未验证 提交 9262a93c 编写于 作者: L Linjie Chen 提交者: GitHub

[phi] move argsort to phi (#40151)

* move argsort to phi

* refine files

* remove mutable_data

* fix unittest

* fix unittest

* remove infershape

* update infershape

* fix ci

* fix ci

* fix ci

* fix

* fix

* fix

* fix

* fix

* fix

* fix
上级 f25dba0a
...@@ -12,40 +12,19 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,40 +12,19 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/argsort_op.h"
#include <memory> #include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class ArgsortOp : public framework::OperatorWithKernel { class ArgsortOp : public framework::OperatorWithKernel {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "argsort");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "argsort");
OP_INOUT_CHECK(ctx->HasOutput("Indices"), "Output", "Indices", "argsort");
auto in_dims = ctx->GetInputDim("X");
int axis = ctx->Attrs().Get<int>("axis");
auto num_dims = in_dims.size();
PADDLE_ENFORCE_GE(axis, -num_dims,
platform::errors::InvalidArgument(
"'axis'(%d) must be greater than or equal to"
" -num_dims(%d).",
axis, -num_dims));
PADDLE_ENFORCE_LT(
axis, num_dims,
platform::errors::InvalidArgument(
"'axis'(%d) must be less than num_dims(%d).", axis, num_dims));
ctx->ShareDim("X", "Out");
ctx->ShareDim("X", "Indices");
ctx->ShareLoD("X", "Out");
ctx->ShareLoD("X", "Indices");
}
}; };
class ArgsortGradOp : public framework::OperatorWithKernel { class ArgsortGradOp : public framework::OperatorWithKernel {
...@@ -122,18 +101,11 @@ DECLARE_NO_NEED_BUFFER_VARS_INFERER(ArgsortGradNoNeedBufferVarsInferer, "X"); ...@@ -122,18 +101,11 @@ DECLARE_NO_NEED_BUFFER_VARS_INFERER(ArgsortGradNoNeedBufferVarsInferer, "X");
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(argsort, ArgsortInferShapeFunctor,
PD_INFER_META(phi::ArgsortInferMeta));
REGISTER_OPERATOR(argsort, ops::ArgsortOp, ops::ArgsortOpMaker, REGISTER_OPERATOR(argsort, ops::ArgsortOp, ops::ArgsortOpMaker,
ops::ArgsortGradOpMaker<paddle::framework::OpDesc>, ops::ArgsortGradOpMaker<paddle::framework::OpDesc>,
ops::ArgsortGradOpMaker<paddle::imperative::OpBase>); ops::ArgsortGradOpMaker<paddle::imperative::OpBase>,
ArgsortInferShapeFunctor);
REGISTER_OPERATOR(argsort_grad, ops::ArgsortGradOp, REGISTER_OPERATOR(argsort_grad, ops::ArgsortGradOp,
ops::ArgsortGradNoNeedBufferVarsInferer); ops::ArgsortGradNoNeedBufferVarsInferer);
REGISTER_OP_CPU_KERNEL(argsort,
ops::ArgsortKernel<paddle::platform::CPUPlace, float>,
ops::ArgsortKernel<paddle::platform::CPUPlace, double>,
ops::ArgsortKernel<paddle::platform::CPUPlace, int>,
ops::ArgsortKernel<paddle::platform::CPUPlace, int64_t>);
REGISTER_OP_CPU_KERNEL(
argsort_grad, ops::ArgsortGradientKernel<paddle::platform::CPUPlace, float>,
ops::ArgsortGradientKernel<paddle::platform::CPUPlace, double>,
ops::ArgsortGradientKernel<paddle::platform::CPUPlace, int>,
ops::ArgsortGradientKernel<paddle::platform::CPUPlace, int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/copy.h>
#include <thrust/execution_policy.h>
#include <thrust/sequence.h>
#include <thrust/sort.h>
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/argsort_op.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#ifdef __HIPCC__
namespace rocprim {
namespace detail {
template <>
struct radix_key_codec_base<paddle::platform::float16>
: radix_key_codec_integral<paddle::platform::float16, uint16_t> {};
} // namespace detail
} // namespace rocprim
#else
// set cub base traits in order to handle float16
namespace cub {
template <>
struct NumericTraits<paddle::platform::float16>
: BaseTraits<FLOATING_POINT, true, false, uint16_t,
paddle::platform::float16> {};
} // namespace cub
#endif
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
// Iter for move to next row
struct SegmentOffsetIter {
EIGEN_DEVICE_FUNC
explicit SegmentOffsetIter(int num_cols) : num_cols_(num_cols) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator()(int idx) const {
return idx * num_cols_;
}
int num_cols_;
};
template <typename T>
static __global__ void FillIndex(T* indices, T num_rows, T num_cols) {
int col_id = threadIdx.x;
int row_id = blockIdx.x;
for (T j = row_id; j < num_rows; j += gridDim.x) {
for (T i = col_id; i < num_cols; i += blockDim.x) {
indices[j * num_cols + i] = i;
}
}
}
template <typename T, typename IndType>
static __global__ void FillFlattenGrad(const T* dO, const IndType* indices,
int64_t size, T* dX) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < size; i += stride) {
dX[indices[i]] = dO[i];
}
}
template <typename T, typename IndType>
static __global__ void FillGrad(const T* dO, const IndType* indices, T* dX,
IndType num_rows, IndType num_cols) {
int col_id = threadIdx.x;
int row_id = blockIdx.x;
for (IndType j = row_id; j < num_rows; j += gridDim.x) {
for (IndType i = col_id; i < num_cols; i += blockDim.x) {
dX[j * num_cols + indices[j * num_cols + i]] = dO[j * num_cols + i];
}
}
}
// Sort by flag descending, True: descending. False: Ascending.
// Default is false.
template <typename T, typename IndType>
void ArgFullSort(const platform::CUDADeviceContext& ctx, const Tensor* input,
Tensor* output, Tensor* indices, const IndType num_rows,
const IndType num_cols, const bool descending) {
auto cu_stream = ctx.stream();
Tensor input_indices;
const std::vector<IndType> dims = {num_rows, num_cols};
auto dim = phi::make_ddim(dims);
input_indices.Resize(dim);
input_indices.mutable_data<IndType>(ctx.GetPlace());
size_t temp_storage_bytes = -1;
auto ComputeBlockSize = [](IndType col) {
if (col > 512)
return 1024;
else if (col > 256 && col <= 512)
return 512;
else if (col > 128 && col <= 256)
return 256;
else if (col > 64 && col <= 128)
return 128;
else
return 64;
};
int block_size = ComputeBlockSize(num_cols);
int maxGridDimX = ctx.GetCUDAMaxGridDimSize()[0];
// actually, int num_rows < max_grid_size
int grid_size = num_rows < maxGridDimX ? num_rows : maxGridDimX;
// Init a index array
FillIndex<<<grid_size, block_size, 0, cu_stream>>>(
input_indices.data<IndType>(), num_rows, num_cols);
T* sorted_out_ptr;
IndType* sorted_indices_ptr;
const T* inp = input->data<T>();
T* out = output->mutable_data<T>(ctx.GetPlace());
IndType* ind = indices->mutable_data<IndType>(ctx.GetPlace());
sorted_out_ptr = out;
sorted_indices_ptr = ind;
// create iter for counting input
cub::CountingInputIterator<IndType> counting_iter(0);
// segment_offset is used for move to next row
cub::TransformInputIterator<IndType, SegmentOffsetIter,
cub::CountingInputIterator<IndType>>
segment_offsets_t(counting_iter, SegmentOffsetIter(num_cols));
gpuError_t err;
if (descending) {
err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
nullptr, temp_storage_bytes, inp, sorted_out_ptr,
input_indices.data<IndType>(), sorted_indices_ptr, num_cols * num_rows,
num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
cu_stream);
} else {
err = cub::DeviceSegmentedRadixSort::SortPairs(
nullptr, temp_storage_bytes, inp, sorted_out_ptr,
input_indices.data<IndType>(), sorted_indices_ptr, num_cols * num_rows,
num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
cu_stream);
}
PADDLE_ENFORCE_GPU_SUCCESS(err);
Tensor temp_storage;
temp_storage.mutable_data<uint8_t>(ctx.GetPlace(), temp_storage_bytes);
if (descending) {
err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
temp_storage.data<uint8_t>(), temp_storage_bytes, inp, sorted_out_ptr,
input_indices.data<IndType>(), sorted_indices_ptr, num_cols * num_rows,
num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
cu_stream);
} else {
err = cub::DeviceSegmentedRadixSort::SortPairs(
temp_storage.data<uint8_t>(), temp_storage_bytes, inp, sorted_out_ptr,
input_indices.data<IndType>(), sorted_indices_ptr, num_cols * num_rows,
num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
cu_stream);
}
PADDLE_ENFORCE_GPU_SUCCESS(err);
}
template <typename T, typename IndType>
void ArgFullAssign(const platform::CUDADeviceContext& ctx, const Tensor* dO,
const Tensor* indices, Tensor* dX, const IndType num_rows,
const IndType num_cols) {
auto cu_stream = ctx.stream();
auto ComputeBlockSize = [](IndType col) {
if (col > 512)
return 1024;
else if (col > 256 && col <= 512)
return 512;
else if (col > 128 && col <= 256)
return 256;
else if (col > 64 && col <= 128)
return 128;
else
return 64;
};
int block_size = ComputeBlockSize(num_cols);
int maxGridDimX = ctx.GetCUDAMaxGridDimSize()[0];
// actually, int num_rows < max_grid_size
int grid_size = num_rows < maxGridDimX ? num_rows : maxGridDimX;
FillGrad<<<grid_size, block_size, 0, cu_stream>>>(
dO->data<T>(), indices->data<IndType>(), dX->data<T>(), num_rows,
num_cols);
}
template <typename T>
void ArgFlattenAssign(const platform::CUDADeviceContext& ctx, const Tensor* dO,
const Tensor* indices, int64_t size, Tensor* dX) {
auto cu_stream = ctx.stream();
const int64_t block_size =
std::min(size, static_cast<int64_t>(ctx.GetMaxThreadsPerBlock()));
int64_t max_threads = ctx.GetMaxPhysicalThreadCount();
const int64_t max_blocks =
std::max(((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (size + block_size - 1) / block_size);
FillFlattenGrad<<<grid_size, block_size, 0, cu_stream>>>(
dO->data<T>(), indices->data<int64_t>(), size, dX->data<T>());
}
template <typename DeviceContext, typename T>
class ArgsortOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto* indices = ctx.Output<Tensor>("Indices");
int axis = ctx.Attr<int>("axis");
bool descending = ctx.Attr<bool>("descending");
auto in_dims = input->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
const T* in_data = input->data<T>();
auto size = input->numel();
T* out_data = output->mutable_data<T>(ctx.GetPlace());
int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());
// Use thrust for parallel acceleration when the input size is equal to the
// length of the ‘axis’ dimension.
// Compared to the following 'Special case for full sort', ascending sort is
// 34 times faster and descending sort is 31 times faster.
if (size == in_dims[axis]) {
thrust::sequence(thrust::device, ids_data, ids_data + size);
thrust::copy(thrust::device, in_data, in_data + size, out_data);
thrust::sort_by_key(thrust::device, out_data, out_data + size, ids_data);
if (descending) {
thrust::reverse(thrust::device, out_data, out_data + size);
thrust::reverse(thrust::device, ids_data, ids_data + size);
}
return;
}
// Special case for full sort, speedup ~190x.
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t input_width = in_dims[in_dims.size() - 1];
const auto& dev_ctx = ctx.cuda_device_context();
ArgFullSort<T, int64_t>(dev_ctx, input, output, indices, input_height,
input_width, descending);
} else {
// if not full sort, do transpose first
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
framework::DDim trans_dims(in_dims);
for (int i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
Tensor trans_inp;
T* trans_inp_data = trans_inp.mutable_data<T>(trans_dims, ctx.GetPlace());
int ndims = trans.size();
const auto& dev_ctx = ctx.cuda_device_context();
// Do transpose
TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, *input,
&trans_inp, trans);
const int64_t input_height =
phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
Tensor tmp_out;
tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());
T* out_data = output->mutable_data<T>(ctx.GetPlace());
Tensor tmp_indices;
// temp indices for sorting
tmp_indices.mutable_data<int64_t>(trans_dims, ctx.GetPlace());
indices->mutable_data<int64_t>(ctx.GetPlace());
ArgFullSort<T, int64_t>(dev_ctx, &trans_inp, &tmp_out, &tmp_indices,
input_height, input_width, descending);
TransCompute<platform::CUDADeviceContext, int64_t>(
ndims, dev_ctx, tmp_indices, indices, trans);
// transpose back
TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, tmp_out,
output, trans);
return;
}
}
};
template <typename T>
class ArgsortGradOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* indices = ctx.Input<Tensor>("Indices");
auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
int axis = ctx.Attr<int>("axis");
dX->mutable_data<T>(ctx.GetPlace());
if (dO->numel() == 0) return;
auto in_dims = dX->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
int64_t size = dX->numel();
const auto& dev_ctx = ctx.cuda_device_context();
// Parallel acceleration when the input size is equal to the length of the
// ‘axis’ dimension.
// Compared to 'special case for full sort' below, the gradient calculation
// is 10 times faster.
if (size == in_dims[axis]) {
ArgFlattenAssign<T>(dev_ctx, dO, indices, size, dX);
return;
}
// Special case for full sort, speedup ~190x.
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t input_width = in_dims[in_dims.size() - 1];
ArgFullAssign<T, int64_t>(dev_ctx, dO, indices, dX, input_height,
input_width);
} else {
// if not full sort, do transpose first
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
framework::DDim trans_dims(in_dims);
for (int i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
Tensor trans_dO;
trans_dO.mutable_data<T>(trans_dims, ctx.GetPlace());
Tensor trans_ind;
trans_ind.mutable_data<int64_t>(trans_dims, ctx.GetPlace());
int ndims = trans.size();
// Do transpose
TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, *dO,
&trans_dO, trans);
TransCompute<platform::CUDADeviceContext, int64_t>(
ndims, dev_ctx, *indices, &trans_ind, trans);
const int64_t input_height =
phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
Tensor tmp_out;
tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());
ArgFullAssign<T, int64_t>(dev_ctx, &trans_dO, &trans_ind, &tmp_out,
input_height, input_width);
// transpose back
TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, tmp_out, dX,
trans);
return;
}
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(
argsort,
paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
float>,
paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
double>,
paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
int>,
paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
int64_t>,
paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
argsort_grad, paddle::operators::ArgsortGradOpCUDAKernel<float>,
paddle::operators::ArgsortGradOpCUDAKernel<double>,
paddle::operators::ArgsortGradOpCUDAKernel<int>,
paddle::operators::ArgsortGradOpCUDAKernel<int64_t>,
paddle::operators::ArgsortGradOpCUDAKernel<paddle::platform::float16>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/transpose_op.h"
namespace paddle {
namespace operators {
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
using Tensor = framework::Tensor;
template <typename T, typename Type>
static void FullSort(Type input_height, Type input_width, int input_dim,
const framework::Tensor* input, T* t_out, Type* t_indices,
bool descending) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (Type i = 0; i < input_height; ++i) {
std::vector<std::pair<T, Type>> col_vec;
col_vec.reserve(input_width);
if (input_dim == 1) {
auto e_input = EigenVector<T>::Flatten(*input);
for (Type j = 0; j < input_width; ++j) {
col_vec.push_back(std::pair<T, Type>(e_input(j), j));
}
} else {
auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
for (Type j = 0; j < input_width; ++j) {
col_vec.push_back(std::pair<T, Type>(e_input(i, j), j));
}
}
std::sort(col_vec.begin(), col_vec.end(),
[&](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
if (descending)
return l.first > r.first;
else
return l.first < r.first;
});
for (Type j = 0; j < input_width; ++j) {
t_out[i * input_width + j] = col_vec[j].first;
t_indices[i * input_width + j] = col_vec[j].second;
}
}
}
template <typename T, typename Type>
static void FullAssign(Type input_height, Type input_width, int input_dim,
const framework::Tensor* input,
const framework::Tensor* indices, T* t_out) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (Type i = 0; i < input_height; ++i) {
if (input_dim == 1) {
auto e_input = EigenVector<T>::Flatten(*input);
auto e_indices = EigenVector<Type>::Flatten(*indices);
for (Type j = 0; j < input_width; ++j) {
t_out[i * input_width + e_indices(j)] = e_input(j);
}
} else {
auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
auto e_indices = EigenMatrix<Type>::Reshape(*indices, input_dim - 1);
for (Type j = 0; j < input_width; ++j) {
t_out[i * input_width + e_indices(i, j)] = e_input(i, j);
}
}
}
}
template <typename DeviceContext, typename T>
class ArgsortKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<framework::Tensor>("X");
auto* output = ctx.Output<framework::Tensor>("Out");
auto* indices = ctx.Output<framework::Tensor>("Indices");
int axis = ctx.Attr<int>("axis");
bool descending = ctx.Attr<bool>("descending");
auto in_dims = input->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
T* out_data = output->mutable_data<T>(ctx.GetPlace());
// Do full sort
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t input_width = in_dims[in_dims.size() - 1];
int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());
FullSort<T, int64_t>(input_height, input_width, in_dims.size(), input,
out_data, ids_data, descending);
} else {
// If not full sort do transpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
framework::DDim trans_dims(in_dims);
for (size_t i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
Tensor trans_inp;
trans_inp.mutable_data<T>(trans_dims, ctx.GetPlace());
int ndims = trans.size();
auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
// Do transpose
TransCompute<platform::CPUDeviceContext, T>(ndims, dev_ctx, *input,
&trans_inp, trans);
const int64_t input_height =
phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
Tensor tmp_out;
T* t_out = tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());
output->mutable_data<T>(ctx.GetPlace());
Tensor tmp_indices;
auto* t_ind =
tmp_indices.mutable_data<int64_t>(trans_dims, ctx.GetPlace());
FullSort<T, int64_t>(input_height, input_width, in_dims.size(),
&trans_inp, t_out, t_ind, descending);
indices->mutable_data<int64_t>(ctx.GetPlace());
TransCompute<platform::CPUDeviceContext, int64_t>(
ndims, dev_ctx, tmp_indices, indices, trans);
// transpose back
TransCompute<platform::CPUDeviceContext, T>(ndims, dev_ctx, tmp_out,
output, trans);
}
}
};
template <typename DeviceContext, typename T>
class ArgsortGradientKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* indices = ctx.Input<Tensor>("Indices");
auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
int axis = ctx.Attr<int>("axis");
auto in_dims = indices->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
dX->mutable_data<T>(ctx.GetPlace());
auto dxt = framework::EigenVector<T>::Flatten(*dX);
auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
.eigen_device();
dxt.device(place) = dxt.constant(static_cast<T>(0));
if (dO->numel() == 0) return;
// Do full assign
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t input_width = in_dims[in_dims.size() - 1];
FullAssign<T, int64_t>(input_height, input_width, in_dims.size(), dO,
indices, dX->data<T>());
} else {
// If not full assign do transpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
framework::DDim trans_dims(in_dims);
for (size_t i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
Tensor trans_dO;
trans_dO.mutable_data<T>(trans_dims, ctx.GetPlace());
Tensor trans_ind;
trans_ind.mutable_data<int64_t>(trans_dims, ctx.GetPlace());
int ndims = trans.size();
auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
// Do transpose
TransCompute<platform::CPUDeviceContext, T>(ndims, dev_ctx, *dO,
&trans_dO, trans);
TransCompute<platform::CPUDeviceContext, int64_t>(
ndims, dev_ctx, *indices, &trans_ind, trans);
const int64_t input_height =
phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
Tensor tmp_out;
T* t_out = tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());
FullAssign<T, int64_t>(input_height, input_width, in_dims.size(),
&trans_dO, &trans_ind, t_out);
// transpose back
TransCompute<platform::CPUDeviceContext, T>(ndims, dev_ctx, tmp_out, dX,
trans);
}
}
};
} // namespace operators
} // namespace paddle
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/argsort_op.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h" #include "paddle/fluid/platform/device/npu/npu_op_runner.h"
namespace paddle { namespace paddle {
......
...@@ -14,7 +14,7 @@ limitations under the License. */ ...@@ -14,7 +14,7 @@ limitations under the License. */
#ifdef PADDLE_WITH_XPU #ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/argsort_op.h" #include "paddle/fluid/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -26,6 +26,34 @@ limitations under the License. */ ...@@ -26,6 +26,34 @@ limitations under the License. */
namespace phi { namespace phi {
void ArgsortInferMeta(const MetaTensor& input,
int axis,
bool descending,
MetaTensor* output,
MetaTensor* indices) {
auto in_dims = input.dims();
auto num_dims = in_dims.size();
PADDLE_ENFORCE_GE(
axis,
-num_dims,
phi::errors::InvalidArgument("'axis'(%d) must be greater than or equal to"
" -num_dims(%d).",
axis,
-num_dims));
PADDLE_ENFORCE_LT(
axis,
num_dims,
phi::errors::InvalidArgument(
"'axis'(%d) must be less than num_dims(%d).", axis, num_dims));
output->share_dims(input);
output->set_dtype(input.dtype());
indices->share_dims(input);
indices->set_dtype(DataType::INT64);
output->share_lod(input);
indices->share_lod(input);
}
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out) { void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out) {
out->share_meta(x); out->share_meta(x);
} }
......
...@@ -32,6 +32,12 @@ class MetaConfig; ...@@ -32,6 +32,12 @@ class MetaConfig;
// Because functions in this file not only can infer shape, but also need // Because functions in this file not only can infer shape, but also need
// infer lod or other useful data. // infer lod or other useful data.
void ArgsortInferMeta(const MetaTensor& input,
int axis,
bool descending,
MetaTensor* output,
MetaTensor* indices);
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out); void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1] // meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ArgsortGradKernel(const Context& dev_ctx,
const DenseTensor& indices,
const DenseTensor& input,
const DenseTensor& out_grad,
int axis,
bool descending,
DenseTensor* in_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void ArgsortKernel(const Context& dev_ctx,
const DenseTensor& input,
int axis,
bool descending,
DenseTensor* output,
DenseTensor* indices);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/argsort_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/transpose_kernel.h"
namespace phi {
template <typename T, typename Type>
static void FullAssign(Type input_height,
Type input_width,
int input_dim,
const DenseTensor* input,
const DenseTensor* indices,
T* t_out) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (Type i = 0; i < input_height; ++i) {
if (input_dim == 1) {
auto e_input = EigenVector<T>::Flatten(*input);
auto e_indices = EigenVector<Type>::Flatten(*indices);
for (Type j = 0; j < input_width; ++j) {
t_out[i * input_width + e_indices(j)] = e_input(j);
}
} else {
auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
auto e_indices = EigenMatrix<Type>::Reshape(*indices, input_dim - 1);
for (Type j = 0; j < input_width; ++j) {
t_out[i * input_width + e_indices(i, j)] = e_input(i, j);
}
}
}
}
template <typename T, typename Context>
void ArgsortGradKernel(const Context& dev_ctx,
const DenseTensor& indices,
const DenseTensor& input,
const DenseTensor& out_grad,
int axis,
bool descending,
DenseTensor* in_grad) {
auto in_dims = indices.dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
dev_ctx.template Alloc<T>(in_grad);
auto dxt = EigenVector<T>::Flatten(*in_grad);
auto& place = *dev_ctx.eigen_device();
dxt.device(place) = dxt.constant(static_cast<T>(0));
if (out_grad.numel() == 0) return;
// Do full assign
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t input_width = in_dims[in_dims.size() - 1];
FullAssign<T, int64_t>(input_height,
input_width,
in_dims.size(),
&out_grad,
&indices,
in_grad->data<T>());
} else {
// If not full assign do transpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
phi::DDim trans_dims(in_dims);
for (size_t i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
DenseTensor trans_dO;
trans_dO.Resize(trans_dims);
dev_ctx.template Alloc<T>(&trans_dO);
DenseTensor trans_ind;
trans_ind.Resize(trans_dims);
dev_ctx.template Alloc<int64_t>(&trans_ind);
TransposeKernel<T, Context>(dev_ctx, out_grad, trans, &trans_dO);
TransposeKernel<int64_t, Context>(dev_ctx, indices, trans, &trans_ind);
const int64_t input_height =
phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
DenseTensor tmp_out;
tmp_out.Resize(trans_dims);
T* t_out = dev_ctx.template Alloc<T>(&tmp_out);
FullAssign<T, int64_t>(input_height,
input_width,
in_dims.size(),
&trans_dO,
&trans_ind,
t_out);
// transpose back
TransposeKernel<T, Context>(dev_ctx, tmp_out, trans, in_grad);
}
}
} // namespace phi
PD_REGISTER_KERNEL(argsort_grad,
CPU,
ALL_LAYOUT,
phi::ArgsortGradKernel,
float,
double,
int,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/argsort_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/transpose_kernel.h"
namespace phi {
template <typename T, typename Type>
static void FullSort(Type input_height,
Type input_width,
int input_dim,
const DenseTensor* input,
T* t_out,
Type* t_indices,
bool descending) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (Type i = 0; i < input_height; ++i) {
std::vector<std::pair<T, Type>> col_vec;
col_vec.reserve(input_width);
if (input_dim == 1) {
auto e_input = EigenVector<T>::Flatten(*input);
for (Type j = 0; j < input_width; ++j) {
col_vec.push_back(std::pair<T, Type>(e_input(j), j));
}
} else {
auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
for (Type j = 0; j < input_width; ++j) {
col_vec.push_back(std::pair<T, Type>(e_input(i, j), j));
}
}
std::sort(col_vec.begin(),
col_vec.end(),
[&](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
if (descending)
return l.first > r.first;
else
return l.first < r.first;
});
for (Type j = 0; j < input_width; ++j) {
t_out[i * input_width + j] = col_vec[j].first;
t_indices[i * input_width + j] = col_vec[j].second;
}
}
}
template <typename T, typename Context>
void ArgsortKernel(const Context& dev_ctx,
const DenseTensor& input,
int axis,
bool descending,
DenseTensor* output,
DenseTensor* indices) {
auto in_dims = input.dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
T* out_data = dev_ctx.template Alloc<T>(output);
// Do full sort
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t input_width = in_dims[in_dims.size() - 1];
int64_t* ids_data = dev_ctx.template Alloc<int64_t>(indices);
FullSort<T, int64_t>(input_height,
input_width,
in_dims.size(),
&input,
out_data,
ids_data,
descending);
} else {
// If not full sort do transpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
phi::DDim trans_dims(in_dims);
for (size_t i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
DenseTensor trans_inp;
trans_inp.Resize(trans_dims);
dev_ctx.template Alloc<T>(&trans_inp);
// Do transpose
TransposeKernel<T, Context>(dev_ctx, input, trans, &trans_inp);
const int64_t input_height =
phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
DenseTensor tmp_out;
tmp_out.Resize(trans_dims);
T* t_out = dev_ctx.template Alloc<T>(&tmp_out);
DenseTensor tmp_indices;
tmp_indices.Resize(trans_dims);
auto* t_ind = dev_ctx.template Alloc<int64_t>(&tmp_indices);
FullSort<T, int64_t>(input_height,
input_width,
in_dims.size(),
&trans_inp,
t_out,
t_ind,
descending);
dev_ctx.template Alloc<int64_t>(indices);
TransposeKernel<int64_t, Context>(dev_ctx, tmp_indices, trans, indices);
// transpose back
TransposeKernel<T, Context>(dev_ctx, tmp_out, trans, output);
}
}
} // namespace phi
PD_REGISTER_KERNEL(
argsort, CPU, ALL_LAYOUT, phi::ArgsortKernel, float, double, int, int64_t) {
}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/argsort_kernel.h"
#include <thrust/copy.h>
#include <thrust/execution_policy.h>
#include <thrust/sequence.h>
#include <thrust/sort.h>
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
#include "paddle/phi/kernels/transpose_kernel.h"
#ifdef __HIPCC__
namespace rocprim {
namespace detail {
template <>
struct radix_key_codec_base<phi::dtype::float16>
: radix_key_codec_integral<phi::dtype::float16, uint16_t> {};
} // namespace detail
} // namespace rocprim
#else
// set cub base traits in order to handle float16
namespace cub {
template <>
struct NumericTraits<phi::dtype::float16>
: BaseTraits<FLOATING_POINT, true, false, uint16_t, phi::dtype::float16> {};
} // namespace cub
#endif
namespace phi {
template <typename T, typename IndType>
static __global__ void FillFlattenGrad(const T* dO,
const IndType* indices,
int64_t size,
T* dX) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < size; i += stride) {
dX[indices[i]] = dO[i];
}
}
template <typename T, typename IndType>
static __global__ void FillGrad(const T* dO,
const IndType* indices,
T* dX,
IndType num_rows,
IndType num_cols) {
int col_id = threadIdx.x;
int row_id = blockIdx.x;
for (IndType j = row_id; j < num_rows; j += gridDim.x) {
for (IndType i = col_id; i < num_cols; i += blockDim.x) {
dX[j * num_cols + indices[j * num_cols + i]] = dO[j * num_cols + i];
}
}
}
template <typename T, typename IndType>
void ArgFullAssign(const phi::GPUContext& ctx,
const DenseTensor* dO,
const DenseTensor* indices,
DenseTensor* dX,
const IndType num_rows,
const IndType num_cols) {
auto cu_stream = ctx.stream();
auto ComputeBlockSize = [](IndType col) {
if (col > 512)
return 1024;
else if (col > 256 && col <= 512)
return 512;
else if (col > 128 && col <= 256)
return 256;
else if (col > 64 && col <= 128)
return 128;
else
return 64;
};
int block_size = ComputeBlockSize(num_cols);
int maxGridDimX = ctx.GetCUDAMaxGridDimSize()[0];
// actually, int num_rows < max_grid_size
int grid_size = num_rows < maxGridDimX ? num_rows : maxGridDimX;
FillGrad<<<grid_size, block_size, 0, cu_stream>>>(dO->data<T>(),
indices->data<IndType>(),
dX->data<T>(),
num_rows,
num_cols);
}
template <typename T>
void ArgFlattenAssign(const phi::GPUContext& ctx,
const DenseTensor* dO,
const DenseTensor* indices,
int64_t size,
DenseTensor* dX) {
auto cu_stream = ctx.stream();
const int64_t block_size =
std::min(size, static_cast<int64_t>(ctx.GetMaxThreadsPerBlock()));
int64_t max_threads = ctx.GetMaxPhysicalThreadCount();
const int64_t max_blocks =
std::max(((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (size + block_size - 1) / block_size);
FillFlattenGrad<<<grid_size, block_size, 0, cu_stream>>>(
dO->data<T>(), indices->data<int64_t>(), size, dX->data<T>());
}
template <typename T, typename Context>
void ArgsortGradKernel(const Context& dev_ctx,
const DenseTensor& indices,
const DenseTensor& input,
const DenseTensor& out_grad,
int axis,
bool descending,
DenseTensor* in_grad) {
dev_ctx.template Alloc<T>(in_grad);
if (out_grad.numel() == 0) return;
auto in_dims = in_grad->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
int64_t size = in_grad->numel();
// Parallel acceleration when the input size is equal to the length of the
// ‘axis’ dimension.
// Compared to 'special case for full sort' below, the gradient calculation
// is 10 times faster.
if (size == in_dims[axis]) {
ArgFlattenAssign<T>(dev_ctx, &out_grad, &indices, size, in_grad);
return;
}
// Special case for full sort, speedup ~190x.
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t input_width = in_dims[in_dims.size() - 1];
ArgFullAssign<T, int64_t>(
dev_ctx, &out_grad, &indices, in_grad, input_height, input_width);
} else {
// if not full sort, do transpose first
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
phi::DDim trans_dims(in_dims);
for (int i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
DenseTensor trans_dO;
trans_dO.Resize(trans_dims);
dev_ctx.template Alloc<T>(&trans_dO);
DenseTensor trans_ind;
trans_ind.Resize(trans_dims);
dev_ctx.template Alloc<int64_t>(&trans_ind);
TransposeKernel<T, Context>(dev_ctx, out_grad, trans, &trans_dO);
TransposeKernel<int64_t, Context>(dev_ctx, indices, trans, &trans_ind);
const int64_t input_height =
phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
DenseTensor tmp_out;
tmp_out.Resize(trans_dims);
dev_ctx.template Alloc<T>(&tmp_out);
ArgFullAssign<T, int64_t>(
dev_ctx, &trans_dO, &trans_ind, &tmp_out, input_height, input_width);
// transpose back
TransposeKernel<T, Context>(dev_ctx, tmp_out, trans, in_grad);
return;
}
}
} // namespace phi
PD_REGISTER_KERNEL(argsort_grad,
GPU,
ALL_LAYOUT,
phi::ArgsortGradKernel,
float,
double,
int,
int64_t,
phi::dtype::float16) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/argsort_kernel.h"
#include <thrust/copy.h>
#include <thrust/execution_policy.h>
#include <thrust/sequence.h>
#include <thrust/sort.h>
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
#include "paddle/phi/kernels/transpose_kernel.h"
#ifdef __HIPCC__
namespace rocprim {
namespace detail {
template <>
struct radix_key_codec_base<phi::dtype::float16>
: radix_key_codec_integral<phi::dtype::float16, uint16_t> {};
} // namespace detail
} // namespace rocprim
#else
// set cub base traits in order to handle float16
namespace cub {
template <>
struct NumericTraits<phi::dtype::float16>
: BaseTraits<FLOATING_POINT, true, false, uint16_t, phi::dtype::float16> {};
} // namespace cub
#endif
namespace phi {
// Iter for move to next row
struct SegmentOffsetIter {
EIGEN_DEVICE_FUNC
explicit SegmentOffsetIter(int num_cols) : num_cols_(num_cols) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator()(int idx) const {
return idx * num_cols_;
}
int num_cols_;
};
template <typename T>
static __global__ void FillIndex(T* indices, T num_rows, T num_cols) {
int col_id = threadIdx.x;
int row_id = blockIdx.x;
for (T j = row_id; j < num_rows; j += gridDim.x) {
for (T i = col_id; i < num_cols; i += blockDim.x) {
indices[j * num_cols + i] = i;
}
}
}
// Sort by flag descending, True: descending. False: Ascending.
// Default is false.
template <typename T, typename IndType>
void ArgFullSort(const phi::GPUContext& ctx,
const DenseTensor* input,
DenseTensor* output,
DenseTensor* indices,
const IndType num_rows,
const IndType num_cols,
const bool descending) {
auto cu_stream = ctx.stream();
DenseTensor input_indices;
const std::vector<IndType> dims = {num_rows, num_cols};
auto dim = phi::make_ddim(dims);
input_indices.Resize(dim);
ctx.template Alloc<IndType>(&input_indices);
size_t temp_storage_bytes = -1;
auto ComputeBlockSize = [](IndType col) {
if (col > 512)
return 1024;
else if (col > 256 && col <= 512)
return 512;
else if (col > 128 && col <= 256)
return 256;
else if (col > 64 && col <= 128)
return 128;
else
return 64;
};
int block_size = ComputeBlockSize(num_cols);
int maxGridDimX = ctx.GetCUDAMaxGridDimSize()[0];
// actually, int num_rows < max_grid_size
int grid_size = num_rows < maxGridDimX ? num_rows : maxGridDimX;
// Init a index array
FillIndex<<<grid_size, block_size, 0, cu_stream>>>(
input_indices.data<IndType>(), num_rows, num_cols);
T* sorted_out_ptr;
IndType* sorted_indices_ptr;
const T* inp = input->data<T>();
T* out = ctx.template Alloc<T>(output);
IndType* ind = ctx.template Alloc<IndType>(indices);
sorted_out_ptr = out;
sorted_indices_ptr = ind;
// create iter for counting input
cub::CountingInputIterator<IndType> counting_iter(0);
// segment_offset is used for move to next row
cub::TransformInputIterator<IndType,
SegmentOffsetIter,
cub::CountingInputIterator<IndType>>
segment_offsets_t(counting_iter, SegmentOffsetIter(num_cols));
gpuError_t err;
if (descending) {
err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
nullptr,
temp_storage_bytes,
inp,
sorted_out_ptr,
input_indices.data<IndType>(),
sorted_indices_ptr,
num_cols * num_rows,
num_rows,
segment_offsets_t,
segment_offsets_t + 1,
0,
sizeof(T) * 8,
cu_stream);
} else {
err =
cub::DeviceSegmentedRadixSort::SortPairs(nullptr,
temp_storage_bytes,
inp,
sorted_out_ptr,
input_indices.data<IndType>(),
sorted_indices_ptr,
num_cols * num_rows,
num_rows,
segment_offsets_t,
segment_offsets_t + 1,
0,
sizeof(T) * 8,
cu_stream);
}
PADDLE_ENFORCE_GPU_SUCCESS(err);
DenseTensor temp_storage;
int64_t temp_size = temp_storage_bytes;
temp_storage.Resize({temp_size});
ctx.template Alloc<uint8_t>(&temp_storage);
if (descending) {
err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
temp_storage.data<uint8_t>(),
temp_storage_bytes,
inp,
sorted_out_ptr,
input_indices.data<IndType>(),
sorted_indices_ptr,
num_cols * num_rows,
num_rows,
segment_offsets_t,
segment_offsets_t + 1,
0,
sizeof(T) * 8,
cu_stream);
} else {
err =
cub::DeviceSegmentedRadixSort::SortPairs(temp_storage.data<uint8_t>(),
temp_storage_bytes,
inp,
sorted_out_ptr,
input_indices.data<IndType>(),
sorted_indices_ptr,
num_cols * num_rows,
num_rows,
segment_offsets_t,
segment_offsets_t + 1,
0,
sizeof(T) * 8,
cu_stream);
}
PADDLE_ENFORCE_GPU_SUCCESS(err);
}
template <typename T, typename Context>
void ArgsortKernel(const Context& dev_ctx,
const DenseTensor& input,
int axis,
bool descending,
DenseTensor* output,
DenseTensor* indices) {
auto in_dims = input.dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
const T* in_data = input.data<T>();
auto size = input.numel();
T* out_data = dev_ctx.template Alloc<T>(output);
int64_t* ids_data = dev_ctx.template Alloc<int64_t>(indices);
// Use thrust for parallel acceleration when the input size is equal to the
// length of the ‘axis’ dimension.
// Compared to the following 'Special case for full sort', ascending sort is
// 34 times faster and descending sort is 31 times faster.
if (size == in_dims[axis]) {
thrust::sequence(thrust::device, ids_data, ids_data + size);
thrust::copy(thrust::device, in_data, in_data + size, out_data);
thrust::sort_by_key(thrust::device, out_data, out_data + size, ids_data);
if (descending) {
thrust::reverse(thrust::device, out_data, out_data + size);
thrust::reverse(thrust::device, ids_data, ids_data + size);
}
return;
}
// Special case for full sort, speedup ~190x.
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t input_width = in_dims[in_dims.size() - 1];
ArgFullSort<T, int64_t>(dev_ctx,
&input,
output,
indices,
input_height,
input_width,
descending);
} else {
// if not full sort, do transpose first
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
phi::DDim trans_dims(in_dims);
for (int i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
DenseTensor trans_inp;
trans_inp.Resize(trans_dims);
T* trans_inp_data = dev_ctx.template Alloc<T>(&trans_inp);
// Do transpose
TransposeKernel<T, Context>(dev_ctx, input, trans, &trans_inp);
const int64_t input_height =
phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
DenseTensor tmp_out;
tmp_out.Resize(trans_dims);
dev_ctx.template Alloc<T>(&tmp_out);
DenseTensor tmp_indices;
// temp indices for sorting
tmp_indices.Resize(trans_dims);
dev_ctx.template Alloc<int64_t>(&tmp_indices);
dev_ctx.template Alloc<int64_t>(indices);
ArgFullSort<T, int64_t>(dev_ctx,
&trans_inp,
&tmp_out,
&tmp_indices,
input_height,
input_width,
descending);
TransposeKernel<int64_t, Context>(dev_ctx, tmp_indices, trans, indices);
// transpose back
TransposeKernel<T, Context>(dev_ctx, tmp_out, trans, output);
return;
}
}
} // namespace phi
PD_REGISTER_KERNEL(argsort,
GPU,
ALL_LAYOUT,
phi::ArgsortKernel,
float,
double,
int,
int64_t,
phi::dtype::float16) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature ArgsortGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("argsort_grad",
{"Indices", "X", GradVarName("Out")},
{"axis", "descending"},
{GradVarName("X")});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(argsort_grad, phi::ArgsortGradOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册