field"><td>&#160;</td><td class="field-body">extra layer attributes.</td>
</tr>
<tr class="field-even field"><th class="field-name" colspan="2">type layer_attr:</th></tr>
<tr class="field-even field"><td>&#160;</td><td class="field-body">paddle.v2.attr.ExtraAttribute</td>
</tr>
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">paddle.v2.config_base.Layer object.</td>
</tr>
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
</tbody>
</table>
</div></blockquote>
</dd></dl>
</div> </div>
</div> </div>
<div class="section" id="recurrent-layers"> <div class="section" id="recurrent-layers">
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
...@@ -105,6 +105,11 @@ cross_channel_norm ...@@ -105,6 +105,11 @@ cross_channel_norm
.. autoclass:: paddle.v2.layer.cross_channel_norm .. autoclass:: paddle.v2.layer.cross_channel_norm
:noindex: :noindex:
row_l2_norm
-----------
.. autoclass:: paddle.v2.layer.row_l2_norm
:noindex:
Recurrent Layers Recurrent Layers
================ ================
......
...@@ -969,6 +969,52 @@ factors which dimensions equal to the channel&#8217;s number.</p> ...@@ -969,6 +969,52 @@ factors which dimensions equal to the channel&#8217;s number.</p>
</table> </table>
</dd></dl> </dd></dl>
</div>
<div class="section" id="row-l2-norm">
<h3>row_l2_norm<a class="headerlink" href="#row-l2-norm" title="永久链接至标题"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">row_l2_norm</code></dt>
<dd><blockquote>
<div><p>A layer for L2-normalization in each row.</p>
<div class="math">
\[out[i] =\]</div>
</div></blockquote>
<p>rac{in[i]}{sqrt{sum_{k=1}^N in[k]^{2}}}</p>
<blockquote>
<div><p>where the size of <span class="math">\(in\)</span> is (batchSize x dataDim) ,
and the size of <span class="math">\(out\)</span> is a (batchSize x dataDim) .</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">row_l2_norm</span> <span class="o">=</span> <span class="n">row_l2_norm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">Input layer.</td>
</tr>
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">Layer name.</td>
</tr>
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td>
</tr>
<tr class="field-odd field"><th class="field-name" colspan="2">param layer_attr:</th></tr>
<tr class="field-odd field"><td>&#160;</td><td class="field-body">extra layer attributes.</td>
</tr>
<tr class="field-even field"><th class="field-name" colspan="2">type layer_attr:</th></tr>
<tr class="field-even field"><td>&#160;</td><td class="field-body">paddle.v2.attr.ExtraAttribute</td>
</tr>
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">paddle.v2.config_base.Layer object.</td>
</tr>
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
</tbody>
</table>
</div></blockquote>
</dd></dl>
</div> </div>
</div> </div>
<div class="section" id="recurrent-layers"> <div class="section" id="recurrent-layers">
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册