未验证 提交 9203aaf1 编写于 作者: S songyouwei 提交者: GitHub

fix unittest for coverage (#23007)

test=develop
上级 5842ae67
...@@ -4335,12 +4335,13 @@ def split(input, num_or_sections, dim=-1, name=None): ...@@ -4335,12 +4335,13 @@ def split(input, num_or_sections, dim=-1, name=None):
if in_dygraph_mode(): if in_dygraph_mode():
inputs = {'X': [input]} inputs = {'X': [input]}
attrs = {} attrs = {}
if isinstance(dim, int): if isinstance(dim, Variable):
dim = dim.numpy()
assert dim.shape == (1,
), "dim of type Variable should have shape [1]"
dim = dim[0]
dim = (len(input.shape) + dim) if dim < 0 else dim dim = (len(input.shape) + dim) if dim < 0 else dim
attrs['axis'] = dim attrs['axis'] = dim
else:
dim.stop_gradient = True
inputs['AxisTensor'] = [dim]
if isinstance(num_or_sections, int): if isinstance(num_or_sections, int):
num = num_or_sections num = num_or_sections
...@@ -4717,17 +4718,23 @@ def topk(input, k, name=None): ...@@ -4717,17 +4718,23 @@ def topk(input, k, name=None):
""" """
inputs = {"X": [input]} inputs = {"X": [input]}
attrs = {} attrs = {}
if isinstance(k, Variable):
inputs['K'] = [k]
else:
attrs = {'k': k}
if in_dygraph_mode(): if in_dygraph_mode():
if isinstance(k, Variable):
k = k.numpy()
assert k.shape == (1, ), "k of type Variable should have shape [1]"
k = k[0]
attrs = {'k': k}
outs = core.ops.top_k(inputs, attrs) outs = core.ops.top_k(inputs, attrs)
outs['Out'][0].stop_gradient = True outs['Out'][0].stop_gradient = True
outs['Indices'][0].stop_gradient = True outs['Indices'][0].stop_gradient = True
return outs['Out'][0], outs['Indices'][0] return outs['Out'][0], outs['Indices'][0]
if isinstance(k, Variable):
inputs['K'] = [k]
else:
attrs = {'k': k}
helper = LayerHelper("top_k", **locals()) helper = LayerHelper("top_k", **locals())
values = helper.create_variable_for_type_inference(dtype=input.dtype) values = helper.create_variable_for_type_inference(dtype=input.dtype)
indices = helper.create_variable_for_type_inference(dtype="int64") indices = helper.create_variable_for_type_inference(dtype="int64")
...@@ -5401,6 +5408,11 @@ def one_hot(input, depth, allow_out_of_range=False): ...@@ -5401,6 +5408,11 @@ def one_hot(input, depth, allow_out_of_range=False):
one_hot_label = fluid.layers.one_hot(input=label, depth=4) one_hot_label = fluid.layers.one_hot(input=label, depth=4)
""" """
if in_dygraph_mode(): if in_dygraph_mode():
if isinstance(depth, Variable):
depth = depth.numpy()
assert depth.shape == (
1, ), "depth of type Variable should have shape [1]"
depth = depth[0]
inputs = {'X': [input]} inputs = {'X': [input]}
attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range} attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
outs = core.ops.one_hot(inputs, attrs) outs = core.ops.one_hot(inputs, attrs)
......
...@@ -256,9 +256,11 @@ def concat(input, axis=0, name=None): ...@@ -256,9 +256,11 @@ def concat(input, axis=0, name=None):
if in_dygraph_mode(): if in_dygraph_mode():
inputs = {'X': input} inputs = {'X': input}
if not isinstance(axis, int): if isinstance(axis, Variable):
raise TypeError( axis = axis.numpy()
"Input 'axis' in concat must be int in Dygraph mode.") assert axis.shape == (
1, ), "axis of type Variable should have shape [1]"
axis = axis[0]
attrs = {'axis': axis} attrs = {'axis': axis}
outs = core.ops.concat(inputs, attrs) outs = core.ops.concat(inputs, attrs)
return outs['Out'][0] return outs['Out'][0]
...@@ -579,15 +581,12 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None): ...@@ -579,15 +581,12 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
if in_dygraph_mode(): if in_dygraph_mode():
if isinstance(shape, (list, tuple)): if isinstance(shape, (list, tuple)):
if utils._contain_var(shape): shape = list(
raise TypeError( map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
"The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but " shape))
"received %s, which contains Variable." % type(shape))
attrs['shape'] = shape
else: else:
raise TypeError( shape = list(shape.numpy().astype(int))
"The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but " attrs['shape'] = shape
"received %s." % type(shape))
if out is None: if out is None:
out = _varbase_creator(dtype=dtype) out = _varbase_creator(dtype=dtype)
attrs['dtype'] = out.dtype attrs['dtype'] = out.dtype
......
...@@ -876,7 +876,8 @@ class TestLayer(LayerTest): ...@@ -876,7 +876,8 @@ class TestLayer(LayerTest):
emb_rlt = emb(words[i]) emb_rlt = emb(words[i])
embs3.append(emb_rlt) embs3.append(emb_rlt)
embs3 = layers.concat(input=embs3, axis=1) embs3 = layers.concat(
input=embs3, axis=fluid.dygraph.to_variable(np.array([1])))
nce = nn.NCE(num_total_classes=dict_size, nce = nn.NCE(num_total_classes=dict_size,
dim=embs3.shape[1], dim=embs3.shape[1],
num_neg_samples=2, num_neg_samples=2,
...@@ -903,7 +904,9 @@ class TestLayer(LayerTest): ...@@ -903,7 +904,9 @@ class TestLayer(LayerTest):
for i in range(window_size): for i in range(window_size):
words.append(base.to_variable(inp_word[i])) words.append(base.to_variable(inp_word[i]))
sample_weights = layers.fill_constant( sample_weights = layers.fill_constant(
shape=[5, 1], dtype='float32', value=1) shape=fluid.dygraph.to_variable(np.array([5, 1])),
dtype='float32',
value=1)
emb = nn.Embedding( emb = nn.Embedding(
size=[dict_size, 32], param_attr='emb.w', is_sparse=False) size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
...@@ -955,6 +958,37 @@ class TestLayer(LayerTest): ...@@ -955,6 +958,37 @@ class TestLayer(LayerTest):
self.assertTrue( self.assertTrue(
np.array_equal(nce1.bias.numpy(), nce2.bias.numpy())) np.array_equal(nce1.bias.numpy(), nce2.bias.numpy()))
def test_one_hot(self):
with self.dynamic_graph():
label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
one_hot_label2 = fluid.layers.one_hot(
input=label, depth=fluid.dygraph.to_variable(np.array([4])))
self.assertTrue(
np.array_equal(one_hot_label1.numpy(), one_hot_label2.numpy()))
def test_split(self):
with self.dynamic_graph():
input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
x00, x11 = fluid.layers.split(
input,
num_or_sections=2,
dim=fluid.dygraph.to_variable(np.array([1])))
self.assertTrue(np.array_equal(x0.numpy(), x00.numpy()))
self.assertTrue(np.array_equal(x1.numpy(), x11.numpy()))
def test_topk(self):
with self.dynamic_graph():
input = fluid.dygraph.to_variable(np.random.random((13, 11)))
top5_values1, top5_indices1 = layers.topk(input, k=5)
top5_values2, top5_indices2 = layers.topk(
input, k=fluid.dygraph.to_variable(np.array([5])))
self.assertTrue(
np.array_equal(top5_values1.numpy(), top5_values2.numpy()))
self.assertTrue(
np.array_equal(top5_indices1.numpy(), top5_indices2.numpy()))
def test_conv3d(self): def test_conv3d(self):
with self.static_graph(): with self.static_graph():
images = layers.data( images = layers.data(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册