未验证 提交 9373cf5a 编写于 作者: C Chen Weihang 提交者: GitHub

Add TranslatedLayer.program method to get program (#26961)

* add TranslatedLayer.program method

* add unittests & update example code

* polish example code

* update program api example code
上级 8857e391
......@@ -556,89 +556,92 @@ class TranslatedLayer(layers.Layer):
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import declarative
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 32
BATCH_NUM = 20
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
def random_batch_reader():
def _get_random_images_and_labels(image_shape, label_shape):
image = np.random.random(size=image_shape).astype('float32')
label = np.random.random(size=label_shape).astype('int64')
return image, label
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __reader__():
for _ in range(BATCH_NUM):
batch_image, batch_label = _get_random_images_and_labels(
[BATCH_SIZE, 784], [BATCH_SIZE, 1])
yield batch_image, batch_label
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
return __reader__
def __len__(self):
return self.num_samples
class LinearNet(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = Linear(in_size, out_size)
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
@declarative
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
print("Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))
# enable dygraph mode
fluid.enable_dygraph()
place = paddle.CPUPlace()
paddle.disable_static(place)
# 1. train & save model.
# create network
net = LinearNet(784, 1)
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=net.parameters())
# create data loader
train_loader = fluid.io.DataLoader.from_generator(capacity=5)
train_loader.set_batch_generator(random_batch_reader())
# train
for data in train_loader():
img, label = data
label.stop_gradient = True
cost = net(img)
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
places=place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
avg_loss.backward()
adam.minimize(avg_loss)
net.clear_gradients()
# train
train(layer, loader, loss_fn, adam)
# save
model_path = "linear.example.model"
fluid.dygraph.jit.save(
layer=net,
model_path=model_path,
input_spec=[img])
paddle.jit.save(layer, model_path)
# 2. load model as TranslatedLayer
translated_layer = fluid.dygraph.jit.load(model_path)
# load
translated_layer = paddle.jit.load(model_path)
# inference
translated_layer.eval()
x = fluid.dygraph.to_variable(np.random.random((1, 784)).astype('float32'))
x = paddle.randn([1, IMAGE_SIZE], 'float32')
pred = translated_layer(x)
# fine-tune
translated_layer.train()
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=translated_layer.parameters())
train_loader = fluid.io.DataLoader.from_generator(capacity=5)
train_loader.set_batch_generator(random_batch_reader())
for data in train_loader():
img, label = data
label.stop_gradient = True
adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
train(translated_layer, loader, loss_fn, adam)
cost = translated_layer(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
avg_loss.backward()
adam.minimize(avg_loss)
translated_layer.clear_gradients()
"""
def __init__(self, programs, persistable_vars):
......@@ -814,3 +817,107 @@ class TranslatedLayer(layers.Layer):
def eval(self):
self._is_test = True
def program(self, method_name='forward'):
"""
Gets translated program of specified method.
Args:
- method_name (string): mehtod name corresponding to the program
to be obtained. Default: 'forward'.
Returns:
Program
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
print("Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))
# enable dygraph mode
place = paddle.CPUPlace()
paddle.disable_static(place)
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
places=place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# train
train(layer, loader, loss_fn, adam)
# save
model_path = "linear.example.model"
paddle.jit.save(layer, model_path)
# load
translated_layer = paddle.jit.load(model_path)
# get program
program = translated_layer.program()
"""
# 1. get program holder
program_holder = self._program_holder_dict.get(method_name, None)
if program_holder is None:
raise ValueError(
"The method `%s` is not exists in loaded TranslatedLayer." %
method_name)
# 2. get inference program desc
program_desc = program_holder.infer_program
# 3. construct program
program = _build_program_by_desc(program_desc)
return program
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
SEED = 10
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
np.random.seed(SEED)
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
print("Epoch {} batch {}: loss = {}".format(epoch_id, batch_id,
np.mean(loss.numpy())))
return loss
class TestTranslatedLayer(unittest.TestCase):
def setUp(self):
# enable dygraph mode
place = paddle.CPUPlace()
paddle.disable_static(place)
# config seed
paddle.manual_seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
# create network
self.layer = LinearNet()
self.loss_fn = nn.CrossEntropyLoss()
self.sgd = opt.SGD(learning_rate=0.001,
parameters=self.layer.parameters())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
self.loader = paddle.io.DataLoader(
dataset,
places=place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# train
train(self.layer, self.loader, self.loss_fn, self.sgd)
# save
self.model_path = "linear.example.model"
paddle.jit.save(self.layer, self.model_path)
def test_inference_and_fine_tuning(self):
self.load_and_inference()
self.load_and_fine_tuning()
def load_and_inference(self):
# load
translated_layer = paddle.jit.load(self.model_path)
# inference
x = paddle.randn([1, IMAGE_SIZE], 'float32')
self.layer.eval()
orig_pred = self.layer(x)
translated_layer.eval()
pred = translated_layer(x)
self.assertTrue(np.array_equal(orig_pred.numpy(), pred.numpy()))
def load_and_fine_tuning(self):
# load
translated_layer = paddle.jit.load(self.model_path)
# train original layer continue
self.layer.train()
orig_loss = train(self.layer, self.loader, self.loss_fn, self.sgd)
# fine-tuning
translated_layer.train()
sgd = opt.SGD(learning_rate=0.001,
parameters=translated_layer.parameters())
loss = train(translated_layer, self.loader, self.loss_fn, sgd)
self.assertTrue(
np.array_equal(orig_loss.numpy(), loss.numpy()),
msg="original loss:\n{}\nnew loss:\n{}\n".format(orig_loss.numpy(),
loss.numpy()))
def test_get_program(self):
# load
translated_layer = paddle.jit.load(self.model_path)
program = translated_layer.program()
self.assertTrue(isinstance(program, paddle.static.Program))
def test_get_program_method_not_exists(self):
# load
translated_layer = paddle.jit.load(self.model_path)
with self.assertRaises(ValueError):
program = translated_layer.program('not_exists')
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册