提交 9141bee1 编写于 作者: C cuichaowen 提交者: Yan Chunwei

add Anakin api for paddle (#11228)

上级 d48172f2
......@@ -24,31 +24,37 @@ set(ANAKIN_LIBRARY "" CACHE STRING "path of Anakin library")
set(inference_deps paddle_inference_api paddle_fluid_api)
# if anakin is set enable anakin api implementation
if(ANAKIN_INCLUDE_DIR AND ANAKIN_LIBRARY)
if(ANAKIN_INCLUDE AND ANAKIN_LIBRARY)
set(ANAKIN_FOUND ON)
else()
set(ANAKIN_FOUND OFF)
endif()
function(fetch_include_recursively root_dir)
if (IS_DIRECTORY ${root_dir})
include_directories(${root_dir})
endif()
file(GLOB ALL_SUB RELATIVE ${root_dir} ${root_dir}/*)
foreach(sub ${ALL_SUB})
if (IS_DIRECTORY ${root_dir}/${sub})
fetch_include_recursively(${root_dir}/${sub})
endif()
endforeach()
endfunction()
if (ANAKIN_FOUND)
# Anakin's code style doesn't follow google c style.
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=comment
-Wno-error=reorder
-Wno-error=format
-Wno-error=switch
-Wno-error=return-type
-Wno-error=non-virtual-dtor
-Wno-error=cpp")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp")
message(STATUS "Anakin for inference is enabled")
message(STATUS "Anakin is set INCLUDE:${ANAKIN_INCLUDE} LIBRARY:${ANAKIN_LIBRARY}")
include_directories("${ANAKIN_INCLUDE}")
# Anakin's source path is a mass, need to set sub-directories trivially.
include_directories("${ANAKIN_INCLUDE}/saber")
link_directories("${ANAKIN_LIBRARY}")
fetch_include_recursively(${ANAKIN_INCLUDE})
link_directories(${ANAKIN_LIBRARY})
nv_library(inference_anakin_api SRCS paddle_inference_api_anakin_engine.cc)
target_link_libraries(inference_anakin_api anakin)
nv_library(inference_anakin_api SHARED SRCS paddle_inference_api.cc paddle_inference_api_anakin_engine.cc)
target_link_libraries(inference_anakin_api anakin anakin_saber_common)
list(APPEND inference_deps inference_anakin_api)
endif()
......@@ -84,8 +90,8 @@ inference_api_test(test_paddle_inference_api_impl
ARGS test_word2vec test_image_classification)
if (ANAKIN_FOUND)
nv_test(inference_anakin_test SRCS paddle_inference_api_anakin_engine_tester.cc
DEPS ${inference_deps} protobuf)
cc_test(inference_anakin_test SRCS paddle_inference_api_anakin_engine_tester.cc
DEPS ${inference_deps})
endif()
if(WITH_TESTING)
......
......@@ -113,5 +113,4 @@ struct AnakinConfig : public PaddlePredictor::Config {
// Similarly, each engine kind should map to a unique predictor implementation.
template <typename ConfigT, PaddleEngineKind engine = PaddleEngineKind::kNative>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
} // namespace paddle
......@@ -24,8 +24,16 @@ PaddleInferenceAnakinPredictor::PaddleInferenceAnakinPredictor(
}
bool PaddleInferenceAnakinPredictor::Init(const AnakinConfig &config) {
// TODO(Superjomn) Tell anakin to support return code.
engine_.Build(config.model_file, config.max_batch_size);
if (!(graph_.load(config.model_file))) {
return false;
}
graph_.ResetBatchSize("input_0", config.max_batch_size);
// optimization for graph
if (!(graph_.Optimize())) {
return false;
}
// construct executer
executor_.init(graph_);
return true;
}
......@@ -38,24 +46,30 @@ bool PaddleInferenceAnakinPredictor::Run(
<< "'s type is not float";
return false;
}
engine_.SetInputFromCPU(
input.name, static_cast<float *>(input.data.data), input.data.length);
auto d_tensor_in_p = executor_.get_in(input.name);
float *d_data_p = d_tensor_in_p->mutable_data();
if (cudaMemcpy(d_data_p,
static_cast<float *>(input.data.data),
d_tensor_in_p->valid_size() * sizeof(float),
cudaMemcpyHostToDevice) != 0) {
LOG(ERROR) << "copy data from CPU to GPU error";
return false;
}
}
// TODO(Superjomn) Tell anakin to support return code.
engine_.Execute();
executor_.prediction();
if (output_data->empty()) {
LOG(ERROR) << "At least one output should be set with tensors' names.";
return false;
}
for (auto &output : *output_data) {
auto *tensor = engine_.GetOutputInGPU(output.name);
auto *tensor = executor_.get_out(output.name);
output.shape = tensor->shape();
// Copy data from GPU -> CPU
if (cudaMemcpy(output.data.data,
tensor->data(),
tensor->size(),
tensor->mutable_data(),
tensor->valid_size() * sizeof(float),
cudaMemcpyDeviceToHost) != 0) {
LOG(ERROR) << "copy data from GPU to CPU error";
return false;
......@@ -64,9 +78,26 @@ bool PaddleInferenceAnakinPredictor::Run(
return true;
}
// TODO(Superjomn) To implement latter.
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
&PaddleInferenceAnakinPredictor::get_executer() {
return executor_;
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
std::unique_ptr<PaddlePredictor> PaddleInferenceAnakinPredictor::Clone() {
VLOG(3) << "Anakin Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(new PaddleInferenceAnakinPredictor());
// construct executer from other graph
auto anakin_predictor_p =
dynamic_cast<PaddleInferenceAnakinPredictor *>(cls.get());
if (!anakin_predictor_p) {
LOG(ERROR) << "fail to call Init";
return nullptr;
}
anakin_predictor_p->get_executer().init(graph_);
return std::move(cls);
}
// A factory to help create difference predictor.
......@@ -74,6 +105,7 @@ template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(
const AnakinConfig &config) {
VLOG(3) << "Anakin Predictor create.";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor(config));
return x;
......
......@@ -20,32 +20,42 @@ limitations under the License. */
#pragma once
// NOTE This header file do not have namespace.
// TODO(Superjomn) Tell Anakin to provide better APIs.
#include <test/framework/net/paddle_api.h>
//#include <test/framework/net/paddle_api.h>
#include "paddle/contrib/inference/paddle_inference_api.h"
#include "framework/core/net/net.h"
#include "saber/saber_types.h"
namespace paddle {
class PaddleInferenceAnakinPredictor : public PaddlePredictor {
public:
PaddleInferenceAnakinPredictor() {}
PaddleInferenceAnakinPredictor(const AnakinConfig& config);
// NOTE Unlike the native engine, the buffers of anakin engine's output_data
// should be allocated first.
// TODO(Superjomn) should unify all the behaviors of output_data accross all
// the engines.
bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data) override;
std::unique_ptr<PaddlePredictor> Clone() override;
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>&
get_executer();
~PaddleInferenceAnakinPredictor() override{};
private:
bool Init(const AnakinConfig& config);
anakin::AnakinEngine<anakin::NV,
anakin::graph::Graph<anakin::NV,
anakin::saber::AK_FLOAT,
anakin::Precision::FP32>
engine_;
graph_;
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
executor_;
AnakinConfig config_;
};
} // namespace paddle
......@@ -12,16 +12,54 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/contrib/inference/paddle_inference_api.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "paddle/contrib/inference/paddle_inference_api.h"
namespace paddle {
TEST(inference, anakin) {
AnakinConfig GetConfig() {
AnakinConfig config;
config.model_file = "./mobilenet_v2.anakin.bin";
config.device = 0;
config.max_batch_size = 1;
return config;
}
auto engine =
TEST(inference, anakin) {
AnakinConfig config = GetConfig();
auto predictor =
CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(config);
float data[1 * 3 * 224 * 224] = {1.0f};
PaddleBuf buf{.data = data, .length = sizeof(data)};
PaddleTensor tensor{.name = "input_0",
.shape = std::vector<int>({1, 3, 224, 224}),
.data = buf,
.dtype = PaddleDType::FLOAT32};
// For simplicity, we set all the slots with the same data.
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
float data_out[1000];
PaddleBuf buf_out{.data = data_out, .length = sizeof(data)};
PaddleTensor tensor_out{.name = "prob_out",
.shape = std::vector<int>({1000, 1}),
.data = buf_out,
.dtype = PaddleDType::FLOAT32};
std::vector<PaddleTensor> outputs(1, tensor_out);
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
float* data_o = static_cast<float*>(outputs[0].data.data);
for (size_t j = 0; j < 1000; ++j) {
LOG(INFO) << "output[" << j << "]: " << data_o[j];
}
}
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册