From 9294ba25424727d3197c1af9be100e7a7cf652cf Mon Sep 17 00:00:00 2001 From: zhangkaihuo Date: Fri, 15 Apr 2022 11:16:17 +0800 Subject: [PATCH] Add paddle.sparse and three Sparse API (#41276) (#41803) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit cherry-pick PR#41276 到 release/2.3 添加路径:paddle.sparse,paddle.sparse.functional,paddle.sparse.layer 添加API:paddle.sparse.sparse_coo_tensor(用于创建COO格式的Sparse Tensor )和 paddle.sparse.sparse_csr_tensor(用于创建CSR格式的Sparse Tensor ) 添加API:paddle.sparse.ReLU --- python/paddle/__init__.py | 1 + .../unittests/test_sparse_activation_op.py | 21 +- .../tests/unittests/test_sparse_utils_op.py | 99 +++++++-- python/paddle/sparse/__init__.py | 19 ++ python/paddle/sparse/creation.py | 191 ++++++++++++++++++ python/paddle/sparse/functional/__init__.py | 17 ++ python/paddle/sparse/functional/activation.py | 53 +++++ python/paddle/sparse/layer/__init__.py | 17 ++ python/paddle/sparse/layer/activation.py | 61 ++++++ python/setup.py.in | 5 +- 10 files changed, 461 insertions(+), 23 deletions(-) create mode 100644 python/paddle/sparse/__init__.py create mode 100644 python/paddle/sparse/creation.py create mode 100644 python/paddle/sparse/functional/__init__.py create mode 100644 python/paddle/sparse/functional/activation.py create mode 100644 python/paddle/sparse/layer/__init__.py create mode 100644 python/paddle/sparse/layer/activation.py diff --git a/python/paddle/__init__.py b/python/paddle/__init__.py index fa0f3b2767..227cf96764 100755 --- a/python/paddle/__init__.py +++ b/python/paddle/__init__.py @@ -75,6 +75,7 @@ import paddle.onnx # noqa: F401 import paddle.reader # noqa: F401 import paddle.static # noqa: F401 import paddle.vision # noqa: F401 +import paddle.sparse # noqa: F401 from .tensor.attribute import is_complex # noqa: F401 from .tensor.attribute import is_integer # noqa: F401 diff --git a/python/paddle/fluid/tests/unittests/test_sparse_activation_op.py b/python/paddle/fluid/tests/unittests/test_sparse_activation_op.py index df13ae4e4b..a15854394b 100644 --- a/python/paddle/fluid/tests/unittests/test_sparse_activation_op.py +++ b/python/paddle/fluid/tests/unittests/test_sparse_activation_op.py @@ -16,7 +16,6 @@ from __future__ import print_function import unittest import numpy as np import paddle -from paddle import _C_ops from paddle.fluid.framework import _test_eager_guard @@ -24,16 +23,18 @@ class TestSparseActivation(unittest.TestCase): def test_sparse_relu(self): with _test_eager_guard(): x = [[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]] - dense_x = paddle.to_tensor(x, dtype='float32') - dense_shape = [3, 4] - stop_gradient = True + dense_x = paddle.to_tensor(x, dtype='float32', stop_gradient=False) sparse_dim = 2 - sparse_coo_x = dense_x.to_sparse_coo(sparse_dim) - #TODO(zhangkaihuo): change to test the corresponding API: paddle.sparse.relu(sparse_coo_x) - sparse_act_out = _C_ops.final_state_sparse_relu(sparse_coo_x) - correct_result = [0, 2, 0, 4, 5] - actual_result = sparse_act_out.non_zero_elements().numpy() - assert np.array_equal(correct_result, actual_result) + sparse_x = dense_x.to_sparse_coo(sparse_dim) + sparse_relu = paddle.sparse.ReLU() + sparse_out = sparse_relu(sparse_x) + dense_relu = paddle.nn.ReLU() + #TODO: replace non_zero_elements() as values() + dense_out = dense_relu(sparse_x.non_zero_elements()) + actual_result = sparse_out.non_zero_elements().numpy() + assert np.array_equal(dense_out.numpy(), actual_result) + dense_out.backward(dense_out) + sparse_out.backward(sparse_out) if __name__ == "__main__": diff --git a/python/paddle/fluid/tests/unittests/test_sparse_utils_op.py b/python/paddle/fluid/tests/unittests/test_sparse_utils_op.py index 80a7db6516..5db39dcc10 100644 --- a/python/paddle/fluid/tests/unittests/test_sparse_utils_op.py +++ b/python/paddle/fluid/tests/unittests/test_sparse_utils_op.py @@ -16,13 +16,12 @@ from __future__ import print_function import unittest import numpy as np import paddle -from paddle import _C_ops -from paddle.fluid import core +import paddle.fluid.core as core from paddle.fluid.framework import _test_eager_guard -class TestSparseUtils(unittest.TestCase): - def test_create_sparse_coo_tensor(self): +class TestSparseCreate(unittest.TestCase): + def test_create_coo_by_tensor(self): with _test_eager_guard(): non_zero_indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]] non_zero_elements = [1, 2, 3, 4, 5] @@ -30,13 +29,24 @@ class TestSparseUtils(unittest.TestCase): dense_indices = paddle.to_tensor(non_zero_indices) dense_elements = paddle.to_tensor( non_zero_elements, dtype='float32') - stop_gradient = False - coo = core.eager.sparse_coo_tensor(dense_indices, dense_elements, - dense_shape, stop_gradient) + coo = paddle.sparse.sparse_coo_tensor( + dense_indices, dense_elements, dense_shape, stop_gradient=False) + assert np.array_equal(non_zero_indices, + coo.non_zero_indices().numpy()) + assert np.array_equal(non_zero_elements, + coo.non_zero_elements().numpy()) + def test_create_coo_by_np(self): + with _test_eager_guard(): + indices = [[0, 1, 2], [1, 2, 0]] + values = [1.0, 2.0, 3.0] + dense_shape = [2, 3] + coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape) print(coo) + assert np.array_equal(indices, coo.non_zero_indices().numpy()) + assert np.array_equal(values, coo.non_zero_elements().numpy()) - def test_create_sparse_csr_tensor(self): + def test_create_csr_by_tensor(self): with _test_eager_guard(): non_zero_crows = [0, 2, 3, 5] non_zero_cols = [1, 3, 2, 0, 1] @@ -47,12 +57,77 @@ class TestSparseUtils(unittest.TestCase): dense_elements = paddle.to_tensor( non_zero_elements, dtype='float32') stop_gradient = False - csr = core.eager.sparse_csr_tensor(dense_crows, dense_cols, - dense_elements, dense_shape, - stop_gradient) - + csr = paddle.sparse.sparse_csr_tensor( + dense_crows, + dense_cols, + dense_elements, + dense_shape, + stop_gradient=stop_gradient) print(csr) + def test_create_csr_by_np(self): + with _test_eager_guard(): + crows = [0, 2, 3, 5] + cols = [1, 3, 2, 0, 1] + values = [1, 2, 3, 4, 5] + dense_shape = [3, 4] + csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, + dense_shape) + assert np.array_equal(crows, csr.non_zero_crows().numpy()) + assert np.array_equal(cols, csr.non_zero_cols().numpy()) + assert np.array_equal(values, csr.non_zero_elements().numpy()) + + def test_place(self): + with _test_eager_guard(): + place = core.CPUPlace() + indices = [[0, 1], [0, 1]] + values = [1.0, 2.0] + dense_shape = [2, 2] + coo = paddle.sparse.sparse_coo_tensor( + indices, values, dense_shape, place=place) + assert coo.place.is_cpu_place() + assert coo.non_zero_elements().place.is_cpu_place() + assert coo.non_zero_indices().place.is_cpu_place() + + crows = [0, 2, 3, 5] + cols = [1, 3, 2, 0, 1] + values = [1.0, 2.0, 3.0, 4.0, 5.0] + csr = paddle.sparse.sparse_csr_tensor( + crows, cols, values, [3, 5], place=place) + assert csr.place.is_cpu_place() + assert csr.non_zero_crows().place.is_cpu_place() + assert csr.non_zero_cols().place.is_cpu_place() + assert csr.non_zero_elements().place.is_cpu_place() + + def test_dtype(self): + with _test_eager_guard(): + indices = [[0, 1], [0, 1]] + values = [1.0, 2.0] + dense_shape = [2, 2] + indices = paddle.to_tensor(indices, dtype='int32') + values = paddle.to_tensor(values, dtype='float32') + coo = paddle.sparse.sparse_coo_tensor( + indices, values, dense_shape, dtype='float64') + assert coo.dtype == paddle.float64 + + crows = [0, 2, 3, 5] + cols = [1, 3, 2, 0, 1] + values = [1.0, 2.0, 3.0, 4.0, 5.0] + csr = paddle.sparse.sparse_csr_tensor( + crows, cols, values, [3, 5], dtype='float16') + assert csr.dtype == paddle.float16 + + def test_create_coo_no_shape(self): + with _test_eager_guard(): + indices = [[0, 1], [0, 1]] + values = [1.0, 2.0] + indices = paddle.to_tensor(indices, dtype='int32') + values = paddle.to_tensor(values, dtype='float32') + coo = paddle.sparse.sparse_coo_tensor(indices, values) + assert [2, 2] == coo.shape + + +class TestSparseConvert(unittest.TestCase): def test_to_sparse_coo(self): with _test_eager_guard(): x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]] diff --git a/python/paddle/sparse/__init__.py b/python/paddle/sparse/__init__.py new file mode 100644 index 0000000000..aff9625469 --- /dev/null +++ b/python/paddle/sparse/__init__.py @@ -0,0 +1,19 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .creation import sparse_coo_tensor +from .creation import sparse_csr_tensor +from .layer.activation import ReLU + +__all__ = ['sparse_coo_tensor', 'sparse_csr_tensor', 'ReLU'] diff --git a/python/paddle/sparse/creation.py b/python/paddle/sparse/creation.py new file mode 100644 index 0000000000..e29351e3d1 --- /dev/null +++ b/python/paddle/sparse/creation.py @@ -0,0 +1,191 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle import _C_ops +from ..framework import core, dygraph_only +from ..tensor import to_tensor +from ..tensor import max +from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype + +__all__ = [ + 'sparse_coo_tensor', + 'sparse_csr_tensor', +] + + +def _handle_dtype(data, dtype): + if dtype: + if convert_dtype(dtype) != convert_dtype(data.dtype): + return data.astype(convert_dtype(dtype)) + return data + + +def _infer_dense_shape(indices): + assert len(indices.shape) == 2 + lens = max(indices, axis=1) + lens = lens + 1 + return list(lens.numpy()) + + +@dygraph_only +def sparse_coo_tensor(indices, + values, + shape=None, + dtype=None, + place=None, + stop_gradient=True): + r""" + Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices + and values of the specified non-zero elements. + + Args: + indices(list|tuple|ndarray|Tensor): the indices of non-zero elements. + Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D. + values(list|tuple|ndarray|Tensor): Initial values for the tensor. + Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor. + shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of + original dense tensor. If not provided the smallest shape will be inferred to + hold all elements. + dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , + 'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8', + 'complex64' , 'complex128'. Default: None, infers dtype from ``data`` + except for python float number which gets dtype from ``get_default_type`` . + place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be + CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is + string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. + stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True. + + Returns: + Tensor: A Tensor constructed from ``indices`` and ``values`` . + + Raises: + TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor + ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``indices`` is not a 2-D. + TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128 + ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. + + Examples: + + .. code-block:: python + + import paddle + from paddle.fluid.framework import _test_eager_guard + + with _test_eager_guard(): + indices = [[0, 1, 2], [1, 2, 0]] + values = [1.0, 2.0, 3.0] + dense_shape = [2, 3] + coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape) + # print(coo) + # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, + # indices=[[0, 1, 2], + # [1, 2, 0]], + # values=[1., 2., 3.]) + """ + + if not isinstance(indices, core.eager.Tensor): + indices = to_tensor( + indices, dtype=None, place=place, stop_gradient=True) + if not isinstance(values, core.eager.Tensor): + values = to_tensor(values, dtype, place, stop_gradient) + if len(indices.shape) != 2: + raise ValueError("'indices' must be 2-D.") + if place is not None: + indices = indices._copy_to(place, False) + values = values._copy_to(place, False) + values = _handle_dtype(values, dtype) + if shape is None: + shape = _infer_dense_shape(indices) + return core.eager.sparse_coo_tensor(indices, values, shape, stop_gradient) + + +#TODO: need to support shape is None +@dygraph_only +def sparse_csr_tensor(crows, + cols, + values, + shape, + dtype=None, + place=None, + stop_gradient=True): + r""" + Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the + ``crows``, ``cols`` and ``values``. + + Args: + crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the + starting position of the first non-zero element of each row in values. + Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. + cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements. + Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. + values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements. + Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor. + shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of + original dense tensor. + hold all elements. + dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , + 'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8', + 'complex64' , 'complex128'. Default: None, infers dtype from ``data`` + except for python float number which gets dtype from ``get_default_type`` . + place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be + CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is + string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. + stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True. + + Returns: + Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` . + + Raises: + TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor + ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``crow``, ``cols`` and ``values`` is not a 2-D. + TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128 + ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. + + Examples: + + .. code-block:: python + + import paddle + from paddle.fluid.framework import _test_eager_guard + + with _test_eager_guard(): + crows = [0, 2, 3, 5] + cols = [1, 3, 2, 0, 1] + values = [1, 2, 3, 4, 5] + dense_shape = [3, 4] + csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape) + # print(csr) + # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True, + # crows=[0, 2, 3, 5], + # cols=[1, 3, 2, 0, 1], + # values=[1, 2, 3, 4, 5]) + """ + if not isinstance(crows, core.eager.Tensor): + crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True) + if not isinstance(cols, core.eager.Tensor): + cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True) + if not isinstance(values, core.eager.Tensor): + values = to_tensor(values, dtype, place, stop_gradient) + if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1: + raise ValueError( + "SparseCsrTensor only support 2-D or 3-D matrix. The 'crows', 'cols' and 'values' must be 1-D." + ) + + if place is not None: + crows = crows._copy_to(place, False) + cols = cols._copy_to(place, False) + values = values._copy_to(place, False) + values = _handle_dtype(values, dtype) + return core.eager.sparse_csr_tensor(crows, cols, values, shape, + stop_gradient) diff --git a/python/paddle/sparse/functional/__init__.py b/python/paddle/sparse/functional/__init__.py new file mode 100644 index 0000000000..f4c5b33a5a --- /dev/null +++ b/python/paddle/sparse/functional/__init__.py @@ -0,0 +1,17 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .activation import relu # noqa: F401 + +__all__ = ['relu'] diff --git a/python/paddle/sparse/functional/activation.py b/python/paddle/sparse/functional/activation.py new file mode 100644 index 0000000000..c0109bc4e2 --- /dev/null +++ b/python/paddle/sparse/functional/activation.py @@ -0,0 +1,53 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +__all__ = [] + +from paddle import _C_ops, in_dynamic_mode + + +def relu(x, name=None): + """ + sparse relu activation. + + .. math:: + + out = max(x, 0) + + Parameters: + x (Tensor): The input Sparse Tensor with data type float32, float64. + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Returns: + A Sparse Tensor with the same data type and shape as ``x`` . + + Examples: + .. code-block:: python + + import paddle + import numpy as np + from paddle.fluid.framework import _test_eager_guard + + with _test_eager_guard(): + dense_x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32')) + sparse_x = dense_x.to_sparse_coo(1) + out = paddle.sparse.functional.relu(sparse_x) + """ + + assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode" + assert x.is_sparse_coo( + ), "Currently, sparse.relu only support the input of SparseCooTensor" + + return _C_ops.final_state_sparse_relu(x) diff --git a/python/paddle/sparse/layer/__init__.py b/python/paddle/sparse/layer/__init__.py new file mode 100644 index 0000000000..66abce260b --- /dev/null +++ b/python/paddle/sparse/layer/__init__.py @@ -0,0 +1,17 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .activation import ReLU + +__all__ = [] diff --git a/python/paddle/sparse/layer/activation.py b/python/paddle/sparse/layer/activation.py new file mode 100644 index 0000000000..ad0dbc1880 --- /dev/null +++ b/python/paddle/sparse/layer/activation.py @@ -0,0 +1,61 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .. import functional as F +from paddle.nn import Layer + +__all__ = [] + + +class ReLU(Layer): + """ + Sparse ReLU Activation. + + .. math:: + + ReLU(x) = max(x, 0) + + Parameters: + name (str, optional): Name for the operation (optional, default is None). + For more information, please refer to :ref:`api_guide_Name`. + + Shape: + - input: Sparse Tensor with any shape. + - output: Sparse Tensor with the same shape as input. + + Examples: + .. code-block:: python + + import paddle + from paddle.fluid.framework import _test_eager_guard + with _test_eager_guard(): + x = [[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]] + dense_x = paddle.to_tensor(x, dtype='float32') + sparse_dim = 2 + sparse_x = dense_x.to_sparse_coo(sparse_dim) + relu = paddle.sparse.ReLU() + out = relu(sparse_x) + #out.values: [0., 2., 0., 4., 5.] + """ + + def __init__(self, name=None): + super(ReLU, self).__init__() + self._name = name + + def forward(self, x): + return F.relu(x, self._name) + + def extra_repr(self): + name_str = 'name={}'.format(self._name) if self._name else '' + return name_str diff --git a/python/setup.py.in b/python/setup.py.in index b2c1ded910..e4637444be 100755 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -384,7 +384,10 @@ packages=['paddle', 'paddle.device', 'paddle.device.cuda', 'paddle.version', - 'paddle.profiler' + 'paddle.profiler', + 'paddle.sparse', + 'paddle.sparse.layer', + 'paddle.sparse.functional', ] with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f: -- GitLab