diff --git a/CMakeLists.txt b/CMakeLists.txt index fd3582a1bca199d62d19550ffdd1efe9db520fa7..65164b8472b902be8b0b9d5fb99807d012b8a666 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -36,8 +36,7 @@ include(simd) ################################ Configurations ####################################### option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) -option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND}) -option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND}) +option(WITH_MKL "Compile PaddlePaddle with MKL support." ${AVX_FOUND}) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) @@ -82,10 +81,8 @@ if(ANDROID OR IOS) "Disable PYTHON when cross-compiling for Android and iOS" FORCE) set(WITH_RDMA OFF CACHE STRING "Disable RDMA when cross-compiling for Android and iOS" FORCE) - set(WITH_MKLDNN OFF CACHE STRING - "Disable MKLDNN when cross-compiling for Android and iOS" FORCE) - set(WITH_MKLML OFF CACHE STRING - "Disable MKLML package when cross-compiling for Android and iOS" FORCE) + set(WITH_MKL OFF CACHE STRING + "Disable MKL when cross-compiling for Android and iOS" FORCE) # Compile PaddlePaddle mobile inference library if (NOT WITH_C_API) @@ -111,6 +108,14 @@ else() set(THIRD_PARTY_BUILD_TYPE Release) endif() +set(WITH_MKLML ${WITH_MKL}) +if (WITH_MKL AND AVX2_FOUND) + set(WITH_MKLDNN ON) +else() + message(STATUS "Do not have AVX2 intrinsics and disabled MKL-DNN") + set(WITH_MKLDNN OFF) +endif() + ######################################################################################## include(external/mklml) # download mklml package @@ -158,14 +163,15 @@ set(EXTERNAL_LIBS ) if(WITH_GPU) - list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY}) - if(NOT WITH_DSO) - list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY} ${NCCL_LIBRARY}) - endif(NOT WITH_DSO) + include(cuda) endif(WITH_GPU) +if(WITH_MKLML) + list(APPEND EXTERNAL_LIBS ${MKLML_IOMP_LIB}) +endif() + if(WITH_MKLDNN) - list(APPEND EXTERNAL_LIBS ${MKLDNN_LIB} ${MKLDNN_IOMP_LIB}) + list(APPEND EXTERNAL_LIBS ${MKLDNN_LIB}) endif() if(USE_NNPACK) diff --git a/benchmark/IntelOptimizedPaddle.md b/benchmark/IntelOptimizedPaddle.md index 040f5ffa41968cbf93a817faa1db86c18956341e..ab0be77324450521fee02b7bd7ea12fb9eacf86a 100644 --- a/benchmark/IntelOptimizedPaddle.md +++ b/benchmark/IntelOptimizedPaddle.md @@ -12,11 +12,11 @@ Machine: System: CentOS release 6.3 (Final), Docker 1.12.1. -PaddlePaddle: paddlepaddle/paddle:latest (TODO: will rerun after 0.11.0) - -- MKL-DNN tag v0.10 -- MKLML 2018.0.20170720 +PaddlePaddle: paddlepaddle/paddle:latest (for MKLML and MKL-DNN), paddlepaddle/paddle:latest-openblas (for OpenBLAS) +- MKL-DNN tag v0.11 +- MKLML 2018.0.1.20171007 - OpenBLAS v0.2.20 +(TODO: will rerun after 0.11.0) On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. @@ -31,15 +31,26 @@ Input image size - 3 * 224 * 224, Time: images/second | BatchSize | 64 | 128 | 256 | |--------------|-------| -----| --------| -| OpenBLAS | 7.82 | 8.62 | 10.34 | -| MKLML | 11.02 | 12.86 | 15.33 | -| MKL-DNN | 27.69 | 28.8 | 29.27 | +| OpenBLAS | 7.80 | 9.00 | 10.80 | +| MKLML | 12.12 | 13.70 | 16.18 | +| MKL-DNN | 28.46 | 29.83 | 30.44 | + + +chart on batch size 128 +TBD + + - ResNet-50 + +| BatchSize | 64 | 128 | 256 | +|--------------|-------| ------| -------| +| OpenBLAS | 25.22 | 25.68 | 27.12 | +| MKLML | 32.52 | 31.89 | 33.12 | +| MKL-DNN | 81.69 | 82.35 | 84.08 | chart on batch size 128 TBD - - ResNet - GoogLeNet ### Laptop diff --git a/benchmark/paddle/image/googlenet.py b/benchmark/paddle/image/googlenet.py index bc893bab98c4d2e07c62fbd012d51a0939db4766..a88ecac67d9e677f14f6dc24ba9a337b1245243f 100644 --- a/benchmark/paddle/image/googlenet.py +++ b/benchmark/paddle/image/googlenet.py @@ -5,6 +5,7 @@ height = 224 width = 224 num_class = 1000 batch_size = get_config_arg('batch_size', int, 128) +use_gpu = get_config_arg('use_gpu', bool, True) args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} define_py_data_sources2( @@ -16,6 +17,8 @@ settings( learning_method=MomentumOptimizer(0.9), regularization=L2Regularization(0.0005 * batch_size)) +conv_projection = conv_projection if use_gpu else img_conv_layer + def inception2(name, input, channels, \ filter1, filter3R, filter3, @@ -138,7 +141,7 @@ def inception(name, input, channels, \ cat = concat_layer( name=name, input=[cov1, cov3, cov5, covprj], - bias_attr=True, + bias_attr=True if use_gpu else False, act=ReluActivation()) return cat diff --git a/benchmark/paddle/image/run_mkldnn.sh b/benchmark/paddle/image/run_mkldnn.sh index 3cc779b48d082985f75ab1c053fbe262bc6d58aa..f768f6c29a84b40f917e0ccfde4d8c15f65c818b 100755 --- a/benchmark/paddle/image/run_mkldnn.sh +++ b/benchmark/paddle/image/run_mkldnn.sh @@ -40,6 +40,7 @@ fi for use_mkldnn in True False; do for batchsize in 64 128 256; do train vgg 19 $batchsize $use_mkldnn - train resnet 50 $batchsize $use_mkldnn + train resnet 50 $batchsize $use_mkldnn + train googlenet v1 $batchsize $use_mkldnn done done diff --git a/cmake/configure.cmake b/cmake/configure.cmake index 24ddb24399dabeec9b8e5faf36be3eb21f420111..e550ec285668ea25757eeee9e7c5dc48fc9d339d 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -76,27 +76,14 @@ else() include_directories(${CUDA_TOOLKIT_INCLUDE}) endif(NOT WITH_GPU) -if(WITH_MKLDNN) - add_definitions(-DPADDLE_USE_MKLDNN) - if (WITH_MKLML AND MKLDNN_IOMP_DIR) - message(STATUS "Enable Intel OpenMP at ${MKLDNN_IOMP_DIR}") - set(OPENMP_FLAGS "-fopenmp") - set(CMAKE_C_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS}) - set(CMAKE_CXX_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS}) - set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OPENMP_FLAGS}") - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OPENMP_FLAGS}") - else() - find_package(OpenMP) - if(OPENMP_FOUND) - set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}") - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}") - else() - message(WARNING "Can not find OpenMP." - "Some performance features in MKLDNN may not be available") - endif() - endif() - -endif(WITH_MKLDNN) +if (WITH_MKLML AND MKLML_IOMP_LIB) + message(STATUS "Enable Intel OpenMP with ${MKLML_IOMP_LIB}") + set(OPENMP_FLAGS "-fopenmp") + set(CMAKE_C_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS}) + set(CMAKE_CXX_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS}) + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OPENMP_FLAGS}") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OPENMP_FLAGS}") +endif() set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${SIMD_FLAG}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${SIMD_FLAG}") diff --git a/cmake/cuda.cmake b/cmake/cuda.cmake new file mode 100644 index 0000000000000000000000000000000000000000..6bea7cf3022242ce48cc882915f7e71810937283 --- /dev/null +++ b/cmake/cuda.cmake @@ -0,0 +1,188 @@ +if(NOT WITH_GPU) + return() +endif() + +set(paddle_known_gpu_archs "30 35 50 52 60 61 70") +set(paddle_known_gpu_archs7 "30 35 50 52") +set(paddle_known_gpu_archs8 "30 35 50 52 60 61") + +###################################################################################### +# A function for automatic detection of GPUs installed (if autodetection is enabled) +# Usage: +# detect_installed_gpus(out_variable) +function(detect_installed_gpus out_variable) + if(NOT CUDA_gpu_detect_output) + set(cufile ${PROJECT_BINARY_DIR}/detect_cuda_archs.cu) + + file(WRITE ${cufile} "" + "#include \n" + "int main() {\n" + " int count = 0;\n" + " if (cudaSuccess != cudaGetDeviceCount(&count)) return -1;\n" + " if (count == 0) return -1;\n" + " for (int device = 0; device < count; ++device) {\n" + " cudaDeviceProp prop;\n" + " if (cudaSuccess == cudaGetDeviceProperties(&prop, device))\n" + " std::printf(\"%d.%d \", prop.major, prop.minor);\n" + " }\n" + " return 0;\n" + "}\n") + + execute_process(COMMAND "${CUDA_NVCC_EXECUTABLE}" "-ccbin=${CUDA_HOST_COMPILER}" + "--run" "${cufile}" + WORKING_DIRECTORY "${PROJECT_BINARY_DIR}/CMakeFiles/" + RESULT_VARIABLE nvcc_res OUTPUT_VARIABLE nvcc_out + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) + + if(nvcc_res EQUAL 0) + # only keep the last line of nvcc_out + STRING(REGEX REPLACE ";" "\\\\;" nvcc_out "${nvcc_out}") + STRING(REGEX REPLACE "\n" ";" nvcc_out "${nvcc_out}") + list(GET nvcc_out -1 nvcc_out) + string(REPLACE "2.1" "2.1(2.0)" nvcc_out "${nvcc_out}") + set(CUDA_gpu_detect_output ${nvcc_out} CACHE INTERNAL "Returned GPU architetures from detect_installed_gpus tool" FORCE) + endif() + endif() + + if(NOT CUDA_gpu_detect_output) + message(STATUS "Automatic GPU detection failed. Building for all known architectures.") + set(${out_variable} ${paddle_known_gpu_archs} PARENT_SCOPE) + else() + set(${out_variable} ${CUDA_gpu_detect_output} PARENT_SCOPE) + endif() +endfunction() + + +######################################################################## +# Function for selecting GPU arch flags for nvcc based on CUDA_ARCH_NAME +# Usage: +# select_nvcc_arch_flags(out_variable) +function(select_nvcc_arch_flags out_variable) + # List of arch names + set(archs_names "Kepler" "Maxwell" "Pascal" "All" "Manual") + set(archs_name_default "All") + if(NOT CMAKE_CROSSCOMPILING) + list(APPEND archs_names "Auto") + endif() + + # set CUDA_ARCH_NAME strings (so it will be seen as dropbox in CMake-Gui) + set(CUDA_ARCH_NAME ${archs_name_default} CACHE STRING "Select target NVIDIA GPU achitecture.") + set_property( CACHE CUDA_ARCH_NAME PROPERTY STRINGS "" ${archs_names} ) + mark_as_advanced(CUDA_ARCH_NAME) + + # verify CUDA_ARCH_NAME value + if(NOT ";${archs_names};" MATCHES ";${CUDA_ARCH_NAME};") + string(REPLACE ";" ", " archs_names "${archs_names}") + message(FATAL_ERROR "Only ${archs_names} architeture names are supported.") + endif() + + if(${CUDA_ARCH_NAME} STREQUAL "Manual") + set(CUDA_ARCH_BIN ${paddle_known_gpu_archs} CACHE STRING "Specify 'real' GPU architectures to build binaries for, BIN(PTX) format is supported") + set(CUDA_ARCH_PTX "50" CACHE STRING "Specify 'virtual' PTX architectures to build PTX intermediate code for") + mark_as_advanced(CUDA_ARCH_BIN CUDA_ARCH_PTX) + else() + unset(CUDA_ARCH_BIN CACHE) + unset(CUDA_ARCH_PTX CACHE) + endif() + + if(${CUDA_ARCH_NAME} STREQUAL "Kepler") + set(cuda_arch_bin "30 35") + elseif(${CUDA_ARCH_NAME} STREQUAL "Maxwell") + set(cuda_arch_bin "50") + elseif(${CUDA_ARCH_NAME} STREQUAL "Pascal") + set(cuda_arch_bin "60 61") + elseif(${CUDA_ARCH_NAME} STREQUAL "Volta") + set(cuda_arch_bin "70") + elseif(${CUDA_ARCH_NAME} STREQUAL "All") + set(cuda_arch_bin ${paddle_known_gpu_archs}) + elseif(${CUDA_ARCH_NAME} STREQUAL "Auto") + detect_installed_gpus(cuda_arch_bin) + else() # (${CUDA_ARCH_NAME} STREQUAL "Manual") + set(cuda_arch_bin ${CUDA_ARCH_BIN}) + endif() + + # remove dots and convert to lists + string(REGEX REPLACE "\\." "" cuda_arch_bin "${cuda_arch_bin}") + string(REGEX REPLACE "\\." "" cuda_arch_ptx "${CUDA_ARCH_PTX}") + string(REGEX MATCHALL "[0-9()]+" cuda_arch_bin "${cuda_arch_bin}") + string(REGEX MATCHALL "[0-9]+" cuda_arch_ptx "${cuda_arch_ptx}") + list(REMOVE_DUPLICATES cuda_arch_bin) + list(REMOVE_DUPLICATES cuda_arch_ptx) + + set(nvcc_flags "") + set(nvcc_archs_readable "") + + # Tell NVCC to add binaries for the specified GPUs + foreach(arch ${cuda_arch_bin}) + if(arch MATCHES "([0-9]+)\\(([0-9]+)\\)") + # User explicitly specified PTX for the concrete BIN + list(APPEND nvcc_flags -gencode arch=compute_${CMAKE_MATCH_2},code=sm_${CMAKE_MATCH_1}) + list(APPEND nvcc_archs_readable sm_${CMAKE_MATCH_1}) + else() + # User didn't explicitly specify PTX for the concrete BIN, we assume PTX=BIN + list(APPEND nvcc_flags -gencode arch=compute_${arch},code=sm_${arch}) + list(APPEND nvcc_archs_readable sm_${arch}) + endif() + endforeach() + + # Tell NVCC to add PTX intermediate code for the specified architectures + foreach(arch ${cuda_arch_ptx}) + list(APPEND nvcc_flags -gencode arch=compute_${arch},code=compute_${arch}) + list(APPEND nvcc_archs_readable compute_${arch}) + endforeach() + + string(REPLACE ";" " " nvcc_archs_readable "${nvcc_archs_readable}") + set(${out_variable} ${nvcc_flags} PARENT_SCOPE) + set(${out_variable}_readable ${nvcc_archs_readable} PARENT_SCOPE) +endfunction() + +message(STATUS "CUDA detected: " ${CUDA_VERSION}) +if (${CUDA_VERSION} LESS 7.0) + set(paddle_known_gpu_archs ${paddle_known_gpu_archs}) +elseif (${CUDA_VERSION} LESS 8.0) # CUDA 7.x + set(paddle_known_gpu_archs ${paddle_known_gpu_archs7}) + list(APPEND CUDA_NVCC_FLAGS "-D_MWAITXINTRIN_H_INCLUDED") + list(APPEND CUDA_NVCC_FLAGS "-D__STRICT_ANSI__") +elseif (${CUDA_VERSION} LESS 9.0) # CUDA 8.x + set(paddle_known_gpu_archs ${paddle_known_gpu_archs8}) + list(APPEND CUDA_NVCC_FLAGS "-D_MWAITXINTRIN_H_INCLUDED") + list(APPEND CUDA_NVCC_FLAGS "-D__STRICT_ANSI__") + # CUDA 8 may complain that sm_20 is no longer supported. Suppress the + # warning for now. + list(APPEND CUDA_NVCC_FLAGS "-Wno-deprecated-gpu-targets") +endif() + +include_directories(${CUDA_INCLUDE_DIRS}) +list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY}) +if(NOT WITH_DSO) + list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY} ${NCCL_LIBRARY}) +endif(NOT WITH_DSO) + +# setting nvcc arch flags +select_nvcc_arch_flags(NVCC_FLAGS_EXTRA) +list(APPEND CUDA_NVCC_FLAGS ${NVCC_FLAGS_EXTRA}) +message(STATUS "Added CUDA NVCC flags for: ${NVCC_FLAGS_EXTRA_readable}") + +# Set C++11 support +set(CUDA_PROPAGATE_HOST_FLAGS OFF) + +# Release/Debug flags set by cmake. Such as -O3 -g -DNDEBUG etc. +# So, don't set these flags here. +list(APPEND CUDA_NVCC_FLAGS "-std=c++11") +list(APPEND CUDA_NVCC_FLAGS "--use_fast_math") +list(APPEND CUDA_NVCC_FLAGS "-Xcompiler -fPIC") +# Set :expt-relaxed-constexpr to suppress Eigen warnings +list(APPEND CUDA_NVCC_FLAGS "--expt-relaxed-constexpr") + +if(CMAKE_BUILD_TYPE STREQUAL "Debug") + list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_DEBUG}) +elseif(CMAKE_BUILD_TYPE STREQUAL "Release") + list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELEASE}) +elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo") + list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELWITHDEBINFO}) +elseif(CMAKE_BUILD_TYPE STREQUAL "MinSizeRel") + list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_MINSIZEREL}) +endif() + +mark_as_advanced(CUDA_BUILD_CUBIN CUDA_BUILD_EMULATION CUDA_VERBOSE_BUILD) +mark_as_advanced(CUDA_SDK_ROOT_DIR CUDA_SEPARABLE_COMPILATION) diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake index 5a06825beb73e85d8a55b7b578b187bee2c4340c..fc52d339d7a336b44c97f2e0a9fc8d6604854365 100644 --- a/cmake/external/mkldnn.cmake +++ b/cmake/external/mkldnn.cmake @@ -40,10 +40,9 @@ INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR}) IF(${CBLAS_PROVIDER} STREQUAL "MKLML") SET(MKLDNN_DEPENDS ${MKLML_PROJECT}) - SET(MKLDNN_MKLROOT ${MKLML_ROOT}) - SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB}) - SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR}) - MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}") + MESSAGE(STATUS "Build MKLDNN with MKLML ${MKLML_ROOT}") +ELSE() + MESSAGE(FATAL_ERROR "Should enable MKLML when build MKLDNN") ENDIF() SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} -Wno-error=strict-overflow") @@ -57,15 +56,16 @@ ExternalProject_Add( PREFIX ${MKLDNN_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} - CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT} + CMAKE_ARGS -DMKLROOT=${MKLML_ROOT} CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG} CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR} - -DMKLROOT:PATH=${MKLDNN_MKLROOT} + -DMKLROOT:PATH=${MKLML_ROOT} ) ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) -MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIB}") +MESSAGE(STATUS "MKLDNN library: ${MKLDNN_LIB}") +add_definitions(-DPADDLE_USE_MKLDNN) LIST(APPEND external_project_dependencies mkldnn) diff --git a/cmake/flags.cmake b/cmake/flags.cmake index 4593ae6180b6d7deb61d897eb634b17ac0bb1683..2b125cef6aa8d1021afe8a7a0d232d84d36be4bc 100644 --- a/cmake/flags.cmake +++ b/cmake/flags.cmake @@ -149,58 +149,3 @@ endforeach() foreach(flag ${GPU_COMMON_FLAGS}) safe_set_nvflag(${flag}) endforeach() - - -set(CUDA_PROPAGATE_HOST_FLAGS OFF) - -# Release/Debug flags set by cmake. Such as -O3 -g -DNDEBUG etc. -# So, don't set these flags here. -LIST(APPEND CUDA_NVCC_FLAGS -std=c++11) -LIST(APPEND CUDA_NVCC_FLAGS --use_fast_math) - -if(CMAKE_BUILD_TYPE STREQUAL "Debug") - LIST(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_DEBUG}) -elseif(CMAKE_BUILD_TYPE STREQUAL "Release") - LIST(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELEASE}) -elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo") - LIST(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELWITHDEBINFO}) -elseif(CMAKE_BUILD_TYPE STREQUAL "MinSizeRel") - LIST(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_MINSIZEREL}) -endif() - -function(specify_cuda_arch cuda_version cuda_arch) - if(${cuda_version} VERSION_GREATER "8.0") - foreach(capability 61 62) - if(${cuda_arch} STREQUAL ${capability}) - list(APPEND __arch_flags " -gencode arch=compute_${cuda_arch},code=sm_${cuda_arch}") - endif() - endforeach() - elseif(${cuda_version} VERSION_GREATER "7.0" and ${cuda_arch} STREQUAL "53") - list(APPEND __arch_flags " -gencode arch=compute_${cuda_arch},code=sm_${cuda_arch}") - endif() -endfunction() - -# Common gpu architectures: Kepler, Maxwell -foreach(capability 30 35 50) - list(APPEND __arch_flags " -gencode arch=compute_${capability},code=sm_${capability}") -endforeach() - -if (CUDA_VERSION VERSION_GREATER "7.0" OR CUDA_VERSION VERSION_EQUAL "7.0") - list(APPEND __arch_flags " -gencode arch=compute_52,code=sm_52") -endif() - -# Modern gpu architectures: Pascal -if (CUDA_VERSION VERSION_GREATER "8.0" OR CUDA_VERSION VERSION_EQUAL "8.0") - list(APPEND __arch_flags " -gencode arch=compute_60,code=sm_60") - list(APPEND CUDA_NVCC_FLAGS --expt-relaxed-constexpr) -endif() - -# Custom gpu architecture -set(CUDA_ARCH) - -if(CUDA_ARCH) - specify_cuda_arch(${CUDA_VERSION} ${CUDA_ARCH}) -endif() - -set(CUDA_NVCC_FLAGS ${__arch_flags} ${CUDA_NVCC_FLAGS}) - diff --git a/cmake/util.cmake b/cmake/util.cmake index 117ab7f49cdf4a568cd203b2b17767643d0b2d50..ad905ab55ba3537054fa5b30b5fca4d83c406702 100644 --- a/cmake/util.cmake +++ b/cmake/util.cmake @@ -115,8 +115,8 @@ function(link_paddle_exe TARGET_NAME) target_link_libraries(${TARGET_NAME} log) endif(ANDROID) - if(WITH_MKLDNN AND WITH_MKLML AND MKLDNN_IOMP_DIR) - target_link_libraries(${TARGET_NAME} "-L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed") + if(WITH_MKLML AND MKLML_LIB_DIR AND MKLML_IOMP_LIB) + target_link_libraries(${TARGET_NAME} "-L${MKLML_LIB_DIR} -liomp5 -Wl,--as-needed") endif() add_dependencies(${TARGET_NAME} ${external_project_dependencies}) diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index 203506d7ab84e5a5be2232b077eac2d433a99766..d4d182f6692e09b3e40f3620b77d9a0f20ec5af3 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -335,6 +335,16 @@ bilinear_interp .. autoclass:: paddle.v2.layer.bilinear_interp :noindex: +dot_prod +--------- +.. autoclass:: paddle.v2.layer.dot_prod + :noindex: + +out_prod +-------- +.. autoclass:: paddle.v2.layer.out_prod + :noindex: + power ----- .. autoclass:: paddle.v2.layer.power @@ -372,6 +382,11 @@ cos_sim .. autoclass:: paddle.v2.layer.cos_sim :noindex: +l2_distance +----------- +.. autoclass:: paddle.v2.layer.l2_distance + :noindex: + trans ----- .. autoclass:: paddle.v2.layer.trans diff --git a/doc/design/mkldnn/README.MD b/doc/design/mkldnn/README.MD index 16236763a73770f3fe5eadf67645765d0456f875..ec6d4681836e189f46dbb9b915a237dc15cda7cf 100644 --- a/doc/design/mkldnn/README.MD +++ b/doc/design/mkldnn/README.MD @@ -36,13 +36,13 @@ Figure 1. PaddlePaddle on IA. 我们把集成方案大致分为了如下几个方面。 ### CMake -我们会在`CMakeLists.txt`中会添加`WITH_MKLDNN`的选项,当设置这个值为`ON`的时候会启用编译MKL-DNN功能。同时会自动开启OpenMP用于提高MKL-DNN的性能。 +我们会在`CMakeLists.txt`中会给用户添加一个`WITH_MKL`的开关,他是负责`WITH_MKLML`和`WITH_MKLDNN`的总开关。 -同时,我们会引入`WITH_MKLML`选项,用于选择是否使用MKL-DNN自带的MKLML安装包。这个安装包可以独立于MKL-DNN使用,但是建议在开启MKL-DNN的同时也打开MKLML的开关,这样才能发挥最好的性能。 +当打开`WITH_MKL`时,会开启MKLML的功能,作为PaddlePaddle的CBLAS和LAPACK库,同时会开启Intel OpenMP用于提高MKLML的性能。 如果系统支持AVX2指令集及以上,同时会开启MKL-DNN功能。 -所以,我们会在`cmake/external`目录新建`mkldnn.cmake`和`mklml.cmake`文件,它们会在编译PaddlePaddle的时候下载对应的软件包,并放到PaddlePaddle的third party目录中。 +当关闭`WITH_MKL`时,MKLML和MKL-DNN功能会同时关闭。 -**备注**:当`WITH_MKLML=ON`的时候,会优先使用这个包作为PaddlePaddle的CBLAS和LAPACK库,所以会稍微改动`cmake/cblas.cmake`中的逻辑。 +所以,我们会在`cmake/external`目录新建`mkldnn.cmake`和`mklml.cmake`文件,它们会在编译PaddlePaddle的时候下载对应的软件包,并放到PaddlePaddle的third party目录中。 ### Layers 所有MKL-DNN相关的C++ layers,都会按照PaddlePaddle的目录结构存放在 diff --git a/doc/howto/dev/write_docs_cn.rst b/doc/howto/dev/write_docs_cn.rst index 731a63f945c29ba78538b3d71289b234e569354d..61f3a223547b352cf7929615cf3682b29b9a738f 100644 --- a/doc/howto/dev/write_docs_cn.rst +++ b/doc/howto/dev/write_docs_cn.rst @@ -34,7 +34,7 @@ PaddlePaddle的文档构建有两种方式。 cd TO_YOUR_PADDLE_CLONE_PATH mkdir -p build cd build - cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_DOC=ON + cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON make gen_proto_py make paddle_docs paddle_docs_cn diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index 00d9dd238ec5328be28f58f8118daad3a039e08c..b9018ecdba8303fd6b37c87edd99e192aa604228 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -513,19 +513,14 @@ ParamGradInfoMap AppendBackward( const int root_block_idx = 0; auto root_block = program_desc.MutableBlock(root_block_idx); - // insert fill one op for target - // TODO(qiao) add some check to the target. std::string fill_one_op_out = GradVarName(target.Name()); - std::vector target_shape_desc = target.Shape(); - std::vector target_shape; - std::transform(target_shape_desc.begin(), target_shape_desc.end(), - std::back_inserter(target_shape), - [](int64_t dim) { return static_cast(dim); }); + bool is_scalar = target.Shape() == std::vector{1}; + PADDLE_ENFORCE(is_scalar, "target should be scalar"); VLOG(3) << "backward from loss=" << target.Name() << " data_type=" << target.GetDataType(); std::unique_ptr fill_one_op( new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}}, - {{"shape", target_shape}, + {{"shape", std::vector{1}}, {"value", static_cast(1.0)}, {"data_type", target.GetDataType()}})); // infer var type of fill_one_op diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index d485cdf6109274377ad0057223bdd8401e964aa7..2b858f5ea0874d7bf1a9cf38529f5d0d70cca7f2 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -508,6 +508,7 @@ TEST(Backward, simple_single_op) { op->SetOutput("Out", {"out"}); auto target = f::VarDescBind("out"); + target.SetShape({1}); auto var_to_grad = AppendBackward(program, target, {}); ASSERT_EQ(block->AllOps().size(), 3UL); @@ -544,6 +545,7 @@ TEST(Backward, default_attribute) { op->CheckAttrs(); auto target = f::VarDescBind("out"); + target.SetShape({1}); AppendBackward(program, target, {}); ASSERT_EQ(block->AllOps().size(), 3UL); @@ -581,6 +583,7 @@ TEST(Backward, simple_mult_op) { op3->SetOutput("Out", {"out3"}); auto target = f::VarDescBind("out3"); + target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {}); @@ -670,6 +673,7 @@ TEST(Backward, intermedia_var_no_grad) { op4->SetOutput("Out", {"out4"}); auto target = f::VarDescBind("out4"); + target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"out3"}); @@ -730,6 +734,7 @@ TEST(Backward, var_no_grad) { op2->SetOutput("Z", {"z2"}); auto target = f::VarDescBind("z2"); + target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"z1"}); @@ -810,6 +815,7 @@ TEST(Backward, shared_var) { op3->SetOutput("Out", {"out3"}); auto target = f::VarDescBind("out3"); + target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {}); @@ -888,6 +894,7 @@ TEST(Backward, half_backward) { op1->SetOutput("Out", {"out"}); auto target = f::VarDescBind("out"); + target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"b"}); f::OpDescBind *fill_op = block->AllOps()[forward_len]; diff --git a/paddle/framework/data_type.h b/paddle/framework/data_type.h index be144d8fc0104fccc08006532a85906ade25c2a1..c54d2d4ddf09c445fb25c1fbe8a7498f233d8212 100644 --- a/paddle/framework/data_type.h +++ b/paddle/framework/data_type.h @@ -46,6 +46,8 @@ inline std::type_index ToTypeIndex(DataType type) { return typeid(int); case DataType::INT64: return typeid(int64_t); + case DataType::BOOL: + return typeid(bool); default: PADDLE_THROW("Not support type %d", type); } @@ -66,6 +68,9 @@ inline void VisitDataType(DataType type, Visitor visitor) { case DataType::INT64: visitor.template operator()(); break; + case DataType::BOOL: + visitor.template operator()(); + break; default: PADDLE_THROW("Not supported"); } diff --git a/paddle/gserver/CMakeLists.txt b/paddle/gserver/CMakeLists.txt index 91d732641a4a5eed050841b59fd10da397eb732f..41ead3c5ecef248830cfb0f8be360f21dcd58e7b 100644 --- a/paddle/gserver/CMakeLists.txt +++ b/paddle/gserver/CMakeLists.txt @@ -73,7 +73,6 @@ if(MOBILE_INFERENCE) list(REMOVE_ITEM GSERVER_SOURCES dataproviders/DataProvider.cpp dataproviders/MultiDataProvider.cpp - dataproviders/ProtoDataProvider.cpp dataproviders/PyDataProvider2.cpp dataproviders/PyDataProvider.cpp) diff --git a/paddle/gserver/activations/ActivationFunction.cpp b/paddle/gserver/activations/ActivationFunction.cpp index 8b7b2e9b65898950e036ebc023cd28990cef303f..f5a41b66bf09a4abc5ae7b64f227ca52461408f5 100644 --- a/paddle/gserver/activations/ActivationFunction.cpp +++ b/paddle/gserver/activations/ActivationFunction.cpp @@ -212,6 +212,37 @@ Error __must_check backward(Argument& act) { } END_DEFINE_ACTIVATION(sequence_softmax) +/* + * @brief SoftSign Activation. + * \f[ + * f(z) = \frac{z}{1 + |z|} + * \f] + */ +BEGIN_DEFINE_ACTIVATION(softsign) +private: +MatrixPtr denominator_; + +Error __must_check forward(Argument& act) { + size_t height = act.value->getHeight(); + size_t width = act.value->getWidth(); + Matrix::resizeOrCreate( + denominator_, height, width, false, useGpu(act.deviceId)); + denominator_->assign(*act.value); + denominator_->abs2(); + denominator_->add(1.); + + act.value->dotDiv(*act.value, *denominator_); + return Error(); +} + +Error __must_check backward(Argument& act) { + denominator_->square2(); + denominator_->scalarDiv(*denominator_, 1.); + act.grad->dotMul(*act.grad, *denominator_); + return Error(); +} +END_DEFINE_ACTIVATION(softsign) + /** * @brief Relu Activation. * forward. y = max(0, z) diff --git a/paddle/gserver/dataproviders/DataProvider.cpp b/paddle/gserver/dataproviders/DataProvider.cpp index 0478256f9cd81f4a99eb0cbcbd1a5a21de5cf14b..106cf5b6228e636026ded558d0f591022f1ae586 100644 --- a/paddle/gserver/dataproviders/DataProvider.cpp +++ b/paddle/gserver/dataproviders/DataProvider.cpp @@ -16,8 +16,8 @@ limitations under the License. */ #include #include -#include "ProtoDataProvider.h" #include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" #include "paddle/utils/StringUtil.h" #include "paddle/utils/Util.h" @@ -164,8 +164,6 @@ DataProvider* DataProvider::create(const DataConfig& config, REGISTER_DATA_PROVIDER(simple, SimpleDataProvider); REGISTER_DATA_PROVIDER(dummy, DummyDataProvider); -REGISTER_DATA_PROVIDER(proto, ProtoDataProvider); -REGISTER_DATA_PROVIDER(proto_sequence, ProtoSequenceDataProvider); int64_t DataProvider::getNextBatch(int64_t size, DataBatch* batch) { int64_t batchSize = doubleBuffer_ ? getNextBatchFromBuffer(size, batch) diff --git a/paddle/gserver/dataproviders/ProtoDataProvider.cpp b/paddle/gserver/dataproviders/ProtoDataProvider.cpp deleted file mode 100644 index c6f5cab1915b7f41d505c37a7fef762a392bad7f..0000000000000000000000000000000000000000 --- a/paddle/gserver/dataproviders/ProtoDataProvider.cpp +++ /dev/null @@ -1,932 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "ProtoDataProvider.h" -#include -#include -#include -#include "paddle/utils/StringUtil.h" -#include "paddle/utils/Util.h" - -#include "DataProviderGroup.h" -#include "paddle/utils/Logging.h" - -DEFINE_double(memory_threshold_on_load_data, - 1.0, - "stop loading data when memory is not sufficient"); - -namespace paddle { - -REGISTER_DATA_PROVIDER(proto_group, DataProviderGroup); -REGISTER_DATA_PROVIDER(proto_sequence_group, - DataProviderGroup); - -ProtoDataProvider::ProtoDataProvider(const DataConfig& config, - bool useGpu, - bool loadDataAll) - : DataProvider(config, useGpu), sampleNums_(0), currentSequenceIndex_(0) { - if (loadDataAll) { - loadData(config_.files()); - } -} - -void ProtoDataProvider::loadData(const std::vector& fileList) { - for (auto& file : fileList) { - if (FLAGS_memory_threshold_on_load_data < 1.0) { - double memUsage = getMemoryUsage(); - if (memUsage > FLAGS_memory_threshold_on_load_data) { - LOG(INFO) << "memUsage is " << memUsage << ", > " - << FLAGS_memory_threshold_on_load_data - << " therefore SKIP ALL REMAINING file."; - break; - } - } - LOG(INFO) << "load data file " << file; - loadDataFile(file); - } - - if (sequenceStartPositions_.size() == sampleNums_) { - // This means that each sample is one sequence - shuffledSequenceIds_.swap(sequenceStartPositions_); - } else { - sequenceStartPositions_.push_back(sampleNums_); - shuffledSequenceIds_.reserve(sequenceStartPositions_.size() - 1); - for (size_t i = 0; i < sequenceStartPositions_.size() - 1; ++i) { - shuffledSequenceIds_.push_back(i); - } - } - - LOG(INFO) << "read done, num of instance=" << sampleNums_; - showDataStats(); -} - -void ProtoDataProvider::loadData(const std::string& fileName) { - std::vector fileList; - loadFileList(fileName, fileList); - loadData(fileList); -} - -void ProtoDataProvider::checkDataHeader(const DataHeader& header) { - if (header_.slot_defs_size()) { - // header_ is already set. Need to check consistency. - CHECK_EQ(header_.slot_defs_size(), header.slot_defs_size()) - << "Different header"; - for (int i = 0; i < header.slot_defs_size(); ++i) { - CHECK_EQ(header_.slot_defs(i).type(), header.slot_defs(i).type()); - CHECK_EQ(header_.slot_defs(i).dim(), header.slot_defs(i).dim()); - } - return; - } - - // header_ is not set before - CHECK(header.slot_defs_size()) << "Invalid header: no slot is defined"; - int i; - for (i = 0; i < header.slot_defs_size(); ++i) { - if (header.slot_defs(i).type() == SlotDef::INDEX || - header.slot_defs(i).type() == SlotDef::VAR_MDIM_INDEX) { - break; - } - constexpr int kBufLen = 100; - char buf[kBufLen]; - snprintf(buf, kBufLen, "slot%d_nnz", i); - nnzStats_.push_back(getStat(buf)); - } - numVecSlots_ = i; - - // Check that INDEX slots are after VECTOR slots - for (int i = numVecSlots_; i < header.slot_defs_size(); ++i) { - CHECK(header.slot_defs(i).type() == SlotDef::INDEX || - header.slot_defs(i).type() == SlotDef::VAR_MDIM_INDEX); - } - - slots_.clear(); - slots_.reserve(header.slot_defs_size()); - for (int i = 0; i < header.slot_defs_size(); ++i) { - slots_.emplace_back(); - slots_.back().type = header.slot_defs(i).type(); - slots_.back().dim = header.slot_defs(i).dim(); - if (SlotDef::VECTOR_SPARSE_NON_VALUE == header.slot_defs(i).type() || - SlotDef::VECTOR_SPARSE_VALUE == header.slot_defs(i).type()) { - slots_.back().indices.push_back(0); - } - } - - header_ = header; -} - -void ProtoDataProvider::checkSample(const DataSample& sample) { - CHECK_EQ(numVecSlots_, sample.vector_slots_size()); - CHECK(header_.slot_defs_size() == numVecSlots_ + sample.id_slots_size() || - header_.slot_defs_size() == numVecSlots_ + sample.var_id_slots_size()); - for (int i = 0; i < numVecSlots_; ++i) { - uint32_t dim = header_.slot_defs(i).dim(); - switch (header_.slot_defs(i).type()) { - case SlotDef::VECTOR_DENSE: { - CHECK_EQ(static_cast(dim), sample.vector_slots(i).values_size()); - CHECK_EQ(0, sample.vector_slots(i).ids_size()); - break; - } - case SlotDef::VECTOR_SPARSE_NON_VALUE: { - if (0 == sample.vector_slots(i).ids_size()) { - break; - } - CHECK_LT(0, sample.vector_slots(i).ids_size()); - CHECK_EQ(0, sample.vector_slots(i).values_size()); - auto maxId = *std::max_element(sample.vector_slots(i).ids().begin(), - sample.vector_slots(i).ids().end()); - CHECK_GT(dim, maxId); - break; - } - case SlotDef::VECTOR_SPARSE_VALUE: { - if (0 == sample.vector_slots(i).ids_size()) { - CHECK_EQ(0, sample.vector_slots(i).values_size()); - break; - } - CHECK_LT(0, sample.vector_slots(i).values_size()); - CHECK_GE(static_cast(dim), sample.vector_slots(i).values_size()); - CHECK_EQ(sample.vector_slots(i).values_size(), - sample.vector_slots(i).ids_size()); - auto maxId = *std::max_element(sample.vector_slots(i).ids().begin(), - sample.vector_slots(i).ids().end()); - CHECK_GT(dim, maxId); - break; - } - case SlotDef::VAR_MDIM_DENSE: { - if (static_cast(dim) != 0) { - CHECK_EQ(static_cast(dim), sample.vector_slots(i).values_size()); - if (sample.vector_slots(i).dims_size() != 0) { - int totalDim = sample.vector_slots(i).dims(0); - for (int j = 1; j < sample.vector_slots(i).dims_size(); ++j) { - totalDim *= sample.vector_slots(i).dims(j); - } - CHECK_EQ(static_cast(dim), totalDim); - } - } else { - CHECK_NE(sample.vector_slots(i).dims_size(), 0); - int totalDim = sample.vector_slots(i).dims(0); - for (int j = 1; j < sample.vector_slots(i).dims_size(); ++j) { - totalDim *= sample.vector_slots(i).dims(j); - } - CHECK_EQ(totalDim, sample.vector_slots(i).values_size()); - } - break; - } - case SlotDef::STRING: { - CHECK_EQ(static_cast(1), sample.vector_slots(i).strs_size()); - CHECK_EQ(0, sample.vector_slots(i).ids_size()); - CHECK_EQ(0, sample.vector_slots(i).values_size()); - break; - } - default: - LOG(FATAL) << "BUG: Should not reach here"; - } - } - for (int i = numVecSlots_; i < header_.slot_defs_size(); ++i) { - if (header_.slot_defs(i).type() != SlotDef::VAR_MDIM_INDEX) { - uint32_t id = sample.id_slots(i - numVecSlots_); - if (id == -1U) continue; - CHECK_LT(id, header_.slot_defs(i).dim()); - } else { - for (int j = 0; j < sample.var_id_slots(i - numVecSlots_).ids_size(); - ++j) { - uint32_t id = sample.var_id_slots(i - numVecSlots_).ids(j); - CHECK_LT(id, header_.slot_defs(i).dim()); - } - } - } -} - -void ProtoDataProvider::loadDataFile(const std::string& fileName) { - std::ifstream is(fileName); - CHECK(is) << "Fail to open " << fileName; - bool dataCompression = str::endsWith(fileName, ".gz"); - std::unique_ptr reader(new ProtoReader(&is, dataCompression)); - CHECK(reader) << "Fail to create proto data input stream"; - - DataHeader header; - CHECK(reader->read(&header)); - checkDataHeader(header); - - DataSample sample; - do { - if (!reader->read(&sample)) { - break; - } - checkSample(sample); - if (sample.is_beginning()) { - sequenceStartPositions_.push_back(sampleNums_); - } - fillSlots(sample); - ++sampleNums_; - } while (true); - - CHECK(is.eof()) << "Fail to read file"; - reader.reset(nullptr); - is.close(); -} - -// checkSample has done before, no check here -void ProtoDataProvider::fillSlots(const DataSample& sample) { - for (size_t i = 0; i < slots_.size(); ++i) { - auto& slot = slots_[i]; - int dim = slot.dim; - switch (slot.type) { - case SlotDef::VECTOR_DENSE: { - size_t oldSize = slot.denseData.size(); - slot.denseData.resize(oldSize + dim); - const float* values = sample.vector_slots(i).values().data(); -#ifdef PADDLE_TYPE_DOUBLE - std::copy(values, values + dim, slot.denseData.begin() + oldSize); -#else - memcpy(slot.denseData.data() + oldSize, values, sizeof(real) * dim); -#endif - break; - } - case SlotDef::VECTOR_SPARSE_NON_VALUE: { - int slotSize = sample.vector_slots(i).ids_size(); - int subSlotSize = 0; - int id = 0; // the slot id - // find whether this vector_slots has subseq. If not has subseq, - // subSlotSize = 0. - for (id = 0; id < sample.subseq_slots_size(); id++) { - if (sample.subseq_slots(id).slot_id() == i) { - subSlotSize = sample.subseq_slots(id).lens_size(); - break; - } - } - if (subSlotSize && slot.subIndices.size() == 0UL) { - // If has subSeq, the first element of subIndices = 0. - slot.subIndices.push_back(0); - } - if (slotSize == 0UL) { - // if has no id, new indices = old indices. - slot.indices.push_back(slot.indices.back()); - // if has subSeq, new subIndices = old subIndices. - if (slot.subIndices.size()) { - slot.subIndices.push_back(slot.subIndices.back()); - } - break; - } - slot.sparseNonValueData.resize(slot.indices.back() + slotSize); - const unsigned int* ids = sample.vector_slots(i).ids().data(); - memcpy(slot.sparseNonValueData.data() + slot.indices.back(), - ids, - sizeof(*ids) * slotSize); - slot.indices.push_back(slot.indices.back() + slotSize); - if (subSlotSize) { - for (int ii = 0; ii < subSlotSize; ++ii) { - slot.subIndices.push_back(slot.subIndices.back() + - sample.subseq_slots(id).lens(ii)); - } - } - break; - } - case SlotDef::VECTOR_SPARSE_VALUE: { - if (0 == sample.vector_slots(i).ids_size()) { - slot.indices.push_back(slot.indices.back()); - break; - } - int slotSize = sample.vector_slots(i).ids_size(); - slot.sparseFloatValueData.resize(slot.indices.back() + slotSize); - const unsigned int* ids = sample.vector_slots(i).ids().data(); - const float* values = sample.vector_slots(i).values().data(); - for (int ii = 0; ii < slotSize; ++ii) { - slot.sparseFloatValueData[slot.indices.back() + ii].col = ids[ii]; - slot.sparseFloatValueData[slot.indices.back() + ii].value = - values[ii]; - } - slot.indices.push_back(slot.indices.back() + slotSize); - break; - } - case SlotDef::INDEX: { - slot.indexData.push_back(sample.id_slots(i - numVecSlots_)); - break; - } - case SlotDef::VAR_MDIM_DENSE: { - size_t oldSize = slot.varDenseData.size(); - slot.varDenseData.resize(oldSize + 1); - size_t varDim = sample.vector_slots(i).values_size(); - slot.varDenseData[oldSize].data.resize(varDim); - const float* values = sample.vector_slots(i).values().data(); -#ifdef PADDLE_TYPE_DOUBLE - std::copy( - values, values + varDim, slot.varDenseData[oldSize].data.data()); -#else - memcpy(slot.varDenseData[oldSize].data.data(), - values, - sizeof(real) * varDim); -#endif - slot.varDenseData[oldSize].dims.resize( - sample.vector_slots(i).dims_size()); - memcpy(slot.varDenseData[oldSize].dims.data(), - sample.vector_slots(i).dims().data(), - sizeof(uint32_t) * sample.vector_slots(i).dims_size()); - break; - } - case SlotDef::VAR_MDIM_INDEX: { - size_t oldSize = slot.varIndices.size(); - slot.varIndices.resize(oldSize + 1); - size_t varDim = sample.var_id_slots(i - numVecSlots_).ids_size(); - slot.varIndices[oldSize].resize(varDim); - memcpy(slot.varIndices[oldSize].data(), - sample.var_id_slots(i - numVecSlots_).ids().data(), - sizeof(uint32_t) * varDim); - break; - } - case SlotDef::STRING: { - slot.strData.push_back(sample.vector_slots(i).strs(0)); - break; - } - } - } -} - -void ProtoDataProvider::showDataStats() { - std::ostringstream oss; - for (size_t i = 0; i < slots_.size(); ++i) { - auto& slot = slots_[i]; - if (slot.type == SlotDef::VECTOR_SPARSE_NON_VALUE) { - size_t nnz = slot.sparseNonValueData.size(); - oss << "slot" << i << ":avgNNZ=" << ((double)nnz / sampleNums_) << "; "; - } else if (slot.type == SlotDef::VECTOR_SPARSE_VALUE) { - size_t nnz = slot.sparseFloatValueData.size(); - oss << "slot" << i << ":avgNNZ=" << ((double)nnz / sampleNums_) << "; "; - } - } - LOG(INFO) << oss.str(); -} - -void ProtoDataProvider::reset() { - currentSequenceIndex_ = 0; - if (!skipShuffle_) { - shuffle(); - } - - DataProvider::reset(); -} - -void ProtoDataProvider::shuffle() { - std::shuffle(shuffledSequenceIds_.begin(), - shuffledSequenceIds_.end(), - ThreadLocalRandomEngine::get()); -} - -/* - Loop through sequences starting from currentSequenceIndex_ - for at most size samples. For each sequence ranging from [begin, end), - op(begin, end) will be called. - - return the number of sequences scanned -*/ -template -int64_t ProtoDataProvider::sequenceLoop(Op op, int64_t size) { - int64_t sz = 0; - size_t i; - size_t sequenceCount = shuffledSequenceIds_.size(); - if (usageRatio_ < 1.0f) { - sequenceCount = static_cast(sequenceCount * usageRatio_); - } - for (i = currentSequenceIndex_; i < sequenceCount; ++i) { - size_t id = shuffledSequenceIds_[i]; - int64_t begin = sequenceStartPositions_[id]; - int64_t end = sequenceStartPositions_[id + 1]; - int64_t len = end - begin; - if (sz + len > size && sz > 0) break; - sz += len; - op(begin, end); - } - return i - currentSequenceIndex_; -} - -/* - Loop through sequences starting from currentSequenceIndex_ - for at most size samples. For each sample of each sequence at position - pos, op(pos) will be called. - - return the number of sequences scanned -*/ -template -int64_t ProtoDataProvider::sampleLoop(Op op, int64_t size) { - if (iidData()) { - size = std::min(sampleNums_ - currentSequenceIndex_, size); - for (int64_t i = currentSequenceIndex_; i < currentSequenceIndex_ + size; - ++i) { - size_t pos = shuffledSequenceIds_[i]; - op(pos); - } - return size; - } else { - auto f = [op](int64_t begin, int64_t end) { - for (int64_t pos = begin; pos < end; ++pos) { - op(pos); - } - }; - return sequenceLoop(f, size); - } -} - -/* - Loop through sub-sequences starting from currentSequenceIndex_ - for at most size samples. For each sample of each sub-sequence at position - pos, op(pos) will be called. - - return the number of sub-sequences scanned -*/ -template -int64_t ProtoDataProvider::subSampleLoop(Op op, int64_t size, int slot) { - CHECK(iidData()) << "subSampleLoop only accepts iid data"; - size = std::min(sampleNums_ - currentSequenceIndex_, size); - int subSize = 0; - for (int64_t i = currentSequenceIndex_; i < currentSequenceIndex_ + size; - ++i) { - size_t pos = shuffledSequenceIds_[i]; - int64_t* indexs = slots_[slot].indices.data(); - int64_t* subIndexs = slots_[slot].subIndices.data(); - int64_t subSeqStart = 0; - int64_t subSeqEnd = 0; - for (int j = 0; j < (int)slots_[slot].subIndices.size(); j++) { - if (subIndexs[j] == indexs[pos]) { - subSeqStart = j; - if (subIndexs[pos] == subIndexs[pos + 1]) { - subSeqEnd = j + 1; - break; - } - } else if (subIndexs[j] == indexs[pos + 1]) { - subSeqEnd = j; - break; - } - } - for (int j = subSeqStart; j < subSeqEnd; j++) { - op(j); - } - subSize += subSeqEnd - subSeqStart; - } - return subSize; -} - -int64_t ProtoDataProvider::getNextBatchInternal(int64_t size, - DataBatch* batch) { - int64_t numSequences = 0; // actual number of sequences in the batch - - // the number of sequences scanned, including those skipped because too long - int64_t numScannedSeqs = 0; - std::lock_guard guard(lock_); - if (iidData()) { - size = std::min(getSize() - currentSequenceIndex_, size); - numScannedSeqs = numSequences = size; - } else { - int64_t sz = 0; - auto op = [&sz, &numSequences](int64_t begin, int64_t end) { - ++numSequences; - sz += end - begin; - }; - numScannedSeqs = sequenceLoop(op, size); - VLOG_IF(1, numScannedSeqs > numSequences) - << numScannedSeqs - numSequences - << " sequences are skipped because longer than " << size; - size = sz; - } - if (size <= 0) return 0; - - DataBatch& cpuBatch = *cpuBatch_; - std::vector& cpuArguments = cpuBatch.getStreams(); - cpuBatch.setSize(size); - cpuArguments.resize(header_.slot_defs_size()); - - if (!iidData()) { - ICpuGpuVector::resizeOrCreate(cpuArguments[0].sequenceStartPositions, - numSequences + 1, - /* useGpu= */ false); - int* buf = cpuArguments[0].sequenceStartPositions->getMutableData(false); - int pos = 0; - int i = 0; - auto op = [buf, &pos, &i](int64_t begin, int64_t end) { - buf[i] = pos; - pos += end - begin; - ++i; - }; - sequenceLoop(op, size); - buf[i] = size; - for (size_t slot = 1; slot < cpuArguments.size(); ++slot) { - cpuArguments[slot].sequenceStartPositions = - cpuArguments[0].sequenceStartPositions; - } - } - - for (int slot = 0; slot < header_.slot_defs_size(); ++slot) { - size_t dim = header_.slot_defs(slot).dim(); - SlotDef::SlotType slotType = header_.slot_defs(slot).type(); - - std::vector dataPos; - dataPos.reserve(size); - auto op = [this, &dataPos](int64_t pos) { dataPos.push_back(pos); }; - sampleLoop(op, size); - - switch (slotType) { - case SlotDef::VECTOR_DENSE: { - Matrix::resizeOrCreate(cpuArguments[slot].value, - size, - dim, - false, // trans = false - false); // useGpu = false - real* buf = cpuArguments[slot].value->getData(); - for (int i = 0; i < size; ++i) { - memcpy(buf + i * dim, - slots_[slot].denseData.data() + dataPos[i] * dim, - sizeof(real) * dim); - } - break; - } - case SlotDef::VECTOR_SPARSE_NON_VALUE: { - if (!(cpuArguments[slot].value)) { - cpuArguments[slot].value = - Matrix::createSparseMatrix(size, - dim, - size /*DEFAULT_AVG_WIDTH = 1*/, - NO_VALUE, - SPARSE_CSR, - false, - useGpu_); - } - auto mat = cpuArguments[slot].value; - mat->resize(size, dim); - if (std::dynamic_pointer_cast(mat)) { - std::dynamic_pointer_cast(mat)->copyFrom( - dataPos.data(), - slots_[slot].indices.data(), - slots_[slot].sparseNonValueData.data(), - HPPL_STREAM_1); - } else if (std::dynamic_pointer_cast(mat)) { - std::dynamic_pointer_cast(mat)->copyFrom( - dataPos.data(), - slots_[slot].indices.data(), - slots_[slot].sparseNonValueData.data()); - } else { - LOG(FATAL) << "Not Supported"; - } - size_t numElements = 0; - for (auto pos : dataPos) { - numElements += - slots_[slot].indices[pos + 1] - slots_[slot].indices[pos]; - } - nnzStats_[slot]->addSample(numElements); - - break; - } - case SlotDef::VECTOR_SPARSE_VALUE: { - if (!(cpuArguments[slot].value)) { - cpuArguments[slot].value = - Matrix::createSparseMatrix(size, - dim, - size /*DEFAULT_AVG_WIDTH = 1*/, - FLOAT_VALUE, - SPARSE_CSR, - false, - useGpu_); - } - auto mat = cpuArguments[slot].value; - mat->resize(size, dim); - if (std::dynamic_pointer_cast(mat)) { - std::dynamic_pointer_cast(mat)->copyFrom( - dataPos.data(), - slots_[slot].indices.data(), - slots_[slot].sparseFloatValueData.data(), - HPPL_STREAM_1); - } else if (std::dynamic_pointer_cast(mat)) { - std::dynamic_pointer_cast(mat)->copyFrom( - dataPos.data(), - slots_[slot].indices.data(), - slots_[slot].sparseFloatValueData.data()); - } else { - LOG(FATAL) << "Not Supported"; - } - break; - } - case SlotDef::INDEX: { - IVector::resizeOrCreate(cpuArguments[slot].ids, - size, - /* useGpu= */ false); - int* buf = cpuArguments[slot].ids->getData(); - for (int i = 0; i < size; ++i) { - buf[i] = slots_[slot].indexData[dataPos[i]]; - } - break; - } - case SlotDef::VAR_MDIM_DENSE: { - CHECK_EQ(size, 1); - auto mat = cpuArguments[slot].value; - size_t totalDim = slots_[slot].varDenseData[dataPos[0]].data.size(); - - CHECK_EQ(slots_[slot].varDenseData[dataPos[0]].dims.size(), size_t(3)); - size_t height, width, depth, oldWidth; - /* dims[2] is depth, will be changed to dims[0] in future */ - depth = slots_[slot].varDenseData[dataPos[0]].dims[2]; - height = slots_[slot].varDenseData[dataPos[0]].dims[1]; - width = slots_[slot].varDenseData[dataPos[0]].dims[0]; - oldWidth = width; - /* process the undesirable sample */ - if (oldWidth < height) { - width = height; - } - cpuArguments[slot].setFrameHeight(height); - cpuArguments[slot].setFrameWidth(width); - - if (oldWidth < height) { - totalDim = width * height * depth; - } - Matrix::resizeOrCreate(cpuArguments[slot].value, - size, - totalDim, - false, // trans = false - false); // useGpu = false - real* buf = cpuArguments[slot].value->getData(); - cpuArguments[slot].value->zeroMem(); - if (oldWidth < height) { - real* srcBuf = slots_[slot].varDenseData[dataPos[0]].data.data(); - for (size_t i = 0; i < depth; i++) { - for (size_t j = 0; j < height; j++) { - for (size_t k = 0; k < oldWidth; k++) { - buf[i * height * width + j * width + k] = - srcBuf[i * height * oldWidth + j * oldWidth + k]; - } - } - } - } else { - memcpy(buf, - slots_[slot].varDenseData[dataPos[0]].data.data(), - sizeof(real) * totalDim); - } - ICpuGpuVector::resizeOrCreate(cpuArguments[slot].sequenceStartPositions, - size + 1, /* size == 1 currently */ - /* useGpu= */ false); - int* bufStarts = - cpuArguments[slot].sequenceStartPositions->getMutableData(false); - bufStarts[0] = 0; - bufStarts[1] = 1; - break; - } - case SlotDef::VAR_MDIM_INDEX: { - CHECK_EQ(size, 1); - size_t totalDim = slots_[slot].varIndices[dataPos[0]].size(); - IVector::resizeOrCreate(cpuArguments[slot].ids, - totalDim, - /* useGpu= */ false); - int* buf = cpuArguments[slot].ids->getData(); - memcpy(buf, - slots_[slot].varIndices[dataPos[0]].data(), - sizeof(int) * totalDim); - - ICpuGpuVector::resizeOrCreate(cpuArguments[slot].sequenceStartPositions, - size + 1, /* size == 1 currently */ - /* useGpu= */ false); - int* bufStarts = - cpuArguments[slot].sequenceStartPositions->getMutableData(false); - bufStarts[0] = 0; - /* we expand the convolutinal feature map to a sequence data, - * so there should be a corresponding sequence labels */ - bufStarts[1] = totalDim; - break; - } - case SlotDef::STRING: { - if (cpuArguments[slot].strs) { - cpuArguments[slot].strs->resize(size); - } else { - cpuArguments[slot].strs = - std::make_shared>(size); - } - for (int i = 0; i < size; ++i) { - (*cpuArguments[slot].strs)[i] = slots_[slot].strData[dataPos[i]]; - } - break; - } - } - } - - if (useGpu_) { - std::vector& cpuArguments = cpuBatch.getStreams(); - DataBatch& gpuBatch = *gpuBatch_; - std::vector& gpuArguments = gpuBatch.getStreams(); - gpuArguments.resize(cpuArguments.size()); - gpuBatch.setSize(size); - for (int i = 0; i < header_.slot_defs_size(); ++i) { - SlotDef::SlotType slotType = header_.slot_defs(i).type(); - if (SlotDef::VECTOR_SPARSE_VALUE == slotType || - SlotDef::VECTOR_SPARSE_NON_VALUE == slotType) { - gpuArguments[i] = cpuArguments[i]; - gpuArguments[i].sequenceStartPositions = - cpuArguments[i].sequenceStartPositions; - } else { - gpuArguments[i].resizeAndCopyFrom( - cpuArguments[i], useGpu_, HPPL_STREAM_1); - } - } - hl_stream_synchronize(HPPL_STREAM_1); - *batch = gpuBatch; - } else { - *batch = cpuBatch; - } - - currentSequenceIndex_ += numScannedSeqs; - - return batch->getSize(); -} - -ProtoSequenceDataProvider::ProtoSequenceDataProvider(const DataConfig& config, - bool useGpu, - bool loadDataAll) - : ProtoDataProvider(config, useGpu, loadDataAll) {} - -int64_t ProtoSequenceDataProvider::getNextBatchInternal(int64_t size, - DataBatch* batch) { - CHECK(iidData()) << "ProtoSequenceDataProvider only accepts iid data"; - int64_t numSequences = 0; // actual number of sequences in the batch - - // the number of sequences scanned, including those skipped because too long - int64_t numScannedSeqs = 0; - std::lock_guard guard(lock_); - size = std::min(getSize() - currentSequenceIndex_, size); - numScannedSeqs = numSequences = size; - if (size <= 0) return 0; - - DataBatch& cpuBatch = *cpuBatch_; - std::vector& cpuArguments = cpuBatch.getStreams(); - cpuBatch.setSize(size); - cpuArguments.resize(header_.slot_defs_size()); - - for (int slot = 0; slot < header_.slot_defs_size(); ++slot) { - SlotDef::SlotType slotType = header_.slot_defs(slot).type(); - - std::vector dataPos; - dataPos.reserve(size); - auto op = [this, &dataPos](int64_t pos) { dataPos.push_back(pos); }; - sampleLoop(op, size); - - // current slot: sequenceStartPositions - ICpuGpuVector::resizeOrCreate(cpuArguments[slot].sequenceStartPositions, - size + 1, - /* useGpu= */ false); - - switch (slotType) { - case SlotDef::VECTOR_SPARSE_VALUE: - case SlotDef::VAR_MDIM_DENSE: - case SlotDef::VAR_MDIM_INDEX: { - LOG(FATAL) << "ProtoSequenceDataProvider only support" - << " VECTOR_DENSE, VECTOR_SPARSE_NON_VALUE and INDEX slots"; - break; - } - case SlotDef::VECTOR_SPARSE_NON_VALUE: { - // copy to IDS, not value - // pointers used in current slot - sparse_non_value_t* data = slots_[slot].sparseNonValueData.data(); - int64_t* indexs = slots_[slot].indices.data(); - int64_t* seqs = dataPos.data(); - - // current slot: i need size instances. what is the total length? - int totalFeatureInCurrentSlot = 0; - for (int ins = 0; ins < size; ins++) { - int64_t currInsId = seqs[ins]; - totalFeatureInCurrentSlot += - indexs[currInsId + 1] - indexs[currInsId]; - // special: if current instance has NO feature in current slot - if (indexs[currInsId + 1] == indexs[currInsId]) { - totalFeatureInCurrentSlot++; - } - } - // done - - // current slot: ids - IVector::resizeOrCreate(cpuArguments[slot].ids, - totalFeatureInCurrentSlot, - /* useGpu= */ false); - - // where to write - int* currPosOfArgumentId = cpuArguments[slot].ids->getData(); - int* currPosOfArgumentSeqStart = - cpuArguments[slot].sequenceStartPositions->getMutableData(false); - int allSequenceLength = 0; - currPosOfArgumentSeqStart[0] = 0; - // for each instance, copy data and fill sequence positions - for (int instance = 0; instance < size; instance++) { - int64_t currInstanceId = seqs[instance]; - int64_t currInstanceLength = - indexs[currInstanceId + 1] - indexs[currInstanceId]; - sparse_non_value_t* currInstanceData = data + indexs[currInstanceId]; - // write sequenceStartPositions - allSequenceLength += currInstanceLength; - currPosOfArgumentSeqStart[instance + 1] = allSequenceLength; - // copy features - for (int featCopier = 0; featCopier < currInstanceLength; - featCopier++) { - currPosOfArgumentId[featCopier] = currInstanceData[featCopier].col; - } - currPosOfArgumentId += currInstanceLength; - // special: if current instance has NO feature in current slot - if (currInstanceLength == 0) { - allSequenceLength++; - currPosOfArgumentSeqStart[instance + 1] = allSequenceLength; - currPosOfArgumentId[0] = -1; - currPosOfArgumentId++; - } - // done - } - if (slots_[slot].subIndices.size()) { - std::vector dataSubPos; - auto op = [this, &dataSubPos](int64_t pos) { - dataSubPos.push_back(pos); - }; - int subSize = subSampleLoop(op, size, slot); - ICpuGpuVector::resizeOrCreate( - cpuArguments[slot].subSequenceStartPositions, subSize + 1, false); - int* currPosOfArgumentSubSeqStart = - cpuArguments[slot].subSequenceStartPositions->getMutableData( - false); - int64_t* subSeqs = dataSubPos.data(); - int64_t* subIndexs = slots_[slot].subIndices.data(); - int allSubSequenceLength = 0; - currPosOfArgumentSubSeqStart[0] = 0; - // for each instance, compute sub-sequence number - for (int instance = 0; instance < subSize; instance++) { - int64_t currSubInstanceId = subSeqs[instance]; - int64_t currSubInstanceLength = - subIndexs[currSubInstanceId + 1] - subIndexs[currSubInstanceId]; - // write subSequenceStartPositions - allSubSequenceLength += currSubInstanceLength; - currPosOfArgumentSubSeqStart[instance + 1] = allSubSequenceLength; - // special: if current instance has NO feature in current slot - if (currSubInstanceLength == 0) { - allSubSequenceLength++; - currPosOfArgumentSubSeqStart[instance + 1] = allSubSequenceLength; - } - } - cpuArguments[slot].checkSubset(); - } - break; - } - case SlotDef::INDEX: { - // label slot - IVector::resizeOrCreate(cpuArguments[slot].ids, - size, - /* useGpu= */ false); - // fill labels - int* buf = cpuArguments[slot].ids->getData(); - for (int i = 0; i < size; ++i) { - buf[i] = slots_[slot].indexData[dataPos[i]]; - } - // label HAS sequence structure - cpuArguments[slot].sequenceStartPositions->fillSequence(false); - break; - } - case SlotDef::VECTOR_DENSE: { - // copy values - size_t dim = header_.slot_defs(slot).dim(); - Matrix::resizeOrCreate(cpuArguments[slot].value, - size, - dim, - false, // trans = false - false); // useGpu = false - real* buf = cpuArguments[slot].value->getData(); - for (int i = 0; i < size; ++i) { - memcpy(buf + i * dim, - slots_[slot].denseData.data() + dataPos[i] * dim, - sizeof(real) * dim); - } - // sequence structure - cpuArguments[slot].sequenceStartPositions->fillSequence(false); - break; - } - default: { LOG(FATAL) << "should not reach here"; } - } - } - - if (useGpu_) { - std::vector& cpuArguments = cpuBatch.getStreams(); - DataBatch& gpuBatch = *gpuBatch_; - std::vector& gpuArguments = gpuBatch.getStreams(); - gpuArguments.resize(cpuArguments.size()); - gpuBatch.setSize(size); - for (size_t i = 0; i < cpuArguments.size(); ++i) { - gpuArguments[i].resizeAndCopyFrom( - cpuArguments[i], useGpu_, HPPL_STREAM_1); - } - hl_stream_synchronize(HPPL_STREAM_1); - *batch = gpuBatch; - } else { - *batch = cpuBatch; - } - - currentSequenceIndex_ += numScannedSeqs; - return batch->getSize(); -} - -} // namespace paddle diff --git a/paddle/gserver/dataproviders/ProtoDataProvider.h b/paddle/gserver/dataproviders/ProtoDataProvider.h deleted file mode 100644 index 7dd45e062248f20d24c633dd4e1c8b7eebcbfa1b..0000000000000000000000000000000000000000 --- a/paddle/gserver/dataproviders/ProtoDataProvider.h +++ /dev/null @@ -1,179 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once - -#include - -#include "DataFormat.pb.h" -#include "paddle/utils/Stat.h" - -#include "DataProvider.h" -#include "ProtoReader.h" - -namespace paddle { - -/** - * @brief Provider data from protobuf data file with each sample - * specified by proto message - * - * DataSample defined in DataFormat.proto. - * - * The file format is - * - * header - * - * sample1 - * - * sample2 - * - * ... - * - * sampleN - * - * @note: In the data file, each message is prefixed with its length. - * The read/write of the protbuf are implemented in ProtoReader.h - */ -class ProtoDataProvider : public DataProvider { -public: - ProtoDataProvider(const DataConfig& config, - bool useGpu, - bool loadDataAll = true); - virtual void reset(); - - /** - * @note this size includes the sequences which are skipped because they - * are longer than the batch size. - */ - virtual int64_t getSize() { - int64_t size = sampleNums_; - if (usageRatio_ < 1.0f) { - size = static_cast(size * usageRatio_); - } - return size; - } - virtual void shuffle(); - - void loadData(const std::vector& fileList); - - virtual int64_t getNextBatchInternal(int64_t size, DataBatch* batch); - -protected: - /** - * @brief load protobuf data from a list of file - * @param[in] fileName file name of a file which contains - * a list of file names - */ - void loadData(const std::string& fileName); - - /** - * @brief load protobuf data from file - * @param[in] fileName data file name - */ - void loadDataFile(const std::string& fileName); - /** @brief check data header of each data sample - * @param[in] header data header read from protobuf data - */ - void checkDataHeader(const DataHeader& header); - /** - * @brief fill protobuf data into slot_, - * slot_ is a vector of ProtoSlot in memory. - * @param[in] sample data sample read from protobuf data - */ - void fillSlots(const DataSample& sample); - - /** - * @brief return true if each sample is one sequence, i.e., independent - * of other samples. - */ - inline bool iidData() const { return sequenceStartPositions_.empty(); } - - /** - * @brief check that sample is consistent with header_ - */ - void checkSample(const DataSample& sample); - - template - int64_t sequenceLoop(Op op, int64_t size); - - template - int64_t sampleLoop(Op op, int64_t size); - - template - int64_t subSampleLoop(Op op, int64_t size, int slot); - - void showDataStats(); - -protected: - struct ProtoVarSlot { - std::vector data; - std::vector dims; - }; - - struct ProtoSlot { - SlotDef::SlotType type; - int dim; - std::vector indexData; - std::vector denseData; - std::vector sparseNonValueData; - std::vector sparseFloatValueData; - std::vector indices; - std::vector subIndices; - - std::vector varDenseData; - std::vector> varIndices; - std::vector strData; - }; - DataHeader header_; - int numVecSlots_; - - std::vector slots_; - size_t sampleNums_; - - /** - * The starting position of each sequence in samples. - * The last element should be num of samples. - * If empty, each sample is one sequence. - */ - std::vector sequenceStartPositions_; - - int64_t currentSequenceIndex_; - - // The size should be the number of sequences. - std::vector shuffledSequenceIds_; - - ThreadLocalD cpuBatch_; - ThreadLocalD gpuBatch_; - - RWLock lock_; - std::vector nnzStats_; // stats for number of none-zeros entries -}; - -/** - * @brief Special use for Proto data: instances should contain sparse-non-value - * slots - * and label. - * - * @note ProtoSequenceDataProvider treats each SPARSE SLOT as a SEQUENCE - */ -class ProtoSequenceDataProvider : public ProtoDataProvider { -public: - ProtoSequenceDataProvider(const DataConfig& config, - bool useGpu, - bool loadDataAll = true); - ~ProtoSequenceDataProvider() {} - virtual int64_t getNextBatchInternal(int64_t size, DataBatch* batch); -}; - -} // namespace paddle diff --git a/paddle/gserver/layers/DotProdLayer.cpp b/paddle/gserver/layers/DotProdLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..9e2dbe3c3c416f606d2938701f26288642b55267 --- /dev/null +++ b/paddle/gserver/layers/DotProdLayer.cpp @@ -0,0 +1,97 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Layer.h" +#include "paddle/math/Matrix.h" +#include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +/** + * @brief A layer for computing the dot product of two vectors. + * Input1: vector (batchSize * dim) + * Input2: vector (batchSize * dim) + * Output: a matrix: (batchSize * 1) + */ + +class DotProdLayer : public Layer { +public: + explicit DotProdLayer(const LayerConfig& config) : Layer(config) {} + + ~DotProdLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forward(PassType passType) override; + void backward(const UpdateCallback& callback = nullptr) override; +}; + +REGISTER_LAYER(dot_prod, DotProdLayer); + +bool DotProdLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + Layer::init(layerMap, parameterMap); + + CHECK_EQ(inputLayers_.size(), 2U); + CHECK_EQ(1UL, getSize()) + << "The output dimensionality of this layer should be fixed to 1."; + + return true; +} + +void DotProdLayer::forward(PassType passType) { + Layer::forward(passType); + + MatrixPtr inV0 = getInputValue(0); + MatrixPtr inV1 = getInputValue(1); + + size_t batchSize = inV0->getHeight(); + CHECK_EQ(inV1->getHeight(), batchSize); + CHECK_EQ(inV0->getWidth(), inV1->getWidth()); + + { + REGISTER_TIMER_INFO("FwResetTimer", getName().c_str()); + reserveOutput(batchSize, 1); + } + + MatrixPtr outV = getOutputValue(); + { + REGISTER_TIMER_INFO("FwDotProdTimer", getName().c_str()); + outV->sumOfProducts(*inV0, *inV1, 1, 0); + } +} + +void DotProdLayer::backward(const UpdateCallback& callback) { + MatrixPtr inV0 = getInputValue(0); + MatrixPtr inV1 = getInputValue(1); + MatrixPtr outG = getOutputGrad(); + MatrixPtr inG0 = getInputGrad(0); + MatrixPtr inG1 = getInputGrad(1); + + { + REGISTER_TIMER_INFO("BwDotProdTimer", getName().c_str()); + + if (inG0) { + inG0->addRowScale(0, *inV1, *outG); + } + + if (inG1) { + inG1->addRowScale(0, *inV0, *outG); + } + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/L2DistanceLayer.cpp b/paddle/gserver/layers/L2DistanceLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c71df1b92cef9b19001a0984953a260fbdd1d762 --- /dev/null +++ b/paddle/gserver/layers/L2DistanceLayer.cpp @@ -0,0 +1,91 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "L2DistanceLayer.h" +#include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +REGISTER_LAYER(l2_distance, L2DistanceLayer); + +bool L2DistanceLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + /* Initialize the basic parent class */ + Layer::init(layerMap, parameterMap); + + CHECK_EQ(inputLayers_.size(), 2UL) << "The L2DistanceLayer accepts two and " + << "only two inputs."; + CHECK_EQ(getSize(), 1UL) << "The output dimensionality of L2DistanceLayer " + << "is fixed to be 1."; + + return true; +} + +void L2DistanceLayer::forward(PassType passType) { + Layer::forward(passType); + + const auto inV1 = getInputValue(0); + const auto inV2 = getInputValue(1); + + CHECK(inV1 && inV2); + CHECK_EQ(inV1->getHeight(), inV2->getHeight()) + << "The height of two inputs of this layer must be the same."; + CHECK_EQ(inV1->getWidth(), inV2->getWidth()) + << "The width of two inputs of this layer must be the same."; + + int batchSize = inV1->getHeight(); + int output_dim = getSize(); + { + REGISTER_TIMER_INFO("L2DistanceBpAtvTimer", getName().c_str()); + reserveOutput(batchSize, output_dim); + auto outV = getOutputValue(); + CHECK(outV) << "The output matrix should not be null."; + + Matrix::resizeOrCreate( + inputSub_, inV1->getHeight(), inV1->getWidth(), false, useGpu_); + + inputSub_->assign(*inV1); + inputSub_->sub(*inV2); + outV->sumOfProducts(*inputSub_, *inputSub_, 1, 0); + outV->sqrt2(*outV); + } +} + +void L2DistanceLayer::backward(const UpdateCallback& callback) { + const auto outG = getOutputGrad(); + const auto outV = getOutputValue(); + CHECK(outG && outV); + + auto inGrad1 = getInputGrad(0); + auto inGrad2 = getInputGrad(1); + + { + REGISTER_TIMER_INFO("L2DistanceBpAtvTimer", getName().c_str()); + + if (inGrad1 || inGrad2) { + outV->scalarDiv(*outV, 1.); + outV->dotMul(*outG, *outV); + } + + if (inGrad1) inGrad1->addRowScale(0, *inputSub_, *outV); + + if (inGrad2) { + inputSub_->mulScalar(-1.); + inGrad2->addRowScale(0, *inputSub_, *outV); + } + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/L2DistanceLayer.h b/paddle/gserver/layers/L2DistanceLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..9b12847a10e64a713635c0df079507b23a73c257 --- /dev/null +++ b/paddle/gserver/layers/L2DistanceLayer.h @@ -0,0 +1,52 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "Layer.h" +#include "paddle/math/Matrix.h" + +namespace paddle { + +/** + * @brief The layer calculates the l2 distance between two input vectors. + * \f[ + * f(\bf{x}, \bf{y}) = \sqrt{\sum_{i=1}^D(x_i - y_i)} + * \f] + * + * - Input1: A vector (batchSize * dataDim) + * - Input2: A vector (batchSize * dataDim) + * - Output: A vector (batchSize * 1) + * + * The configuration api is: l2_distance_layer. + */ + +class L2DistanceLayer : public Layer { +public: + explicit L2DistanceLayer(const LayerConfig& config) : Layer(config) {} + ~L2DistanceLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forward(PassType passType) override; + void backward(const UpdateCallback& callback = nullptr) override; + +private: + // Store the result of subtracting Input2 from Input1 in forward computation, + // which will be reused in backward computation. + MatrixPtr inputSub_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNAddtoLayer.cpp b/paddle/gserver/layers/MKLDNNAddtoLayer.cpp index 0f2b67fd758ec1513f42c4cb1a36f2f3915f4740..39bffc26f7ddcd159130c492115b41080e32ce7f 100644 --- a/paddle/gserver/layers/MKLDNNAddtoLayer.cpp +++ b/paddle/gserver/layers/MKLDNNAddtoLayer.cpp @@ -38,12 +38,13 @@ bool MKLDNNAddtoLayer::init(const LayerMap& layerMap, } void MKLDNNAddtoLayer::reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { CHECK_EQ(layerSize_, getSize()) << "this layer size can not be changed"; reshapeInput(bs, ih, iw); ic = inputLayers_[0]->getSize() / ih / iw; CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize()); - CHECK_EQ(inputElemenCnt_, (size_t)bs * ic * ih * iw); + CHECK_EQ(inputLayers_[0]->getOutputValue()->getElementCnt(), + (size_t)bs * ic * ih * iw); for (size_t i = 0; i < inputLayers_.size(); i++) { CHECK_EQ(int64_t(bs), inputLayers_[i]->getOutput().getBatchSize()); CHECK_EQ(layerSize_, inputLayers_[i]->getSize()); @@ -57,47 +58,43 @@ void MKLDNNAddtoLayer::reshape( } void MKLDNNAddtoLayer::resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { - resetFwdBuffers(inVals_, bias, out); - in = inVals_[0]; + resetFwdBuffers(inputs, biasVal_, out); std::shared_ptr fwdPD; std::shared_ptr biasPD; - resetFwdPD(fwdPD, biasPD, inVals_, bias, out); + resetFwdPD(fwdPD, biasPD, inputs, biasVal_, out); - resetFwdPipeline(pipeline, fwdPD, biasPD, inVals_, bias, out); + resetFwdPipeline(pipeline, fwdPD, biasPD, inputs, biasVal_, out); } void MKLDNNAddtoLayer::resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { - resetBwdBuffers(inGrads_, bias, out); - in = inGrads_[0]; + resetBwdBuffers(inputs, biasGrad_, out); // backward only need share output grad to input grad - for (size_t i = 0; i < inGrads_.size(); i++) { - if (inGrads_[i] != nullptr) { - inGrads_[i] = out; - inputLayers_[i]->getOutputGrad()->setData(inGrads_[i]->getData()); + for (size_t i = 0; i < inputs.size(); i++) { + if (inputs[i] != nullptr) { + inputs[i] = out; + inputLayers_[i]->getOutputGrad()->setData(inputs[i]->getData()); } } // backward bias bwdBias_ = nullptr; - if (bias) { + if (biasGrad_) { std::vector scales(bs_, 1.0); - std::vector srcPDs(bs_, bias->getPrimitiveDesc()); - auto biasPD = sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs); + std::vector srcPDs(bs_, + biasGrad_->getPrimitiveDesc()); + auto biasPD = + sum::primitive_desc(biasGrad_->getMemoryDesc(), scales, srcPDs); std::vector srcs; for (size_t i = 0; i < grads_.size(); ++i) { srcs.push_back(*(grads_[i])); } - bwdBias_.reset(new sum(biasPD, srcs, *bias)); + bwdBias_.reset(new sum(biasPD, srcs, *biasGrad_)); pipeline.push_back(*bwdBias_); } } @@ -208,7 +205,7 @@ void MKLDNNAddtoLayer::resetBwdBuffers(std::vector& inputs, inputs.resize(inputLayers_.size()); for (size_t i = 0; i < inputs.size(); i++) { - resetInGrad(inputs[i], inVal_->getPrimitiveDesc(), i); + resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i); CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc()); } diff --git a/paddle/gserver/layers/MKLDNNAddtoLayer.h b/paddle/gserver/layers/MKLDNNAddtoLayer.h index 24504b7b4f50726e2b2757ca3029461cdc27b411..0ea3e208e5fab8cbed8b53390a9381e6f2bb5733 100644 --- a/paddle/gserver/layers/MKLDNNAddtoLayer.h +++ b/paddle/gserver/layers/MKLDNNAddtoLayer.h @@ -26,9 +26,6 @@ namespace paddle { */ class MKLDNNAddtoLayer : public MKLDNNLayer { protected: - std::vector inVals_; - std::vector inGrads_; - // layer size == ic * ih * iw == oc * oh *ow, and can not be changed size_t layerSize_; @@ -50,52 +47,19 @@ public: const ParameterMap& parameterMap) override; void reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) override; void resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void updateWeights(const UpdateCallback& callback) override; - void printValueFormat() override { - for (size_t i = 0; i < inVals_.size(); ++i) { - VLOG(MKLDNN_FMTS) << i << " input: " << inVals_[i]->getFormat() << " >>>"; - } - if (outVal_) { - VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> "; - } - if (extOutVal_) { - VLOG(MKLDNN_FMTS) << extOutVal_->getFormat(); - } - } - - void printGradFormat() override { - if (extOutGrad_) { - VLOG(MKLDNN_FMTS) << extOutGrad_->getFormat(); - } - if (outGrad_) { - VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< "; - } - for (size_t i = 0; i < inGrads_.size(); ++i) { - VLOG(MKLDNN_FMTS) << i << " input: " << inGrads_[i]->getFormat() << "<<<"; - } - } - protected: - /** - * Forward functions: reset buffers(inputs, output, bias), - * reset primitive descriptor, - * reset pipeline. - */ void resetFwdBuffers(std::vector& inputs, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); @@ -110,17 +74,10 @@ protected: std::vector& inputs, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - - /** - * Backward functions: reset buffers(inputs, output, bias) - */ void resetBwdBuffers(std::vector& inputs, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - /** - * prepare for bias - */ void prepareBias(MKLDNNMatrixPtr& bias, const MatrixPtr& biasMat, const MKLDNNMatrixPtr& out, diff --git a/paddle/gserver/layers/MKLDNNBatchNormLayer.cpp b/paddle/gserver/layers/MKLDNNBatchNormLayer.cpp index 4d49d637764df131708793df1906dcdb6d98658c..7faca0f8b7f54fa0a09e8fdab11064c8c26df375 100644 --- a/paddle/gserver/layers/MKLDNNBatchNormLayer.cpp +++ b/paddle/gserver/layers/MKLDNNBatchNormLayer.cpp @@ -116,21 +116,20 @@ void MKLDNNBatchNormLayer::calMovingMeanAndVar() { } void MKLDNNBatchNormLayer::reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { reshapeInput(bs, ih, iw); oh = ih; ow = iw; // ic_ and oc can not be changed - CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic) + CHECK_EQ((size_t)ic, + inputLayers_[0]->getOutputValue()->getElementCnt() / bs / ih / iw) << "Input channel can not be changed"; reshapeOutput(oh, ow); resizeOutput(bs, oc * oh * ow); } void MKLDNNBatchNormLayer::resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { // In training phase, it will always calculate mean and var, // so useGlobalStats must be false. @@ -140,25 +139,23 @@ void MKLDNNBatchNormLayer::resetFwd(std::vector& pipeline, useGlobalStats_ = false; } - resetFwdBuffers(in, wgt, out); + resetFwdBuffers(inputs[0], wgtVal_, out); - resetFwdPD(fwdPD_, in, wgt, out); + resetFwdPD(fwdPD_, inputs[0], wgtVal_, out); - resetFwdPipeline(pipeline, fwdPD_, in, wgt, out); + resetFwdPipeline(pipeline, fwdPD_, inputs[0], wgtVal_, out); } void MKLDNNBatchNormLayer::resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { std::shared_ptr pd; - resetBwdBuffers(in, wgt, out); + resetBwdBuffers(inputs[0], wgtGrad_, out); - resetBwdPD(pd, in, wgt, out); + resetBwdPD(pd, inputs[0], wgtGrad_, out); - resetBwdPipeline(pipeline, pd, in, wgt, out); + resetBwdPipeline(pipeline, pd, inputs[0], wgtGrad_, out); } void MKLDNNBatchNormLayer::forward(PassType passType) { @@ -260,9 +257,9 @@ void MKLDNNBatchNormLayer::resetFwdPipeline( void MKLDNNBatchNormLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& out) { - CHECK(inVal_ && outVal_); + CHECK(inVals_[0] && outVal_); resetOutGrad(out, outVal_->getPrimitiveDesc()); - resetInGrad(in, inVal_->getPrimitiveDesc()); + resetInGrad(in, inVals_[0]->getPrimitiveDesc()); if (gradScaleShift_) { CHECK(wgtVal_); resetWithMatrix(wgt, gradScaleShift_, wgtVal_->getPrimitiveDesc()); @@ -297,11 +294,12 @@ void MKLDNNBatchNormLayer::resetBwdPipeline( if (pd == nullptr) { return; } - CHECK(inVal_); + CHECK(inVals_[0]); bwdData_.reset( wgt && wgtVal_ - ? new bn_bwd(*pd, *inVal_, *mean_, *var_, *out, *wgtVal_, *in, *wgt) - : new bn_bwd(*pd, *inVal_, *mean_, *var_, *out, *in)); + ? new bn_bwd( + *pd, *inVals_[0], *mean_, *var_, *out, *wgtVal_, *in, *wgt) + : new bn_bwd(*pd, *inVals_[0], *mean_, *var_, *out, *in)); pipeline.push_back(*bwdData_); } diff --git a/paddle/gserver/layers/MKLDNNBatchNormLayer.h b/paddle/gserver/layers/MKLDNNBatchNormLayer.h index afd41a28ac4bf4b102aa3d66bef30544ff24d10b..1cf33cb34fa9cd7c9b8487a0a4a0011fb129e311 100644 --- a/paddle/gserver/layers/MKLDNNBatchNormLayer.h +++ b/paddle/gserver/layers/MKLDNNBatchNormLayer.h @@ -74,18 +74,14 @@ public: void forward(PassType passType) override; void reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) override; void resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void updateWeights(const UpdateCallback& callback) override; @@ -99,11 +95,7 @@ protected: * moving = moving * AvgFraction + local * (1 - AvgFraction) */ void calMovingMeanAndVar(); - /** - * Forward functions: reset buffers(input, weight, output), - * reset primitive descriptor, - * reset pipeline. - */ + void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& out); @@ -116,12 +108,6 @@ protected: MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& out); - - /** - * Backward functions: reset buffers(input, weight, output), - * reset primitive descriptor, - * reset pipeline. - */ void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& out); diff --git a/paddle/gserver/layers/MKLDNNConcatLayer.cpp b/paddle/gserver/layers/MKLDNNConcatLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..44bb0883b89c712d70e2d4fdfe16bdfde86f81b7 --- /dev/null +++ b/paddle/gserver/layers/MKLDNNConcatLayer.cpp @@ -0,0 +1,185 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNConcatLayer.h" + +using namespace mkldnn; // NOLINT +typedef memory::format format; + +namespace paddle { + +REGISTER_LAYER(mkldnn_concat, MKLDNNConcatLayer); + +bool MKLDNNConcatLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + if (!MKLDNNLayer::init(layerMap, parameterMap)) { + return false; + } + CHECK_GT(inputLayers_.size(), 1UL); + CHECK(!biasParameter_); + return true; +} + +void MKLDNNConcatLayer::reshape( + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { + reshapeInput(bs, ih, iw); + ic = inputLayers_[0]->getSize() / ih / iw; + CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize()); + CHECK_EQ(inputLayers_[0]->getOutputValue()->getElementCnt(), + (size_t)bs * ic * ih * iw); + CHECK_GT(inputLayers_.size(), 1UL); + channels_.resize(inputLayers_.size()); + channels_[0] = ic; + oc = ic; + for (size_t i = 1; i < inputLayers_.size(); i++) { + int batchsize, height, witdh; + reshapeInput(batchsize, height, witdh, i); + CHECK_EQ(bs, batchsize); + CHECK_EQ(ih, height); + CHECK_EQ(iw, witdh); + + channels_[i] = inputLayers_[i]->getSize() / height / witdh; + CHECK_EQ((size_t)channels_[i] * height * witdh, inputLayers_[i]->getSize()); + oc += channels_[i]; + } + oh = ih; + ow = iw; + reshapeOutput(oh, ow); + resizeOutput(bs, oc * oh * ow); +} + +void MKLDNNConcatLayer::resetFwd(std::vector& pipeline, + std::vector& inputs, + MKLDNNMatrixPtr& out) { + resetFwdBuffers(inputs, out); + + std::shared_ptr fwdPD; + resetFwdPD(fwdPD, inputs, out); + + resetFwdPipeline(pipeline, fwdPD, inputs, out); +} + +void MKLDNNConcatLayer::resetBwd(std::vector& pipeline, + std::vector& inputs, + MKLDNNMatrixPtr& out) { + resetBwdBuffers(inputs, out); + + resetBwdPipeline(pipeline, bwds_, inputs, out); +} + +void MKLDNNConcatLayer::resetFwdBuffers(std::vector& inputs, + MKLDNNMatrixPtr& out) { + inputs.resize(inputLayers_.size()); + bool has8c = false, has16c = false, hasnc = false; + for (size_t i = 0; i < inputs.size(); i++) { + resetInValue(inputs[i], nullptr, i, channels_[i]); + CHECK(inputs[i]); + auto dm = inputs[i]->getDims(); + // inputs format can be different, but ndims must equal + CHECK(i == 0 || dm.size() == inputs[0]->getDims().size()); + CHECK_EQ(bs_, dm[0]); + CHECK_EQ(channels_[i], dm[1]); + if (dm.size() > 2) { + CHECK_EQ(ih_, dm[2]); + CHECK_EQ(iw_, dm[3]); + } + if (inputs[i]->getFormat() == format::nc) { + hasnc = true; + } + if (inputs[i]->getFormat() == format::nChw8c) { + has8c = true; + } + if (inputs[i]->getFormat() == format::nChw16c) { + has16c = true; + } + } + + format outFmt; + if (has16c && oc_ % 16 == 0) { + outFmt = format::nChw16c; + } else if (has8c && oc_ % 8 == 0) { + outFmt = format::nChw8c; + } else if (hasnc) { + CHECK(oh_ == 1 && ow_ == 1); + outFmt = format::nc; + } else { + outFmt = format::nchw; + } + memory::dims outDims = + hasnc ? memory::dims{bs_, oc_} : memory::dims{bs_, oc_, oh_, ow_}; + auto outPD = MKLDNNMatrix::createPrimitiveDesc(outDims, outFmt, engine_); + resetOutValue(out, outPD); +} + +void MKLDNNConcatLayer::resetFwdPD(std::shared_ptr& pd, + std::vector& inputs, + MKLDNNMatrixPtr out) { + std::vector srcPDs; + for (size_t i = 0; i < inputs.size(); i++) { + srcPDs.push_back(inputs[i]->getPrimitiveDesc()); + } + CHECK(out); + pd.reset(new concat::primitive_desc(out->getMemoryDesc(), axis_, srcPDs)); + CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc()); +} + +void MKLDNNConcatLayer::resetFwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + std::vector& inputs, + MKLDNNMatrixPtr& out) { + std::vector srcs; + for (size_t i = 0; i < inputs.size(); i++) { + srcs.push_back(*(inputs[i])); + } + fwd_.reset(new concat(*pd, srcs, *out)); + pipeline.push_back(*fwd_); +} + +void MKLDNNConcatLayer::resetBwdBuffers(std::vector& inputs, + MKLDNNMatrixPtr& out) { + CHECK(outVal_); + resetOutGrad(out, outVal_->getPrimitiveDesc()); + CHECK(out); + + inputs.resize(inputLayers_.size()); + for (size_t i = 0; i < inputs.size(); i++) { + CHECK(inVals_[i]); + resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i); + CHECK_PRIMITIVE_DESC_EQ(inputs[i], inVals_[i]->getPrimitiveDesc()); + } +} + +void MKLDNNConcatLayer::resetBwdPipeline( + std::vector& pipeline, + std::vector>& prims, + std::vector& inputs, + MKLDNNMatrixPtr& out) { + // reset the backward primitives + memory::dims offsets = {0, 0, 0, 0}; + prims.resize(inputs.size()); + CHECK_EQ(inputs.size(), channels_.size()); + for (size_t i = 0; i < inputs.size(); i++) { + auto viewPD = view::primitive_desc( + out->getPrimitiveDesc(), inputs[i]->getDims(), offsets); + auto bwdPD = reorder::primitive_desc(viewPD.dst_primitive_desc(), + inputs[i]->getPrimitiveDesc()); + prims[i].reset(new reorder(bwdPD, *out, *(inputs[i]))); + offsets[axis_] += channels_[i]; + // push to pipeline + pipeline.push_back(*prims[i]); + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNConcatLayer.h b/paddle/gserver/layers/MKLDNNConcatLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..37f3a26c5ed5db10cdba507368874c9557fb75ef --- /dev/null +++ b/paddle/gserver/layers/MKLDNNConcatLayer.h @@ -0,0 +1,96 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "MKLDNNLayer.h" +#include "mkldnn.hpp" + +namespace paddle { + +/** + * @brief A subclass of MKLDNNLayer Concatenate layer. + * + * The config file api is mkldnn_concat + */ +class MKLDNNConcatLayer : public MKLDNNLayer { +protected: + std::vector> bwds_; + // input channel numbers + std::vector channels_; + + // concat_dimension in MKLDNN + // if axis_ == 0, concat batchsize + // if axis_ == 1, concat channel (default) + int axis_; + +public: + explicit MKLDNNConcatLayer(const LayerConfig& config) + : MKLDNNLayer(config), axis_(1) {} + + ~MKLDNNConcatLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void reshape( + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) override; + + void resetFwd(std::vector& pipeline, + std::vector& inputs, + MKLDNNMatrixPtr& out) override; + + void resetBwd(std::vector& pipeline, + std::vector& inputs, + MKLDNNMatrixPtr& out) override; + + void printSizeInfo() override { + CHECK_EQ(channels_.size(), inputLayers_.size()); + for (size_t i = 0; i < channels_.size(); ++i) { + VLOG(MKLDNN_SIZES) << "Input " << i << ", " << inputLayers_[i]->getName() + << ": " << bs_ << ", " << channels_[i] << ", " << ih_ + << ", " << iw_; + } + VLOG(MKLDNN_SIZES) << "Output: " << bs_ << ", " << oc_ << ", " << oh_ + << ", " << ow_; + } + + size_t keepCondition() { + // reset when the total element size of all inputs changed + size_t totalSize = inputLayers_[0]->getOutputValue()->getElementCnt(); + for (size_t i = 1; i < inputLayers_.size(); ++i) { + totalSize += inputLayers_[i]->getOutputValue()->getElementCnt(); + } + return totalSize; + } + +protected: + void resetFwdBuffers(std::vector& inputs, + MKLDNNMatrixPtr& out); + void resetFwdPD(std::shared_ptr& pd, + std::vector& inputs, + MKLDNNMatrixPtr out); + void resetFwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + std::vector& inputs, + MKLDNNMatrixPtr& out); + void resetBwdBuffers(std::vector& inputs, + MKLDNNMatrixPtr& out); + void resetBwdPipeline(std::vector& pipeline, + std::vector>& prims, + std::vector& inputs, + MKLDNNMatrixPtr& out); +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp index 8aa54e0a9efa7adb766cbb6009f6a29410c6ae7d..ab1d0f7b049a349c00c6e23deb37d789382de64f 100644 --- a/paddle/gserver/layers/MKLDNNConvLayer.cpp +++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp @@ -90,7 +90,7 @@ void MKLDNNConvLayer::convertWeightsToPaddle() { } void MKLDNNConvLayer::reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { reshapeInput(bs, ih, iw); // cal output sizes @@ -105,21 +105,17 @@ void MKLDNNConvLayer::reshape( } void MKLDNNConvLayer::resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { resetFwdPD(fwdPD_); - resetFwdBuffers(fwdPD_, in, wgt, bias, out); + resetFwdBuffers(fwdPD_, inputs[0], wgtVal_, biasVal_, out); - resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out); + resetFwdPipeline(pipeline, fwdPD_, inputs[0], wgtVal_, biasVal_, out); } void MKLDNNConvLayer::resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { std::shared_ptr bwdWgtPD; std::shared_ptr bwdDataPD; @@ -128,9 +124,10 @@ void MKLDNNConvLayer::resetBwd(std::vector& pipeline, resetBwdDataPD(bwdDataPD); - resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out); + resetBwdBuffers(bwdWgtPD, bwdDataPD, inputs[0], wgtGrad_, biasGrad_, out); - resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out); + resetBwdPipeline( + pipeline, bwdWgtPD, bwdDataPD, inputs[0], wgtGrad_, biasGrad_, out); } void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) { @@ -236,14 +233,14 @@ void MKLDNNConvLayer::resetBwdWgtPD( loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); // create backward weight using input, output and weight value memory desc - CHECK(inVal_) << "Should have internal input value"; + CHECK(inVals_[0]) << "Should have internal input value"; CHECK(outVal_) << "Should have internal output value"; CHECK(wgtVal_) << "Should have weight value"; algorithm algo = algorithm::convolution_direct; padding_kind padKind = padding_kind::zero; auto bwdWgtDesc = biasVal_ != nullptr ? conv_bwdWgt::desc(algo, - inVal_->getMemoryDesc(), + inVals_[0]->getMemoryDesc(), wgtVal_->getMemoryDesc(), biasVal_->getMemoryDesc(), outVal_->getMemoryDesc(), @@ -252,7 +249,7 @@ void MKLDNNConvLayer::resetBwdWgtPD( padR, padKind) : conv_bwdWgt::desc(algo, - inVal_->getMemoryDesc(), + inVals_[0]->getMemoryDesc(), wgtVal_->getMemoryDesc(), outVal_->getMemoryDesc(), strides, @@ -260,7 +257,7 @@ void MKLDNNConvLayer::resetBwdWgtPD( padR, padKind); pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_)); - CHECK_PRIMITIVE_DESC_EQ(inVal_, pd->src_primitive_desc()); + CHECK_PRIMITIVE_DESC_EQ(inVals_[0], pd->src_primitive_desc()); CHECK_PRIMITIVE_DESC_EQ( outVal_, pd->diff_dst_primitive_desc(), @@ -280,12 +277,12 @@ void MKLDNNConvLayer::resetBwdDataPD( memory::dims wgtDims, biasDims, strides, dilations, padL, padR; loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); - CHECK(inVal_) << "Should have internal input value"; + CHECK(inVals_[0]) << "Should have internal input value"; CHECK(outVal_) << "Should have internal output value"; // create backward data using input and output value memory desc // but using weight memory desc with any format auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct, - inVal_->getMemoryDesc(), + inVals_[0]->getMemoryDesc(), MKLDNNMatrix::createMemoryDesc(wgtDims), outVal_->getMemoryDesc(), strides, @@ -294,7 +291,7 @@ void MKLDNNConvLayer::resetBwdDataPD( padding_kind::zero); pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_)); CHECK_PRIMITIVE_DESC_EQ( - inVal_, + inVals_[0], pd->diff_src_primitive_desc(), "primitive desc of in value and grad should be equal"); CHECK_PRIMITIVE_DESC_EQ( @@ -346,12 +343,12 @@ void MKLDNNConvLayer::resetBwdPipeline( MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - CHECK(inVal_); + CHECK(inVals_[0]); // add bwdWgt handle if (bias) { - bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias)); + bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVals_[0], *out, *wgt, *bias)); } else { - bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt)); + bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVals_[0], *out, *wgt)); } pipeline.push_back(*bwdWgt_); diff --git a/paddle/gserver/layers/MKLDNNConvLayer.h b/paddle/gserver/layers/MKLDNNConvLayer.h index 9c69136684e5f9005860b476ec6ed1bbc9ceff6c..3e754a0e65771879e836c13d63d5a5c8be3a699a 100644 --- a/paddle/gserver/layers/MKLDNNConvLayer.h +++ b/paddle/gserver/layers/MKLDNNConvLayer.h @@ -69,18 +69,14 @@ public: const ParameterMap& parameterMap) override; void reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) override; void resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void updateWeights(const UpdateCallback& callback) override; @@ -107,48 +103,26 @@ protected: mkldnn::memory::dims& padL, mkldnn::memory::dims& padR); - /** - * reset the forward primitive descriptor. - */ void resetFwdPD(std::shared_ptr& pd); - /** - * reset the MKLDNNMatrix buffers used in forward. - */ void resetFwdBuffers(std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - /** - * reset the forward pipeline. - */ void resetFwdPipeline(std::vector& pipeline, std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - - /** - * reset the backward weight primitive descriptor. - */ void resetBwdWgtPD(std::shared_ptr& pd); - /** - * reset the backward data primitive descriptor. - */ void resetBwdDataPD(std::shared_ptr& pd); - /** - * reset the MKLDNNMatrix buffers used in backward. - */ void resetBwdBuffers(std::shared_ptr& wgtPD, std::shared_ptr& dataPD, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - /** - * reset the backward pipeline. - */ void resetBwdPipeline(std::vector& pipeline, std::shared_ptr& wgtPD, std::shared_ptr& dataPD, diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp index 350ec65fffbc73c3a6e4245f763f4c6aa868f574..c8778bdd077c4b6d170140be92bdcdd7e8e81bb2 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.cpp +++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp @@ -74,7 +74,7 @@ void MKLDNNFcLayer::convertWeightsToPaddle() { } void MKLDNNFcLayer::reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { reshapeInput(bs, ih, iw); CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize()); @@ -87,32 +87,29 @@ void MKLDNNFcLayer::reshape( } void MKLDNNFcLayer::resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { - resetFwdBuffers(in, wgt, bias, out); + resetFwdBuffers(inputs[0], wgtVal_, biasVal_, out); - resetFwdPD(fwdPD_, in, wgt, bias, out); + resetFwdPD(fwdPD_, inputs[0], wgtVal_, biasVal_, out); - resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out); + resetFwdPipeline(pipeline, fwdPD_, inputs[0], wgtVal_, biasVal_, out); } void MKLDNNFcLayer::resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { std::shared_ptr bwdWgtPD; std::shared_ptr bwdDataPD; - resetBwdBuffers(in, wgt, bias, out); + resetBwdBuffers(inputs[0], wgtGrad_, biasGrad_, out); - resetBwdWgtPD(bwdWgtPD, wgt, bias, out); + resetBwdWgtPD(bwdWgtPD, wgtGrad_, biasGrad_, out); - resetBwdDataPD(bwdDataPD, in, out); + resetBwdDataPD(bwdDataPD, inputs[0], out); - resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out); + resetBwdPipeline( + pipeline, bwdWgtPD, bwdDataPD, inputs[0], wgtGrad_, biasGrad_, out); } void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) { @@ -193,9 +190,9 @@ void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - CHECK(inVal_ && outVal_); + CHECK(inVals_[0] && outVal_); resetOutGrad(out, outVal_->getPrimitiveDesc()); - resetInGrad(in, inVal_->getPrimitiveDesc()); + resetInGrad(in, inVals_[0]->getPrimitiveDesc()); CHECK(wgtVal_); resetWithMatrix(wgt, weight_->getWGrad(), wgtVal_->getPrimitiveDesc()); @@ -212,14 +209,15 @@ void MKLDNNFcLayer::resetBwdWgtPD( MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - CHECK(inVal_); - fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(), - wgt->getMemoryDesc(), - bias->getMemoryDesc(), - out->getMemoryDesc()) - : fc_bwdWgt::desc(inVal_->getMemoryDesc(), - wgt->getMemoryDesc(), - out->getMemoryDesc()); + CHECK(inVals_[0]); + fc_bwdWgt::desc bwdWgtDesc = + bias ? fc_bwdWgt::desc(inVals_[0]->getMemoryDesc(), + wgt->getMemoryDesc(), + bias->getMemoryDesc(), + out->getMemoryDesc()) + : fc_bwdWgt::desc(inVals_[0]->getMemoryDesc(), + wgt->getMemoryDesc(), + out->getMemoryDesc()); pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_)); } @@ -245,11 +243,11 @@ void MKLDNNFcLayer::resetBwdPipeline( MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - CHECK(inVal_); + CHECK(inVals_[0]); if (bias) { - bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias)); + bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVals_[0], *out, *wgt, *bias)); } else { - bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt)); + bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVals_[0], *out, *wgt)); } pipeline.push_back(*bwdWgt_); diff --git a/paddle/gserver/layers/MKLDNNFcLayer.h b/paddle/gserver/layers/MKLDNNFcLayer.h index ee861763ff3dc10ddb4c119358b80dbe1614aecb..283dc9b540531f6009ae6e2485b7c12d4e5cf2e3 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.h +++ b/paddle/gserver/layers/MKLDNNFcLayer.h @@ -52,18 +52,14 @@ public: const ParameterMap& parameterMap) override; void reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) override; void resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void updateWeights(const UpdateCallback& callback) override; @@ -73,11 +69,6 @@ public: void convertWeightsToPaddle() override; protected: - /** - * Forward functions: reset buffers(input, output, weight and bias), - * reset primitive descriptor, - * reset pipeline. - */ void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, @@ -93,13 +84,6 @@ protected: MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - - /** - * Backward functions: reset buffers(input, output, weight and bias), - * reset primitive descriptor for backward weight, - * reset primitive descriptor for backward data, - * reset pipeline. - */ void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, diff --git a/paddle/gserver/layers/MKLDNNLayer.cpp b/paddle/gserver/layers/MKLDNNLayer.cpp index e75ac5ba4647a8267b7bc189893bd7adb5c3053f..28969d01a13b7831794cef856af11ad2ec01c31e 100644 --- a/paddle/gserver/layers/MKLDNNLayer.cpp +++ b/paddle/gserver/layers/MKLDNNLayer.cpp @@ -21,8 +21,8 @@ namespace paddle { bool MKLDNNLayer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { - CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." - << "Please set WITH_MKLDNN=ON " + CHECK(FLAGS_use_mkldnn) << "MKLDNNLayers only support use_mkldnn." + << "Please set WITH_MKL=ON " << "and set use_mkldnn=True"; CHECK(!useGpu_) << "Do not support GPU yet"; @@ -48,31 +48,20 @@ void MKLDNNLayer::forward(PassType passType) { REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); CHECK(!inputLayers_.empty()); copySeqInfoToOutputs(); - size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt(); - if (inputElemenCnt_ != elemenCnt) { + if (condition_ != keepCondition()) { VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward"; - // reset when input total sizes changed, not only the batchsize - inputElemenCnt_ = elemenCnt; - pipelineFwd_.clear(); + condition_ = keepCondition(); reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); - // all cpu device output grad or value share output's + printSizeInfo(); + // the output_.value and output_.grad are shared with CPU device shareCPUDevice(); - resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); - // MKLDNNLayer output value should be MKLDNNMatrix - // so external output value is necessary. - // Then external input value is not necessary, - // since input may be mkldnn internal buffer. - CHECK(extOutVal_) << "external output value is necessary"; - output_.value = std::dynamic_pointer_cast(extOutVal_); - CHECK(inVal_ && outVal_) << "internal memories are necessary"; - if (cvtInVal_) { - pipelineFwd_.insert(pipelineFwd_.begin(), *cvtInVal_); - } - if (cvtOutVal_) { - pipelineFwd_.push_back(*cvtOutVal_); - } + pipelineFwd_.clear(); + inVals_.resize(inputLayers_.size(), nullptr); + extInVals_.resize(inputLayers_.size(), nullptr); + cvtInVals_.resize(inputLayers_.size(), nullptr); + resetFwd(pipelineFwd_, inVals_, outVal_); + prepareValueConversions(pipelineFwd_); convertWeightsFromPaddle(); - printSizeInfo(); printValueFormat(); needResetBwd_ = true; } @@ -80,8 +69,8 @@ void MKLDNNLayer::forward(PassType passType) { if (inputLayers_[0]->getType() == "data" && inputLayers_.size() == 1) { // Update input value data when input layer is "data" type, // since the input value data address might be changed. - CHECK(extInVal_); - extInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); + CHECK(extInVals_[0]); + extInVals_[0]->setData(getInputValue(0, CPU_DEVICE)->getData()); } if (!outputOnlyMKLDNN_) { @@ -99,22 +88,13 @@ void MKLDNNLayer::backward(const UpdateCallback& callback) { if (needResetBwd_) { VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward"; pipelineBwd_.clear(); + inGrads_.resize(inputLayers_.size(), nullptr); + extInGrads_.resize(inputLayers_.size(), nullptr); + cvtInGrads_.resize(inputLayers_.size(), nullptr); pipelineMergeGrad_.clear(); mergeGrad_ = nullptr; - resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); - // external output grad is not necessary - // since output may be mkldnn internal buffer or merge them directly. - CHECK(outGrad_) << "internal output grad is necessary"; - if (extOutGrad_) { - CHECK_EQ(extOutGrad_->getData(), output_.grad->getData()) - << "the external buffer should share the same data with output_.grad"; - } - if (cvtOutGrad_) { - pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_); - } - if (cvtInGrad_) { - pipelineBwd_.push_back(*cvtInGrad_); - } + resetBwd(pipelineBwd_, inGrads_, outGrad_); + prepareGradConversions(pipelineBwd_); printGradFormat(); needResetBwd_ = false; } @@ -138,8 +118,11 @@ void MKLDNNLayer::backward(const UpdateCallback& callback) { } } -void MKLDNNLayer::reshapeInput(int& batchsize, int& height, int& width) { - const Argument& input = inputLayers_[0]->getOutput(); +void MKLDNNLayer::reshapeInput(int& batchsize, + int& height, + int& width, + size_t idx) { + const Argument& input = inputLayers_[idx]->getOutput(); batchsize = input.getBatchSize(); int h = input.getFrameHeight(); int w = input.getFrameWidth(); @@ -173,27 +156,30 @@ void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn, void MKLDNNLayer::resetInValue( MKLDNNMatrixPtr& in, const std::shared_ptr& intPD, - size_t inputIdx) { - cvtInVal_ = nullptr; - extInVal_ = nullptr; + size_t idx, + int inputChannel) { + cvtInVals_[idx] = nullptr; + extInVals_[idx] = nullptr; in = nullptr; - CHECK_GT(bs_ * ic_ * ih_ * iw_, 0); + inputChannel = inputChannel == 0 ? ic_ : inputChannel; + CHECK_GT(bs_ * inputChannel * ih_ * iw_, 0); auto extPD = MKLDNNMatrix::createPrimitiveDesc( - {bs_, ic_, ih_, iw_}, format::nchw, engine_); - const MatrixPtr& inMat = inputLayers_[inputIdx]->getOutputValue(); - extInVal_ = std::dynamic_pointer_cast(inMat); - CHECK_EQ(inputIsOnlyMKLDNN(), extInVal_ != nullptr); - if (extInVal_ == nullptr || extInVal_->getFormat() == format::nc) { - extInVal_ = MKLDNNMatrix::create(extPD, inMat); + {bs_, inputChannel, ih_, iw_}, format::nchw, engine_); + const MatrixPtr& inMat = inputLayers_[idx]->getOutputValue(); + extInVals_[idx] = std::dynamic_pointer_cast(inMat); + CHECK_EQ(inputIsOnlyMKLDNN(), extInVals_[idx] != nullptr); + if (extInVals_[idx] == nullptr || + extInVals_[idx]->getFormat() == format::nc) { + extInVals_[idx] = MKLDNNMatrix::create(extPD, inMat); } - in = extInVal_; + in = extInVals_[idx]; if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) { return; } // need create reorder in = MKLDNNMatrix::create(*intPD); - cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in); - CHECK(cvtInVal_) << "should not be emptry"; + cvtInVals_[idx] = MKLDNNMatrix::createReorder(extInVals_[idx], in); + CHECK(cvtInVals_[idx]) << "should not be emptry"; } void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out, @@ -215,11 +201,11 @@ void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out, void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in, memory::primitive_desc intPD, - size_t inputIdx) { - cvtInGrad_ = nullptr; - extInGrad_ = nullptr; + size_t idx) { + cvtInGrads_[idx] = nullptr; + extInGrads_[idx] = nullptr; in = nullptr; - LayerPtr& input = inputLayers_[inputIdx]; + LayerPtr& input = inputLayers_[idx]; if (input->getOutputGrad() == nullptr) { // no need input grad return; @@ -234,23 +220,25 @@ void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in, in = MKLDNNMatrix::create(intPD, inMat); Argument& arg = input->getOutput(this->getName()); arg.grad = std::dynamic_pointer_cast(in); - CHECK_PRIMITIVE_DESC_EQ(inVal_, intPD); + CHECK_PRIMITIVE_DESC_EQ(inVals_[idx], intPD); if (inputIsOnlyMKLDNN()) { return; } - extInGrad_ = in; - if (isPaddleFormat(extInGrad_->getFormat())) { + extInGrads_[idx] = in; + if (isPaddleFormat(extInGrads_[idx]->getFormat())) { return; } // need create reorder - CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat())) + CHECK(extInVals_[idx] != nullptr && + isPaddleFormat(extInVals_[idx]->getFormat())) << "should have external input value and the format must be nchw(nc)"; - extInGrad_ = MKLDNNMatrix::create(extInVal_->getPrimitiveDesc(), inMat); - CHECK_PRIMITIVE_DESC_EQ(inVal_, intPD); + extInGrads_[idx] = + MKLDNNMatrix::create(extInVals_[idx]->getPrimitiveDesc(), inMat); + CHECK_PRIMITIVE_DESC_EQ(inVals_[idx], intPD); in = MKLDNNMatrix::create(intPD); - cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_); - CHECK(cvtInGrad_); + cvtInGrads_[idx] = MKLDNNMatrix::createReorder(in, extInGrads_[idx]); + CHECK(cvtInGrads_[idx]); } void MKLDNNLayer::resetOutGrad(MKLDNNMatrixPtr& out, diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index 7479c34c92b5231b2521493bc631474d4efd4224..8d1271da2159cc994fef6fa3a1f4719fa21ca4d0 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -34,15 +34,16 @@ typedef std::shared_ptr MKLDNNLayerPtr; */ class MKLDNNLayer : public Layer { protected: - // input value element count - size_t inputElemenCnt_; // batch size int bs_; + // their sizes are always from the first input layer // input image channel, height and width int ic_, ih_, iw_; // output image channel, height and width int oc_, oh_, ow_; + // the condition that forward need be reset + size_t condition_; // backward also need reset after reset forward handle bool needResetBwd_; @@ -67,18 +68,18 @@ protected: * When all layers are mkldnn layers, they could save internal data. */ // below MKLDNNMatrix buffers are all internal buffers - MKLDNNMatrixPtr inVal_; - MKLDNNMatrixPtr inGrad_; + std::vector inVals_; + std::vector inGrads_; MKLDNNMatrixPtr outVal_; MKLDNNMatrixPtr outGrad_; // below are external value and grad - MKLDNNMatrixPtr extInVal_; - MKLDNNMatrixPtr extInGrad_; + std::vector extInVals_; + std::vector extInGrads_; MKLDNNMatrixPtr extOutVal_; MKLDNNMatrixPtr extOutGrad_; // convert handle between external and internal buffers - std::shared_ptr cvtInVal_; - std::shared_ptr cvtInGrad_; + std::vector> cvtInVals_; + std::vector> cvtInGrads_; std::shared_ptr cvtOutVal_; std::shared_ptr cvtOutGrad_; @@ -102,14 +103,7 @@ protected: public: explicit MKLDNNLayer(const LayerConfig& config) : Layer(config), - inputElemenCnt_(0), - bs_(0), - ic_(0), - ih_(0), - iw_(0), - oc_(0), - oh_(0), - ow_(0), + condition_(0), needResetBwd_(true), outputOnlyMKLDNN_(false), engine_(mkldnn::engine::cpu, 0), @@ -125,31 +119,28 @@ public: virtual void backward(const UpdateCallback& callback); /** - * reshape the input image sizes - * and reset output image and buffer size - * output channel can not be changed + * reshape the input and output channels and image sizes + * and reset output buffer size */ virtual void reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0; + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) = 0; /** * reset the mkldnn forward primitve and memories * only would be called when input size changes + * weight and bias buffers should be coverd by child class itself */ virtual void resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) = 0; /** * reset the mkldnn backward primitve and memories * only would be called when needed + * weight and bias buffers should be coverd by child class itself */ virtual void resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) = 0; /** @@ -175,10 +166,19 @@ public: void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); } protected: + /** + * Some layers may have different condition to reset the forward. + * The function returns the condition that do not need reset forward. + */ + inline virtual size_t keepCondition() { + // reset when the first input element size changed, not only the batchsize + return inputLayers_[0]->getOutputValue()->getElementCnt(); + } + /** * reshape the input image sizes and input batchsize */ - void reshapeInput(int& batchsize, int& height, int& width); + void reshapeInput(int& batchsize, int& height, int& width, size_t idx = 0); /** * reshape output image sizes @@ -196,11 +196,13 @@ protected: /** * reset input value from input MKLDNNMatrix and internal primitive desc. * reset both internal and external buffer and create reorder if necessary. + * input channel may be different in concat. */ void resetInValue( MKLDNNMatrixPtr& in, const std::shared_ptr& intPD = nullptr, - size_t inputIdx = 0); + size_t idx = 0, + int inputChannel = 0); /** * reset output value from internal primitive desc. @@ -215,7 +217,7 @@ protected: */ void resetInGrad(MKLDNNMatrixPtr& in, mkldnn::memory::primitive_desc intPD, - size_t inputIdx = 0); + size_t idx = 0); /** * reset output grad from internal primitive desc. @@ -293,17 +295,19 @@ protected: * print the mkldnn memory format of value */ virtual void printValueFormat() { - if (extInVal_) { - VLOG(MKLDNN_FMTS) << extInVal_->getFormat() << " >>> "; - } - if (inVal_) { - VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>>"; + for (size_t i = 0; i < inVals_.size(); ++i) { + if (!inVals_[i]) { + continue; + } + VLOG(MKLDNN_FMTS) << "Input " << i << ", " << inputLayers_[i]->getName() + << ": " << (extInVals_[i] ? extInVals_[i]->getFormat() + : inVals_[i]->getFormat()) + << " >>> " << inVals_[i]->getFormat() << " >>>"; } if (outVal_) { - VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> "; - } - if (extOutVal_) { - VLOG(MKLDNN_FMTS) << extOutVal_->getFormat(); + VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> " + << (extOutVal_ ? extOutVal_->getFormat() + : outVal_->getFormat()); } if (wgtVal_) { VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat(); @@ -317,17 +321,19 @@ protected: * print the mkldnn memory format of grad */ virtual void printGradFormat() { - if (extOutGrad_) { - VLOG(MKLDNN_FMTS) << extOutGrad_->getFormat(); - } if (outGrad_) { - VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< "; + VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< " + << (extOutGrad_ ? extOutGrad_->getFormat() + : outGrad_->getFormat()); } - if (inGrad_) { - VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<<"; - } - if (extInGrad_) { - VLOG(MKLDNN_FMTS) << extInGrad_->getFormat() << " <<< "; + for (size_t i = 0; i < inGrads_.size(); ++i) { + if (!inGrads_[i]) { + continue; + } + VLOG(MKLDNN_FMTS) << "Input " << i << ", " << inputLayers_[i]->getName() + << ": " << (extInGrads_[i] ? extInGrads_[i]->getFormat() + : inGrads_[i]->getFormat()) + << " <<< " << inGrads_[i]->getFormat() << " <<<"; } if (wgtGrad_) { VLOG(MKLDNN_FMTS) << "Weight grad format: " << wgtGrad_->getFormat(); @@ -434,6 +440,41 @@ private: outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims; } } + + void prepareValueConversions(std::vector& pipeline) { + // MKLDNNLayer output value should be MKLDNNMatrix + // so external output value is necessary. + // Then external input value is not necessary, + // since input may be mkldnn internal buffer. + CHECK(extOutVal_) << "external output value is necessary"; + output_.value = std::dynamic_pointer_cast(extOutVal_); + CHECK(inVals_[0] && outVal_) << "internal memories are necessary"; + for (size_t i = 0; i < cvtInVals_.size(); ++i) { + if (cvtInVals_[i]) { + pipeline.insert(pipeline.begin(), *cvtInVals_[i]); + } + } + if (cvtOutVal_) { + pipeline.push_back(*cvtOutVal_); + } + } + void prepareGradConversions(std::vector& pipeline) { + // external output grad is not necessary + // since output may be mkldnn internal buffer or merge them directly. + CHECK(outGrad_) << "internal output grad is necessary"; + if (extOutGrad_) { + CHECK_EQ(extOutGrad_->getData(), output_.grad->getData()) + << "the external buffer should share the same data with output_.grad"; + } + if (cvtOutGrad_) { + pipeline.insert(pipeline.begin(), *cvtOutGrad_); + } + for (size_t i = 0; i < cvtInGrads_.size(); ++i) { + if (cvtInGrads_[i]) { + pipeline.push_back(*cvtInGrads_[i]); + } + } + } }; } // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.cpp b/paddle/gserver/layers/MKLDNNPoolLayer.cpp index a18c455beab96ef25b5545281bae4d48cec98d9e..a8252593c8fbb8013ab909e74a057850ba54bcaa 100644 --- a/paddle/gserver/layers/MKLDNNPoolLayer.cpp +++ b/paddle/gserver/layers/MKLDNNPoolLayer.cpp @@ -58,10 +58,11 @@ bool MKLDNNPoolLayer::init(const LayerMap& layerMap, } void MKLDNNPoolLayer::reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { reshapeInput(bs, ih, iw); // ic_ and oc can not be changed - CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic) + CHECK_EQ((size_t)ic, + inputLayers_[0]->getOutputValue()->getElementCnt() / bs / ih / iw) << "Input channel can not be changed"; // cal output sizes @@ -74,29 +75,25 @@ void MKLDNNPoolLayer::reshape( } void MKLDNNPoolLayer::resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { - resetFwdBuffers(in, out); + resetFwdBuffers(inputs[0], out); - resetFwdPD(fwdPD_, in, out); + resetFwdPD(fwdPD_, inputs[0], out); - resetFwdPipeline(pipeline, fwdPD_, in, out); + resetFwdPipeline(pipeline, fwdPD_, inputs[0], out); } void MKLDNNPoolLayer::resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) { std::shared_ptr pd; - resetBwdBuffers(in, out); + resetBwdBuffers(inputs[0], out); - resetBwdPD(pd, in, out); + resetBwdPD(pd, inputs[0], out); - resetBwdPipeline(pipeline, pd, in, out); + resetBwdPipeline(pipeline, pd, inputs[0], out); } void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, @@ -151,9 +148,9 @@ void MKLDNNPoolLayer::resetFwdPipeline( void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { - CHECK(inVal_ && outVal_); + CHECK(inVals_[0] && outVal_); resetOutGrad(out, outVal_->getPrimitiveDesc()); - resetInGrad(in, inVal_->getPrimitiveDesc()); + resetInGrad(in, inVals_[0]->getPrimitiveDesc()); } void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr& pd, diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.h b/paddle/gserver/layers/MKLDNNPoolLayer.h index c5ec87828bfb28b4502b4ec6b47287089c514204..dad60156f0ef7caa059ff6c70d1040e7e34c938f 100644 --- a/paddle/gserver/layers/MKLDNNPoolLayer.h +++ b/paddle/gserver/layers/MKLDNNPoolLayer.h @@ -53,18 +53,14 @@ public: const ParameterMap& parameterMap) override; void reshape( - int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) override; void resetFwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, + std::vector& inputs, MKLDNNMatrixPtr& out) override; void printSizeInfo() override { @@ -75,11 +71,6 @@ public: } protected: - /** - * Forward functions: reset buffers(input, output), - * reset primitive descriptor, - * reset pipeline. - */ void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); void resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, @@ -88,12 +79,6 @@ protected: std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); - - /** - * Backward functions: reset buffers(input, output), - * reset primitive descriptor, - * reset pipeline. - */ void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); void resetBwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr& in, diff --git a/paddle/gserver/tests/CMakeLists.txt b/paddle/gserver/tests/CMakeLists.txt index 4bea348f637f39444e8aad89278e6366ecd73b1d..c295ea19c9ccb3d05c509a41925d2c36efdba8ef 100644 --- a/paddle/gserver/tests/CMakeLists.txt +++ b/paddle/gserver/tests/CMakeLists.txt @@ -29,7 +29,7 @@ gserver_test(test_KmaxSeqScore) gserver_test(test_Expand) gserver_test(test_MaxPoolingWithMaskOutput) -########## test_Mkldnn layers and activations ########## +########## test_MKLDNN layers and activations ########## if(WITH_MKLDNN) add_unittest_without_exec(test_MKLDNN test_MKLDNN.cpp @@ -62,17 +62,6 @@ if(NOT WITH_DOUBLE AND NOT MOBILE_INFERENCE) endif() if(NOT MOBILE_INFERENCE) -################### test_ProtoDataProvider ############ - add_unittest_without_exec(test_ProtoDataProvider - test_ProtoDataProvider.cpp) - - # test_ProtoDataProvider will mkdir as same name, - # so if WORKING_DIRECTORY is default directory, then - # mkdir will get error. - add_test(NAME test_ProtoDataProvider - COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoDataProvider - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) - ################## test_Evaluator ####################### add_unittest(test_Evaluator test_Evaluator.cpp) @@ -110,3 +99,24 @@ add_test(NAME test_PyDataProvider2 COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/paddle/gserver/tests:${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider2 WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle ) + +################# test_CompareSparse ################## +add_unittest_without_exec(test_CompareSparse + test_CompareSparse.cpp) +if(NOT ON_TRAVIS) + add_test(NAME test_CompareSparse + COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d + ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests + ./.set_port.sh -p port -n 6 + ${CMAKE_CURRENT_BINARY_DIR}/test_CompareSparse + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) +endif() + +################ test_CompareTwoNets ###################### +add_unittest_without_exec(test_CompareTwoNets + test_CompareTwoNets.cpp) +add_test(NAME test_CompareTwoNets + COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d + ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests + ${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoNets + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) diff --git a/paddle/gserver/tests/MKLDNNTester.h b/paddle/gserver/tests/MKLDNNTester.h index ca55a45bc77b4e171619ab788d7c7dfeefcd036a..9d61533c0b6f20c41130d7b7c15ad93392b2d24c 100644 --- a/paddle/gserver/tests/MKLDNNTester.h +++ b/paddle/gserver/tests/MKLDNNTester.h @@ -23,7 +23,7 @@ limitations under the License. */ namespace paddle { /** - * @brief test the functionality of Mkldnnlayers + * @brief test the functionality of MKLDNNlayers and MKLDNNActivations * refer to paddle original function */ class MKLDNNTester { diff --git a/paddle/gserver/tests/proto_files.txt b/paddle/gserver/tests/proto_files.txt deleted file mode 100644 index 691b38c7940bd21360eb00384e060554aa4b3e22..0000000000000000000000000000000000000000 --- a/paddle/gserver/tests/proto_files.txt +++ /dev/null @@ -1,2 +0,0 @@ -./test_ProtoDataProvider/data1.bin -./test_ProtoDataProvider/data2.bin diff --git a/paddle/gserver/tests/proto_files_compressed.txt b/paddle/gserver/tests/proto_files_compressed.txt deleted file mode 100644 index 7413c81e185d02e0d03aefa06480b9722357c5eb..0000000000000000000000000000000000000000 --- a/paddle/gserver/tests/proto_files_compressed.txt +++ /dev/null @@ -1,2 +0,0 @@ -./test_ProtoDataProvider/data1.bin.gz -./test_ProtoDataProvider/data2.bin.gz diff --git a/paddle/gserver/tests/sequence_lstm.conf b/paddle/gserver/tests/sequence_lstm.conf new file mode 100644 index 0000000000000000000000000000000000000000..f49a827f22edce056eaf9903e99b732cab7f3784 --- /dev/null +++ b/paddle/gserver/tests/sequence_lstm.conf @@ -0,0 +1,64 @@ +#!/usr/bin/env python +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +######################## data source ################################ +dict_path = 'gserver/tests/Sequence/tour_dict_phrase.dict' +dict_file = dict() +for line_count, line in enumerate(open(dict_path, "r")): + dict_file[line.strip()] = line_count + +define_py_data_sources2( + train_list='gserver/tests/Sequence/train.list', + test_list=None, + module='sequenceGen', + obj='process', + args={"dict_file": dict_file}) + +settings(batch_size=5) +######################## network configure ################################ +dict_dim = len(open(dict_path, 'r').readlines()) +word_dim = 128 +hidden_dim = 256 +label_dim = 3 +sparse_update = get_config_arg("sparse_update", bool, False) + +data = data_layer(name="word", size=dict_dim) + +emb = embedding_layer( + input=data, + size=word_dim, + param_attr=ParamAttr(sparse_update=sparse_update)) + +with mixed_layer(size=hidden_dim * 4) as lstm_input: + lstm_input += full_matrix_projection(input=emb) + +lstm = lstmemory( + input=lstm_input, + act=TanhActivation(), + gate_act=SigmoidActivation(), + state_act=TanhActivation()) + +lstm_last = last_seq(input=lstm) + +with mixed_layer( + size=label_dim, act=SoftmaxActivation(), bias_attr=True) as output: + output += full_matrix_projection(input=lstm_last) + +outputs( + classification_cost( + input=output, label=data_layer( + name="label", size=1))) diff --git a/paddle/gserver/tests/sequence_recurrent.py b/paddle/gserver/tests/sequence_recurrent.py new file mode 100644 index 0000000000000000000000000000000000000000..4895df186bfecc5cb5263676a9cd5bac5039d565 --- /dev/null +++ b/paddle/gserver/tests/sequence_recurrent.py @@ -0,0 +1,56 @@ +#!/usr/bin/env python +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +######################## data source ################################ +dict_path = 'gserver/tests/Sequence/tour_dict_phrase.dict' +dict_file = dict() +for line_count, line in enumerate(open(dict_path, "r")): + dict_file[line.strip()] = line_count + +define_py_data_sources2( + train_list='gserver/tests/Sequence/train.list', + test_list=None, + module='sequenceGen', + obj='process', + args={"dict_file": dict_file}) + +settings(batch_size=5) +######################## network configure ################################ +dict_dim = len(open(dict_path, 'r').readlines()) +word_dim = 128 +hidden_dim = 128 +label_dim = 3 + +# This config is designed to be equivalent with sequence_recurrent_group.py + +data = data_layer(name="word", size=dict_dim) + +emb = embedding_layer( + input=data, size=word_dim, param_attr=ParamAttr(name="emb")) + +recurrent = recurrent_layer(input=emb, bias_attr=False, act=SoftmaxActivation()) + +recurrent_last = last_seq(input=recurrent) + +with mixed_layer( + size=label_dim, act=SoftmaxActivation(), bias_attr=True) as output: + output += full_matrix_projection(input=recurrent_last) + +outputs( + classification_cost( + input=output, label=data_layer( + name="label", size=1))) diff --git a/paddle/gserver/tests/sequence_recurrent_group.py b/paddle/gserver/tests/sequence_recurrent_group.py new file mode 100644 index 0000000000000000000000000000000000000000..a1d54542e3bc4e89f70d31d5e89c0f44953c9f90 --- /dev/null +++ b/paddle/gserver/tests/sequence_recurrent_group.py @@ -0,0 +1,70 @@ +#!/usr/bin/env python +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +######################## data source ################################ +dict_path = 'gserver/tests/Sequence/tour_dict_phrase.dict' +dict_file = dict() +for line_count, line in enumerate(open(dict_path, "r")): + dict_file[line.strip()] = line_count + +define_py_data_sources2( + train_list='gserver/tests/Sequence/train.list', + test_list=None, + module='sequenceGen', + obj='process', + args={"dict_file": dict_file}) + +settings(batch_size=5) +######################## network configure ################################ +dict_dim = len(open(dict_path, 'r').readlines()) +word_dim = 128 +hidden_dim = 128 +label_dim = 3 + +# This config is designed to be equivalent with sequence_recurrent.py + +data = data_layer(name="word", size=dict_dim) + +emb = embedding_layer( + input=data, size=word_dim, param_attr=ParamAttr(name="emb")) + + +def step(y): + mem = memory(name="rnn_state", size=hidden_dim) + with mixed_layer( + name="rnn_state", + size=hidden_dim, + bias_attr=False, + act=SoftmaxActivation()) as out: + out += identity_projection(input=y) + out += full_matrix_projection( + input=mem, param_attr=ParamAttr(name="___recurrent_layer_0__")) + return out + + +recurrent = recurrent_group(name="rnn", step=step, input=emb) + +recurrent_last = last_seq(input=recurrent) + +with mixed_layer( + size=label_dim, act=SoftmaxActivation(), bias_attr=True) as output: + output += full_matrix_projection(input=recurrent_last) + +outputs( + classification_cost( + input=output, label=data_layer( + name="label", size=1))) diff --git a/paddle/trainer/tests/test_CompareSparse.cpp b/paddle/gserver/tests/test_CompareSparse.cpp similarity index 98% rename from paddle/trainer/tests/test_CompareSparse.cpp rename to paddle/gserver/tests/test_CompareSparse.cpp index 5f1834bd730375fc10762fc19788d0c693f8e752..c6e07650fc4805a25baf38b9059f6c996d00cafc 100644 --- a/paddle/trainer/tests/test_CompareSparse.cpp +++ b/paddle/gserver/tests/test_CompareSparse.cpp @@ -22,8 +22,7 @@ limitations under the License. */ using namespace paddle; // NOLINT using namespace std; // NOLINT -static const string& configFile1 = - "trainer/tests/sample_trainer_config_compare_sparse.conf"; +static const string& configFile1 = "gserver/tests/sequence_lstm.conf"; DECLARE_bool(use_gpu); DECLARE_string(config); diff --git a/paddle/trainer/tests/test_CompareTwoNets.cpp b/paddle/gserver/tests/test_CompareTwoNets.cpp similarity index 95% rename from paddle/trainer/tests/test_CompareTwoNets.cpp rename to paddle/gserver/tests/test_CompareTwoNets.cpp index 94f65e545d116c802fb4877dc14f07aaaf83a4fb..801d9607565910b1f7f68a9c4532de5877e44f30 100644 --- a/paddle/trainer/tests/test_CompareTwoNets.cpp +++ b/paddle/gserver/tests/test_CompareTwoNets.cpp @@ -30,8 +30,6 @@ DECLARE_bool(use_gpu); DECLARE_string(config); DECLARE_string(nics); -DEFINE_string(config_file_a, "", "config of one network to compare"); -DEFINE_string(config_file_b, "", "config of another network to compare"); DEFINE_bool(need_high_accuracy, false, "whether need to run in double accuracy"); @@ -42,6 +40,10 @@ DEFINE_double( DECLARE_bool(thread_local_rand_use_global_seed); DECLARE_int32(seed); +static const string& config_file_a = "gserver/tests/sequence_recurrent.py"; +static const string& config_file_b = + "gserver/tests/sequence_recurrent_group.py"; + struct ComData { vector outArgs; vector parameters; @@ -66,6 +68,7 @@ void calcGradient(ComData& data, const string configFile) { DataBatch dataBatch; int32_t batchSize = trainer.getConfig().opt_config().batch_size(); + trainer.getDataProvider()->reset(); trainer.getDataProvider()->setSkipShuffle(); trainer.getDataProvider()->getNextBatch(batchSize, &dataBatch); @@ -167,11 +170,11 @@ void compareGradient(ComData& comDataA, ComData& comDataB) { TEST(Trainer, create) { ComData dataA; - calcGradient(dataA, FLAGS_config_file_a); + calcGradient(dataA, config_file_a); LOG(INFO) << "\n\nforwardBackward of Network A is finished\n\n"; ComData dataB; - calcGradient(dataB, FLAGS_config_file_b); + calcGradient(dataB, config_file_b); LOG(INFO) << "\n\nforwardBackward of the Network B is finished\n\n"; compareGradient(dataA, dataB); diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index 3517d293e3c901caaa19952b04e56d1ef0d2b46e..cacf10692942f5eca2f6c498183f4acc00768460 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -583,6 +583,7 @@ TEST(Layer, maxoutLayer) { testLayerGrad(config, "maxout", 10, false, useGpu); } } + void testFcLayer(string format, size_t nnz) { TestConfig config; config.biasSize = 1024; @@ -1081,6 +1082,21 @@ TEST(Layer, InterpolationLayer) { } } +TEST(Layer, DotProdLayer) { + TestConfig config; + config.layerConfig.set_type("dot_prod"); + config.layerConfig.set_size(1); + + config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0}); + config.layerConfig.add_inputs(); + config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0}); + config.layerConfig.add_inputs(); + + for (auto useGpu : {false, true}) { + testLayerGrad(config, "dot_prod", 10, false, useGpu); + } +} + TEST(Layer, OuterProdLayer) { TestConfig config; config.layerConfig.set_type("out_prod"); @@ -2429,6 +2445,25 @@ TEST(Layer, ScaleSubRegionLayer) { } } +TEST(Layer, L2DistanceLayer) { + TestConfig config; + config.layerConfig.set_type("l2_distance"); + config.layerConfig.set_size(1); + config.biasSize = 0; + + const size_t input_dim = 27; + const size_t batch_size = 11; + + config.inputDefs.push_back({INPUT_DATA, "layer_0", input_dim, 0}); + config.inputDefs.push_back({INPUT_DATA, "layer_1", input_dim, 0}); + config.layerConfig.add_inputs(); + config.layerConfig.add_inputs(); + + for (auto useGpu : {false, true}) { + testLayerGrad(config, "l2_distance", batch_size, false, useGpu); + } +} + int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); diff --git a/paddle/gserver/tests/test_MKLDNN.cpp b/paddle/gserver/tests/test_MKLDNN.cpp index a859e34c8996d81f14bf1edcb6e23d5a4f687e6b..56b523f220c2a405851b89db5f63e9aa50bfaaf7 100644 --- a/paddle/gserver/tests/test_MKLDNN.cpp +++ b/paddle/gserver/tests/test_MKLDNN.cpp @@ -313,6 +313,47 @@ TEST(MKLDNNLayer, AddtoLayer) { testAddtoLayer({4, 12, 1, 1}, 3); } +static void getMKLDNNConcatConfig(TestConfig& cfg, + const std::vector& inputs) { + CHECK_GE(inputs.size(), 2UL) << "at least two inputs"; + int oc = inputs[0].ic; + for (size_t i = 1; i < inputs.size(); ++i) { + CHECK_EQ(inputs[i].bs, inputs[0].bs); + CHECK_EQ(inputs[i].ih, inputs[0].ih); + CHECK_EQ(inputs[i].iw, inputs[0].iw); + oc += inputs[i].ic; + } + cfg.biasSize = 0; + cfg.layerConfig.set_type("mkldnn_concat"); + cfg.layerConfig.set_size(oc * inputs[0].ih * inputs[0].iw); + cfg.layerConfig.set_active_type("relu"); + for (size_t i = 0; i < inputs.size(); ++i) { + std::stringstream ss; + ss << "layer_" << i; + cfg.inputDefs.push_back( + {INPUT_DATA, + ss.str(), + (size_t)(inputs[i].ic) * inputs[i].ih * inputs[i].iw, + 0}); + LayerInputConfig* input = cfg.layerConfig.add_inputs(); + ImageConfig* img_conf = input->mutable_image_conf(); + img_conf->set_channels(inputs[i].ic); + img_conf->set_img_size_y(inputs[i].ih); + img_conf->set_img_size(inputs[i].iw); + } +} + +void testConcatLayer(const std::vector& inputs) { + TestConfig dnnConfig; + getMKLDNNConcatConfig(dnnConfig, inputs); + RUN_MKLDNN_TEST_LAYER(dnnConfig, "concat", inputs[0]) +} + +TEST(MKLDNNLayer, ConcatLayer) { + testConcatLayer({{64, 128, 1, 1}, {64, 32, 1, 1}, {64, 64, 1, 1}}); + testConcatLayer({{32, 100, 8, 8}, {32, 10, 8, 8}}); +} + void testActivation(std::string actType, const testImageDesc& pm) { // TODO(TJ): remove me when paddle support elu activation if (actType == "mkldnn_elu") { diff --git a/paddle/gserver/tests/test_ProtoDataProvider.cpp b/paddle/gserver/tests/test_ProtoDataProvider.cpp deleted file mode 100644 index af6472619d1840e82787974d265d601b4a406c09..0000000000000000000000000000000000000000 --- a/paddle/gserver/tests/test_ProtoDataProvider.cpp +++ /dev/null @@ -1,732 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include -#include - -#include - -#include "paddle/gserver/dataproviders/ProtoDataProvider.h" -#include "paddle/utils/Util.h" - -#include "paddle/testing/TestUtil.h" - -using namespace std; // NOLINT - -std::vector protoFiles{ - "./test_ProtoDataProvider/data1.bin", "./test_ProtoDataProvider/data2.bin", -}; -std::vector protoFilesCompressed{ - "./test_ProtoDataProvider/data1.bin.gz", - "./test_ProtoDataProvider/data2.bin.gz", -}; - -const char* kTestDir = "./test_ProtoDataProvider"; -const char kProtoFileList[] = "gserver/tests/proto_files.txt"; -const char kProtoFileListCompressed[] = - "gserver/tests/proto_files_compressed.txt"; -const int kSpraseMatrixDim = 1024; - -using namespace paddle; // NOLINT - -void prepareData(DataBatch* batch, - const int* numPerSlotType, - bool iid, - bool useGpu) { - batch->clear(); - int64_t size = uniformRandom(100) + 10; - batch->setSize(size); - - ICpuGpuVectorPtr sequenceStartPositions; - ICpuGpuVectorPtr subSequenceStartPositions; - if (!iid) { - int numSeqs = uniformRandom(10) + 1; - sequenceStartPositions = - ICpuGpuVector::create(numSeqs + 1, /* useGpu= */ false); - int* buf = sequenceStartPositions->getMutableData(false); - subSequenceStartPositions = - ICpuGpuVector::create(numSeqs + 1, /* useGpu= */ false); - int* subBuf = subSequenceStartPositions->getMutableData(false); - int64_t pos = 0; - int maxLen = 2 * size / numSeqs; - for (int i = 0; i < numSeqs; ++i) { - int len = - uniformRandom(min(maxLen, size - pos - numSeqs + i)) + 1; - buf[i] = pos; - subBuf[i] = pos; - pos += len; - VLOG(1) << " len=" << len; - } - buf[numSeqs] = size; - subBuf[numSeqs] = size; - } - - vector& arguments = batch->getStreams(); - for (int i = 0; i < numPerSlotType[SlotDef::VECTOR_DENSE]; ++i) { - int64_t dim = rand() % 10 + 4; // NOLINT rand_r - MatrixPtr mat = Matrix::create(size, dim, /* trans= */ false, false); - mat->randomizeUniform(); - Argument arg; - arg.value = mat; - arg.sequenceStartPositions = sequenceStartPositions; - arguments.push_back(arg); - } - for (int i = 0; i < numPerSlotType[SlotDef::VECTOR_SPARSE_NON_VALUE]; ++i) { - MatrixPtr mat = - makeRandomSparseMatrix(size, kSpraseMatrixDim, false, useGpu); - Argument arg; - arg.value = mat; - arg.sequenceStartPositions = sequenceStartPositions; - arg.subSequenceStartPositions = subSequenceStartPositions; - arguments.push_back(arg); - } - for (int i = 0; i < numPerSlotType[SlotDef::VECTOR_SPARSE_VALUE]; ++i) { - MatrixPtr mat = - makeRandomSparseMatrix(size, kSpraseMatrixDim, true, useGpu); - Argument arg; - arg.value = mat; - arg.sequenceStartPositions = sequenceStartPositions; - arguments.push_back(arg); - } - for (int i = 0; i < numPerSlotType[SlotDef::STRING]; ++i) { - int64_t dim = rand() % 10 + 4; // NOLINT rand_r - SVectorPtr vec = std::make_shared>(); - for (int j = 0; j < size; ++j) { - vec->push_back(randStr(dim)); - } - Argument arg; - arg.strs = vec; - arg.sequenceStartPositions = sequenceStartPositions; - arguments.push_back(arg); - } - for (int i = 0; i < numPerSlotType[SlotDef::INDEX]; ++i) { - int64_t dim = rand() % 10 + 4; // NOLINT rand_r - IVectorPtr vec = IVector::create(size, /* useGpu= */ false); - int* buf = vec->getData(); - for (int j = 0; j < size; ++j) { - buf[j] = uniformRandom(dim); - } - Argument arg; - arg.ids = vec; - arg.sequenceStartPositions = sequenceStartPositions; - arguments.push_back(arg); - } -} - -inline int getSlotDim(const Argument& arg) { - if (arg.value) { - return arg.value->getWidth(); - } else if (arg.ids) { - return arg.ids->getMax() + 1; - } else if (arg.strs) { - return 1; - } - LOG(FATAL) << "Invalid argument"; - return 0; -} - -inline SlotDef::SlotType getSlotType(const Argument& arg) { - if (arg.value) { - auto& m = *arg.value; - auto& type = typeid(m); - if (type == typeid(CpuMatrix) || type == typeid(GpuMatrix)) { - return SlotDef::VECTOR_DENSE; - } - if (type == typeid(CpuSparseMatrix)) { - auto valueType = - std::dynamic_pointer_cast(arg.value)->getValueType(); - if (NO_VALUE == valueType) { - return SlotDef::VECTOR_SPARSE_NON_VALUE; - } else { - return SlotDef::VECTOR_SPARSE_VALUE; - } - } - if (type == typeid(GpuSparseMatrix)) { - auto valueType = - std::dynamic_pointer_cast(arg.value)->getValueType(); - if (NO_VALUE == valueType) { - return SlotDef::VECTOR_SPARSE_NON_VALUE; - } else { - return SlotDef::VECTOR_SPARSE_VALUE; - } - } - - LOG(FATAL) << "Unknown matrix type"; - } - if (arg.ids) return SlotDef::INDEX; - if (arg.strs) return SlotDef::STRING; - LOG(FATAL) << "Invalid argument"; - return SlotDef::VECTOR_DENSE; -} - -void getColRow(const Argument& arg, - int64_t pos, - bool useGpu, - int* colNum, - const int** rowCols, - const real** rowValues) { - SlotDef::SlotType type = getSlotType(arg); - GpuSparseMatrixPtr matGpu; - CpuSparseMatrixPtr matCpu; - if (useGpu) { - matGpu = dynamic_pointer_cast(arg.value); - ASSERT_TRUE(matGpu != NULL); - } else { - matCpu = dynamic_pointer_cast(arg.value); - ASSERT_TRUE(matCpu != NULL); - } - *colNum = useGpu ? matGpu->getColNum(pos) : matCpu->getColNum(pos); - *rowCols = useGpu ? matGpu->getRowCols(pos) : matCpu->getRowCols(pos); - if (type == SlotDef::VECTOR_SPARSE_VALUE) { - *rowValues = useGpu ? matGpu->getRowValues(pos) : matCpu->getRowValues(pos); - } else { - *rowValues = NULL; - } -} - -void makeSample(const vector& arguments, - int64_t pos, - bool isBeginning, - DataSample* sample, - bool useGpu) { - sample->set_is_beginning(isBeginning); - int slotid = 0; - for (auto& arg : arguments) { - SlotDef::SlotType type = getSlotType(arg); - int64_t dim = getSlotDim(arg); - switch (type) { - case SlotDef::VECTOR_DENSE: { - VectorSlot* vecSlot = sample->add_vector_slots(); - auto values = vecSlot->mutable_values(); - values->Reserve(dim); - for (int i = 0; i < dim; ++i) { - values->AddAlreadyReserved( - static_cast(arg.value->getElement(pos, i))); - } - break; - } - case SlotDef::INDEX: { - sample->add_id_slots(arg.ids->get(pos)); - break; - } - case SlotDef::VECTOR_SPARSE_NON_VALUE: { - VectorSlot* vecSlot = sample->add_vector_slots(); - auto ids = vecSlot->mutable_ids(); - int colNum; - const int* rowCols; - const real* rowValues; // nullptr - getColRow(arg, pos, useGpu, &colNum, &rowCols, &rowValues); - ids->Reserve(colNum); - for (int i = 0; i < colNum; ++i) { - ids->AddAlreadyReserved(rowCols[i]); - } - SubseqSlot* subseqSlot = sample->add_subseq_slots(); // subseq - subseqSlot->set_slot_id(slotid); - auto lens = subseqSlot->mutable_lens(); - lens->Add(colNum); - break; - } - case SlotDef::VECTOR_SPARSE_VALUE: { - VectorSlot* vecSlot = sample->add_vector_slots(); - auto values = vecSlot->mutable_values(); - auto ids = vecSlot->mutable_ids(); - int colNum; - const int* rowCols; - const real* rowValues; - getColRow(arg, pos, useGpu, &colNum, &rowCols, &rowValues); - ids->Reserve(colNum); - values->Reserve(colNum); - for (int i = 0; i < colNum; ++i) { - ids->AddAlreadyReserved(rowCols[i]); - values->AddAlreadyReserved(rowValues[i]); - } - break; - } - case SlotDef::VAR_MDIM_DENSE: - case SlotDef::VAR_MDIM_INDEX: { - LOG(FATAL) << "Not implemented"; - break; - } - case SlotDef::STRING: { - VectorSlot* vecSlot = sample->add_vector_slots(); - vecSlot->add_strs((*arg.strs)[pos]); - break; - } - } - slotid++; - } -} - -void writeData(const DataBatch& batch, bool useGpu, bool dataCompression) { - DataHeader header; - const vector& arguments = batch.getStreams(); - for (auto& argument : arguments) { - SlotDef* slotDef = header.add_slot_defs(); - slotDef->set_type(getSlotType(argument)); - slotDef->set_dim(getSlotDim(argument)); - } - VLOG(1) << "header=" << header.DebugString(); - - int64_t totalSeqs = batch.getNumSequences(); - int64_t seq = 0; - ICpuGpuVectorPtr sequenceStartPositions = arguments[0].sequenceStartPositions; - int64_t numWritten = 0; - vector curProtoFiles = - dataCompression ? protoFilesCompressed : protoFiles; - for (size_t i = 0; i < curProtoFiles.size(); ++i) { - int64_t numSeqs = totalSeqs * (i + 1) / curProtoFiles.size() - - totalSeqs * i / curProtoFiles.size(); - ofstream os(curProtoFiles[i]); - CHECK(os) << "Fail to open " << curProtoFiles[i]; - unique_ptr writer(new ProtoWriter(&os, dataCompression)); - CHECK(writer->write(header)); - for (int j = 0; j < numSeqs; ++j, ++seq) { - int64_t begin = seq; - int64_t end = seq + 1; - if (sequenceStartPositions) { - begin = sequenceStartPositions->getElement(seq); - end = sequenceStartPositions->getElement(seq + 1); - } - for (int pos = begin; pos < end; ++pos) { - DataSample sample; - makeSample(arguments, pos, pos == begin, &sample, useGpu); - CHECK(writer->write(sample)); - ++numWritten; - } - } - - writer.reset(nullptr); - os.close(); - } - CHECK_EQ(arguments[0].getBatchSize(), numWritten); -} - -// check that the sample at pos1 in args1 is same as the sample at pos2 in args2 -void checkSample(const vector& args1, - int64_t pos1, - const vector& args2, - int64_t pos2, - bool useGpu) { - EXPECT_EQ(args1.size(), args2.size()); - VLOG(1) << " pos1=" << pos1 << " pos2=" << pos2; - - for (size_t i = 0; i < args1.size(); ++i) { - auto type = getSlotType(args1[i]); - int dim = getSlotDim(args1[i]); - EXPECT_EQ(type, getSlotType(args2[i])); - if (type == SlotDef::INDEX) { - EXPECT_GE(dim, getSlotDim(args2[i])); - } else { - EXPECT_EQ(dim, getSlotDim(args2[i])); - } - switch (type) { - case SlotDef::VECTOR_DENSE: { - for (int j = 0; j < dim; ++j) { - EXPECT_EQ(static_cast(args1[i].value->getElement(pos1, j)), - static_cast(args2[i].value->getElement(pos2, j))); - } - break; - } - case SlotDef::INDEX: { - EXPECT_EQ(args1[i].ids->get(pos1), args2[i].ids->get(pos2)); - break; - } - case SlotDef::VECTOR_SPARSE_NON_VALUE: - case SlotDef::VECTOR_SPARSE_VALUE: { - int colNum1, colNum2; - const int *rowCols1, *rowCols2; - const real *rowValues1, *rowValues2; - getColRow(args1[i], pos1, useGpu, &colNum1, &rowCols1, &rowValues1); - getColRow(args2[i], pos2, useGpu, &colNum2, &rowCols2, &rowValues2); - EXPECT_EQ(colNum1, colNum2); - for (int j = 0; j < colNum1; ++j) { - EXPECT_EQ(rowCols1[j], rowCols2[j]); - if (type == SlotDef::VECTOR_SPARSE_VALUE) { - EXPECT_EQ(rowValues1[j], rowValues2[j]); - } - } - break; - } - case SlotDef::VAR_MDIM_DENSE: - case SlotDef::VAR_MDIM_INDEX: { - LOG(FATAL) << "Not implemented"; - break; - } - case SlotDef::STRING: { - EXPECT_EQ((*args1[i].strs)[pos1], (*args2[i].strs)[pos2]); - break; - } - } - } -} - -void testProtoDataProvider(int* numPerSlotType, - bool iid, - bool async, - bool useGpu, - bool dataCompression, - int numConstantSlots = 0) { - mkDir(kTestDir); - DataBatch data; - - prepareData(&data, numPerSlotType, iid, useGpu); - writeData(data, useGpu, dataCompression); - - DataConfig config; - config.set_type("proto"); - config.set_files(dataCompression ? kProtoFileListCompressed : kProtoFileList); - config.set_async_load_data(async); - - for (int i = 0; i < numConstantSlots; ++i) { - config.add_constant_slots(i + 11); - MatrixPtr w = Matrix::create(data.getSize(), - 1, - /* trans= */ false, - /* useGpu= */ false); - w->assign(config.constant_slots(i)); - data.appendData(w); - } - - unique_ptr dataProvider(DataProvider::create(config, useGpu)); - dataProvider->setSkipShuffle(); - - EXPECT_EQ(data.getSize(), dataProvider->getSize()); - - int64_t batchSize = 10; - DataBatch batch; - - size_t seq1 = 0; - vector& args1 = data.getStreams(); - ICpuGpuVectorPtr sequenceStartPositions1 = args1[0].sequenceStartPositions; - - dataProvider->reset(); - - while (dataProvider->getNextBatch(batchSize, &batch) > 0) { - CHECK_EQ(data.getNumStreams(), batch.getNumStreams()); - vector& args2 = batch.getStreams(); - ICpuGpuVectorPtr sequenceStartPositions2 = args2[0].sequenceStartPositions; - for (auto& arg : args2) { - EXPECT_EQ(iid, !arg.sequenceStartPositions); - } - size_t numSeqs = batch.getNumSequences(); - VLOG(1) << "numSeqs=" << numSeqs; - for (size_t seq2 = 0; seq2 < numSeqs; ++seq1, ++seq2) { - int64_t begin1 = seq1; - int64_t end1 = seq1 + 1; - if (sequenceStartPositions1) { - begin1 = sequenceStartPositions1->getElement(seq1); - end1 = sequenceStartPositions1->getElement(seq1 + 1); - EXPECT_LT(seq1, sequenceStartPositions1->getSize() - 1); - } - - int64_t begin2 = seq2; - int64_t end2 = seq2 + 1; - if (sequenceStartPositions2) { - begin2 = sequenceStartPositions2->getElement(seq2); - end2 = sequenceStartPositions2->getElement(seq2 + 1); - } - VLOG(1) << " begin1=" << begin1 << " end1=" << end1 - << " begin2=" << begin2 << " end2=" << end2; - EXPECT_EQ(end1 - begin1, end2 - begin2); - for (int i = 0; i < end1 - begin1; ++i) { - checkSample(args1, begin1 + i, args2, begin2 + i, useGpu); - } - } - } - - EXPECT_EQ(seq1, (size_t)data.getNumSequences()); - rmDir(kTestDir); -} - -TEST(ProtoDataProvider, test) { - int numSlotsArray[] = {0, 3}; - int numTwoArray[] = {0, 1}; - int numSlotsArraySize = sizeof(numSlotsArray) / sizeof(numSlotsArray[0]); - const int numSlot = 5; - int combination[numSlot] = {0}; - int k = numSlot - 1; - while (k >= 0) { - int numDenseVecSlots = numSlotsArray[combination[0]]; - int numSparseNonValueVecSlots = numSlotsArray[combination[1]]; - int numSparseValueVectorSlots = numSlotsArray[combination[2]]; - int numStrSlots = numSlotsArray[combination[3]]; - int numIdSlots = numSlotsArray[combination[4]]; - // while loop : traverse all cases - k = numSlot - 1; - while (k >= 0) { - if (combination[k] < (numSlotsArraySize - 1)) { - ++combination[k]; - break; - } else { - combination[k] = 0; - --k; - } - } - if (numDenseVecSlots + numSparseNonValueVecSlots + - numSparseValueVectorSlots + numStrSlots + numIdSlots < - 1) - continue; - for (int iid : numTwoArray) { - for (int async : numTwoArray) { - for (int useGpu : numTwoArray) { - for (int dataCompression : numTwoArray) { - if (async && useGpu) { - // Currently in async mode, useGpu is not supported - continue; - } -#ifndef PADDLE_WITH_CUDA - if (useGpu) { - continue; - } -#endif - LOG(INFO) << " numDenseVecSlots=" << numDenseVecSlots - << " numSparseNonValueVecSlots=" - << numSparseNonValueVecSlots - << " numSparseValueVectorSlots=" - << numSparseValueVectorSlots - << " numStrSlots=" << numStrSlots - << " numIdSlots=" << numIdSlots << " iid=" << iid - << " async=" << async << " useGpu=" << useGpu - << " dataCompression=" << dataCompression; - int numPerSlotType[SlotDef::SlotType_ARRAYSIZE] = {0}; - numPerSlotType[SlotDef::VECTOR_DENSE] = numDenseVecSlots; - numPerSlotType[SlotDef::VECTOR_SPARSE_NON_VALUE] = - numSparseNonValueVecSlots; - numPerSlotType[SlotDef::VECTOR_SPARSE_VALUE] = - numSparseValueVectorSlots; - numPerSlotType[SlotDef::INDEX] = numIdSlots; - numPerSlotType[SlotDef::STRING] = numStrSlots; - testProtoDataProvider( - numPerSlotType, iid, async, useGpu, dataCompression); - } // end for (int dataCompression : numTwoArray) - } // end for (int useGpu : numTwoArray) - } // end for (int async : numTwoArray) - } // end for (int iid : numTwoArray) - } // end for (while, traverse all slots) -} - -TEST(ProtoDataProvider, constant_slots) { - int numSlotsArray[] = {0, 3}; - int numTwoArray[] = {0, 1}; - for (int numDenseVecSlots : numSlotsArray) { - for (int numSparseNonValueVecSlots : numSlotsArray) { - if (numDenseVecSlots + numSparseNonValueVecSlots < 1) continue; - for (int numConstantSlots : {1, 2}) { - for (int useGpu : numTwoArray) { - for (int dataCompression : numTwoArray) { -#ifndef PADDLE_WITH_CUDA - if (useGpu) { - continue; - } -#endif - LOG(INFO) << " numDenseVecSlots=" << numDenseVecSlots - << " numSparseNonValueVecSlots=" - << numSparseNonValueVecSlots - << " numConstantSlogs=" << numConstantSlots - << " useGpu=" << useGpu - << " dataCompression=" << dataCompression; - int numPerSlotType[SlotDef::SlotType_ARRAYSIZE] = {0}; - numPerSlotType[SlotDef::VECTOR_DENSE] = numDenseVecSlots; - numPerSlotType[SlotDef::VECTOR_SPARSE_NON_VALUE] = - numSparseNonValueVecSlots; - numPerSlotType[SlotDef::VECTOR_SPARSE_VALUE] = 1; - numPerSlotType[SlotDef::INDEX] = 1; - testProtoDataProvider(numPerSlotType, - /* iid= */ true, - /* async= */ false, - useGpu, - dataCompression, - numConstantSlots); - } // end for (int dataCompression : numTwoArray) - } // end for (int useGpu : numTwoArray) - } // end for (int numConstantSlots : {1, 2}) - } // end for (int numSparseNonValueVecSlots : numSlotsArray) - } // end for (int numDenseVecSlots : numSlotsArray) -} - -void checkSampleSequence(const vector& args1, - const vector& args2, - int64_t offset, - int64_t numSeqs, - bool useGpu) { - // check slot num are equal - EXPECT_EQ(args1.size(), args2.size()); - for (size_t i = 0; i < args1.size(); i++) { - auto type = getSlotType(args1[i]); - // check for args2: sequenceStartPositions vs numSeqs - // (1) size - EXPECT_EQ(args2[i].sequenceStartPositions->getSize(), (size_t)numSeqs + 1); - // (2) content - auto checkArgContent = [&](const Argument& args, int numSeqs) { - for (int j = 0; j <= numSeqs; j++) { - int start_pos = args.sequenceStartPositions->getElement(j); - EXPECT_EQ(start_pos, j); - } - }; - switch (type) { - case SlotDef::INDEX: { - // args1: for label - checkArgContent(args2[i], numSeqs); - // check for args2: ids are equal to args1[offset] - // (1) size - EXPECT_EQ(args2[i].ids->getSize(), (size_t)numSeqs); - // (2) content - for (int j = 0; j < numSeqs; j++) { - EXPECT_EQ(args2[i].ids->get(j), args1[i].ids->get(offset + j)); - } - break; - } - case SlotDef::VECTOR_SPARSE_NON_VALUE: { - // args1: for sparse_non_value - // args2 should put sparse indexes in ids - int colNum1; - const int* rowCols1; - const real* rowValues1; // nullptr - int totalLength = 0; - for (int j = 0; j < numSeqs; j++) { - getColRow( - args1[i], offset + j, useGpu, &colNum1, &rowCols1, &rowValues1); - // (1) lengths - EXPECT_EQ(totalLength, - args2[i].sequenceStartPositions->getElement(j)); - EXPECT_EQ(totalLength, - args2[i].subSequenceStartPositions->getElement(j)); - // (2) content - for (int k = 0; k < colNum1; k++) { - EXPECT_EQ(rowCols1[k], args2[i].ids->get(totalLength + k)); - } - totalLength += colNum1; - if (colNum1 == 0) { - // special case here: we will put a "-1" into ids when column num is - // zero. see ProtoSequenceDataProvider::getNextBatchInternal. - EXPECT_EQ(-1, args2[i].ids->get(totalLength)); - totalLength++; - } - } - EXPECT_EQ(totalLength, - args2[i].sequenceStartPositions->getElement(numSeqs)); - EXPECT_EQ(totalLength, - args2[i].subSequenceStartPositions->getElement(numSeqs)); - break; - } - case SlotDef::VECTOR_DENSE: { - // args1: for dense vector - checkArgContent(args2[i], numSeqs); - // check for args2: values are equal to args1[offset] - // (1) size - EXPECT_EQ(args2[i].value->getHeight(), (size_t)numSeqs); - EXPECT_EQ(args2[i].value->getWidth(), (size_t)getSlotDim(args1[i])); - // (2) content - for (int j = 0; j < numSeqs; j++) { - for (size_t k = 0; k < args2[i].value->getWidth(); k++) { - EXPECT_EQ( - static_cast(args1[i].value->getElement(j + offset, k)), - static_cast(args2[i].value->getElement(j, k))); - } - } - break; - } - default: { EXPECT_EQ(true, false) << "should not reach here"; } - } - } -} - -void testProtoSequenceDataProvider(int* numPerSlotType, - bool async, - bool useGpu) { - mkDir(kTestDir); - DataBatch data; - - prepareData(&data, - numPerSlotType, - /* iid */ true, - useGpu); - writeData(data, useGpu, /* dataCompression */ false); - - DataConfig config; - config.set_type("proto_sequence"); - config.set_files(kProtoFileList); - config.set_async_load_data(async); - - unique_ptr dataProvider(DataProvider::create(config, useGpu)); - dataProvider->setSkipShuffle(); - - EXPECT_EQ(data.getSize(), dataProvider->getSize()); - - int64_t batchSize = 10; - DataBatch batch; - - vector& args1 = data.getStreams(); - ICpuGpuVectorPtr sequenceStartPositions1 = args1[0].sequenceStartPositions; - - dataProvider->reset(); - - size_t args1Offset = 0; - while (dataProvider->getNextBatch(batchSize, &batch) > 0) { - CHECK_EQ(data.getNumStreams(), batch.getNumStreams()); - vector& args2 = batch.getStreams(); - ICpuGpuVectorPtr sequenceStartPositions2 = args2[0].sequenceStartPositions; - for (auto& arg : args1) { - // args1 should not has sequence - EXPECT_EQ(true, !arg.sequenceStartPositions); - } - for (auto& arg : args2) { - // args2 should has sequence - EXPECT_NE(true, !arg.sequenceStartPositions); - } - size_t numSeqs = batch.getNumSequences(); - checkSampleSequence(args1, args2, args1Offset, numSeqs, useGpu); - args1Offset += numSeqs; - } - - EXPECT_EQ(args1Offset, (size_t)data.getNumSequences()); - rmDir(kTestDir); -} - -TEST(ProtoSequenceDataProvider, test) { - int numSlotsArray[] = {0, 3}; - int numTwoArray[] = {0, 1}; - for (int numSparseNonValueVecSlots : numSlotsArray) { - for (int numIdSlots : numSlotsArray) { - for (int numDenseVecSlots : numSlotsArray) { - if (numDenseVecSlots + numSparseNonValueVecSlots + numIdSlots < 1) - continue; - for (int async : numTwoArray) { - for (int useGpu : numTwoArray) { - if (async && useGpu) { - // Currently in async mode, useGpu is not supported - continue; - } -#ifndef PADDLE_WITH_CUDA - if (useGpu) { - continue; - } -#endif - LOG(INFO) << " numDenseVecSlots=" << numDenseVecSlots - << " numSparseNonValueVecSlots=" - << numSparseNonValueVecSlots - << " numIdSlots=" << numIdSlots << " async=" << async - << " useGpu=" << useGpu; - int numPerSlotType[SlotDef::SlotType_ARRAYSIZE] = {0}; - numPerSlotType[SlotDef::VECTOR_DENSE] = numDenseVecSlots; - numPerSlotType[SlotDef::VECTOR_SPARSE_NON_VALUE] = - numSparseNonValueVecSlots; - numPerSlotType[SlotDef::INDEX] = numIdSlots; - testProtoSequenceDataProvider(numPerSlotType, async, useGpu); - } // end for (int useGpu : numTwoArray) - } // end for (int async : numTwoArray) - } // end for (int numDenseVecSlots : numSlotsArray) - } // end for (int numIdSlots : numSlotsArray) - } // end for (int numSparseNonValueVecSlots : numSlotsArray) -} diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index a719da2560291dbc7e98aadfae41d4692d8afcad..059a6bba84cfb0c1f6cbbba3c88d589b52dc5592 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -61,6 +61,18 @@ function(op_library TARGET) set(pybind_flag 1) endif() + if ("${TARGET}" STREQUAL "compare_op") + set(pybind_flag 1) + file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(equal);\n") + endif() + + # conv_op contains several operators + if ("${TARGET}" STREQUAL "conv_op") + set(pybind_flag 1) + # It's enough to just adding one operator to pybind + file(APPEND ${pybind_file} "USE_OP(conv2d);\n") + endif() + # pool_op contains several operators if ("${TARGET}" STREQUAL "pool_op") set(pybind_flag 1) @@ -68,23 +80,23 @@ function(op_library TARGET) file(APPEND ${pybind_file} "USE_OP(pool2d);\n") endif() - if ("${TARGET}" STREQUAL "compare_op") + # pool_cudnn_op contains several operators + if ("${TARGET}" STREQUAL "pool_cudnn_op") set(pybind_flag 1) - file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(equal);\n") + # It's enough to just adding one operator to pybind + file(APPEND ${pybind_file} "USE_OP(pool2d_cudnn);\n") endif() - # pool_with_index_op contains several operators - if ("${TARGET}" STREQUAL "pool_with_index_op") + if ("${TARGET}" STREQUAL "logical_op") set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n") + file(APPEND ${pybind_file} "USE_OP(logical_and);\n") endif() - # conv_op contains several operators - if ("${TARGET}" STREQUAL "conv_op") + # pool_with_index_op contains several operators + if ("${TARGET}" STREQUAL "pool_with_index_op") set(pybind_flag 1) # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d);\n") + file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n") endif() # conv_transpose_op contains several operators @@ -93,12 +105,12 @@ function(op_library TARGET) # It's enough to just adding one operator to pybind file(APPEND ${pybind_file} "USE_OP(conv2d_transpose);\n") endif() - - # pool_cudnn_op contains several operators - if ("${TARGET}" STREQUAL "pool_cudnn_op") + + # conv_transpose_cudnn_op contains two operators + if ("${TARGET}" STREQUAL "conv_transpose_cudnn_op") set(pybind_flag 1) # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(pool2d_cudnn);\n") + file(APPEND ${pybind_file} "USE_OP(conv2d_transpose_cudnn);\n") endif() # save_restore_op contains several operators @@ -172,6 +184,7 @@ set(DEPS_OPS sequence_softmax_op sum_op pool_op + maxout_op pool_with_index_op conv_op conv_transpose_op @@ -198,6 +211,7 @@ op_library(sgd_op DEPS selected_rows_functor) op_library(adagrad_op DEPS selected_rows_functor) op_library(conv_op DEPS vol2col) op_library(pool_op DEPS pooling) +op_library(maxout_op DEPS maxouting) op_library(pool_with_index_op DEPS pooling) op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table) op_library(lod_tensor_to_array_op SRCS lod_tensor_to_array_op.cc DEPS lod_rank_table_op) diff --git a/paddle/operators/activation_op.cc b/paddle/operators/activation_op.cc index 83d35a450d0e8ebf5311cdfd948b066642ccec8c..c66d575d24bb6b410602c34965ab1db6bc81b41d 100644 --- a/paddle/operators/activation_op.cc +++ b/paddle/operators/activation_op.cc @@ -98,7 +98,6 @@ $y = \max(x, 0)$ } }; -template class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker { public: LeakyReluOpMaker(framework::OpProto *proto, @@ -106,8 +105,7 @@ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of LeakyRelu operator"); AddOutput("Y", "Output of LeakyRelu operator"); - AddAttr("alpha", "The small negative slope") - .SetDefault(static_cast(0.02f)); + AddAttr("alpha", "The small negative slope").SetDefault(0.02f); AddComment(R"DOC( LeakyRelu Activation Operator. @@ -117,7 +115,6 @@ $y = \max(x, \alpha * x)$ } }; -template class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: SoftShrinkOpMaker(framework::OpProto *proto, @@ -125,8 +122,7 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Softshrink operator"); AddOutput("Y", "Output of Softshrink operator"); - AddAttr("lambda", "non-negative offset") - .SetDefault(static_cast(0.5f)); + AddAttr("lambda", "non-negative offset").SetDefault(0.5f); AddComment(R"DOC( Softshrink Activation Operator. @@ -173,7 +169,6 @@ $$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ } }; -template class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: HardShrinkOpMaker(framework::OpProto *proto, @@ -181,8 +176,8 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of HardShrink operator"); AddOutput("Y", "Output of HardShrink operator"); - AddAttr("threshold", "The value of threshold for HardShrink") - .SetDefault(static_cast(0.5)); + AddAttr("threshold", "The value of threshold for HardShrink") + .SetDefault(0.5f); AddComment(R"DOC( HardShrink Activation Operator. @@ -308,17 +303,16 @@ $$y = \frac{x}{1 + |x|}$$ } }; -template class BReluOpMaker : public framework::OpProtoAndCheckerMaker { public: BReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of BRelu operator"); AddOutput("Y", "Output of BRelu operator"); - AddAttr("t_min", "The min marginal value of BRelu") - .SetDefault(static_cast(0)); - AddAttr("t_max", "The max marginal value of BRelu") - .SetDefault(static_cast(24)); + AddAttr("t_min", "The min marginal value of BRelu") + .SetDefault(static_cast(0)); + AddAttr("t_max", "The max marginal value of BRelu") + .SetDefault(static_cast(24)); AddComment(R"DOC( BRelu Activation Operator. @@ -328,7 +322,6 @@ $y = \max(\min(x, t_{min}), t_{max})$ } }; -template class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker { public: SoftReluOpMaker(framework::OpProto *proto, @@ -336,8 +329,8 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of SoftRelu operator"); AddOutput("Y", "Output of SoftRelu operator"); - AddAttr("threshold", "The threshold value of SoftRelu") - .SetDefault(static_cast(40)); + AddAttr("threshold", "The threshold value of SoftRelu") + .SetDefault(40.0f); AddComment(R"DOC( SoftRelu Activation Operator. @@ -347,15 +340,13 @@ $y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$ } }; -template class ELUOpMaker : public framework::OpProtoAndCheckerMaker { public: ELUOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of ELU operator"); AddOutput("Y", "Output of ELU operator"); - AddAttr("alpha", "The alpha value of ELU") - .SetDefault(static_cast(1.0f)); + AddAttr("alpha", "The alpha value of ELU").SetDefault(1.0f); AddComment(R"DOC( ELU Activation Operator. @@ -368,15 +359,14 @@ $y = \max(0, x) + \min(0, \alpha * (e^x - 1))$ } }; -template class Relu6OpMaker : public framework::OpProtoAndCheckerMaker { public: Relu6OpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Relu6 operator"); AddOutput("Y", "Output of Relu6 operator"); - AddAttr("threshold", "The threshold value of Relu6") - .SetDefault(static_cast(6)); + AddAttr("threshold", "The threshold value of Relu6") + .SetDefault(6.0f); AddComment(R"DOC( Relu6 Activation Operator. @@ -386,15 +376,13 @@ $y = \min(\max(0, x), 6)$ } }; -template class PowOpMaker : public framework::OpProtoAndCheckerMaker { public: PowOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Pow operator"); AddOutput("Y", "Output of Pow operator"); - AddAttr("factor", "The exponential factor of Pow") - .SetDefault(static_cast(1)); + AddAttr("factor", "The exponential factor of Pow").SetDefault(1.0f); AddComment(R"DOC( Pow Activation Operator. @@ -404,17 +392,16 @@ $y = x^{factor}$ } }; -template class STanhOpMaker : public framework::OpProtoAndCheckerMaker { public: STanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of STanh operator"); AddOutput("Y", "Output of STanh operator"); - AddAttr("scale_a", "The scale parameter of a for the input") - .SetDefault(static_cast(2 / 3)); - AddAttr("scale_b", "The scale parameter of b for the input") - .SetDefault(static_cast(1.7159)); + AddAttr("scale_a", "The scale parameter of a for the input") + .SetDefault(2.0f / 3.0f); + AddAttr("scale_b", "The scale parameter of b for the input") + .SetDefault(1.7159f); AddComment(R"DOC( STanh Activation Operator. @@ -424,7 +411,6 @@ $$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$ } }; -template class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker { public: ThresholdedReluOpMaker(framework::OpProto *proto, @@ -432,8 +418,8 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of ThresholdedRelu operator"); AddOutput("Y", "Output of ThresholdedRelu operator"); - AddAttr("threshold", "The threshold location of activation") - .SetDefault(static_cast(1.0)); + AddAttr("threshold", "The threshold location of activation") + .SetDefault(1.0f); AddComment(R"DOC( ThresholdedRelu Activation Operator. @@ -448,7 +434,6 @@ $$ } }; -template class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { public: HardSigmoidOpMaker(framework::OpProto *proto, @@ -456,10 +441,10 @@ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of HardSigmoid operator"); AddOutput("Y", "Output of HardSigmoid operator"); - AddAttr("slope", "Slope for linear approximation of sigmoid") - .SetDefault(static_cast(0.2)); - AddAttr("offset", "Offset for linear approximation of sigmoid") - .SetDefault(static_cast(0.5)); + AddAttr("slope", "Slope for linear approximation of sigmoid") + .SetDefault(0.2f); + AddAttr("offset", "Offset for linear approximation of sigmoid") + .SetDefault(0.5f); AddComment(R"DOC( HardSigmoid Activation Operator. @@ -499,7 +484,7 @@ REGISTER_OP(tanh, ops::ActivationOp, ops::TanhOpMaker, tanh_grad, REGISTER_OP(tanh_shrink, ops::ActivationOp, ops::TanhShrinkOpMaker, tanh_shrink_grad, ops::ActivationOpGrad); -REGISTER_OP(softshrink, ops::ActivationOp, ops::SoftShrinkOpMaker, +REGISTER_OP(softshrink, ops::ActivationOp, ops::SoftShrinkOpMaker, softshrink_grad, ops::ActivationOpGrad); REGISTER_OP(sqrt, ops::ActivationOp, ops::SqrtOpMaker, sqrt_grad, @@ -523,35 +508,34 @@ REGISTER_OP(softplus, ops::ActivationOp, ops::SoftplusOpMaker, softplus_grad, REGISTER_OP(softsign, ops::ActivationOp, ops::SoftsignOpMaker, softsign_grad, ops::ActivationOpGrad); -REGISTER_OP(brelu, ops::ActivationOp, ops::BReluOpMaker, brelu_grad, +REGISTER_OP(brelu, ops::ActivationOp, ops::BReluOpMaker, brelu_grad, ops::ActivationOpGrad); -REGISTER_OP(leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker, +REGISTER_OP(leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker, leaky_relu_grad, ops::ActivationOpGrad); -REGISTER_OP(soft_relu, ops::ActivationOp, ops::SoftReluOpMaker, - soft_relu_grad, ops::ActivationOpGrad); +REGISTER_OP(soft_relu, ops::ActivationOp, ops::SoftReluOpMaker, soft_relu_grad, + ops::ActivationOpGrad); -REGISTER_OP(elu, ops::ActivationOp, ops::ELUOpMaker, elu_grad, +REGISTER_OP(elu, ops::ActivationOp, ops::ELUOpMaker, elu_grad, ops::ActivationOpGrad); -REGISTER_OP(relu6, ops::ActivationOp, ops::Relu6OpMaker, relu6_grad, +REGISTER_OP(relu6, ops::ActivationOp, ops::Relu6OpMaker, relu6_grad, ops::ActivationOpGrad); -REGISTER_OP(pow, ops::ActivationOp, ops::PowOpMaker, pow_grad, +REGISTER_OP(pow, ops::ActivationOp, ops::PowOpMaker, pow_grad, ops::ActivationOpGrad); -REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker, stanh_grad, +REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker, stanh_grad, ops::ActivationOpGrad); -REGISTER_OP(hard_shrink, ops::ActivationOp, ops::HardShrinkOpMaker, +REGISTER_OP(hard_shrink, ops::ActivationOp, ops::HardShrinkOpMaker, hard_shrink_grad, ops::ActivationOpGrad); -REGISTER_OP(thresholded_relu, ops::ActivationOp, - ops::ThresholdedReluOpMaker, thresholded_relu_grad, - ops::ActivationOpGrad); +REGISTER_OP(thresholded_relu, ops::ActivationOp, ops::ThresholdedReluOpMaker, + thresholded_relu_grad, ops::ActivationOpGrad); -REGISTER_OP(hard_sigmoid, ops::ActivationOp, ops::HardSigmoidOpMaker, +REGISTER_OP(hard_sigmoid, ops::ActivationOp, ops::HardSigmoidOpMaker, hard_sigmoid_grad, ops::ActivationOpGrad); #define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \ diff --git a/paddle/operators/adadelta_op.cc b/paddle/operators/adadelta_op.cc index b717e1647e4b89285b841420650dc69e8a1e0c58..16a7794d5b7bf1d56cd9f5874454c41cab43b41f 100644 --- a/paddle/operators/adadelta_op.cc +++ b/paddle/operators/adadelta_op.cc @@ -109,4 +109,5 @@ paramOut = param + paramUpdate$$ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker); REGISTER_OP_CPU_KERNEL( - adadelta, ops::AdadeltaOpKernel); + adadelta, ops::AdadeltaOpKernel, + ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.cu b/paddle/operators/adadelta_op.cu index 3af1c8c8e9861138a33b3156818f704c3b20363f..9fb61852071f11670b8bc51321bb0881de196777 100644 --- a/paddle/operators/adadelta_op.cu +++ b/paddle/operators/adadelta_op.cu @@ -17,4 +17,5 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( - adadelta, ops::AdadeltaOpKernel); + adadelta, ops::AdadeltaOpKernel, + ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.h b/paddle/operators/adadelta_op.h index d29e15c43583bd447fbacb548a326f303f7d1463..a8c5f0c8aa20ce506f5279fa696079ba64034bd5 100644 --- a/paddle/operators/adadelta_op.h +++ b/paddle/operators/adadelta_op.h @@ -33,8 +33,8 @@ class AdadeltaOpKernel : public framework::OpKernel { avg_squared_grad_out_tensor->mutable_data(ctx.GetPlace()); avg_squared_update_out_tensor->mutable_data(ctx.GetPlace()); - float rho = ctx.Attr("rho"); - float epsilon = ctx.Attr("epsilon"); + T rho = static_cast(ctx.Attr("rho")); + T epsilon = static_cast(ctx.Attr("epsilon")); auto param = framework::EigenVector::Flatten( *ctx.Input("Param")); diff --git a/paddle/operators/adagrad_op.cu b/paddle/operators/adagrad_op.cu index 5b869e6bc5f4604ba6055ffd62fa21e4a1f41b93..1c870214b29dbfcabb7414317b1214d6bef369cb 100644 --- a/paddle/operators/adagrad_op.cu +++ b/paddle/operators/adagrad_op.cu @@ -14,8 +14,8 @@ #define EIGEN_USE_GPU #include "paddle/operators/adagrad_op.h" -#include "paddle/operators/math/selected_rows_functor.h" #include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/selected_rows_functor.h" #include "paddle/platform/cuda_helper.h" namespace paddle { @@ -134,8 +134,8 @@ struct SparseAdagradFunctor { T, 256><<(context) .stream()>>>(grad_merge_data, grad_merge->rows().data(), - lr, param_data, - moment_data, grad_width, epsilon); + lr, param_data, moment_data, grad_width, + epsilon); } }; diff --git a/paddle/operators/adam_op.cc b/paddle/operators/adam_op.cc index 97a091ae766abfba5412bbd32c34a6f80701fbf7..03faa2a7c5a486cb0d2b6f2f10d140eeb4c6c04e 100644 --- a/paddle/operators/adam_op.cc +++ b/paddle/operators/adam_op.cc @@ -127,4 +127,5 @@ paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker); REGISTER_OP_CPU_KERNEL(adam, - ops::AdamOpKernel); + ops::AdamOpKernel, + ops::AdamOpKernel); diff --git a/paddle/operators/adam_op.cu b/paddle/operators/adam_op.cu index a3def912e540454275350209435eb01ae2151331..6e34f7818ce20c75692fe21776721ce200b7a147 100644 --- a/paddle/operators/adam_op.cu +++ b/paddle/operators/adam_op.cu @@ -17,4 +17,5 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(adam, - ops::AdamOpKernel); + ops::AdamOpKernel, + ops::AdamOpKernel); diff --git a/paddle/operators/adam_op.h b/paddle/operators/adam_op.h index 45938006db1231a7a134964d729df6ca114d4dbe..7f7fa1da1c0d8d81d1bcb18a1bf542838eddccf7 100644 --- a/paddle/operators/adam_op.h +++ b/paddle/operators/adam_op.h @@ -31,9 +31,9 @@ class AdamOpKernel : public framework::OpKernel { moment1_out_tensor->mutable_data(ctx.GetPlace()); moment2_out_tensor->mutable_data(ctx.GetPlace()); - float beta1 = ctx.Attr("beta1"); - float beta2 = ctx.Attr("beta2"); - float epsilon = ctx.Attr("epsilon"); + T beta1 = static_cast(ctx.Attr("beta1")); + T beta2 = static_cast(ctx.Attr("beta2")); + T epsilon = static_cast(ctx.Attr("epsilon")); auto param = framework::EigenVector::Flatten( *ctx.Input("Param")); diff --git a/paddle/operators/adamax_op.cc b/paddle/operators/adamax_op.cc index 14cf3841b33a8153549e4c99ed2b75286e9c64db..d5bbc672e18f392d6a91383b919fefc4b2d8ff0e 100644 --- a/paddle/operators/adamax_op.cc +++ b/paddle/operators/adamax_op.cc @@ -126,4 +126,5 @@ division by 0 error. namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adamax, ops::AdamaxOp, ops::AdamaxOpMaker); REGISTER_OP_CPU_KERNEL(adamax, - ops::AdamaxOpKernel); + ops::AdamaxOpKernel, + ops::AdamaxOpKernel); diff --git a/paddle/operators/adamax_op.cu b/paddle/operators/adamax_op.cu index fee3b6fc6b656917d79b84f48da8e63be7683890..057ef39025aa23704457ef7bbe54934d06cdc87f 100644 --- a/paddle/operators/adamax_op.cu +++ b/paddle/operators/adamax_op.cu @@ -17,4 +17,5 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(adamax, - ops::AdamaxOpKernel); + ops::AdamaxOpKernel, + ops::AdamaxOpKernel); diff --git a/paddle/operators/adamax_op.h b/paddle/operators/adamax_op.h index 2c99832ec08e9c1d9b5458c467d5238f9b1b3c37..bf36ed78604dd88c537db51fbeb38f43d0c46173 100644 --- a/paddle/operators/adamax_op.h +++ b/paddle/operators/adamax_op.h @@ -31,9 +31,9 @@ class AdamaxOpKernel : public framework::OpKernel { moment_out_tensor->mutable_data(ctx.GetPlace()); inf_norm_out_tensor->mutable_data(ctx.GetPlace()); - float beta1 = ctx.Attr("beta1"); - float beta2 = ctx.Attr("beta2"); - float epsilon = ctx.Attr("epsilon"); + T beta1 = static_cast(ctx.Attr("beta1")); + T beta2 = static_cast(ctx.Attr("beta2")); + T epsilon = static_cast(ctx.Attr("epsilon")); auto param = framework::EigenVector::Flatten( *ctx.Input("Param")); diff --git a/paddle/operators/beam_search_op.cc b/paddle/operators/beam_search_op.cc index 17926a813d5b0b8ace6a1b20066cd0007703c696..8c3e2a303fb8f12a8886c11cf112b859a6db7bcf 100644 --- a/paddle/operators/beam_search_op.cc +++ b/paddle/operators/beam_search_op.cc @@ -139,7 +139,7 @@ bool BeamSearch::NextItemSet(std::vector *items) { items->reserve(framework::product(ids.dims())); for (size_t offset = abs_lod[lod_level_][sent_offset_]; offset < abs_lod[lod_level_][sent_offset_ + 1]; offset++) { - for (int d = 0; d < instance_dim; d++) { + for (size_t d = 0; d < instance_dim; d++) { const size_t dim_offset = offset * instance_dim + d; items->emplace_back(offset, ids_data[dim_offset], scores_data[dim_offset]); diff --git a/paddle/operators/conv_cudnn_op.cc b/paddle/operators/conv_cudnn_op.cc index 4c65b60d2349d2989128f4b1da705ea18391b8a3..c03dc3e4fb07ac6ecde42be93a1138d91778edf4 100644 --- a/paddle/operators/conv_cudnn_op.cc +++ b/paddle/operators/conv_cudnn_op.cc @@ -40,7 +40,8 @@ REGISTER_OP(conv_cudnn, ops::ConvOp, ops::CudnnConvOpMaker, conv_cudnn_grad, ops::ConvOpGrad); REGISTER_OP_CPU_KERNEL(conv_cudnn, - ops::GemmConvKernel); + ops::GemmConvKernel, + ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( - conv_cudnn_grad, - ops::GemmConvGradKernel); + conv_cudnn_grad, ops::GemmConvGradKernel, + ops::GemmConvGradKernel); diff --git a/paddle/operators/conv_cudnn_op.cu.cc b/paddle/operators/conv_cudnn_op.cu.cc index 2aec4a2760260623c4c7054c590afa8e1c6c3fea..5eaf6b33704eb371fff4b949c6cc32a7a5dbc812 100644 --- a/paddle/operators/conv_cudnn_op.cu.cc +++ b/paddle/operators/conv_cudnn_op.cu.cc @@ -226,9 +226,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel { T alpha = 1.0f, beta = 0.0f; if (input_grad) { T* input_grad_data = input_grad->mutable_data(ctx.GetPlace()); - auto t = framework::EigenVector::Flatten(*input_grad); - t.device(ctx.GetEigenDevice()) = - t.constant(static_cast(0)); + // Because beta is zero, it is unnecessary to reset input_grad. + for (int i = 0; i < groups; i++) { PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( handle, &alpha, cudnn_filter_desc, @@ -241,9 +240,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel { // ------------------- cudnn conv backward filter --------------------- if (filter_grad) { T* filter_grad_data = filter_grad->mutable_data(ctx.GetPlace()); - auto t = framework::EigenVector::Flatten(*filter_grad); - t.device(ctx.GetEigenDevice()) = - t.constant(static_cast(0)); + // Because beta is zero, it is unnecessary to reset filter_grad. + for (int i = 0; i < groups; i++) { PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, @@ -261,6 +259,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(conv_cudnn, paddle::operators::CudnnConvOpKernel); +REGISTER_OP_GPU_KERNEL(conv_cudnn, paddle::operators::CudnnConvOpKernel, + paddle::operators::CudnnConvOpKernel); REGISTER_OP_GPU_KERNEL(conv_cudnn_grad, - paddle::operators::CudnnConvGradOpKernel); + paddle::operators::CudnnConvGradOpKernel, + paddle::operators::CudnnConvGradOpKernel); diff --git a/paddle/operators/conv_op.cc b/paddle/operators/conv_op.cc index 687d741cb22a081eab18c61752200b9fd48f68a7..7a36a9b21aa6a1b415ac5a232e65eda8051c87f8 100644 --- a/paddle/operators/conv_op.cc +++ b/paddle/operators/conv_op.cc @@ -225,11 +225,15 @@ REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad, ops::ConvOpGrad); REGISTER_OP_CPU_KERNEL(conv2d, - ops::GemmConvKernel); + ops::GemmConvKernel, + ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( - conv2d_grad, ops::GemmConvGradKernel); + conv2d_grad, ops::GemmConvGradKernel, + ops::GemmConvGradKernel); REGISTER_OP_CPU_KERNEL(conv3d, - ops::GemmConvKernel); + ops::GemmConvKernel, + ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( - conv3d_grad, ops::GemmConvGradKernel); + conv3d_grad, ops::GemmConvGradKernel, + ops::GemmConvGradKernel); diff --git a/paddle/operators/conv_op.cu.cc b/paddle/operators/conv_op.cu.cc index 8e6f9da455b7291049aee57189dae15b8bcc2150..546451234a1ed1a4d3119cb175c6d37ae3f0aac1 100644 --- a/paddle/operators/conv_op.cu.cc +++ b/paddle/operators/conv_op.cu.cc @@ -17,11 +17,15 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(conv2d, - ops::GemmConvKernel); + ops::GemmConvKernel, + ops::GemmConvKernel); REGISTER_OP_GPU_KERNEL( - conv2d_grad, ops::GemmConvGradKernel); + conv2d_grad, ops::GemmConvGradKernel, + ops::GemmConvGradKernel); REGISTER_OP_GPU_KERNEL(conv3d, - ops::GemmConvKernel); + ops::GemmConvKernel, + ops::GemmConvKernel); REGISTER_OP_GPU_KERNEL( - conv3d_grad, ops::GemmConvGradKernel); + conv3d_grad, ops::GemmConvGradKernel, + ops::GemmConvGradKernel); diff --git a/paddle/operators/conv2d_transpose_cudnn_op.cc b/paddle/operators/conv_transpose_cudnn_op.cc similarity index 55% rename from paddle/operators/conv2d_transpose_cudnn_op.cc rename to paddle/operators/conv_transpose_cudnn_op.cc index fce1357ce5af5f11ccc5941690431393301e6725..0192178ce3a0a47196232f0723baec8324bea60b 100644 --- a/paddle/operators/conv2d_transpose_cudnn_op.cc +++ b/paddle/operators/conv_transpose_cudnn_op.cc @@ -23,7 +23,24 @@ class CudnnConv2DTransposeOpMaker : public Conv2DTransposeOpMaker { framework::OpAttrChecker* op_checker) : Conv2DTransposeOpMaker(proto, op_checker) { AddAttr>("dilations", "dilations of convolution operator.") - .SetDefault(std::vector{1, 1}); + .SetDefault({1, 1}); + AddAttr("workspace_size_MB", + "workspace size for cudnn, in MB, " + "workspace is a section of GPU memory which will be " + "allocated/freed each time the operator runs, larger " + "workspace size can increase performance but also requires " + "better hardward. This size should be carefully setted.") + .SetDefault(4096); + } +}; + +class CudnnConv3DTransposeOpMaker : public Conv3DTransposeOpMaker { + public: + CudnnConv3DTransposeOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : Conv3DTransposeOpMaker(proto, op_checker) { + AddAttr>("dilations", "dilations of convolution operator.") + .SetDefault({1, 1, 1}); AddAttr("workspace_size_MB", "workspace size for cudnn, in MB, " "workspace is a section of GPU memory which will be " @@ -44,7 +61,22 @@ REGISTER_OP(conv2d_transpose_cudnn, ops::ConvTransposeOp, REGISTER_OP_CPU_KERNEL( conv2d_transpose_cudnn, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv2d_transpose_cudnn_grad, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); + +REGISTER_OP(conv3d_transpose_cudnn, ops::ConvTransposeOp, + ops::CudnnConv3DTransposeOpMaker, conv3d_transpose_cudnn_grad, + ops::ConvTransposeOpGrad); + +REGISTER_OP_CPU_KERNEL( + conv3d_transpose_cudnn, + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); +REGISTER_OP_CPU_KERNEL( + conv3d_transpose_cudnn_grad, + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv2d_transpose_cudnn_op.cu.cc b/paddle/operators/conv_transpose_cudnn_op.cu.cc similarity index 89% rename from paddle/operators/conv2d_transpose_cudnn_op.cu.cc rename to paddle/operators/conv_transpose_cudnn_op.cu.cc index eff058afc6cc5dacf2a054a33f352824865c1924..494904fe524ae30a5032e489a0c5f20179d8e8ce 100644 --- a/paddle/operators/conv2d_transpose_cudnn_op.cu.cc +++ b/paddle/operators/conv_transpose_cudnn_op.cu.cc @@ -54,15 +54,21 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel { ScopedTensorDescriptor output_desc; ScopedFilterDescriptor filter_desc; ScopedConvolutionDescriptor conv_desc; - DataLayout layout = DataLayout::kNCHW; + DataLayout layout; + + if (strides.size() == 2U) { + layout = DataLayout::kNCHW; + } else { + layout = DataLayout::kNCDHW; + } - // N, M, H, W + // (N, M, H, W) or (N, M, D, H, W) cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, framework::vectorize2int(input->dims())); - // N, C, O_h, O_w + // (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w) cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( layout, framework::vectorize2int(output->dims())); - // M, C, K_h, K_w + // (M, C, K_h, K_w) or (M, C, K_d, K_h, K_w) cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor( layout, framework::vectorize2int(filter->dims())); cudnnConvolutionDescriptor_t cudnn_conv_desc = @@ -136,13 +142,13 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { ScopedConvolutionDescriptor conv_desc; DataLayout layout = DataLayout::kNCHW; - // Input: (N, M, H, W) + // Input: (N, M, H, W) or (N, M, D, H, W) cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, framework::vectorize2int(input->dims())); - // Output: (N, C, O_H, O_W) + // Output: (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w) cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( layout, framework::vectorize2int(output_grad->dims())); - // Filter (M, C, K_H, K_W) + // Filter (M, C, K_h, K_w) or (M, C, K_d K_h, K_w) cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor( layout, framework::vectorize2int(filter->dims())); @@ -200,8 +206,7 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { T alpha = 1.0f, beta = 0.0f; if (input_grad) { T* input_grad_data = input_grad->mutable_data(ctx.GetPlace()); - math::set_constant(ctx.device_context(), input_grad, 0); - + // Because beta is zero, it is unnecessary to reset input_grad. PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward( handle, &alpha, cudnn_output_desc, output_grad_data, cudnn_filter_desc, filter_data, cudnn_conv_desc, data_algo, @@ -212,8 +217,7 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { // ------------------- cudnn conv backward filter --------------------- if (filter_grad) { T* filter_grad_data = filter_grad->mutable_data(ctx.GetPlace()); - math::set_constant(ctx.device_context(), filter_grad, 0); - + // Because beta is zero, it is unnecessary to reset filter_grad. // Gradient with respect to the filter PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( handle, &alpha, cudnn_output_desc, output_grad_data, cudnn_input_desc, @@ -231,6 +235,15 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn, - ops::CudnnConvTransposeOpKernel); + ops::CudnnConvTransposeOpKernel, + ops::CudnnConvTransposeOpKernel); REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn_grad, - ops::CudnnConvTransposeGradOpKernel); + ops::CudnnConvTransposeGradOpKernel, + ops::CudnnConvTransposeGradOpKernel); + +REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn, + ops::CudnnConvTransposeOpKernel, + ops::CudnnConvTransposeOpKernel); +REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn_grad, + ops::CudnnConvTransposeGradOpKernel, + ops::CudnnConvTransposeGradOpKernel); diff --git a/paddle/operators/conv_transpose_op.cc b/paddle/operators/conv_transpose_op.cc index 13ac0cd54cbeb8f68c2246f7e1d02f032266a72e..3e55ef036a7fb976117054574d1347fa943acd55 100644 --- a/paddle/operators/conv_transpose_op.cc +++ b/paddle/operators/conv_transpose_op.cc @@ -30,11 +30,6 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); - for (size_t i = 0; i < paddings.size(); ++i) { - PADDLE_ENFORCE_EQ(paddings[i], 0, - "No Padding allowed in conv transpose op."); - } - PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5, "ConvTransposeOp intput should be 4-D or 5-D tensor."); PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(), @@ -52,7 +47,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { std::vector output_shape({in_dims[0], filter_dims[1]}); for (size_t i = 0; i < strides.size(); ++i) { - output_shape.push_back((in_dims[i + 2] - 1) * strides[i] + + output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_dims[i + 2]); } ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); @@ -190,17 +185,21 @@ REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker, REGISTER_OP_CPU_KERNEL( conv2d_transpose, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv2d_transpose_grad, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker, conv3d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OP_CPU_KERNEL( conv3d_transpose, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv3d_transpose_grad, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv_transpose_op.cu.cc b/paddle/operators/conv_transpose_op.cu.cc index 401cddb379ced134b800d2a078fe130a2850fbb2..4165eb0c7b048b83bbd94c57b971530043b66545 100644 --- a/paddle/operators/conv_transpose_op.cu.cc +++ b/paddle/operators/conv_transpose_op.cu.cc @@ -18,14 +18,18 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( conv2d_transpose, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_GPU_KERNEL( conv2d_transpose_grad, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); REGISTER_OP_GPU_KERNEL( conv3d_transpose, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_GPU_KERNEL( conv3d_transpose_grad, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv_transpose_op.h b/paddle/operators/conv_transpose_op.h index 4b2bd60437da8f58054d8cdd5e6ba1fdac05f0d5..ab336ad23ce1c180b68d04e4c85b299e301d5376 100644 --- a/paddle/operators/conv_transpose_op.h +++ b/paddle/operators/conv_transpose_op.h @@ -62,7 +62,6 @@ class GemmConvTransposeKernel : public framework::OpKernel { Tensor* output = context.Output("Output"); std::vector strides = context.Attr>("strides"); - // Actually, no paddings and groups allowed in conv transpose. std::vector paddings = context.Attr>("paddings"); // TODO(Zhuoyuan): Paddings can be added in future. // groups will alway be disabled in conv2dtranspose. @@ -148,8 +147,8 @@ class GemmConvTransposeKernel : public framework::OpKernel { } else if (filter_shape_vec.size() == 3) { // col2vol: col_matrix -> dy // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w) - col2vol(context.device_context(), col, dilations, strides, - std::vector{0, 0, 0}, &output_batch); + col2vol(context.device_context(), col, dilations, strides, paddings, + &output_batch); } } } @@ -173,7 +172,6 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { if ((!input_grad) && (!filter_grad)) return; std::vector strides = context.Attr>("strides"); - // Actually, no paddings and groups allowed in conv transpose. std::vector paddings = context.Attr>("paddings"); const int batch_size = static_cast(input->dims()[0]); diff --git a/paddle/operators/gru_op.h b/paddle/operators/gru_op.h index 55e9cc4a98bd6d36ce5d6bb4116039d0ec18b485..1b18368e0e16365682520b62a7f6adab0cbb527f 100644 --- a/paddle/operators/gru_op.h +++ b/paddle/operators/gru_op.h @@ -24,8 +24,17 @@ namespace paddle { namespace operators { -using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; +using Tensor = framework::Tensor; + +template +inline void ReorderInitState(const platform::DeviceContext& ctx, + const framework::Tensor& src, const size_t* index, + framework::Tensor* dst, bool indexed_src) { + math::CopyMatrixRowsFunctor row_shuffle; + dst->mutable_data(src.dims(), ctx.GetPlace()); + row_shuffle(ctx, src, index, *dst, indexed_src); +} template class GRUKernel : public framework::OpKernel { @@ -33,7 +42,6 @@ class GRUKernel : public framework::OpKernel { void BatchCompute(const framework::ExecutionContext& context) const { auto* input = context.Input("Input"); auto* h0 = context.Input("H0"); - const T* h0_data = h0 ? h0->data() : nullptr; auto* weight = context.Input("Weight"); const T* weight_data = weight->data(); auto* bias = context.Input("Bias"); @@ -66,7 +74,18 @@ class GRUKernel : public framework::OpKernel { gru_value.gateWeight = const_cast(weight_data); gru_value.stateWeight = const_cast(weight_data + 2 * frame_size * frame_size); - gru_value.prevOutValue = const_cast(h0_data); + Tensor ordered_h0; + const size_t* order = batch_gate->lod()[2].data(); + if (h0) { + // Since the batch computing for GRU reorders the input sequences + // according to their length. The initialized cell state also needs + // to reorder. + ReorderInitState(context.device_context(), *h0, order, + &ordered_h0, true); + gru_value.prevOutValue = ordered_h0.data(); + } else { + gru_value.prevOutValue = nullptr; + } auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; for (size_t n = 0; n < num_batch; n++) { @@ -102,7 +121,6 @@ class GRUGradKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { auto* h0 = context.Input("H0"); - const T* h0_data = h0 ? h0->data() : nullptr; auto* weight = context.Input("Weight"); const T* weight_data = weight->data(); auto* batch_gate = context.Input("BatchGate"); @@ -135,6 +153,17 @@ class GRUGradKernel : public framework::OpKernel { zero(dev_ctx, &batch_gate_grad, static_cast(0.0)); zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast(0.0)); + Tensor ordered_h0, ordered_h0_grad; + const size_t* order = batch_gate->lod()[2].data(); + if (h0) { + ReorderInitState(context.device_context(), *h0, order, + &ordered_h0, true); + } + if (h0_grad) { + ordered_h0_grad.mutable_data(h0_grad->dims(), context.GetPlace()); + zero(context.device_context(), &ordered_h0_grad, static_cast(0.0)); + } + bool is_reverse = context.Attr("is_reverse"); batch_hidden_grad.set_lod(batch_hidden->lod()); to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse); @@ -176,14 +205,9 @@ class GRUGradKernel : public framework::OpKernel { batch_reset_hidden_prev_grad.Slice(bstart, bend); gru_grad.resetOutputGrad = reset_hidden_prev_grad_t.data(); if (n == 0) { - gru_value.prevOutValue = const_cast(h0_data); - if (h0_grad) { - T* h0_grad_data = h0_grad->mutable_data(context.GetPlace()); - zero(dev_ctx, h0_grad, static_cast(0.0)); - gru_grad.prevOutGrad = h0_grad_data; - } else { - gru_grad.prevOutGrad = nullptr; - } + gru_value.prevOutValue = h0 ? ordered_h0.data() : nullptr; + gru_grad.prevOutGrad = + h0 && h0_grad ? ordered_h0_grad.data() : nullptr; } else { int bstart_pre = static_cast(batch_starts[n - 1]); Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart); @@ -208,6 +232,10 @@ class GRUGradKernel : public framework::OpKernel { math::ColwiseSum col_sum; col_sum(dev_ctx, batch_gate_grad, bias_grad); } + if (h0 && h0_grad) { + ReorderInitState(context.device_context(), ordered_h0_grad, + order, h0_grad, false); + } } void Compute(const framework::ExecutionContext& context) const override { diff --git a/paddle/operators/logical_op.cc b/paddle/operators/logical_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..a37582c1d840ac11f847d8743c824ef1aef0fd66 --- /dev/null +++ b/paddle/operators/logical_op.cc @@ -0,0 +1,153 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/logical_op.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { +template +class BinaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + BinaryLogicalOpProtoMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + OpComment comment; + AddInput("X", + string::Sprintf("(LoDTensor) Left hand operand of %s operator", + comment.type)); + AddInput("Y", + string::Sprintf("(LoDTensor) Right hand operand of %s operator", + comment.type)); + AddOutput("Out", string::Sprintf( + "(LoDTensor) n-dim bool tensor. Each element is %s", + comment.equation)); + AddComment(string::Sprintf(R"DOC(%s Operator + +It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean tensors. +Each element of Out is calculated by %s +)DOC", + comment.type, comment.equation)); + } +}; + +template +class UnaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + UnaryLogicalOpProtoMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + OpComment comment; + AddInput("X", string::Sprintf("(LoDTensor) Operand of %s operator", + comment.type)); + AddOutput("Out", string::Sprintf( + "(LoDTensor) n-dim bool tensor. Each element is %s", + comment.equation)); + AddComment(string::Sprintf(R"DOC(%s Operator + +It operates element-wise on X, and returns the Out. X and Out are N-dim boolean tensors. +Each element of Out is calculated by %s +)DOC", + comment.type, comment.equation)); + } +}; + +template +class BinaryLogicalOpInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + OpComment comment; + PADDLE_ENFORCE(context->HasInput("X"), + "Input(X) of %s operator must not be null", comment.type); + PADDLE_ENFORCE(context->HasInput("Y"), + "Input(Y) of %s operator must not be null", comment.type); + auto dim_x = context->GetInputDim("X"); + auto dim_y = context->GetInputDim("Y"); + PADDLE_ENFORCE_EQ(framework::product(dim_x), framework::product(dim_y), + "The number of elements in X and Y should be same"); + + context->SetOutputDim("Out", context->GetInputDim("X")); + context->ShareLoD("X", "Out"); + } +}; + +template +class UnaryLogicalOpInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + OpComment comment; + PADDLE_ENFORCE(context->HasInput("X"), + "Input(X) of %s operator must not be null", comment.type); + auto dim_x = context->GetInputDim("X"); + + context->SetOutputDim("Out", context->GetInputDim("X")); + context->ShareLoD("X", "Out"); + } +}; + +class LogicalOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + framework::OpKernelType GetKernelType( + const framework::ExecutionContext &ctx) const override { + framework::OpKernelType kt = OperatorWithKernel::GetKernelType(ctx); + // LogicalOp kernel's device type is decided by input tensor place + kt.place_ = ctx.Input("X")->place(); + return kt; + } +}; + +} // namespace operators +} // namespace paddle + +#define REGISTER_BINARY_LOGICAL_OP(op_type, _equation) \ + struct _##op_type##Comment { \ + static char type[]; \ + static char equation[]; \ + }; \ + char _##op_type##Comment::type[]{#op_type}; \ + char _##op_type##Comment::equation[]{_equation}; \ + REGISTER_OPERATOR( \ + op_type, ::paddle::operators::LogicalOp, \ + ::paddle::operators::BinaryLogicalOpProtoMaker<_##op_type##Comment>, \ + ::paddle::operators::BinaryLogicalOpInferShape<_##op_type##Comment>, \ + ::paddle::framework::EmptyGradOpMaker); + +#define REGISTER_UNARY_LOGICAL_OP(op_type, _equation) \ + struct _##op_type##Comment { \ + static char type[]; \ + static char equation[]; \ + }; \ + char _##op_type##Comment::type[]{#op_type}; \ + char _##op_type##Comment::equation[]{_equation}; \ + REGISTER_OPERATOR( \ + op_type, ::paddle::operators::LogicalOp, \ + ::paddle::operators::UnaryLogicalOpProtoMaker<_##op_type##Comment>, \ + ::paddle::operators::UnaryLogicalOpInferShape<_##op_type##Comment>, \ + ::paddle::framework::EmptyGradOpMaker); + +REGISTER_BINARY_LOGICAL_OP(logical_and, "Out = X && Y"); +REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CPU, + paddle::operators::LogicalAndFunctor); +REGISTER_BINARY_LOGICAL_OP(logical_or, "Out = X && Y"); +REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CPU, + paddle::operators::LogicalOrFunctor); +REGISTER_UNARY_LOGICAL_OP(logical_not, "Out = !X"); +REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CPU, + paddle::operators::LogicalNotFunctor); +REGISTER_BINARY_LOGICAL_OP(logical_xor, "Out = (X || Y) && !(X && Y)"); +REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CPU, + paddle::operators::LogicalXorFunctor); diff --git a/paddle/operators/logical_op.cu b/paddle/operators/logical_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..d41239b2ca43e7145ea56afcb0af69948838cc48 --- /dev/null +++ b/paddle/operators/logical_op.cu @@ -0,0 +1,24 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/logical_op.h" + +REGISTER_BINARY_LOGICAL_KERNEL(logical_and, GPU, + paddle::operators::LogicalAndFunctor); +REGISTER_BINARY_LOGICAL_KERNEL(logical_or, GPU, + paddle::operators::LogicalOrFunctor); +REGISTER_UNARY_LOGICAL_KERNEL(logical_not, GPU, + paddle::operators::LogicalNotFunctor); +REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, GPU, + paddle::operators::LogicalXorFunctor); diff --git a/paddle/operators/logical_op.h b/paddle/operators/logical_op.h new file mode 100644 index 0000000000000000000000000000000000000000..6e78a7d6ed87ba950886e6bc667f82118ff78904 --- /dev/null +++ b/paddle/operators/logical_op.h @@ -0,0 +1,93 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include +#include "paddle/framework/op_registry.h" +#include "paddle/platform/transform.h" + +namespace paddle { +namespace operators { + +template +struct LogicalAndFunctor { + using ELEM_TYPE = T; + HOSTDEVICE bool operator()(const T& a, const T& b) const { return a && b; } +}; + +template +struct LogicalOrFunctor { + using ELEM_TYPE = T; + HOSTDEVICE bool operator()(const T& a, const T& b) const { return a || b; } +}; + +template +struct LogicalNotFunctor { + using ELEM_TYPE = T; + HOSTDEVICE bool operator()(const T& a) const { return !a; } +}; + +template +struct LogicalXorFunctor { + using ELEM_TYPE = T; + HOSTDEVICE bool operator()(const T& a, const T& b) const { + return (a || b) && !(a && b); + } +}; + +template +class BinaryLogicalOpKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + using T = typename Functor::ELEM_TYPE; + auto* x = context.Input("X"); + auto* y = context.Input("Y"); + auto* out = context.Output("Out"); + Functor binary_func; + platform::Transform trans; + trans(context.device_context(), x->data(), x->data() + x->numel(), + y->data(), out->mutable_data(context.GetPlace()), + binary_func); + } +}; + +template +class UnaryLogicalOpKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + using T = typename Functor::ELEM_TYPE; + auto* x = context.Input("X"); + auto* out = context.Output("Out"); + Functor unary_func; + platform::Transform trans; + trans(context.device_context(), x->data(), x->data() + x->numel(), + out->mutable_data(context.GetPlace()), unary_func); + } +}; + +} // namespace operators +} // namespace paddle + +#define REGISTER_BINARY_LOGICAL_KERNEL(op_type, dev, functor) \ + REGISTER_OP_##dev##_KERNEL( \ + op_type, ::paddle::operators::BinaryLogicalOpKernel< \ + ::paddle::platform::dev##Place, functor>); + +#define REGISTER_UNARY_LOGICAL_KERNEL(op_type, dev, functor) \ + REGISTER_OP_##dev##_KERNEL( \ + op_type, ::paddle::operators::UnaryLogicalOpKernel< \ + ::paddle::platform::dev##Place, functor>); diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt index b9417f1d7fdc663fff751328d18239af3dbb1216..3017f133afc5d4dcd484c78b44591a876ab4d667 100644 --- a/paddle/operators/math/CMakeLists.txt +++ b/paddle/operators/math/CMakeLists.txt @@ -1,7 +1,7 @@ add_subdirectory(detail) if(WITH_GPU) - nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu DEPS cblas device_context) + nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu DEPS cblas device_context framework_proto) nv_test(math_function_gpu_test SRCS math_function_test.cu DEPS math_function tensor) nv_library(selected_rows_functor SRCS selected_rows_functor.cc selected_rows_functor.cu DEPS selected_rows math_function) nv_test(selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor) @@ -14,8 +14,9 @@ if(WITH_GPU) nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context) nv_library(lstm_compute SRCS lstm_compute.cc lstm_compute.cu DEPS device_context activation_functions) nv_library(gru_compute SRCS gru_compute.cc gru_compute.cu DEPS device_context activation_functions math_function) + nv_library(maxouting SRCS maxouting.cc maxouting.cu DEPS device_context) else() - cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context) + cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context framework_proto) cc_library(selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function) cc_library(softmax SRCS softmax.cc DEPS device_context) cc_library(cross_entropy SRCS cross_entropy.cc DEPS device_context) @@ -26,6 +27,7 @@ else() cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context) cc_library(lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions) cc_library(gru_compute SRCS gru_compute.cc DEPS device_context activation_functions math_function) + cc_library(maxouting SRCS maxouting.cc DEPS device_context) endif() cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) diff --git a/paddle/operators/math/im2col.cu b/paddle/operators/math/im2col.cu index 347df7a0ffdec163c0479a71ec775a813930ba5f..bf7894243919571c2ab15d53690b1ef05bfcc6ee 100644 --- a/paddle/operators/math/im2col.cu +++ b/paddle/operators/math/im2col.cu @@ -119,8 +119,8 @@ __global__ void col2im(int n, const T* data_col, int im_height, int im_width, if (index < n) { T val = 0; - int w = index % im_width; - int h = (index / im_width) % im_height; + int w = index % im_width + padding_width; + int h = (index / im_width) % im_height + padding_height; int c = index / (im_width * im_height); // compute the start and end of the output diff --git a/paddle/operators/math/maxouting.cc b/paddle/operators/math/maxouting.cc new file mode 100644 index 0000000000000000000000000000000000000000..e5168ce7afd4139475afa6edd5999b9974407c9b --- /dev/null +++ b/paddle/operators/math/maxouting.cc @@ -0,0 +1,106 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/maxouting.h" + +namespace paddle { +namespace operators { +namespace math { + +// All tensors are in NCHW format, and the groups must be greater than 1 +template +class MaxOutFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, + framework::Tensor * output, + int groups) { + const int batch_size = input.dims()[0]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output->dims()[1]; + int fea_size = input_height * input_width; + // c_size means the output size of each sample + int c_size = fea_size * output_channels; + const T* input_data = input.data(); + T* output_data = output->mutable_data(context.GetPlace()); + + for (int i = 0; i < batch_size; ++i) { + int new_bindex = c_size * i; + for (int c = 0; c < output_channels; ++c) { + int new_cindex = fea_size * c; + for (int f = 0; f < fea_size; ++f) { + T ele = static_cast(-FLT_MAX); + for (int ph = 0; ph < groups; ++ph) { + T x = input_data[(new_bindex + new_cindex) * groups + + ph * fea_size + f]; + ele = ele > x ? ele : x; + } + output_data[(new_bindex+new_cindex+f)] = ele; + } + } + } + } +}; + + + +template +class MaxOutGradFunctor { +public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, + framework::Tensor * input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, + int groups) { + const int batch_size = input.dims()[0]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output.dims()[1]; + int fea_size = input_height * input_width; + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad->mutable_data(context.GetPlace()); + + for (int i = 0; i < batch_size; ++i) { + int blen = fea_size * output_channels * i; + for (int c = 0; c < output_channels; ++c) { + int clen = fea_size * c; + for (int f = 0; f < fea_size; ++f) { + int input_idx0 = (blen + clen) * groups + f; + bool continue_match = true; + int output_idx = blen + clen + f; + for (int g = 0; g < groups && continue_match; ++g) { + int input_idx = input_idx0 + fea_size * g; + if (input_data[input_idx] == output_data[output_idx]) { + input_grad_data[input_idx] += output_grad_data[output_idx]; + continue_match = false; + } + } + } + } + } + } +}; + +template class MaxOutGradFunctor; +template class MaxOutGradFunctor; +template class MaxOutFunctor; +template class MaxOutFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/maxouting.cu b/paddle/operators/math/maxouting.cu new file mode 100644 index 0000000000000000000000000000000000000000..7c698577b8a8258a58ba9a2b6c675457b2458a5b --- /dev/null +++ b/paddle/operators/math/maxouting.cu @@ -0,0 +1,154 @@ +/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/maxouting.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { +namespace math { + +template +__global__ void KernelMaxOut(const int nthreads, const T* input_data, + const int channels, + const int input_height, const int input_width, + int groups, T* output_data ) { + const int size = input_height * input_width * channels / groups; + const int feat_len = input_height * input_width; + int index = blockIdx.x * blockDim.x + threadIdx.x; + int offset = blockDim.x * gridDim.x; + for (int i = index; i < nthreads; i += offset) { + int batch_idx = i / size; + int batch_offset = i % size; + int channel_idx = batch_offset / feat_len; + int feat_idx = batch_offset % feat_len; + int data_idx = + (batch_idx * size + channel_idx * feat_len) * groups + feat_idx; + T ele = static_cast(-FLT_MAX); + for (int g = 0; g < groups; ++g) { + T x = input_data[data_idx + g * feat_len]; + ele = ele > x ? ele : x; + } + output_data[i] = ele; + } +} +template +__global__ void KernelMaxoutGrad( + const int nthreads, const T* input_data, const T* output_data, + const T* output_grad, T* input_grad, const int channels, + const int input_height, const int input_width, int groups) { + const int size = input_height * input_width * channels / groups; + const int feat_len = input_height * input_width; + int index = blockIdx.x * blockDim.x + threadIdx.x; + int offset = blockDim.x * gridDim.x; + for (int i = index; i < nthreads; i += offset) { + int batch_idx = i / size; + int batch_offset = i % size; + int channel_idx = batch_offset / feat_len; + int feat_idx = batch_offset % feat_len; + int data_idx = + (batch_idx * size + channel_idx * feat_len) * groups + feat_idx; + int max_index = -1; + bool continue_match = true; + for (int g = 0; g < groups && continue_match; ++g) { + if (input_data[data_idx + g * feat_len] == output_data[i]) { + max_index = data_idx + g * feat_len; + continue_match = false; + break; + } + } + if (max_index != -1) { + input_grad[max_index] += output_grad[index]; + } + } +} +/* + * All tensors are in NCHW format. + */ +template +class MaxOutFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor * output, + int groups) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output->dims()[1]; + const int output_height = output->dims()[2]; + const int output_width = output->dims()[3]; + + const T* input_data = input.data(); + T* output_data = output->mutable_data(context.GetPlace()); + int nthreads = output->numel(); + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelMaxOut< + T><<(context) + .stream()>>>(nthreads, input_data, input_channels, + input_height, input_width, groups, + output_data); + } +}; +/* + * All tensors are in NCHW format. + */ +template +class MaxOutGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, + framework::Tensor * input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, + int groups) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output.dims()[1]; + const int output_height = output.dims()[2]; + const int output_width = output.dims()[3]; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad->mutable_data(context.GetPlace()); + int nthreads = output.numel(); + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelMaxoutGrad< + T><<(context) + .stream()>>>( + nthreads, input_data, output_data, output_grad_data, input_grad_data, + input_channels, input_height, input_width, groups); + } +}; + +template class MaxOutGradFunctor; +template class MaxOutGradFunctor; + +template class MaxOutFunctor; +template class MaxOutFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/maxouting.h b/paddle/operators/math/maxouting.h new file mode 100644 index 0000000000000000000000000000000000000000..d4c9da38ab8f8d88ed461d805ae64a015db968c4 --- /dev/null +++ b/paddle/operators/math/maxouting.h @@ -0,0 +1,47 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { +namespace math { + +#define FLT_MAX \ + __FLT_MAX__ + +template + +class MaxOutFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor * output, + int groups); +}; + +template +class MaxOutGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, + framework::Tensor * input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, int groups); +}; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/pooling.cc b/paddle/operators/math/pooling.cc index ead89e146f32ef005b06f4f6f04224d691805d74..135984586a67f666425f81456148c3623ed7ef25 100644 --- a/paddle/operators/math/pooling.cc +++ b/paddle/operators/math/pooling.cc @@ -498,8 +498,8 @@ template class Pool3dGradFunctor< * Ksize, strides, paddings are two elements. These two elements represent * height and width, respectively. */ -template -class MaxPool2dWithIndexFunctor { +template +class MaxPool2dWithIndexFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, std::vector& ksize, @@ -520,9 +520,9 @@ class MaxPool2dWithIndexFunctor { const int input_stride = input_height * input_width; const int output_stride = output_height * output_width; - const T* input_data = input.data(); - T* output_data = output->mutable_data(context.GetPlace()); - T* mask_data = mask->mutable_data(context.GetPlace()); + const T1* input_data = input.data(); + T1* output_data = output->mutable_data(context.GetPlace()); + T2* mask_data = mask->mutable_data(context.GetPlace()); for (int i = 0; i < batch_size; i++) { for (int c = 0; c < output_channels; ++c) { @@ -535,7 +535,7 @@ class MaxPool2dWithIndexFunctor { int wend = std::min(wstart + ksize_width, input_width); wstart = std::max(wstart, 0); - T ele = static_cast(-FLT_MAX); + T1 ele = static_cast(-FLT_MAX); int index = -1; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { @@ -563,8 +563,8 @@ class MaxPool2dWithIndexFunctor { * Ksize, strides, paddings are two elements. These two elements represent * height and width, respectively. */ -template -class MaxPool2dWithIndexGradFunctor { +template +class MaxPool2dWithIndexGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& output_grad, @@ -580,9 +580,9 @@ class MaxPool2dWithIndexGradFunctor { const int input_stride = input_height * input_width; const int output_stride = output_height * output_width; - const T* mask_data = mask.data(); - const T* output_grad_data = output_grad.data(); - T* input_grad_data = input_grad->mutable_data(context.GetPlace()); + const T2* mask_data = mask.data(); + const T1* output_grad_data = output_grad.data(); + T1* input_grad_data = input_grad->mutable_data(context.GetPlace()); for (int n = 0; n < batch_size; ++n) { for (int c = 0; c < output_channels; ++c) { @@ -602,18 +602,18 @@ class MaxPool2dWithIndexGradFunctor { } }; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; /* * All tensors are in NCDHW format. * Ksize, strides, paddings are three elements. These three elements represent * depth, height and width, respectively. */ -template -class MaxPool3dWithIndexFunctor { +template +class MaxPool3dWithIndexFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, std::vector& ksize, @@ -639,9 +639,9 @@ class MaxPool3dWithIndexFunctor { const int input_stride = input_depth * input_height * input_width; const int output_stride = output_depth * output_height * output_width; - const T* input_data = input.data(); - T* output_data = output->mutable_data(context.GetPlace()); - T* mask_data = mask->mutable_data(context.GetPlace()); + const T1* input_data = input.data(); + T1* output_data = output->mutable_data(context.GetPlace()); + T2* mask_data = mask->mutable_data(context.GetPlace()); for (int i = 0; i < batch_size; i++) { for (int c = 0; c < output_channels; ++c) { @@ -659,7 +659,7 @@ class MaxPool3dWithIndexFunctor { wstart = std::max(wstart, 0); int output_idx = (pd * output_height + ph) * output_width + pw; - T ele = static_cast(-FLT_MAX); + T1 ele = static_cast(-FLT_MAX); int index = -1; for (int d = dstart; d < dend; ++d) { for (int h = hstart; h < hend; ++h) { @@ -691,8 +691,8 @@ class MaxPool3dWithIndexFunctor { * Ksize, strides, paddings are three elements. These three elements represent * depth, height and width, respectively. */ -template -class MaxPool3dWithIndexGradFunctor { +template +class MaxPool3dWithIndexGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& output_grad, @@ -710,9 +710,9 @@ class MaxPool3dWithIndexGradFunctor { const int input_stride = input_depth * input_height * input_width; const int output_stride = output_depth * output_height * output_width; - const T* mask_data = mask.data(); - const T* output_grad_data = output_grad.data(); - T* input_grad_data = input_grad->mutable_data(context.GetPlace()); + const T2* mask_data = mask.data(); + const T1* output_grad_data = output_grad.data(); + T1* input_grad_data = input_grad->mutable_data(context.GetPlace()); for (int n = 0; n < batch_size; ++n) { for (int c = 0; c < output_channels; ++c) { @@ -735,10 +735,10 @@ class MaxPool3dWithIndexGradFunctor { } }; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/pooling.cu b/paddle/operators/math/pooling.cu index 6d1138ad50cb095e85b4ceb44fa81731316f10dd..ca3560f264b59057fd655084f3d43adc617c6606 100644 --- a/paddle/operators/math/pooling.cu +++ b/paddle/operators/math/pooling.cu @@ -658,13 +658,13 @@ template class Pool3dGradFunctor< template class Pool3dGradFunctor< platform::GPUPlace, paddle::operators::math::AvgPoolGrad, double>; -template +template __global__ void KernelMaxPool2dWithIdx( - const int nthreads, const T* input_data, const int channels, + const int nthreads, const T1* input_data, const int channels, const int input_height, const int input_width, const int output_height, const int output_width, const int ksize_height, const int ksize_width, const int stride_height, const int stride_width, const int padding_height, - const int padding_width, T* output_data, T* mask_data) { + const int padding_width, T1* output_data, T2* mask_data) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; index += blockDim.x * gridDim.x) { int pw = index % output_width; @@ -681,7 +681,7 @@ __global__ void KernelMaxPool2dWithIdx( wstart = max(wstart, 0); input_data += (batch_idx * channels + c) * input_height * input_width; - T ele = -FLT_MAX; + T1 ele = -FLT_MAX; int max_index = -1; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { @@ -697,13 +697,13 @@ __global__ void KernelMaxPool2dWithIdx( } } -template +template __global__ void KernelMaxPool2DWithIdxGrad( - const int nthreads, const T* output_grad, const T* mask_data, + const int nthreads, const T1* output_grad, const T2* mask_data, const int channels, const int input_height, const int input_width, const int output_height, const int output_width, const int ksize_height, const int ksize_width, const int stride_height, const int stride_width, - const int padding_height, const int padding_width, T* input_grad) { + const int padding_height, const int padding_width, T1* input_grad) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; index += blockDim.x * gridDim.x) { int w_offset = index % input_width; @@ -724,7 +724,7 @@ __global__ void KernelMaxPool2DWithIdxGrad( int pw_end = min((w_offset + padding_width) / stride_width + 1, output_width); - T gradient = 0; + T1 gradient = 0; int input_current_featuremap_idx = h_offset * input_width + w_offset; int output_idx = (batch_idx * channels + c_offset) * output_height * output_width; @@ -746,8 +746,8 @@ __global__ void KernelMaxPool2DWithIdxGrad( * Ksize, strides, paddings are two elements. These two elements represent * height and width, respectively. */ -template -class MaxPool2dWithIndexFunctor { +template +class MaxPool2dWithIndexFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, std::vector& ksize, @@ -767,9 +767,9 @@ class MaxPool2dWithIndexFunctor { const int padding_height = paddings[0]; const int padding_width = paddings[1]; - const T* input_data = input.data(); - T* output_data = output->mutable_data(context.GetPlace()); - T* mask_data = mask->mutable_data(context.GetPlace()); + const T1* input_data = input.data(); + T1* output_data = output->mutable_data(context.GetPlace()); + T2* mask_data = mask->mutable_data(context.GetPlace()); int nthreads = batch_size * output_channels * output_height * output_width; int blocks = (nthreads + 1024 - 1) / 1024; @@ -777,9 +777,9 @@ class MaxPool2dWithIndexFunctor { dim3 grid(blocks, 1); KernelMaxPool2dWithIdx< - T><<(context) - .stream()>>>( + T1, T2><<(context) + .stream()>>>( nthreads, input_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, output_data, mask_data); @@ -791,8 +791,8 @@ class MaxPool2dWithIndexFunctor { * Ksize, strides, paddings are two elements. These two elements represent * height and width, respectively. */ -template -class MaxPool2dWithIndexGradFunctor { +template +class MaxPool2dWithIndexGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& output_grad, @@ -812,9 +812,9 @@ class MaxPool2dWithIndexGradFunctor { const int padding_height = paddings[0]; const int padding_width = paddings[1]; - const T* mask_data = mask.data(); - const T* output_grad_data = output_grad.data(); - T* input_grad_data = input_grad->mutable_data(context.GetPlace()); + const T2* mask_data = mask.data(); + const T1* output_grad_data = output_grad.data(); + T1* input_grad_data = input_grad->mutable_data(context.GetPlace()); int nthreads = batch_size * input_channels * input_height * input_width; int blocks = (nthreads + 1024 - 1) / 1024; @@ -822,30 +822,30 @@ class MaxPool2dWithIndexGradFunctor { dim3 grid(blocks, 1); KernelMaxPool2DWithIdxGrad< - T><<(context) - .stream()>>>(nthreads, output_grad_data, mask_data, - input_channels, input_height, input_width, - output_height, output_width, ksize_height, - ksize_width, stride_height, stride_width, - padding_height, padding_width, input_grad_data); + T1, T2><<(context) + .stream()>>>( + nthreads, output_grad_data, mask_data, input_channels, input_height, + input_width, output_height, output_width, ksize_height, ksize_width, + stride_height, stride_width, padding_height, padding_width, + input_grad_data); } }; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; -template +template __global__ void KernelMaxPool3DWithIdx( - const int nthreads, const T* input_data, const int channels, + const int nthreads, const T1* input_data, const int channels, const int input_depth, const int input_height, const int input_width, const int output_depth, const int output_height, const int output_width, const int ksize_depth, const int ksize_height, const int ksize_width, const int stride_depth, const int stride_height, const int stride_width, const int padding_depth, const int padding_height, const int padding_width, - T* output_data, T* mask_data) { + T1* output_data, T2* mask_data) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; index += blockDim.x * gridDim.x) { int pw = index % output_width; @@ -865,7 +865,7 @@ __global__ void KernelMaxPool3DWithIdx( hstart = max(hstart, 0); wstart = max(wstart, 0); - T ele = -FLT_MAX; + T1 ele = -FLT_MAX; int max_index = -1; input_data += (batch_idx * channels + c) * input_depth * input_height * input_width; @@ -885,15 +885,15 @@ __global__ void KernelMaxPool3DWithIdx( } } -template +template __global__ void KernelMaxPool3DWithIdxGrad( - const int nthreads, const T* output_grad, const T* mask, const int channels, - const int input_depth, const int input_height, const int input_width, - const int output_depth, const int output_height, const int output_width, - const int ksize_depth, const int ksize_height, const int ksize_width, - const int stride_depth, const int stride_height, const int stride_width, - const int padding_depth, const int padding_height, const int padding_width, - T* input_grad) { + const int nthreads, const T1* output_grad, const T2* mask, + const int channels, const int input_depth, const int input_height, + const int input_width, const int output_depth, const int output_height, + const int output_width, const int ksize_depth, const int ksize_height, + const int ksize_width, const int stride_depth, const int stride_height, + const int stride_width, const int padding_depth, const int padding_height, + const int padding_width, T1* input_grad) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; index += blockDim.x * gridDim.x) { int w_offset = index % input_width; @@ -922,7 +922,7 @@ __global__ void KernelMaxPool3DWithIdxGrad( int pw_end = min((w_offset + padding_width) / stride_width + 1, output_width); - T gradient = 0; + T1 gradient = 0; int input_current_feature_map_idx = (d_offset * input_height + h_offset) * input_width + w_offset; int output_idx = (batch_idx * channels + c_offset) * output_depth * @@ -949,8 +949,8 @@ __global__ void KernelMaxPool3DWithIdxGrad( * Ksize, strides, paddings are three elements. These three elements represent * depth, height and width, respectively. */ -template -class MaxPool3dWithIndexFunctor { +template +class MaxPool3dWithIndexFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, std::vector& ksize, @@ -975,9 +975,9 @@ class MaxPool3dWithIndexFunctor { const int padding_height = paddings[1]; const int padding_width = paddings[2]; - const T* input_data = input.data(); - T* output_data = output->mutable_data(context.GetPlace()); - T* mask_data = mask->mutable_data(context.GetPlace()); + const T1* input_data = input.data(); + T1* output_data = output->mutable_data(context.GetPlace()); + T2* mask_data = mask->mutable_data(context.GetPlace()); int nthreads = batch_size * output_channels * output_depth * output_height * output_width; @@ -986,9 +986,9 @@ class MaxPool3dWithIndexFunctor { dim3 grid(blocks, 1); KernelMaxPool3DWithIdx< - T><<(context) - .stream()>>>( + T1, T2><<(context) + .stream()>>>( nthreads, input_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, @@ -1001,8 +1001,8 @@ class MaxPool3dWithIndexFunctor { * Ksize, strides, paddings are three elements. These three elements represent * depth, height and width, respectively. */ -template -class MaxPool3dWithIndexGradFunctor { +template +class MaxPool3dWithIndexGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& output_grad, @@ -1027,9 +1027,9 @@ class MaxPool3dWithIndexGradFunctor { const int padding_height = paddings[1]; const int padding_width = paddings[2]; - const T* output_grad_data = output_grad.data(); - const T* mask_data = mask.data(); - T* input_grad_data = input_grad->mutable_data(context.GetPlace()); + const T1* output_grad_data = output_grad.data(); + const T2* mask_data = mask.data(); + T1* input_grad_data = input_grad->mutable_data(context.GetPlace()); int nthreads = batch_size * input_channels * input_depth * input_height * input_width; @@ -1038,9 +1038,9 @@ class MaxPool3dWithIndexGradFunctor { dim3 grid(blocks, 1); KernelMaxPool3DWithIdxGrad< - T><<(context) - .stream()>>>( + T1, T2><<(context) + .stream()>>>( nthreads, output_grad_data, mask_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, @@ -1049,10 +1049,10 @@ class MaxPool3dWithIndexGradFunctor { } }; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/pooling.h b/paddle/operators/math/pooling.h index f6719e1e628cdd2cf7445ec9cd05713bc4f14c84..19fbd8b4bb2469d3ce8a139ce30a48641dbd6e0f 100644 --- a/paddle/operators/math/pooling.h +++ b/paddle/operators/math/pooling.h @@ -153,7 +153,7 @@ class MaxPool3dGradFunctor { * In pool2d, all tensors are in NCHW format. In pool3d, all tensors are in * NCDHW format. */ -template +template class MaxPool2dWithIndexFunctor { public: void operator()(const platform::DeviceContext& context, @@ -162,7 +162,7 @@ class MaxPool2dWithIndexFunctor { framework::Tensor* output, framework::Tensor* mask); }; -template +template class MaxPool2dWithIndexGradFunctor { public: void operator()(const platform::DeviceContext& context, @@ -172,7 +172,7 @@ class MaxPool2dWithIndexGradFunctor { framework::Tensor* input_grad); }; -template +template class MaxPool3dWithIndexFunctor { public: void operator()(const platform::DeviceContext& context, @@ -181,7 +181,7 @@ class MaxPool3dWithIndexFunctor { framework::Tensor* output, framework::Tensor* mask); }; -template +template class MaxPool3dWithIndexGradFunctor { public: void operator()(const platform::DeviceContext& context, diff --git a/paddle/operators/maxout_op.cc b/paddle/operators/maxout_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..95467f2e69093906980d075b6a41c5d2934dd5a2 --- /dev/null +++ b/paddle/operators/maxout_op.cc @@ -0,0 +1,104 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. */ + +#include "paddle/operators/maxout_op.h" +namespace paddle { +namespace operators { + +using framework::Tensor; + +class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MaxOutOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(Tensor) The input tensor of maxout operator. " + "The format of input tensor is NCHW. Where N is batch size, C is the " + "number of channels, H and W is the height and width of feature."); + AddOutput("Out", + "(Tensor) The output tensor of maxout operator." + "The format of output tensor is also NCHW." + "Where N is batch size, C is " + "the number of channels, H and W is the height and " + "width of feature."); + AddAttr( + "groups", + R"DOC("Specifies how many groups the input tensor will be split" + "in the channel dimension. And the number of output channel is " + "the number of channels divided by groups.." + )DOC"); + AddComment(R"DOC( + Assumed the input shape is (N, Ci, H, W). + The output shape is (N, Co, H, W). Then `Co = Ci / groups`. + + math: + y_{si+j} = \max_k x_{gsi + sk + j} + g = groups + s = input.size / num_channels + 0 \le i < num_channels / groups + 0 \le j < s + 0 \le k < groups + + Please refer to Paper: + - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf + - Multi-digit Number Recognition from Street View \ + Imagery using Deep Convolutional Neural Networks: \ + https://arxiv.org/pdf/1312.6082v4.pdf + )DOC"); + } +}; + + +class MaxOutOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MaxoutOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of MaxoutOp should not be null."); + auto in_x_dims = ctx->GetInputDim("X"); + int groups = ctx->Attrs().Get("groups"); + // check groups > 1 + PADDLE_ENFORCE_GT( + groups, 1, + "groups should be larger than 1 in maxoutop"); + std::vector output_shape({in_x_dims[0], in_x_dims[1] / groups}); + output_shape.push_back(in_x_dims[2]); + output_shape.push_back(in_x_dims[3]); + ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); + } +}; + +class MaxOutOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Input(X@GRAD) should not be null."); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(maxout, ops::MaxOutOp, ops::MaxOutOpMaker, maxout_grad, + ops::MaxOutOpGrad); +REGISTER_OP_CPU_KERNEL(maxout, ops::MaxOutKernel); +REGISTER_OP_CPU_KERNEL(maxout_grad, + ops::MaxOutGradKernel); diff --git a/paddle/operators/maxout_op.cu.cc b/paddle/operators/maxout_op.cu.cc new file mode 100644 index 0000000000000000000000000000000000000000..a5823fba6848a0d42a743c90d7d683e3e4ae4422 --- /dev/null +++ b/paddle/operators/maxout_op.cu.cc @@ -0,0 +1,25 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/maxout_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(maxout, + ops::MaxOutKernel, + ops::MaxOutKernel); +REGISTER_OP_GPU_KERNEL(maxout_grad, + ops::MaxOutGradKernel, + ops::MaxOutGradKernel); diff --git a/paddle/operators/maxout_op.h b/paddle/operators/maxout_op.h new file mode 100644 index 0000000000000000000000000000000000000000..c404cd16a9b2372ea4c6a17eb5ac82cf8f3bf27c --- /dev/null +++ b/paddle/operators/maxout_op.h @@ -0,0 +1,62 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/maxouting.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class MaxOutKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* in_x = context.Input("X"); + Tensor* out = context.Output("Out"); + int groups = context.template Attr("groups"); + + math::MaxOutFunctor maxout_forward; + maxout_forward(context.device_context(), *in_x, out, groups); + } +}; + +template +class MaxOutGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* in_x = context.Input("X"); + const Tensor* out = context.Input("Out"); + const Tensor* out_grad = + context.Input(framework::GradVarName("Out")); + Tensor* in_x_grad = context.Output(framework::GradVarName("X")); + int groups = context.template Attr("groups"); + auto& device_ctx = context.device_context(); + math::SetConstant zero; + if (in_x_grad) { + in_x_grad->mutable_data(context.GetPlace()); + zero(device_ctx, in_x_grad, static_cast(0.0)); + math::MaxOutGradFunctor maxout_backward; + maxout_backward(context.device_context(), *in_x, in_x_grad, *out, + *out_grad, groups); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/pool_cudnn_op.cc b/paddle/operators/pool_cudnn_op.cc index f962d9e3e6abde14ce21eb0102f10d139fdb160e..be9fcc5661f420aadf908cf80cce6c963008b0e4 100644 --- a/paddle/operators/pool_cudnn_op.cc +++ b/paddle/operators/pool_cudnn_op.cc @@ -20,6 +20,18 @@ REGISTER_OP(pool2d_cudnn, ops::PoolOp, ops::Pool2dOpMaker, pool2d_cudnn_grad, ops::PoolOpGrad); REGISTER_OP_CPU_KERNEL(pool2d_cudnn, - ops::PoolKernel); + ops::PoolKernel, + ops::PoolKernel); REGISTER_OP_CPU_KERNEL(pool2d_cudnn_grad, - ops::PoolGradKernel) + ops::PoolGradKernel, + ops::PoolGradKernel) + +REGISTER_OP(pool3d_cudnn, ops::PoolOp, ops::Pool3dOpMaker, pool3d_cudnn_grad, + ops::PoolOpGrad); + +REGISTER_OP_CPU_KERNEL(pool3d_cudnn, + ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL(pool3d_cudnn_grad, + ops::PoolGradKernel, + ops::PoolGradKernel) diff --git a/paddle/operators/pool_cudnn_op.cu.cc b/paddle/operators/pool_cudnn_op.cu.cc index 8711567b95fea355396173b5312d26d31f9ffb12..66dd194ccd5ed629c5861552a7c124dc911362d7 100644 --- a/paddle/operators/pool_cudnn_op.cu.cc +++ b/paddle/operators/pool_cudnn_op.cu.cc @@ -52,7 +52,13 @@ class PoolCudnnOpKernel : public framework::OpKernel { ScopedTensorDescriptor input_desc; ScopedTensorDescriptor output_desc; ScopedPoolingDescriptor pool_desc; - DataLayout layout = DataLayout::kNCHW; + DataLayout layout; + + if (strides.size() == 2U) { + layout = DataLayout::kNCHW; + } else { + layout = DataLayout::kNCDHW; + } cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, framework::vectorize2int(input->dims())); @@ -112,7 +118,13 @@ class PoolCudnnGradOpKernel : public framework::OpKernel { ScopedTensorDescriptor input_desc; ScopedTensorDescriptor output_desc; ScopedPoolingDescriptor pool_desc; - DataLayout layout = DataLayout::kNCHW; + DataLayout layout; + + if (strides.size() == 2U) { + layout = DataLayout::kNCHW; + } else { + layout = DataLayout::kNCDHW; + } cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, framework::vectorize2int(input->dims())); @@ -135,8 +147,7 @@ class PoolCudnnGradOpKernel : public framework::OpKernel { if (input_grad) { T *input_grad_data = input_grad->mutable_data(ctx.GetPlace()); - math::SetConstant set_zero; - set_zero(ctx.device_context(), input_grad, static_cast(0)); + // Because beta is zero, it is unnecessary to reset input_grad. PADDLE_ENFORCE(platform::dynload::cudnnPoolingBackward( handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data, @@ -151,5 +162,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel { namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel); -REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel); +REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel, + ops::PoolCudnnOpKernel); +REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel, + ops::PoolCudnnGradOpKernel); + +REGISTER_OP_GPU_KERNEL(pool3d_cudnn, ops::PoolCudnnOpKernel, + ops::PoolCudnnOpKernel); +REGISTER_OP_GPU_KERNEL(pool3d_cudnn_grad, ops::PoolCudnnGradOpKernel, + ops::PoolCudnnGradOpKernel); diff --git a/paddle/operators/pool_op.cc b/paddle/operators/pool_op.cc index f3963b1995ef8767786f0bf230b134afc69aa99d..d8c58618cf703d086d3cabc927ebc5eb038b1aec 100644 --- a/paddle/operators/pool_op.cc +++ b/paddle/operators/pool_op.cc @@ -217,14 +217,18 @@ REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad, ops::PoolOpGrad); REGISTER_OP_CPU_KERNEL(pool2d, - ops::PoolKernel); + ops::PoolKernel, + ops::PoolKernel); REGISTER_OP_CPU_KERNEL(pool2d_grad, - ops::PoolGradKernel) + ops::PoolGradKernel, + ops::PoolGradKernel) REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad, ops::PoolOpGrad); REGISTER_OP_CPU_KERNEL(pool3d, - ops::PoolKernel); + ops::PoolKernel, + ops::PoolKernel); REGISTER_OP_CPU_KERNEL(pool3d_grad, - ops::PoolGradKernel); + ops::PoolGradKernel, + ops::PoolGradKernel); diff --git a/paddle/operators/pool_op.cu.cc b/paddle/operators/pool_op.cu.cc index 0e3b80868f7b9d1697d619889160856d65ad59a3..1010cb762289dd39cd632c699f7528f4ba638278 100644 --- a/paddle/operators/pool_op.cu.cc +++ b/paddle/operators/pool_op.cu.cc @@ -17,11 +17,15 @@ limitations under the License. */ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(pool2d, - ops::PoolKernel); + ops::PoolKernel, + ops::PoolKernel); REGISTER_OP_GPU_KERNEL(pool2d_grad, - ops::PoolGradKernel); + ops::PoolGradKernel, + ops::PoolGradKernel); REGISTER_OP_GPU_KERNEL(pool3d, - ops::PoolKernel); + ops::PoolKernel, + ops::PoolKernel); REGISTER_OP_GPU_KERNEL(pool3d_grad, - ops::PoolGradKernel); + ops::PoolGradKernel, + ops::PoolGradKernel); diff --git a/paddle/operators/pool_with_index_op.cc b/paddle/operators/pool_with_index_op.cc index 1df36e965abab3549aeb88bf682b712033c4d79c..4958fa645405db0798f37165030eae95da371477 100644 --- a/paddle/operators/pool_with_index_op.cc +++ b/paddle/operators/pool_with_index_op.cc @@ -29,11 +29,11 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), - "X(Input) of Pooling should not be null."); + "Input(X) of Pooling should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Out(Output) of Pooling should not be null."); + "Output(Out) of Pooling should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Mask"), - "Mask(Output) of Pooling should not be null."); + "Output(Mask) of Pooling should not be null."); auto in_x_dims = ctx->GetInputDim("X"); @@ -67,6 +67,14 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); ctx->SetOutputDim("Mask", framework::make_ddim(output_shape)); } + + protected: + framework::OpKernelType GetKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), + ctx.device_context()); + } }; class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel { @@ -80,6 +88,14 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel { "Input(X@GRAD) should not be null."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } + + protected: + framework::OpKernelType GetKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), + ctx.device_context()); + } }; class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { @@ -116,7 +132,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { // TypedAttrChecker don't support vector type.) AddAttr( "global_pooling", - "(bool, default false) Whether to use the global pooling. " + "(bool, default:false) Whether to use the global pooling. " "If global_pooling = true, ksize and paddings will be ignored.") .SetDefault(false); AddAttr>("strides", @@ -126,7 +142,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { // TypedAttrChecker don't support vector type.) AddAttr>( "paddings", - "(vector, defalut {0, 0}), paddings(height, width) of pooling " + "(vector, defalut:{0, 0}), paddings(height, width) of pooling " "operator. " "If global_pooling = true, paddings and will be ignored.") .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, @@ -250,10 +266,12 @@ REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp, REGISTER_OP_CPU_KERNEL( max_pool2d_with_index, - ops::MaxPoolWithIndexKernel); + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); REGISTER_OP_CPU_KERNEL( max_pool2d_with_index_grad, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp, ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad, @@ -261,7 +279,9 @@ REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp, REGISTER_OP_CPU_KERNEL( max_pool3d_with_index, - ops::MaxPoolWithIndexKernel); + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); REGISTER_OP_CPU_KERNEL( max_pool3d_with_index_grad, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) diff --git a/paddle/operators/pool_with_index_op.cu.cc b/paddle/operators/pool_with_index_op.cu.cc index 287657d4b1c57f354ef050885f71261092bdc062..335064a7eea4ec15c529db5254cbb026ba575f3d 100644 --- a/paddle/operators/pool_with_index_op.cu.cc +++ b/paddle/operators/pool_with_index_op.cu.cc @@ -18,14 +18,18 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( max_pool2d_with_index, - ops::MaxPoolWithIndexKernel); + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); REGISTER_OP_GPU_KERNEL( max_pool2d_with_index_grad, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) REGISTER_OP_GPU_KERNEL( max_pool3d_with_index, - ops::MaxPoolWithIndexKernel); + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); REGISTER_OP_GPU_KERNEL( max_pool3d_with_index_grad, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) diff --git a/paddle/operators/pool_with_index_op.h b/paddle/operators/pool_with_index_op.h index a081607edce335f0265388ab01238d584bcf3ead..40766c7e821e8b85aeda9473798a1f696d0ad719 100644 --- a/paddle/operators/pool_with_index_op.h +++ b/paddle/operators/pool_with_index_op.h @@ -24,8 +24,8 @@ namespace operators { using Tensor = framework::Tensor; -template -class MaxPoolWithIndexKernel : public framework::OpKernel { +template +class MaxPoolWithIndexKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* in_x = context.Input("X"); @@ -44,13 +44,13 @@ class MaxPoolWithIndexKernel : public framework::OpKernel { switch (ksize.size()) { case 2: { - paddle::operators::math::MaxPool2dWithIndexFunctor + paddle::operators::math::MaxPool2dWithIndexFunctor pool2d_forward; pool2d_forward(context.device_context(), *in_x, ksize, strides, paddings, out, mask); } break; case 3: { - paddle::operators::math::MaxPool3dWithIndexFunctor + paddle::operators::math::MaxPool3dWithIndexFunctor pool3d_forward; pool3d_forward(context.device_context(), *in_x, ksize, strides, paddings, out, mask); @@ -60,8 +60,8 @@ class MaxPoolWithIndexKernel : public framework::OpKernel { } }; -template -class MaxPoolWithIndexGradKernel : public framework::OpKernel { +template +class MaxPoolWithIndexGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* mask = context.Input("Mask"); @@ -80,19 +80,19 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel { } if (in_x_grad) { - in_x_grad->mutable_data(context.GetPlace()); + in_x_grad->mutable_data(context.GetPlace()); auto& device_ctx = context.device_context(); math::set_constant(device_ctx, in_x_grad, 0); switch (ksize.size()) { case 2: { - paddle::operators::math::MaxPool2dWithIndexGradFunctor + paddle::operators::math::MaxPool2dWithIndexGradFunctor pool2d_backward; pool2d_backward(device_ctx, *out_grad, *mask, ksize, strides, paddings, in_x_grad); } break; case 3: { - paddle::operators::math::MaxPool3dWithIndexGradFunctor + paddle::operators::math::MaxPool3dWithIndexGradFunctor pool3d_backward; pool3d_backward(device_ctx, *out_grad, *mask, ksize, strides, paddings, in_x_grad); diff --git a/paddle/operators/sequence_conv_op.cc b/paddle/operators/sequence_conv_op.cc index 41cadce4c603a9c14db79e2f6b30f8664cf72a38..c5533732d44737bb8cc71fd8ac46f3c36c72ada1 100644 --- a/paddle/operators/sequence_conv_op.cc +++ b/paddle/operators/sequence_conv_op.cc @@ -179,7 +179,9 @@ REGISTER_OP(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker, sequence_conv_grad, ops::SequenceConvGradOp); REGISTER_OP_CPU_KERNEL( - sequence_conv, ops::SequenceConvKernel); + sequence_conv, ops::SequenceConvKernel, + ops::SequenceConvKernel); REGISTER_OP_CPU_KERNEL( sequence_conv_grad, - ops::SequenceConvGradKernel); + ops::SequenceConvGradKernel, + ops::SequenceConvGradKernel); diff --git a/paddle/operators/sequence_conv_op.cu.cc b/paddle/operators/sequence_conv_op.cu.cc index 6106b0e46c0ab96e01dfc344055f23dbf4a1a2c3..c8136dbcb35be4f1236dddc3d24546f9d91670c8 100644 --- a/paddle/operators/sequence_conv_op.cu.cc +++ b/paddle/operators/sequence_conv_op.cu.cc @@ -16,7 +16,9 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( - sequence_conv, ops::SequenceConvKernel); + sequence_conv, ops::SequenceConvKernel, + ops::SequenceConvKernel); REGISTER_OP_GPU_KERNEL( sequence_conv_grad, - ops::SequenceConvGradKernel); + ops::SequenceConvGradKernel, + ops::SequenceConvGradKernel); diff --git a/paddle/operators/sequence_slice_op.cc b/paddle/operators/sequence_slice_op.cc new file mode 100755 index 0000000000000000000000000000000000000000..cbe0b4233160dd1f3ebdf6db8b5f6df392efdfe7 --- /dev/null +++ b/paddle/operators/sequence_slice_op.cc @@ -0,0 +1,132 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/sequence_slice_op.h" + +namespace paddle { +namespace operators { + +class SequenceSliceOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SequenceSliceOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Offset"), + "Input(Offset) of SequenceSliceOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Length"), + "Input(Length) of SequenceSliceOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SequenceSliceOp should not be null."); + auto input_dims = ctx->GetInputDim("X"); + + auto offset_dim = ctx->GetInputDim("Offset"); + auto length_dim = ctx->GetInputDim("Length"); + + PADDLE_ENFORCE_EQ( + offset_dim.size(), 2UL, + "Only support one level sequence now, The rank of offset must be 2."); + PADDLE_ENFORCE_EQ( + length_dim.size(), 2UL, + "Only support one level sequence now, The rank of Length must be 2."); + + // Initialize the output's dims to maximum, + // and re-set to real dims by the value of Offset and Length at kernel + ctx->SetOutputDim("Out", input_dims); + } + + protected: + framework::OpKernelType GetKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), + ctx.device_context()); + } +}; + +class SequenceSliceGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "The gradient of Out should not be null."); + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")), + "The gradient of X should not be null."); + ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X")); + } + + protected: + framework::OpKernelType GetKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), + ctx.device_context()); + } +}; + +class SequenceSliceOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SequenceSliceOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(LoDTensor), " + "the input of SequenceSliceOp."); + AddInput("Offset", + "(Tensor), " + "a vector to describe the offset of every input sequence for " + "sub sequence item."); + AddInput("Length", + "(Tensor), " + "a vector to describe the length of every input sequence for " + "sub sequence item."); + AddOutput("Out", + "(LoDTensor), the output of SequenceSliceOp."); + AddComment(R"DOC( +Sequence slice operator + +The operator crops a subsequence from given sequence with given start offset and subsequence length. +It only supports sequence (LoD Tensor with level number is 1). +- Case: + X = [[a1, a2; + b1, b2; + c1, c2] + [d1, d2; + e1, e2]] + LoD(X) = {{0, 3, 5}}; Dims(X) = (5, 2) + Offset = [[0], [1]]; Length = [[2], [1]] + + Out = [[a1, a2; + b1, b2] + [e1, e2]] + LoD(Out) = {{0, 2, 3}}; Dims(Out) = (3, 2) +NOTE: The first dimension size of input, the size of offset and Length, should be equal. The offset start from 0. + )DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(sequence_slice, ops::SequenceSliceOp, ops::SequenceSliceOpMaker, + sequence_slice_grad, ops::SequenceSliceGradOp); +REGISTER_OP_CPU_KERNEL( + sequence_slice, + ops::SequenceSliceOpKernel); +REGISTER_OP_CPU_KERNEL( + sequence_slice_grad, + ops::SequenceSliceGradOpKernel); diff --git a/paddle/operators/sequence_slice_op.cu b/paddle/operators/sequence_slice_op.cu new file mode 100755 index 0000000000000000000000000000000000000000..a9f59dadba74d900fa5cc0601fb5b264ea19e34d --- /dev/null +++ b/paddle/operators/sequence_slice_op.cu @@ -0,0 +1,23 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/sequence_slice_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + sequence_slice, + ops::SequenceSliceOpKernel); +REGISTER_OP_GPU_KERNEL( + sequence_slice_grad, + ops::SequenceSliceGradOpKernel); diff --git a/paddle/operators/sequence_slice_op.h b/paddle/operators/sequence_slice_op.h new file mode 100755 index 0000000000000000000000000000000000000000..2c9b8464a1236a054cf1a38b9dc1d73588f8dd38 --- /dev/null +++ b/paddle/operators/sequence_slice_op.h @@ -0,0 +1,173 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/strided_memcpy.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; +using LoD = framework::LoD; + +template +inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data, + const int64_t* length_data) { + auto out_lod = in.lod(); + size_t lod_offset = 0; + + auto n = in.lod()[0].size() - 1; + out_lod[0][0] = 0; + for (size_t i = 0; i < n; ++i) { + lod_offset += length_data[i]; + out_lod[0][i+1] = lod_offset; + } + return out_lod; +} + +template +class SequenceSliceOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in = ctx.Input("X"); + auto* offset = ctx.Input("Offset"); + auto* length = ctx.Input("Length"); + auto* out = ctx.Output("Out"); + + auto lod = in->lod(); + auto n = lod[0].size() - 1; + + PADDLE_ENFORCE_EQ(lod.size(), 1UL, + "Only support one level sequence now."); + PADDLE_ENFORCE_EQ( + n, static_cast(length->dims()[0]), + "The size of input-sequence and length-array should be the same") + PADDLE_ENFORCE_EQ( + n, static_cast(offset->dims()[0]), + "The size of input-sequence and offset-array should be the same") + + const int64_t* offset_data = offset->data(); + const int64_t* length_data = length->data(); + framework::Tensor offset_cpu; + framework::Tensor length_cpu; + + if (platform::is_gpu_place(ctx.GetPlace())) { + offset_cpu.mutable_data(offset->dims(), platform::CPUPlace()); + offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context()); + offset_data = offset_cpu.data(); + + length_cpu.mutable_data(length->dims(), platform::CPUPlace()); + length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context()); + length_data = length_cpu.data(); + } + + for (size_t i = 0; i < n; ++i) { + PADDLE_ENFORCE_LT(0, offset_data[i], + "The offset[%d] must greater than zero.", i) + PADDLE_ENFORCE_LT(0, length_data[i], + "The length[%d] must greater than zero.", i) + PADDLE_ENFORCE_LT( + lod[0][i] + offset_data[i] + length_data[i], + lod[0][i + 1], + "The target tensor's length overflow.") + } + + out->mutable_data(ctx.GetPlace()); + auto out_lod = SequenceSliceLoD(*in, offset_data, length_data); + auto out_dims = in->dims(); + out_dims[0] = out_lod[0][out_lod[0].size() - 1]; + out->Resize(out_dims); + out->set_lod(out_lod); + + auto in_stride = framework::stride(in->dims()); + auto out_stride = framework::stride(out->dims()); + + size_t out_offset = 0; + for (size_t i = 0; i < n; ++i) { + Tensor in_t = + in->Slice(static_cast(lod[0][i] + offset_data[i]), + static_cast(lod[0][i] + offset_data[i] + + length_data[i])); + + StridedMemcpy(ctx.device_context(), in_t.data(), + in_stride, in_t.dims(), out_stride, + out->data() + out_offset); + out_offset += length_data[i] * in_stride[0]; + } + } +}; + +template +class SequenceSliceGradOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in = ctx.Input("X"); + auto* offset = ctx.Input("Offset"); + auto* length = ctx.Input("Length"); + auto* out_grad = + ctx.Input(framework::GradVarName("Out")); + auto* x_grad = + ctx.Output(framework::GradVarName("X")); + + const int64_t* offset_data = offset->data(); + const int64_t* length_data = length->data(); + framework::Tensor offset_cpu; + framework::Tensor length_cpu; + + if (platform::is_gpu_place(ctx.GetPlace())) { + offset_cpu.mutable_data(offset->dims(), platform::CPUPlace()); + offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context()); + offset_data = offset_cpu.data(); + + length_cpu.mutable_data(length->dims(), platform::CPUPlace()); + length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context()); + length_data = length_cpu.data(); + } + + auto lod = in->lod(); + auto out_lod = out_grad->lod(); + + if (x_grad) { + x_grad->mutable_data(ctx.GetPlace()); + x_grad->set_lod(in->lod()); + math::SetConstant set_zero; + set_zero(ctx.device_context(), x_grad, static_cast(0)); + + auto out_grad_stride = framework::stride(out_grad->dims()); + + for (size_t i = 0; i < out_lod[0].size() - 1; ++i) { + Tensor out_grad_t = + out_grad->Slice(static_cast(out_lod[0][i]), + static_cast(out_lod[0][i + 1])); + auto out_grad_stride = framework::stride(out_grad_t.dims()); + + auto x_grad_stride = framework::stride(x_grad->dims()); + + Tensor x_grad_t = x_grad->Slice( + static_cast(lod[0][i] + offset_data[i]), + static_cast(lod[0][i] + offset_data[i] + length_data[i])); + + StridedMemcpy(ctx.device_context(), out_grad_t.data(), + out_grad_stride, out_grad_t.dims(), x_grad_stride, + x_grad_t.data()); + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/parameter/ParameterUpdateFunctions.cpp b/paddle/parameter/ParameterUpdateFunctions.cpp index 8b3be062b654a52e667626199be8c8bb4a2a96d7..1898598e49652a2829e57329bab6017304cec662 100644 --- a/paddle/parameter/ParameterUpdateFunctions.cpp +++ b/paddle/parameter/ParameterUpdateFunctions.cpp @@ -30,7 +30,7 @@ void sgdUpdateCpu(real learningRate, const real* grad, real* momentumVec) { decayRate *= learningRate; -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_USE_MKLML #pragma omp parallel for #endif for (size_t i = 0; i < size; ++i) { diff --git a/paddle/platform/cudnn_helper.h b/paddle/platform/cudnn_helper.h index ce3421a3cb840e4c1e872eea12dedc1150c85962..c5d8a6066ef3becb601344590f977a38c2af0a63 100644 --- a/paddle/platform/cudnn_helper.h +++ b/paddle/platform/cudnn_helper.h @@ -63,9 +63,10 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) { } \ } while (false) -enum class DataLayout { +enum class DataLayout { // Not use kNHWC, kNCHW, + kNCDHW, kNCHW_VECT_C, }; @@ -107,12 +108,15 @@ class CudnnDataType { } }; -inline cudnnTensorFormat_t GetCudnnTensorFormat(const DataLayout& order) { +inline cudnnTensorFormat_t GetCudnnTensorFormat( + const DataLayout& order) { // Not use switch (order) { case DataLayout::kNHWC: return CUDNN_TENSOR_NHWC; case DataLayout::kNCHW: return CUDNN_TENSOR_NCHW; + case DataLayout::kNCDHW: + return CUDNN_TENSOR_NCHW; // TODO(chengduoZH) : add CUDNN_TENSOR_NCDHW default: PADDLE_THROW("Unknown cudnn equivalent for order"); } @@ -139,7 +143,7 @@ class ScopedTensorDescriptor { strides[i] = dims[i + 1] * strides[i + 1]; } // Update tensor descriptor dims setting if groups > 1 - // FIXME(typhoonzero): Assume using NCHW order + // FIXME(typhoonzero): Assume using NCHW or NCDHW order std::vector dims_with_group(dims.begin(), dims.end()); // copy if (groups > 1) { dims_with_group[1] = dims_with_group[1] / groups; @@ -176,9 +180,10 @@ class ScopedFilterDescriptor { const cudnnDataType_t type, const std::vector& kernel, const int groups = 1) { - // filter layout: MCHW, where M is the number of + // filter layout: MCHW(MCDHW), where M is the number of // output image channels, C is the number of input image channels, - // H and W is height and width of filter. + // D is the depth of the filter, H is the height of the filter, and W is the + // width of the filter. std::vector kernel_with_group(kernel.begin(), kernel.end()); if (groups > 1) { // M /= groups @@ -219,13 +224,15 @@ class ScopedConvolutionDescriptor { PADDLE_ENFORCE_EQ(pads.size(), strides.size()); PADDLE_ENFORCE_EQ(pads.size(), dilations.size()); -#if CUDNN_VERSION < 6000 +#if !CUDNN_VERSION_MIN(6, 0, 0) // cudnn v5 does not support dilation conv, the argument is called upscale // instead of dilations and it is must be one. for (size_t i = 0; i < dilations.size(); ++i) { PADDLE_ENFORCE_EQ( dilations[i], 1, - "Dilations conv is not supported in this cuDNN version"); + "Dilations conv is not supported in this cuDNN version(%d.%d.%d).", + CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100, + CUDNN_VERSION % 100); } #endif diff --git a/paddle/platform/cudnn_helper_test.cc b/paddle/platform/cudnn_helper_test.cc index 6bd85ae1ca8b47b203e0321e9d9224d5cfd3a586..427359f69713b961c4730b697d3ccde5f7085838 100644 --- a/paddle/platform/cudnn_helper_test.cc +++ b/paddle/platform/cudnn_helper_test.cc @@ -38,6 +38,26 @@ TEST(CudnnHelper, ScopedTensorDescriptor) { EXPECT_EQ(strides[2], 6); EXPECT_EQ(strides[1], 36); EXPECT_EQ(strides[0], 144); + + // test tensor5d: ScopedTensorDescriptor + ScopedTensorDescriptor tensor5d_desc; + std::vector shape_5d = {2, 4, 6, 6, 6}; + auto desc_5d = tensor5d_desc.descriptor(DataLayout::kNCDHW, shape_5d); + + std::vector dims_5d(5); + std::vector strides_5d(5); + paddle::platform::dynload::cudnnGetTensorNdDescriptor( + desc_5d, 5, &type, &nd, dims_5d.data(), strides_5d.data()); + + EXPECT_EQ(nd, 5); + for (size_t i = 0; i < dims_5d.size(); ++i) { + EXPECT_EQ(dims_5d[i], shape_5d[i]); + } + EXPECT_EQ(strides_5d[4], 1); + EXPECT_EQ(strides_5d[3], 6); + EXPECT_EQ(strides_5d[2], 36); + EXPECT_EQ(strides_5d[1], 216); + EXPECT_EQ(strides_5d[0], 864); } TEST(CudnnHelper, ScopedFilterDescriptor) { @@ -60,6 +80,20 @@ TEST(CudnnHelper, ScopedFilterDescriptor) { for (size_t i = 0; i < shape.size(); ++i) { EXPECT_EQ(kernel[i], shape[i]); } + + ScopedFilterDescriptor filter_desc_4d; + std::vector shape_4d = {2, 3, 3, 3}; + auto desc_4d = filter_desc.descriptor(DataLayout::kNCDHW, shape_4d); + + std::vector kernel_4d(4); + paddle::platform::dynload::cudnnGetFilterNdDescriptor( + desc_4d, 4, &type, &format, &nd, kernel_4d.data()); + + EXPECT_EQ(GetCudnnTensorFormat(DataLayout::kNCHW), format); + EXPECT_EQ(nd, 4); + for (size_t i = 0; i < shape_4d.size(); ++i) { + EXPECT_EQ(kernel_4d[i], shape_4d[i]); + } } TEST(CudnnHelper, ScopedConvolutionDescriptor) { diff --git a/paddle/scripts/docker/README.md b/paddle/scripts/docker/README.md index b5fd68839ddb62e76f2fd930248d546bc093a892..f3a6f1dba7588c6b29c1dcae26ec134c1a7f937d 100644 --- a/paddle/scripts/docker/README.md +++ b/paddle/scripts/docker/README.md @@ -57,8 +57,7 @@ Users can specify the following Docker build arguments with either "ON" or "OFF" | `WITH_GPU` | OFF | Generates NVIDIA CUDA GPU code and relies on CUDA libraries. | | `WITH_AVX` | OFF | Set to "ON" to enable AVX support. | | `WITH_TESTING` | ON | Build unit tests binaries. | -| `WITH_MKLDNN` | ON | Build with [Intel® MKL DNN](https://github.com/01org/mkl-dnn) support. | -| `WITH_MKLML` | ON | Build with [Intel® MKL](https://software.intel.com/en-us/mkl) support. | +| `WITH_MKL` | ON | Build with [Intel® MKL](https://software.intel.com/en-us/mkl) and [Intel® MKL-DNN](https://github.com/01org/mkl-dnn) support. | | `WITH_GOLANG` | ON | Build fault-tolerant parameter server written in go. | | `WITH_SWIG_PY` | ON | Build with SWIG python API support. | | `WITH_C_API` | OFF | Build capi libraries for inference. | diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index e9c89eee1af1fcc4a7f168af5ec8b16912616687..fda2a2f1b764106a7a108e8c56bc90ce3459e9b5 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -34,8 +34,7 @@ function cmake_gen() { ${PYTHON_FLAGS} -DWITH_DOC=OFF -DWITH_GPU=${WITH_GPU:-OFF} - -DWITH_MKLDNN=${WITH_MKLDNN:-ON} - -DWITH_MKLML=${WITH_MKLML:-ON} + -DWITH_MKL=${WITH_MKL:-ON} -DWITH_AVX=${WITH_AVX:-OFF} -DWITH_GOLANG=${WITH_GOLANG:-ON} -DWITH_SWIG_PY=ON @@ -56,8 +55,7 @@ EOF ${PYTHON_FLAGS} \ -DWITH_DOC=OFF \ -DWITH_GPU=${WITH_GPU:-OFF} \ - -DWITH_MKLDNN=${WITH_MKLDNN:-ON} \ - -DWITH_MKLML=${WITH_MKLML:-ON} \ + -DWITH_MKL=${WITH_MKL:-ON} \ -DWITH_AVX=${WITH_AVX:-OFF} \ -DWITH_GOLANG=${WITH_GOLANG:-ON} \ -DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} \ @@ -146,7 +144,7 @@ function gen_dockerfile() { DOCKERFILE_GPU_ENV="" DOCKERFILE_CUDNN_DSO="" if [[ ${WITH_GPU:-OFF} == 'ON' ]]; then - DOCKERFILE_GPU_ENV="ENV LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu:${LD_LIBRARY_PATH}" + DOCKERFILE_GPU_ENV="ENV LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu:\${LD_LIBRARY_PATH}" DOCKERFILE_CUDNN_DSO="RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.5 /usr/lib/x86_64-linux-gnu/libcudnn.so" fi diff --git a/paddle/scripts/submit_local.sh.in b/paddle/scripts/submit_local.sh.in index b9a49526a7e02131767a4e9b26cd0b53278176d0..d71cb84df3785008ea5793519fc26a174e1b95f7 100755 --- a/paddle/scripts/submit_local.sh.in +++ b/paddle/scripts/submit_local.sh.in @@ -18,8 +18,8 @@ function version(){ echo "PaddlePaddle @PADDLE_VERSION@, compiled with" echo " with_avx: @WITH_AVX@" echo " with_gpu: @WITH_GPU@" + echo " with_mkl: @WITH_MKL@" echo " with_mkldnn: @WITH_MKLDNN@" - echo " with_mklml: @WITH_MKLML@" echo " with_double: @WITH_DOUBLE@" echo " with_python: @WITH_PYTHON@" echo " with_rdma: @WITH_RDMA@" @@ -45,8 +45,8 @@ function ver2num() { function cpu_config() { # auto set KMP_AFFINITY and OMP_DYNAMIC from Hyper Threading Status - # only when MKLDNN or MKLML enabled - if [ "@WITH_MKLDNN@" == "OFF" ] && [ "@WITH_MKLML@" == "OFF"]; then + # only when MKL enabled + if [ "@WITH_MKL@" == "OFF" ]; then return 0 fi ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs` @@ -70,8 +70,8 @@ function cpu_config() { function threads_config() { # auto set OMP_NUM_THREADS and MKL_NUM_THREADS # according to trainer_count and total processors - # only when MKLDNN or MKLML enabled - if [ "@WITH_MKLDNN@" == "OFF" ] && [ "@WITH_MKLML@" == "OFF"]; then + # only when MKL enabled + if [ "@WITH_MKL@" == "OFF" ]; then return 0 fi processors=`grep "processor" /proc/cpuinfo|sort -u|wc -l` diff --git a/paddle/scripts/travis/build_doc.sh b/paddle/scripts/travis/build_doc.sh index 973b2736e5ce2b733d52df4f5a270b296bca2cac..28d82343ed32273740d0c52d0451681e43b3675e 100755 --- a/paddle/scripts/travis/build_doc.sh +++ b/paddle/scripts/travis/build_doc.sh @@ -6,7 +6,7 @@ mkdir -p $TRAVIS_BUILD_DIR/build cd $TRAVIS_BUILD_DIR/build # Compile Documentation only. -cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_DOC=ON +cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON make -j `nproc` gen_proto_py make -j `nproc` paddle_docs paddle_docs_cn diff --git a/paddle/trainer/Trainer.cpp b/paddle/trainer/Trainer.cpp index b68e29cd5ea223272151e7a8b52d998832f47103..3e4a2b5fa8a3981f6362edc1dc61ae1616e257ef 100644 --- a/paddle/trainer/Trainer.cpp +++ b/paddle/trainer/Trainer.cpp @@ -137,6 +137,10 @@ void Trainer::init(const std::shared_ptr& config, } } + if (FLAGS_use_mkldnn) { + CHECK_EQ(FLAGS_trainer_count, 1) << "MKLDNN only need 1 trainer"; + } + if (testing) { LOG(INFO) << "trainer: in testing mode"; if (config_->getOptConfig().use_sparse_remote_updater() || diff --git a/paddle/trainer/tests/CMakeLists.txt b/paddle/trainer/tests/CMakeLists.txt index f01ad4142d4fe7c7f7d7aac60d967ea114b93e56..2739878b7f2936ea2da689da0b4caa780516ccc1 100644 --- a/paddle/trainer/tests/CMakeLists.txt +++ b/paddle/trainer/tests/CMakeLists.txt @@ -11,7 +11,6 @@ add_unittest_without_exec(test_Trainer test_Trainer.cpp) add_test(NAME test_Trainer COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ - ${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/paddle/trainer/tests/gen_proto_data.py && ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ ${CMAKE_CURRENT_BINARY_DIR}/test_Trainer WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) @@ -28,35 +27,7 @@ if(WITH_PYTHON) ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port ${CMAKE_CURRENT_BINARY_DIR}/test_TrainerOnePass WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) endif() -################ test_CompareTwoNets ###################### -add_unittest_without_exec(test_CompareTwoNets - test_CompareTwoNets.cpp) -add_test(NAME test_CompareTwoNets - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ - ${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoNets - --config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) -############### test_CompareTwoOpts ################### -add_unittest_without_exec(test_CompareTwoOpts - test_CompareTwoOpts.cpp) -add_test(NAME test_CompareTwoOpts - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ - ${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoOpts - --config_file_a=trainer/tests/sample_trainer_config_opt_a.conf --config_file_b=trainer/tests/sample_trainer_config_opt_b.conf - --num_passes=1 --need_high_accuracy=0 - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) - -################# test_CompareSparse ################## -add_unittest_without_exec(test_CompareSparse - test_CompareSparse.cpp) -if(NOT ON_TRAVIS) - add_test(NAME test_CompareSparse - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ - ./.set_port.sh -p port -n 6 - ${CMAKE_CURRENT_BINARY_DIR}/test_CompareSparse - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) -endif() ################# test_recurrent_machine_generation ############### add_unittest_without_exec(test_recurrent_machine_generation test_recurrent_machine_generation.cpp) diff --git a/paddle/trainer/tests/chunking.conf b/paddle/trainer/tests/chunking.conf deleted file mode 100644 index d88df919df8fee9209336ffa29d724dabe6af31b..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/chunking.conf +++ /dev/null @@ -1,125 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later. - -TrainData(ProtoData( - files = 'trainer/tests/train_files.txt', - usage_ratio = 1.0, -)) - -TestData(ProtoData( - files = 'trainer/tests/test_files.txt' -)) - -default_initial_std(1) -default_decay_rate(4e-4) -default_device(0) - -Inputs("features", "word", "pos", "chunk") - -Outputs("crf") - -Layer( - name = "features", - type = "data", - size = 4339, -) - -Layer( - name = "word", - type = "data", - size = 478, -) - -Layer( - name = "pos", - type = "data", - size = 45 -) - -Layer( - name = "chunk", - type = "data", - size = 23 -) - -Layer( - name = "output", - type = "mixed", - size = 23, - bias = False, - device = -1, - inputs = [ - FullMatrixProjection("features", parameter_name="feature_weights"), - # TableProjection("word"), - # TableProjection("pos"), - ], -) - -Layer( - name = "crf", - type = "crf", - size = 23, - device = -1, - inputs = [ - Input("output", parameter_name="crfw"), - "chunk" - ] -) - -Layer( - name = "crf_decoding", - type = "crf_decoding", - size = 23, - device = -1, - inputs = [ - Input("output", parameter_name="crfw"), - "chunk" - ] -) - -Evaluator( - name = "error", - type = "sum", - inputs = "crf_decoding", -) - -''' -# chuck evaluator cannot be used for GPU training -Evaluator( - name = "chunk_f1", - type = "chunk", - inputs = ["crf_decoding", "chunk"], - chunk_scheme = "IOB", - num_chunk_types = 11, -) -''' - -Settings( - algorithm = 'sgd', - batch_size = 100, - average_window = 0.5, - max_average_window = 2500, - learning_rate = 1e-1, - learning_rate_decay_a = 5e-7, - learning_rate_decay_b = 0.75, - l1weight = 0, - l2weight = 1, - c1 = 0.0001, - backoff = 0.5, - owlqn_steps = 100, - max_backoff = 5, -) diff --git a/paddle/trainer/tests/compare_sparse_data b/paddle/trainer/tests/compare_sparse_data deleted file mode 100644 index 18fc6541383d8e8e1687b8fe1abd57aece3d4cfc..0000000000000000000000000000000000000000 Binary files a/paddle/trainer/tests/compare_sparse_data and /dev/null differ diff --git a/paddle/trainer/tests/data_bin_part b/paddle/trainer/tests/data_bin_part deleted file mode 100644 index 66ede391b0cffe6bc9611d3616b7b626864f5c3e..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/data_bin_part +++ /dev/null @@ -1,214 +0,0 @@ -F -X -X -X -X -X -X -X -X -HC=TFTIַ;H=TFTIYW.8T˔I͚48TN8TE98TW8T&6ͅTTHC=TFTIַ;><.8˔I͚48+E98W8&68H=TFTIHC=TFTIַ;H=TFTI86HC=TFTIַ;W8T;8TJJ8T&$H=TFTIW8Ю+JJ8HC=TFTIַ;H=TFTI HC=TFTIַ;@?H=TFTI@HC=TFTIַ;H=TFTI868T8T&9C6HC=TFTIַ;BT&$88&Ӗ5H=TFTIBTHC=TFTIַ;H=TFTIVTHC=TFTIַ;8T8TͅTT8T&86;8T@N8T8T;9H=TFTI8888&86;8@N88HC=TFTIַ;H=TFTIMKHC=TFTIַ;ٟ@17ȣ8Gȣ8/>7;BAUQUT0A?H=TFTIٟ@17G/>7;BAUQUT0HC=TFTIַ;H=TFTIHC=TFTIַ;H=TFTIHC=TFTIַ;H=TFTI.8T˔I͚48TN8TE98TW8T&6ͅTTHC=TFTIַ;'JA-EJ@8T-Eބ248TYW.8˔I͚48+E98W8&68H=TFTIAM18Mބ248HC=TFTIַ;H=TFTIYW.8T˔I͚48TN8TE98TW8T&6ͅTTHC=TFTIַ;><.8˔I͚48+E98W8&68H=TFTIHC=TFTIַ;H=TFTI HC=TFTIַ;@KH=TFTI@KHC=TFTIַ;H=TFTI HC=TFTIַ;@?H=TFTI@HC=TFTIַ;H=TFTI#!14UƕT6.Q8T@Ԛ<14ƕT6.Q8@Ԛ<HC=TFTIַ;H=TFTIVTHC=TFTIַ;8T8TͅTT8T&86;8T@N8T8T;9H=TFTI8888&86;8@N88HC=TFTIַ;H=TFTIHC=TFTIַ;ܥ6H=TFTIܥ6HC=TFTIַ;H=TFTIHC=TFTIַ;H=TFTIHC=TFTIַ;H=TFTI;9HC=TFTIַ;Q;B !H=TFTIQBHC=TFTIַ;H=TFTIYW.8T˔I͚48TN8TE98TW8T&6ͅTTHC=TFTIַ;><.8˔I͚48+E98W8&68H=TFTIHC=TFTIַ;H=TFTI53HW8T;8T8THC=TFTIַ;#!HW8Ю+8H=TFTIHC=TFTIַ;H=TFTI HC=TFTIַ;@?H=TFTI@HC=TFTIַ;H=TFTI&$HC=TFTIַ;VGD; H=TFTIVGD;  ̣ OG  ̣ OG&$Eʌ3OXMQ̣ Jʌ3D4T#!Eʌ3OXMQ̣ Jʌ3UT  ̣ OG  ̣ OGG͡S<%&б ̣ Fۧ11ņAǧ1ņAņA<6ҥ3߫UVKTVU6>VMUF>M5%̋'wuG͡S<% ̣ Fۧ11ņAǧ1ņAņA<6UVKTV6>VMUF>ʶM%̋'  ̣ OG  ̣ OG&$Eʌ3OXMQ̣ Jʌ3D4T#!Eʌ3OXMQ̣ Jʌ3UT  ̣ OG  ̣ OG̣ '@@@  @@  ̣ OG  ̣ OG&$Eʌ3OXMQ̣ Jʌ3D4T#!Eʌ3OXMQ̣ Jʌ3UT  ̣ OG  ̣ OG&$O4=ӪN/>K/;8,T O4=ӪN/>K;,T  ̣ OG  ̣ OG&$Eʌ3OXMQ̣ Jʌ3D4T#!Eʌ3OXMQ̣ Jʌ3UT  ̣ OG  ̣ OG><,9O8.̣ TB0O!./WDSW53,9O8.TB0O!./WDSW  ̣ OG  ̣ OG&$Eʌ3OXMQ̣ Jʌ3D4T#!Eʌ3OXMQ̣ Jʌ3UT  ̣ OG  ̣ OG:=X̣ QUTG܂=X̣ QTG  ̣ OG  ̣ OG&$Eʌ3OXMQ̣ Jʌ3D4T#!Eʌ3OXMQ̣ Jʌ3UT  ̣ OG  ̣ OG)'= 0̣ M6ͅTO,@Ԛ<#!=ؐ0̣ M6ͅTO,@Ԛ<  ̣ OG  ̣ OG&$Eʌ3OXMQ̣ Jʌ3D4T#!Eʌ3OXMQ̣ Jʌ3UT  ̣ OG  ̣ OG/-= 0̣ M6ͅTO,DSDA)'=ؐ0̣ M6ͅTO,DSDA  ̣ OG  ̣ OG&$Eʌ3OXMQ̣ Jʌ3D4T#!Eʌ3OXMQ̣ Jʌ3UT  ̣ OG  ̣ OG  ̣ Ҧ)GG4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ204AQ.ŞGщQHAVTJD8DAP&$4AQ.щQHAVTD8A4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ&$R4Q>.ŞGGщQ6?@Ԛ<#!R4Q>.GщQ6?@Ԛ<4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ&$4Q.ŞGJIGщQDSDA#!4Q.JIGщQDSDA4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ&$.ŞGٟ@6G5IGщQA7B.ٟ@6G5IGщQ+4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ534Q>.ŞGDAP;0T?6T)! 4Q>.A;T6T)4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ534Q>.ŞGDAP;0T?6T)! 4Q>.A;T6T)4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ><49KQ.ŞGRGD9HOKJA.ŞG=RJ/-4-Q.RGD9HKJA.RJ4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ534AIQ.ŞGщQHAVTJD8DAP)'4AIQ.щQHAVTD8A4Q>.ŞGGщQ4Q>.GщQ 4Q.ŞG6P6T4Q.6P64Q>.ŞGGщQ4Q>.GщQ/-4=R4Q>AE.ŞGC/W99 4R4Q>C/W9CPH5CPH5;9H91GRFP.ܤKHUA6)ʪ86H1GRFP.ܤKHUA6)ʪCPH5CPH5UPH>G@Ԛ<UPH>G@Ԛ<CPH5CPH5&$CPHA>GDSPԮK߀3#!CPHA>GDSPٮKCPH5CPH5AHACPG@Ԛ<AHACP@Ԛ<CPH5CPH5;9H91GRFP.ܤKHUA6)ʪ86H1GRFP.ܤKHUA6)ʪCPH5CPH5MKHFșK>7QKH.CQR>“JMB>WMLG,@Ԛ<MKHFșK>7QKH.CQR>“JMB>WMLG,@Ԛ<CPH5CPH5&$CPHA>GDSPԮK߀3#!CPHA>GDSPٮKCPH5CPH553AHMDP58Qٟ@H3/A@@@/-AHMDP8Qٟ@H3/A@@CPH5CPH5;9H91GRFP.ܤKHUA6)ʪ86H1GRFP.ܤKHUA6)ʪCPH5CPH5#!AHACPGDSDA AHACPDSDACPH5CPH5&$CPHA>GDSPԮK߀3#!CPHA>GDSPٮKCPH5CPH5YWI==R>H//GM>ϪJRK22U׵AHTUA6)ʪYWI==R>H//GM>ϪJRK22U׵AHTUA6)ʪCPH5CPH5;9H91GRFP.ܤKHUA6)ʪ86H1GRFP.ܤKHUA6)ʪCPH5CPH5 6PH>5HOAB 6PH>5HOABCPH5CPH5&$CPHA>GDSPԮK߀3#!CPHA>GDSPٮKCPH5CPH5HG22A@@@HG22A@@ B߹-O B߹-O߹-BTCO@L:߹-BCO@L: B߹-O B߹-O20 N߹-7BO1ַ;L߹-NA7OIַ;)' N߹-7BO1;߹-NA7I B߹-O B߹-O߹-BTCO@L:߹-BCO@L: B߹-O B߹-O,* N߹-BO߹-7O߹-ַ;OʈF<4)' N߹-BO߹-7߹-ַ;OʈF<4 B߹-O B߹-O߹-BTCO@L:߹-BCO@L: B߹-O B߹-O&$A N߹-BO>8ֽHٟ@@Ԛ<#!A N߹-BO>8ٟ@@Ԛ< B߹-O B߹-O߹-BTCO@L:߹-BCO@L: B߹-O B߹-O/- - N߹-C7FBOR1:?T)' - Nں-7BOR1:?T B߹-O B߹-O߹-BTCO@L:߹-BCO@L: B߹-O B߹-O ߹-7O߹-BT ߹-7߹-B B߹-O B߹-O߹-BTCO@L:߹-BCO@L: B߹-O B߹-O/- N߹-BO7FOO?L߹-OǧBT)' N߹-BO7OO?L߹-OT B߹-O B߹-O߹-BTCO@L:߹-BCO@L: B߹-O B߹-O><߹- NLB7FOQӮDDA40AT(",*߹- NLOQӮDDA0AT B߹-O B߹-O߹-BTCO@L:߹-BCO@L: B߹-O B߹-O,* ߹-7BOİU1>CBBUQ4,* ߹-7BOİU1>CBBUQ4 L17A¶7J/ L17NJ/GE/1RLA¶7CʡH =;>W=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ/>< - /@ʡH9H1RLA¶7/JDO8,T#!N91LN/JD,T L17A¶7J/ L17NJ/GE/1RLA¶7CʡH =;>W=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ/b`1RLDA¶7/ - J0EKB8//OEKю2E,/WT)ʪDB1LDN/J0KB8/OEю2E)ʪ L17A¶7J/ L17NJ/GE/1RLA¶7CʡH =;>W=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ/20 - 1RLA¶7/J0EO@K&$1LN/J0EO@K L17A¶7J/ L17NJ/GE/1RLA¶7CʡH =;>W=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ/>T7O=P; >7=P L17A¶7J/ L17NJ/GE/1RLA¶7CʡH =;>W=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ//-DA¶7/1RLJʡHWWT%! DN/1LJʡHWWՄO L17A¶7J/ L17NJ/GE/1RLA¶7CʡH =;>W=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ/>< - N1RLA¶7CH231RLA¶7//&$N1LN޻/231LN/ L17A¶7J/ L17NJ/GE/1RLA¶7CʡH =;>W=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ//- LGR1¶7/17>>G>GW=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ/JHA¶7/C1RLH7/N=,::84SQH9T86N/C1L+N=,ў84SQH9T L17A¶7J/ L17NJ/GE/1RLA¶7CʡH =;>W=ѾC -:K48?:T86/1LNCʡH =.=ѾC -:48?:T L17A¶7J/ L17NJ/DB - /@ʡH9H1RLA¶7/JDOEJ< NT΂:8/CT΂:KT΂:WJT΂:ì,UWJ&$ NTCT:Tژ< NT΂:8/CT΂:KT΂:WJT΂:ì,UWJ&$ NTCT:TژBDJ99щQ#!#HK9>BDJ99щQ&$#%9T@A6WDPDA #9@A6WDPDA)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ\ZRBDJ99щQ#!#HK9>BDJ99щQ&$#%9T@A6WDPDA #9@A6WDPDA)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ;9>R>%B>ڜ>A9TK91A#%@@@20>R>%B>ڜ>A9K91A#@@)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ&$#%9T@A6WDPDA #9@A6WDPDA)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ#!#%9TKڜ>BEIUT#9Kڜ>BEIU)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ&$#%9T@A6WDPDA #9@A6WDPDA)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ#!#%K9TD06O@Ԛ<#K9D06@Ԛ<)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ&$#%9T@A6WDPDA #9@A6WDPDA)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ#%9TCۚK@Ԛ<#9CۚK@Ԛ<)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ&$#%9T@A6WDPDA #9@A6WDPDA)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQGE6W#%>9T?#%6O/OO/U!'B8>ڜ>;96W#>9?#6O/O/U!'B8>ڜ>)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQ&$#%9T@A6WDPDA #9@A6WDPDA)'#%HK9T>BDJ99щQ#!#HK9>BDJ99щQYW#%9T>K-A96TWB:OSRQ9#%ѾCHTL6LTJH#9>KA96TWB:OSRQ9#%5L6LT,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S, ؓ =BܤKS/C8Tœ =BܤKS8T,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,DBGDG>W-3M8F=Bٟ@6S9ܤKȟN U686GDG>W38F=B5S9ܤKȟN U,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,>THH8@9FFSA@Ԛ<53ER=B67>HH8@9FFA@Ԛ<,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,PN84C81=BRVT6CAE/:6LUUNԛL@;6GDB8C81=BRVTCAE:6LUUNԛL@6G,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,JHH=B/-8>ܤKDA9=S˱U8QTָUJ)ʪDBH=B/8>ܤKDA9=S˱U8QTU)ʪ,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,GEABRBE9A6BϜ>8=B6ץRRDO6ө ۆ ;9ABRBE9A6BϜ>8=B6ץR6ө ,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,;9RQSAEM8=B>ץR9)NU6!GJ53RQSAEC=B>ץR9)NU6!1,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,/-VJV18=BR6?#%@@@)'VJV18=BR6?#@@,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,D>EȊ56RT8JF=BKT:8J=BRFK,34DH@CӽDҾWK?>S@99ISDPDAzxD>Eˊ5RT8S=BАT:8J=BRF,34DH@CӽDҾWK?>S@9ISDPDA,*E6FA6ܤKJV8=B>S,,*E6FA6ܤKJV8=B>S,V68BXʉ5=B>ܤK%&Ξ)ʉ5VTVEXGVXGV8G&Ξ)VEBVƔ>XVU8—P=ۚKC>JU̟KO4>LV68BX=B>ܤK%&Ξ)ʉ5VTVEXVXV8G&Ξ)VEBV۔>VU8=CJ.4>HD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WXDCGR@NDCG@NHD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WX#!6CGDʉ5>R#!6CGDʉ5>RHD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WX86GR>RP>R699VADSDA20GR>RP>R69VADSDAHD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WX#!DR߻W99@@@DR߻W99@@HD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WXUV1;2X4UV1;2XHD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WXnl>A6߻W$6XT6/ҥ3)T:6X-6ME@EU%!)!MK>A6߻W$6‰XɺRҥ3?:6X-6E@E )PHD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WXA?6=C߻WED>3K֟MȬTT(#$!,*6=C߻WED>3K֟MȬTT HD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WX;966GȂ3ʉ5>R>BCT6;3D5366GȂ3ʉ5>R>BCT;3DHD6߻WXHD6߻WXC߻WX@Ԛ<C߻WX@Ԛ<HD6߻WXHD6߻WXDC߻WR1@KDCW1@K,*SPKO—P=D9RB5966#!SPO=DRB5966@@@,*SPKO—P=D9RB5966#!SPO=DRB5966GE6/KOٟ@—P=>8E9RBHAVTJD8DAP536/Oٟ@=>8ERBHAVTD8A,*SPKO—P=D9RB5966#!SPO=DRB5966@@@,*SPKO—P=D9RB5966#!SPO=DRB5966&$CKOI9RB2SCI9COIRB2SC9,*SPKO—P=D9RB5966#!SPO=DRB5966@@@,*SPKO—P=D9RB5966#!SPO=DRB5966)'LPKO9RB6P6T LPORB6P6,*SPKO—P=D9RB5966#!SPO=DRB5966@@@,*SPKO—P=D9RB5966#!SPO=DRB5966PN6KO9RBEIT6>SK?KI—P=>KI90C9T><6ORBEIT6>SK?K=>K90CT,*SPKO—P=D9RB5966#!SPO=DRB5966@@@,*SPKO—P=D9RB5966#!SPO=DRB5966,*кBPKOK=9F9RHG8T#!кBPOK=9FRHG8,*SPKO—P=D9RB5966#!SPO=DRB5966@@@,*SPKO—P=D9RB5966#!SPO=DRB5966JHHKO>6/—P=9RH>DAP;0T?6T)!/-HO>6/=RH>A;T6T),*SPKO—P=D9RB5966#!SPO=DRB5966@@@,*SPKO—P=D9RB5966#!SPO=DRB5966MKKO6/—P=KORDB6OKKO696KO6щQ@Ԛ<53O6/=ORDB6KO9O6щQ@Ԛ<,*SPKO—P=D9RB5966#!SPO=DRB5966@@@,*SPKO—P=D9RB5966#!SPO=DRB5966,*6/KO9RBDǬP/-C9AT0?9-8ٟ@6EE>PC9AT0?=C9AT0?=#!C9AT0?9-8@Ԛ<#!C9AT0?9-8@Ԛ<C9AT0?=C9AT0?=20ʻ?0?9<9=C9ATVB$/?BRÙKBTA?D>0?9<9=C9ATVB$/BEBC9AT0?=C9AT0?=#!C9AT0?9-8@Ԛ<#!C9AT0?9-8@Ԛ<C9AT0?=C9AT0?=0?6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח>B7Uח>D6@Ԛ<B7Uח>D6@Ԛ<6RTU7ח>6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח> Uח>@K Uח>@K6RTU7ח>6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח>B7Uח>ͦBOERB7Uח>ͦBOER6RTU7ח>6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח>B7Uח>8;BٖTTB7Uח>8;BT6RTU7ח>6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח>86AHFS=@=՞RU70ח>GDSPԮK߀320AHF=@=՞RU70ח>GDSPٮK6RTU7ח>6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח> B7Uח>DT("B7Uח>DT6RTU7ח>6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח>6RTU7HˮDDA6TU7HˮDDA6RTU7ח>6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח> B7Uח> B7Uח>6RTU7ח>6TU7ח>\ZHS=HˮD>7KOUJҲ.щQHT-:66(UʡH966SQHS=HˮD>7KOUJҲ.щQHT:6(UʡH966RTU7ח>6TU7ח>20AHFS=@=՞RU70ח>GPB6,*AHF=@=՞RU70ח>GPB  ;GB;9ӱQL4ߩ75Q-<>;G  48@@@<ߩ7>48@@  F9Q?WɤKIԊX>F9Q?WɤK 3ϊXQK  ԊXQK,*3ϊX17Q7G/׆N8GF̛<ԊX13G/NGF 3ϊXQK  ԊXQK&$R3ϊX46߻WLQG8@Ԛ< RԊX46߻WLQG@Ԛ< 3ϊXQK  ԊXQK,*3ϊX17Q7G/׆N8GF̛<ԊX13G/NGF 3ϊXQK  ԊXQK><3ϊXR7Q7@475@:ȥB@AT/-ԊXR3@475@:ȥBA 3ϊXQK  ԊXQK,*3ϊX17Q7G/׆N8GF̛<ԊX13G/NGF 3ϊXQK  ԊXQK"!F>"FN߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F720DN/EL>7Aڶ>F7CDƹ;@Ԛ<,*DNȜML>7Aڶ>F7C4@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F7)'HN/KN/ڶ>F7=A7B#!HN/KN/ڶ>F7=+N߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F7 H/67—P=DG@KH/67=D@KN߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F7ܤKKA7B  ܤKK+N߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F77>1T֛7ٟ@9F6U>ʔ71/>ٟ@6LD7>/I/>=щQDDHIN./59Ԛ<ڶ>S-=DN@UW=-щQܭDHTDS=DSDA7>1֛7ٟ@9F6U>ʔ71/>5LD>/I/>=щQDDHIN./51S-=DN@UW=-щQܭDHTDS=DSDAN߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F7,*DN=8T=4ڶ>F7S@@@)'DN=8T=4ڶ>F7S@@N߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F7 H/67Dƹ;DG@KH/674D@KN߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F7>S=>7ʗ74=>SB7ST86D1ƹ;T4>S=>7ʗ74>SB7STN߀3/ڶ>F7N߀3/ڶ>F7,*DN.ی'79Ԛ<=/ڶ>J7@Ԛ<)'DN.ی'71=/ڶ>J7@Ԛ<N߀3/ڶ>F7N߀3/ڶ>F7V/67=DG@KV/67=D@K$5H149A$5H149Aec$/4UR5RH$>#=1,1>Bٟ@T9ALKٟ@6J=@Ԛ<\Z$/4U5RH$>#=1,1>@T9ALKٟ@6=@Ԛ<$5H149A$5H149A>EѾCT86VOTBA?$US/6T9A6APɺDEXET8VOTB$5H149A$5H149Aec$/4UR5RH$>#=1,1>Bٟ@T9ALKٟ@6J=@Ԛ<\Z$/4U5RH$>#=1,1>@T9ALKٟ@6=@Ԛ<$5H149A$5H149A53ER91@5H1Bٟ@49AE@@@/-ER91@5H1@49AE@@$5H149A$5H149A/-$U5/8=49Aٟ@5DSDA/-$U5/8=49Aٟ@5DSDA$5H149A$5H149A,*$9656549Q5؂=@Ԛ<,*$9656549Q5؂=@Ԛ<$5H149A$5H149Aec$/4UR5RH$>#=1,1>Bٟ@T9ALKٟ@6J=@Ԛ<\Z$/4U5RH$>#=1,1>@T9ALKٟ@6=@Ԛ<$5H149A$5H149ADB"Ξ)69$R549AIٟ@TN>CJ@@Ԛ<><"69$R549A@TN>CJ@@Ԛ<$5H149A$5H149A/-$U5/8=49Aٟ@5DSDA/-$U5/8=49Aٟ@5DSDA$5H149A$5H149A;9E4WN$RB5H4LDLIĪNCS@K;9E4WN$RB5H4LDLIĪNCS@K$5H149A$5H149Aec$/4UR5RH$>#=1,1>Bٟ@T9ALKٟ@6J=@Ԛ<\Z$/4U5RH$>#=1,1>@T9ALKٟ@6=@Ԛ<$5H149A$5H149A53@;5RH$ULT9A6DPDA/-@5RHULT9A6DPDA$5H149A$5H149A/-$U5/8=49Aٟ@5DSDA/-$U5/8=49Aٟ@5DSDA$5H149A$5H149A86DP>E5H"$ĪNL=496A7B/-P>E5H"$ĪNL=496+:/SʡH99SH :S9HDBSWJ9?9?:/SʡH99:/SʡH995ܛ?M)'WJ99:S9:S95ܛ?M:/SʡH99SH :S9H/-:/SʡH999?99?D6T:S9999D6:/SʡH99SH :S9H&$SV:/SʡH99S6TV:S96:/SʡH99SH :S9H#!S:/SʡH999?Έ;F:S99Έ;F:/SʡH99SH :S9HDBSWJ9?9?:/SʡH99:/SʡH995ܛ?M)'WJ99:S9:S95ܛ?M:/SʡH99SH :S9H&$SV:/SʡH999?<>KDH><>KJHRD>HHHHHH<>KDH><>Kwu7RDH><>K,07R2 -.TʆL@ϡS4,ܢEM,.O2J6MKR2 -.TʆL@ϡS4,E,.OJ6DH><>KDH><>KJHRD>HHHHHH<>KDH><>KMKRDH><>K,0IO9491یV0—P=—PH>.E6A?RH><>K,0IO94V0=—PH>.E6DH><>KDH><>KJHRD>HHHHHH<>KDH><>K#!RD>HH<>KDH><>KJHRD>HHHHHH<>KDH><>K/-DH>K=<,D6R=4,@Ԛ<&$D54,D6R=4,@Ԛ<DH><>KDH><>KJHRD>HHHHHH<>KDH><>K7RDH><>K2>7.ʆJ6ʆG1?—P=1?I2K7>>MGMߎM6>JRʆ.J6~.ʆJ6ʆG1?=1?IK7>MGMߎM6>JRʆ.J6DH><>KDH><>KJHRD>HHHHHH<>KDH><>K20RDH><>K2>J6/;IN9,*RH><>K2>J6/;N9DH><>KDH><>KJHRD>HHHHHH<>KDH><>K_]RDH><>K2>ʆ>I2́N4TȇN4TI(—Pބ2>N4ʆN4GERH><>K2>ʆ>I(N4ȇN4I(܉2>NʆNDH><>KDH><>KJHRD>HHHHHH<>KDH><>KGERDH><>K2>J>I2ˏR3˰(IB>—P3ˏR2;9RH><>K2>JIˏR3˰(IB>3ˏR2ʰDBNMG> BMG>JHɵO9FDSC4ʰDBN5>35-=9O2:@@@53ɵO9DSC4B5>I-=O2G@@ʰDBNMG> BMG> LNLBʰDBN@@@LNLB@@ʰDBNMG> BMG>JHɵO9FDSC4ʰDBN5>35-=9O2:@@@53ɵO9DSC4B5>I-=O2G@@ʰDBNMG> BMG>)'$";0Q8ҐJ9ҽ6WH)'$";0Q8ҐJ9ҽ6WHCARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOA 4AR=J DG@K4AR= D@KCARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOA/4ARQ=JB4/4ARQ=BCARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOA><İFE1;TVL8ARO8L0AWН?/Н?T,*İFBTVL8ARO8LAН?-CARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOA20İFE1;TVL8ARO8L0AW&$İFBTVL8ARO8LACARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOAPNİFE1;TVL8ARO8L0AWWН?W?UUWTН?>;9İFBTVL8ARO8LAWW?UUW?CARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOA,*İFE1;TVL8O3߫UТ@HT&$İFBTVL8O3߫UТ@HTCARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOA AR4J AR4JCARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOAL/4ARQ>L/4ARQ>CARVCWOAWCARVCWOA4ARQJOA4ARQJOCARVCWOAWCARVCWOA&$ŷ5/BAR4JX>BHH9;>B 9XR9  9R9PNMRF=:9X94.б H>N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9CR9Xnj8@Ԛ<CR9nj8@Ԛ< 9XR9  9R9&$KX/9CR=U93ATX9CR=U93A 9XR9  9R99XUTI9XNS;UOIַ;URIIIKIHBOF;F;N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9&$9X9C5I91ӛ?69; 9F5I91ӛ?69; 9XR9  9R9&$KX/9CR=U93ATX9CR=U93A 9XR9  9R99XUC;- 9UC- 9XR9  9R9PNMRF=:9X94.б H>N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9\ZG9XWF5ԎB@JP11.3>72PNG9WF5BJP11.3>72 9XR9  9R9&$KX/9CR=U93ATX9CR=U93A 9XR9  9R9869XB9ԎB@@OLWFR9B9N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9&$9X9X59QCͦ(!995ƋQC 9XR9  9R9&$KX/9CR=U93ATX9CR=U93A 9XR9  9R9 9X@?9@ 9XR9  9R9PNMRF=:9X94.б H>N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9YW9XB9ԎB@>54WFR9B9 IC70FŔ6ADMIַ;70DB9B9B>54WFR9B9 IC0FŔ61I7 9XR9  9R9&$KX/9CR=U93ATX9CR=U93A 9XR9  9R9DB9XCK29R5>9XWA/1C2ODKOD539C2R5>9WA1C2ODKOD 9XR9  9R9PNMRF=:9X94.б H>N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9&$9X>KTCΚIRН?>AT9>KCΚIR?A 9XR9  9R9&$KX/9CR=U93ATX9CR=U93A 9XR9  9R920CCTC7VCEICַ;C;-CTCCCVĸIַ;C-C 9XR9  9R9PNMRF=:9X94.б H>N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9DBHW:9XB9ԎB@=ʼnEDWFR9B99XCT86HW:9B9B=ʼnEDWFR9B99C 9XR9  9R9&$KX/9CR=U93ATX9CR=U93A 9XR9  9R99X@T9XR0ܥ69@T9Rܥ6 9XR9  9R9PNMRF=:9X94.б H>N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9G7;CT G7;C 9XR9  9R9&$KX/9CR=U93ATX9CR=U93A 9XR9  9R9A?Hʜ2RA@RS9@>9X3>)כ$>;GB;9Hʜ2RA@RS9@>93>)כ$>;G 9XR9  9R9PNMRF=:9X94.б H>N̛<;TTН?T("'!53MRF=:994.б H>N;Tܞ? 9XR9  9R9><NR=9XC9S99׵AAKEAABC/;9NR=9C9S99׵AAKEAABC/=@KE= =@E=><@Q0H@KûAQH@KûAQ,HPHCB020@0H@ûAQH@ûAQ,HPHB0=@KE= =@E==@J@KI5@=@J@I5@=@KE= =@E=/-7ûAK3@3@K7KK3!#!7ûAK3@3@7K3=@KE= =@E=86=@KAKCK-3O?3377CT)'=@AKCK-.?.7C=@KE= =@E=/-K6S5@KE=4I,S@@@)'K6S5@E=4I,S@@=@KE= =@E= @K@?@@=@KE= =@E=)'C@ַ;C@GC@K=@AB&$C@ַ;C@GC@=@AB=@KE= =@E=DBIK@KQOַ;OE6V=ԋ J>JT7LJ653IK@QOַ;OE6V=JJ7LJ6ԃP;ܢE4JAˑ+86Q FM1UܢE4NԃP;O4HН?U,T#!Q FM1UAOH,ԃP;ܢE4JAˑ+,*ԃP;Q8ȘIK5ܢE4N>4OJAQ8K5>4OԃP;ܢE4JAˑ+ ԃP;1ܢE4NН?̛4׶K21T)'AHQ8K5C>4׶K21ԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4б XQT)'AHQ8K5C>4б XQԃP;ܢE4JAˑ+><ԃP;HQ8ȘIK5ܢE4NC>4HН?Н?>HT,*AHQ8K5C>4H?HTԃP;ܢE4JAˑ+MKԃP;HQ8ȘIK5NC>4ԃP;Q:33ȘIJ82THA>4AQ:33ȘIJ82HԃP;ܢE4JAˑ+53ԃP;HQ8ȘIK5ܢE4NC>4TН?T&$AHQ8K5C>4Tܞ?ԃP;ܢE4JAˑ+/-ԃP;HL-TܢE4NC41TН?> AHL-TC41?ԃP;ܢE4JAˑ+Dֈ;0OFԃP;ܢE4JAˑ+,*ԃP;HQ8ȘIK5ܢE4NC>4 AHQ8K5C>4ԃP;ܢE4JAˑ+86Q FM1UܢE4NԃP;O4HН?U,T#!Q FM1UAOH,ԃP;ܢE4JAˑ+)'ԃP;E72TܢE4NŇ7̛4б 3QT)'AHQ8K5C>4б 3QԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4׶K21T)'AHQ8K5C>4׶K21ԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NCT?TCܢE0&$AHQ8K5CT?T/ԃP;ܢE4JAˑ+><ԃP;HQ8ȘIK5ܢE4NC>4HН?Н?>HT,*AHQ8K5C>4H?HTԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4XН?2J&$AHQ8K5C>4X2ԃP;ܢE4JAˑ+53ԃP;HQ8ȘIK5ܢE4NC>4TН?T&$AHQ8K5C>4Tܞ?ԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4Н?̛4?ETԃP;ܢE4JAˑ+Dֈ;0OFԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4Н?̛4?UԃP;ܢE4JAˑ+86Q FM1UܢE4NԃP;O4HН?U,T#!Q FM1UAOH,ԃP;ܢE4JAˑ+#!Q1NÚQ8ȘIKTԃP;4Q1N8KTA4ԃP;ܢE4JAˑ+ ԃP;1ܢE4NН?̛C1A1J>=)'-AHC;>C1Aܹ1>=ԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4׶K21T)'AHQ8K5C>4׶K21ԃP;ܢE4JAˑ+~4NU.̤3@>ϥJ=T.-0ܢE4N5H01ԃP;R:?=N.̤3@>PTT>JFF8G3b`4NU.LϥJ=T.-05H01AR:=N.LPT>JFF8GԃP;ܢE4JAˑ+><ԃP;HQ8ȘIK5ܢE4NC>4HН?Н?>HT,*AHQ8K5C>4H?HTԃP;ܢE4JAˑ+20ԃP;߽4Q8ȘIK5ܢE4N,4U/T&$A߽4Q8K5,4U/TԃP;ܢE4JAˑ+53ԃP;HQ8ȘIK5ܢE4NC>4TН?T&$AHQ8K5C>4Tܞ?ԃP;ܢE4JAˑ+,*Q1ʡH9BXTܢE4NН?̛<7TQ19XT?7ԃP;ܢE4JAˑ+Dֈ;0OFԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4Н?>RT&$AHQ8K5C>4?RԃP;ܢE4JAˑ+86Q FM1UܢE4NԃP;O4HН?U,T#!Q FM1UAOH,ԃP;ܢE4JAˑ+20ԃP;߽4Q8ȘIK5ܢE4N,4XQT#!A߽4Q8K5,4XQԃP;ܢE4JAˑ+ ԃP;1ܢE4NН?̛4C-HН?̛<&##!)'AHQ8K5C>4*? ԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4׶K21T)'AHQ8K5C>4׶K21ԃP;ܢE4JAˑ+SQԃP;HQʡHɤUBUHMܢE4NCT۹/8HMT>JT8:G3>JT:GԃP;ܢE4JAˑ+><ԃP;HQ8ȘIK5ܢE4NC>4HН?Н?>HT,*AHQ8K5C>4H?HTԃP;ܢE4JAˑ+ecԃP;߽4Q8ȘIK5ܢE4N,4ԃP;ܢE4N5NģCF4QO1MJEа.TН?>;9A߽4Q8K5,4AQO-Eа.T?ԃP;ܢE4JAˑ+53ԃP;HQ8ȘIK5ܢE4NC>4TН?T&$AHQ8K5C>4Tܞ?ԃP;ܢE4JAˑ+/-ԃP;HUܢE4NCRKD?TيR̛<&$AHUCRKD?TيR̛<ԃP;ܢE4JAˑ+Dֈ;0OFԃP;ܢE4JAˑ+,*7ԃP;E72TܢE4NН?>AT7AE7T?AԃP;ܢE4JAˑ+86Q FM1UܢE4NԃP;O4HН?U,T#!Q FM1UAOH,ԃP;ܢE4JAˑ+86߹-JН?̛<ԃP;HQ8ȘIK5ܢE4NC>4&$-?AHQ8K5C>4ԃP;ܢE4JAˑ+ ԃP;1ܢE4NН?̛4б XQT)'AHQ8K5C>4б XQԃP;ܢE4JAˑ+86ԃP;HQ8ȘIK5ܢE4NC>4׶K21T)'AHQ8K5C>4׶K21ԃP;ܢE4JAˑ+#!ԃP;߽4UL6.TܢE4NA߽4UL6TԃP;ܢE4JAˑ+><ԃP;HQ8ȘIK5ܢE4NC>4HН?Н?>HT,*AHQ8K5C>4H?HTԃP;ܢE4JAˑ+20ԃP;߽4U72TܢE4NԃP;߽4TН?T A߽4U7TA߽4Tܞ?ԃP;ܢE4JAˑ+53ԃP;HQ8ȘIK5ܢE4NC>4TН?T&$AHQ8K5C>4Tܞ?ԃP;ܢE4JAˑ+;9ԃP;HQ8ȘIK5ܢE4NC>4 0̛4 0QTIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT /-TIOTބ2BJ768T7P4J#!TIOTބ2BќJ6874TIOT TIOT &$TIOT0Q7J6J7&$TIOT0Q7J6J7TIOT TIOT JHRTIOT4/ >BԚԚ U@Ԛ< RTIOT> U@Ԛ<TIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT #!TIOTބ2B>TV>T#!TIOTބ2B>TV>TTIOT TIOT &$TIOT0Q7J6J7&$TIOT0Q7J6J7TIOT TIOT SQRP4D3TMɾSBTIOTL;U$ N,%!@Ԛ<;9R4D3TMBTIOTL;U N,@Ԛ<TIOT TIOT  RTIOT> U@Ԛ< RTIOT> U@Ԛ<TIOT TIOT 86R9TIOT> BK1١-JL;@@@/-R9TIOT> BK1١-8@@TIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT trT>IOTմ2O̤@ROWBǞV<>MɾS3D UJDP>W>5ֈD,DL9ADSDAkiT>IOTմ2@ROWBȞV>M3D UJDP>W>5ֈD,DL9ADSDATIOT TIOT &$TIOT0Q7J6J7&$TIOT0Q7J6J7TIOT TIOT 53TIOT*B6J768T7P4J2)'TIOT*B6ќJ68742TIOT TIOT  RTIOT> U@Ԛ< RTIOT> U@Ԛ<TIOT TIOT ,*TIOT> ,:%!@Ԛ< TIOT> ,:@Ԛ<TIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT A?T7IOT> 3D,R,SUUP4J@@@53T7IOT> 3D,R,SU4@@TIOT TIOT &$TIOT0Q7J6J7&$TIOT0Q7J6J7TIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT  RTIOT> U@Ԛ< RTIOT> U@Ԛ<TIOT TIOT 86RT>IOTK>SF> P4J@@@)'RT>IOTKS> 4@@TIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT /-TIOTB62LCP4J>T#!TIOTB62C4>TIOT TIOT &$TIOT0Q7J6J7&$TIOT0Q7J6J7TIOT TIOT MK9QDT7IOT>SFDU>F> ;/?BRÙKBT><9QDT7IOTSDU>F> ;/BEBTIOT TIOT  RTIOT> U@Ԛ< RTIOT> U@Ԛ<TIOT TIOT 20P4JTIOTSUXߢ?U,6XT&$4TIOTSUX?6XTTIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT 20TIOT47>4 3DFDSDA,*TIOT4> 3DFDSDATIOT TIOT &$TIOT0Q7J6J7&$TIOT0Q7J6J7TIOT TIOT 20TIOTB6J768T7P4BT)'TIOTB6ќJ6874BTTIOT TIOT  RTIOT> U@Ԛ< RTIOT> U@Ԛ<TIOT TIOT hfRT>IOT> UP4>4—P=AN,:L%!**P4>٬J=$@Ԛ<SQRT>IOT> U4>4=AN,:L**4>٬J=$@Ԛ<TIOT TIOT 53RP4JTIOT> Sߢ?U>9@Ԛ<,*R4TIOT> S?>9@Ԛ<TIOT TIOT DBRP4JTIOT>MKJIOTKK DPDA>MKJIOTKK DPDAA,G߇;G߇;%>MA,G߇;G߇;%>M\ZAPIDK4,G,G,G߇;5>,VCʿ7NPI>>>V0>@Ԛ<\ZAPIDK4,G,G,G߇;5>,VCʿ7NPI>>>V0>@Ԛ<A,G߇;G߇;%>MA,G߇;G߇;%>M%A%AG  %AAA,G߇;G߇;%>MA,G߇;G߇;%>M%A%A%AAA,G߇;G߇;%>MA,G߇;G߇;%>M&'%IIA$ۏ"&'%IIAG&'%II :AGD3AT(%!AG}{&'%IIA&'%IIA&'%II :AD3ATVAA,G߇;G߇;%>MA,G߇;G߇;%>M\ZAPIDK4,G,G,G߇;5>,VCʿ7NPI>>>V0>@Ԛ<\ZAPIDK4,G,G,G߇;5>,VCʿ7NPI>>>V0>@Ԛ<A,G߇;G߇;%>MA,G߇;G߇;%>M%A%A %AA A,G߇;G߇;%>MA,G߇;G߇;%>M%A%A%AAA,G߇;G߇;%>MA,G߇;G߇;%>M20%CV2%0J%2CWFTOWW)'%CV2%0%2WFTO9A,G߇;G߇;%>MA,G߇;G߇;%>M\ZAPIDK4,G,G,G߇;5>,VCʿ7NPI>>>V0>@Ԛ<\ZAPIDK4,G,G,G߇;5>,VCʿ7NPI>>>V0>@Ԛ<A,G߇;G߇;%>MA,G߇;G߇;%>M20%BF%JW DG%AG@F:=#!%<%J D%A@:=A,G߇;G߇;%>MA,G߇;G߇;%>M%A%A%AAA,G߇;G߇;%>MA,G߇;G߇;%>MJHD9GM>AQٟ@DBU,G߇;G3MVٟ@6DPDA>AQٟ@DK,G߇;G3MV5DPDAA,G߇;G߇;%>MA,G߇;G߇;%>M\ZAPIDK4,G,G,G߇;5>,VCʿ7NPI>>>V0>@Ԛ<\ZAPIDK4,G,G,G߇;5>,VCʿ7NPI>>>V0>@Ԛ<A,G߇;G߇;%>MA,G߇;G߇;%>M/-AG%;̽>MŹ(Źʿ@@@)'AG%;>Ź(Źʿ@@A,G߇;G߇;%>MA,G߇;G߇;%>M%A%A%AAA,G߇;G߇;%>MA,G߇;G߇;%>M20%DJW.>=V%JW G%A)'%DJW.>=V%J GA 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈD86$& C2̙EϪJֈDT9J9@AB/- C2̙EϪJֈDTJ9@AB 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈD)' 2EC$&E̛<0>WT 2ECE0>W 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈD)'$& C2GE9ֈD@Ԛ<#! C2GE9ֈD@Ԛ< 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈD;9Sޡ8$&>&2̙E ֈD>ܤK$'&9Q')'S>&2̙E ֈD>ܤKƋQ' 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈD~6AB6T 2EۈXD:ۈX>ў7&B$&,&ίB>T7>KUVJJKUQTI1R/0Qec6AB6T 2EۈXD:ۈX>ў7&B,&ίB>T7KVQI1R/Q 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈD$&2@ 8,T2@ ,T 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈD_]$֗>AS 19EŹ4(>&24 EB߻WֈD1H%,9: >I\Z$֗>AS 19EŹ4(>&24 EB߻WֈD1H%,: >I 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈDA?$& ۈX2@QTWNEܾW,;PT,T86 ۈX2@QTWNEܾW,;ٱP,T 2EֈD$& 2EֈD)'$ 2̙EֈD>ܤK"6"&#!$ 2̙EֈD>ܤK"6" 2EֈD$& 2EֈD53ޥ0CE$&0> 2EֈDJ<=@,*ޥ0CE0> 2EֈDJ=@;1>DH ;1>D,*;>DH66;DH9FA@Ԛ<#!;>D6;D9FA@Ԛ<;1>DH ;1>D;DHؕ7;EE@;Dؕ7;EE@;1>DH ;1>D,*;>DH66;DH9FA@Ԛ<#!;>D6;D9FA@Ԛ<;1>DH ;1>DXŷ5D/D/ Xŷ5DD;1>DH ;1>D,*;>DH66;DH9FA@Ԛ<#!;>D6;D9FA@Ԛ<;1>DH ;1>D ;DHBU>UW6T;DΑB>U6;1>DH ;1>D,*;>DH66;DH9FA@Ԛ<#!;>D6;D9FA@Ԛ<;1>DH ;1>D;DHDHDHT;DDDT;1>DH ;1>D,*;>DH66;DH9FA@Ԛ<#!;>D6;D9FA@Ԛ<;1>DH ;1>D ;DH>  ;D>;1>DH ;1>D,*;>DH66;DH9FA@Ԛ<#!;>D6;D9FA@Ԛ<;1>DH ;1>D BD/>  BD>;1>DH ;1>D,*;>DH66;DH9FA@Ԛ<#!;>D6;D9FA@Ԛ<;1>DH ;1>D;DH=DH ;1>D,*;>DH66;DH9FA@Ԛ<#!;>D6;D9FA@Ԛ<;1>DH ;1>D;ӈ5UD>DHDH;5D>DDE1?0;E1?0;ַ;E1?,;@Ԛ<ַ;E1?,;@Ԛ<E1?0;E1?0;;9K6>HE1K/Q4DGKIAB86K6>HE1K/Q4GKIABE1?0;E1?0;GEDKOFHE1K/Q4DGKOJܤK>6DG@K20HE1K/Q4GܤK>6D@KE1?0;E1?0;#!DE1ߢ?08IDE1?1BT/>׆B/1/69IPTR;I@Ԛ<MKܤ5ַ;>E1?1BT/>׆B/1/69IPTR;I@Ԛ<E1?0;E1?0;GEDKOFHE1K/Q4DGKOJܤK>6DG@K20HE1K/Q4GܤK>6D@KE1?0;E1?0;A?A׆B?KUEI3R>7DE1?P;66@Ԛ<;9A׆B?KUEI3>7DE1?P;6@Ԛ<QE1?0;E1?0;1A?Iַ;  1AIE1?0;E1?0;ַ;E1?,;@Ԛ<ַ;E1?,;@Ԛ<E1?0;E1?0;53AUE1AIٟ@;N?985D@@@/-AUE1A@;N?985D@@G=ݰFBSF G=FF#!BN0ݰFBSF2Uа.TBNFF2*G=ݰFBSF G=FF)'AOݰFBFASF>LS2 AOFFAF>LSG=ݰFBSF G=FF#!BN0ݰFBSF2Uа.TBNFF2*G=ݰFBSF G=FF86ݰFBSFQBJ768T7QݰFBSFB&$FFQBќJ687QFFBG=ݰFBSF G=FF#!BN0ݰFBSF2Uа.TBNFF2*G=ݰFBSF G=FF AסET/ݰFBٟ@3@Ԛ<ATFٟ@3@Ԛ<G=ݰFBSF G=FF#!BN0ݰFBSF2Uа.TBNFF2*G=ݰFBSF G=FFSFUR7T FU7T11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJ11F֎T V>б 11F֎T Vб 11F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJ/-SAS11F֎T=>щQCE@@@,*SAS11F֎T=>щQCE@@11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJ)'11F֎T=?N;78K11F֎T7K11F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJ=?N;C;MC;M11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJJH$U-£-E7-Ҳ0AʡH9DS&11F֎T7J6!A?$U-£-E7-Ҳ0AʡH9DS&11F֎T7611F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJ;911F֎TBJHį-HUHڶ>2>AR@Ԛ<;911F֎TBJHį-HUHڶ>2>AR@Ԛ<11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJ ӪN11F֎TE@@@ӪN11F֎TE@@11F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJ8611F֎T03VCJ768T711F֎T2011F֎T03VCќJ68711F֎T11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJ11F֎T@?11F֎T@11F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJSQDR07>I8Ҳ02AXڃN>11F֎TAKAٟ@HDPDAPNDR07>8Ҳ02AXڃN>11F֎TAKAٟ@HDPDA11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJ5311F֎TW")$IK46)'11F֎TW")I411F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJJH7&:֎T11F֎TTTT=?N;T!537&:֎T11F֎TTTTTK11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJ&$CE>11F֎T@0=@Ԛ<&$CE>11F֎T@0=@Ԛ<11F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJPN11F֎T=?N;7=?N;GTTT - !.,11F֎T7GTTT+11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJki11F֎TKSħ;S C9>>4K.TRҲ0AGB@>=?N;)ʪ\Z11F֎TKSS Cޖ>>4K.TRҲ0AGB@>)ʪ11F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJ53&11F֎TRBOEVCE@@@,*&11F֎TRBOECE@@11F֎TPAJ11F֎TPAJ20ڶ>S:—PG2&**11F֎T@Ԛ<,*S:I2&**11F֎T@Ԛ<11F֎TPAJ11F֎TPAJ,*7DT11F֎T6U=?N;7T11F֎T611F֎TPAJ11F֎TPAJA?7D2T:֎T11F֎T=?N;TTK;2072T:֎T11F֎TTTK;11F֎TPAJ11F֎TPAJ_]$U-£-E7-Ҳ0AʡH9DS&11F֎T$U-CɤUTҲ0AB!YW$U-£-E7-Ҳ0AʡH9DS&11F֎T$U-CɤUTҲ0AB86X,19CK/ - NW=HDEģCKX1KNW/DCVTX,19CʡH97/ - NW=HDEģCKGģC:7BWT53X1ʡH97NW/DCGģC7BW86X,19CK/ - NW=HDEģCKX1KNW/DCJHX,19CʡH97/ - NW=HDE8KDG@K/-X1ʡH97΂NW/D8KD@K86X,19CK/ - NW=HDEģCKX1KNW/DCGEX,19CʡH97/ - NWCHDEģCK΂:6T)'X1ʡH97NW޻/DC΂:686X,19CK/ - NW=HDEģCKX1KNW/DC\Z-AX,19CʡH97/ - NW=HDEģCK -:K48?:T><-AX1ʡH97NW/DC -:48?:T86X,19CK/ - NW=HDEģCKX1KNW/DC;9X,19CK/ - NW=HDEGI#!X1KNW/DGI86X,19CK/ - NW=HDEģCKX1KNW/DCb`X,19CʡH97/ - NW=HDEK?IU>DE?T΂:C̛<A?X1ʡH97NW/DE?IUD?΂:C̛<86X,19CK/ - NW=HDEģCKX1KNW/DC86X,19CK/ - NW=HDEģCKX1KNW/DC86X,19CK/ - NW=HDEģCKX1KNW/DCGEX,19CʡH97/ - NW=HDE8K΂:4T/-X1ʡH97NW/D8K΂:4T86X,19CK/ - NW=HDEģCKX1KNW/DCVTX,19CʡH97/ - NW=HDEģCKGģC:7BWT53X1ʡH97NW/DCGģC7BW86X,19CK/ - NW=HDEģCKX1KNW/DC86X,19CK/ - NW=HDE>KX1KNW/D>86X,19CK/ - NW=HDEģCKX1KNW/DCGEX,19CʡH97/ - NWCHDEģCK΂:6T)'X1ʡH97NW޻/DC΂:686X,19CK/ - NW=HDEģCKX1KNW/DCSQX,19CʡH97/ - NW=HDEOKDOGDO6G20X1ʡH97NW/DODGD6G86X,19CK/ - NW=HDEģCKX1KNW/DC;9X,19CK/ - NW=HDEGI#!X1KNW/DGI86X,19CK/ - NW=HDEģCKX1KNW/DCJHX,19CʡH97/ - /@CHWDEģCKùBNL,*X1ʡH97N޻/WDCùBNL86X,19CK/ - NW=HDEģCKX1KNW/DC86X,19CK/ - NW=HDEģCKX1KNW/DC86X,19CK/ - NW=HDEģCKX1KNW/DCqoX,19CʡH97/ - NW=HDE>KL28AWT6O0U—PD7>6;PNX1ʡH97NW/D>LPAW6O0U—PD7>6;86X,19CK/ - NW=HDEģCKX1KNW/DCVTX,19CʡH97/ - NW=HDEģCKGģC:7BWT53X1ʡH97NW/DCGģC7BW86X,19CK/ - NW=HDEģCKX1KNW/DC>E6DSDA53-II6I6I66U>E6DSDANB-<66N-<66#!NB-<66ODSDAN-<66DSDANB-<66N-<66_]-I6DD9D66>=/,ֈ;N?KCL3;ނB/6/7TNؕ7؄/ESQ-I6D966>=/,ֈ;N?KCL3ނB/6/7TNڕ7ENB-<66N-<66><-I66OE60FǂSHAVTJD8DAP/--I66E6FǂSHAVTD8ANB-<66N-<6686-II6I6I66OU>E6DSDA53-II6I6I66U>E6DSDANB-<66N-<66#!NB-<6OC8A99N-<6OC8A9NB-<66N-<66_]-I6DD9D66>=/,ֈ;N?KCL3;ނB/6/7TNؕ7؄/ESQ-I6D966>=/,ֈ;N?KCL3ނB/6/7TNڕ7ENB-<66N-<66E6DSDA53-II6I6I66U>E6DSDANB-<66N-<66)'D-IHD6/E6-116)'D-IHD6/E6-116NB-<66N-<66_]-I6DD9D66>=/,ֈ;N?KCL3;ނB/6/7TNؕ7؄/ESQ-I6D966>=/,ֈ;N?KCL3ނB/6/7TNڕ7ENB-<66N-<66 кB-<ԋ/C66JƱCTкB-<ԋ/C66JϱCNB-<66N-<6686-II6I6I66OU>E6DSDA53-II6I6I66U>E6DSDANB-<66N-<66,*NB-=/,ֈ;N?KCL3;ނB/6/7TNؕ7؄/ESQ-I6D966>=/,ֈ;N?KCL3ނB/6/7TNڕ7ENB-<66N-<66865-Н?T  R>ܞ? İU7/ İU7/204UİU7/5.W@ßNWF/ÐWW/-4UİU7/5.W@ßNW/ÐWW İU7/ İU7//-UİU7/.W@ßN1T7̛<,*UİU7/.W@ßN17̛< İU7/ İU7/  -NUİU7/.@K  -NUİU7/.@K İU7/ İU7/534İU7/5:S9İU:4K"!,*4İU7/5:S9İU:4K" İU7/ İU7/86T14UİU7/5.:S9İUAWAT20T14UİU7/5.:S9İUAA İU7/ İU7/;94UİU7/5.W@ßNWF?9GHН?T204UİU7/5.W@ßNW?9G/ İU7/ İU7/204UİU7/5.W@ßNWF/ÐWW/-4UİU7/5.W@ßNW/ÐWW İU7/ İU7/GEUİU7/.W@ßNWF/ɴ9Н?Tɴ9ʡH9?/T;9UİU7/.W@ßNW/ɴ9ܞ?ɴ99/T İU7/ İU7/  -NUİU7/.@K  -NUİU7/.@K İU7/ İU7/#!4UİU7/5.W@ßN#!4UİU7/5.W@ßN İU7/ İU7/86T14UİU7/5.:S9İUAWAT20T14UİU7/5.:S9İUAA İU7/ İU7/864UİU7/5.W@ßNWF/̝5̛FˎWBDIKT)ʪ/-KFEڶ>FˎWBDIK)ʪį-KEˎWٟ@6֬4Jį-KEˎW5֬4J-K-Kį-KEˎWٟ@6֬4Jį-KEˎW5֬4J&$Sį-K>JNTCTT#!Sį-K>JϞNCTTį-KEˎWٟ@6֬4Jį-KEˎW5֬4J-K-Kį-KEˎWٟ@6֬4Jį-KEˎW5֬4J кB6Sį-KIKT:KкB6Sį-KIK:Kį-KEˎWٟ@6֬4Jį-KEˎW5֬4J-K-Kį-KEˎWٟ@6֬4Jį-KEˎW5֬4J#!;Kʗ,/Sտ7PC@;B ;Kʗ,/Sտ7PC;Bį-KEˎWٟ@6֬4Jį-KEˎW5֬4J-K-Kį-KEˎWٟ@6֬4Jį-KEˎW5֬4J203BBDK6S9A@S@060T203BBDK6S9A@S@060Tį-KEˎWٟ@6֬4Jį-KEˎW5֬4J-K-Kį-KEˎWٟ@6֬4Jį-KEˎW5֬4J/-;Kʗ,/—PL>CBFRKAKB,*;Kʗ,/—PL>CBFRKAKį-KEˎWٟ@6֬4Jį-KEˎW5֬4J-K-Kį-KEˎWٟ@6֬4Jį-KEˎW5֬4J)';Kʗ,/SKD͙7IRN͙7T&$;Kʗ,/SKDIRN͙7Tį-KEˎWٟ@6֬4Jį-KEˎW5֬4J-K-Kį-KEˎWٟ@6֬4Jį-KEˎW5֬4J#!SKб J768T7U>SKб ќJ687U>R/,B;R/,B;)'NЃB;W$,BΞ)9"@@@&$NЃB;W$,BΞ)9"@@R/,B;R/,B;,BR/>47,BR/>47R/,B;R/,B;)'NЃB;W$,BΞ)9"@@@&$NЃB;W$,BΞ)9"@@R/,B;R/,B;;9ѹ67,BƸ=DJ7.K/B9A=B@@@&$չ6,BƸ=DJ*/BA@@R/,B;R/,B;)'NЃB;W$,BΞ)9"@@@&$NЃB;W$,BΞ)9"@@R/,B;R/,B;;9R/B,B.P԰'0VAUѹ6FG,*R/B,B.P0VA"Uݹ6GR/,B;R/,B;)'NЃB;W$,BΞ)9"@@@&$NЃB;W$,BΞ)9"@@R/,B;R/,B;zxR/,BCMR/@BBR-P2KONJ768T7;2/ޟEŮß1QİL R/Ξ),BWβI3I@K/->ß1QİL R/Ξ),BWβI3I@R/,B;R/,B;)'NЃB;W$,BΞ)9"@@@&$NЃB;W$,BΞ)9"@@R/,B;R/,B;\Z(<7N6B=G;3>7K  #!<K  R/,B;R/,B;)'NЃB;W$,BΞ)9"@@@&$NЃB;W$,BΞ)9"@@R/,B;R/,B;)'N6@4,BHAR/D@Ԛ<&$N@4,BHAR/D@Ԛ<R/,B;R/,B;)'NЃB;W$,BΞ)9"@@@&$NЃB;W$,BΞ)9"@@R/,B;R/,B;/-R/,B@Hٟ@ʜ2IAN6@@@)'R/,B@Hٟ@ʜ2IAN@@R/,B;R/,B;)'NЃB;W$,BΞ)9"@@@&$NЃB;W$,BΞ)9"@@R/,B;R/,B;,*/>,BJ>,BJ>,BAB,*/>,BJ>,BJ>,BABB78;U B8;UB;U>C@KB;U>C@KB78;U B8;U,*ʡH9=7B;U>CEJCEJC7CC78N@>;GB B;>8N@>;GB78;U B8;U,*B7;>8N@Ɓ-67Ɓ-6HT#!B;>8N@ȁ-7ȁ-HTB78;U B8;U7B;U>C8,T7B;U>C,TB78;U B8;UB;ULC8,TB;ULC,TB78;U B8;UB;U>C@KB;U>C@KB78;U B8;U)'7B;U>CBU8JCBU8JC7CC7;UN8C.VI<7; B>;UN8C.I7FU/J.ʭB/ FJ.ϭBMKDVD:JTʭB/>ڶ>9ԚGJE@Ԛ<A?DVD:JTϭB>9ԚGJE@Ԛ<FU/J.ʭB/ FJ.ϭBJ.ʭB/@? J.ϭB@FU/J.ʭB/ FJ.ϭB#!J.ʭB/L FUO@KJ.ϭBL FO@KFU/J.ʭB/ FJ.ϭB)'J.ʭB/L F;F?8,T J.ϭBL F;F,TFU/J.ʭB/ FJ.ϭBMKDVD:JTʭB/>ڶ>9ԚGJE@Ԛ<A?DVD:JTϭB>9ԚGJE@Ԛ<FU/J.ʭB/ FJ.ϭB,*J.ʭB/L FUO'GNOC&$J.ϭBL FO'GNOCFU/J.ʭB/ FJ.ϭB#!J.ʭB/L FUO@KJ.ϭBL FO@KFU/J.ʭB/ FJ.ϭB,*J.ʭB/L FUOLBڶ>9ԚGJE@Ԛ<A?DVD:JTϭB>9ԚGJE@Ԛ<FU/J.ʭB/ FJ.ϭBJ.ʭB/>LJ.ϭB>LFU/J.ʭB/ FJ.ϭB#!J.ʭB/L FUO@KJ.ϭBL FO@KFU/J.ʭB/ FJ.ϭB53J.ʭB/8NJ.ʭB/G>98F>T,*J.ϭB8NJ.ϭBG>98F>FU/J.ʭB/ FJ.ϭBMKDVD:JTʭB/>ڶ>9ԚGJE@Ԛ<A?DVD:JTϭB>9ԚGJE@Ԛ<FU/J.ʭB/ FJ.ϭB/-J.ʭB/8IC¨03?;9<>TJ.ϭB8IϨ0-<>FU/J.ʭB/ FJ.ϭB#!J.ʭB/L FUO@KJ.ϭBL FO@KFU/J.ʭB/ FJ.ϭBJ.ʭB/;J6J.ϭB;J6G8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=/-?;8WB=&;WɾS2SCI9)'?;8WB=&;W2SC9G8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=/-H޽B;8AE0WB=щQUP.T,*H޽B;8AE0WB=щQUP.G8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=JHWBRPI9=50׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=20PG,DNG806WB=C=S7,*PG,DNG85WB=CS7G8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=GEW=D,?R;G0G8DN@WG7ӽDIECӽDI>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=20޽BR0WB>=M>I?;8щQ@Ԛ<20޽BR0WB>=M>I?;8щQ@Ԛ<G8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=)';80WB=D>щQDSDA&$;80WB=ӗ>щQDSDAG8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=JHԓ459D0ԓ4B=SRJ>E;86ST!!";9ԓ45D0ԓ4B=SRJ>E;86STXG8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=#!;8>E6QWB=@N ;>E6QWB=@NG8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=R8G8>=>PR8G8>=>PG8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=VTԓ459D0ԓ4B=O׽RG6ST!!"DBԓ45D0ԓ4B=O׽RG6STXG8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=DBG׫;@2>H8GK0G8WB=F?HG,H,DBG׫;@2>H8GK0G8WB=F?HG,H,G8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=\Z7WCȻ22HG/CNK08W=ߌ,3=GGև9>TYW7WCȻ22HG/CNK08W=ߌ,3=GGև9>G8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=H$,GG88W-BGHHH$,GG88W-BGHHQH$,GG88W-BGHHDETLBL=,KH$,GG88W-BGHH$,GG88W-BGHQH$,GG88W-BGHDETLBL,KG8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=86G,DNG806WB=C=Pֈ;̛׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=DBTCRJG<8QG8O60G6U<8Gڶ>S=86CJG<8QG8O60G6<8GS=G8ԓ4BWC=G8ԓ4BWC=SQDŽPB;8>׽RG>G8;?Sԓ459D0ԓ4B=R/AEATMKDŽPB;8>׽RG>G8;?Sԓ45D0ԓ4B=R/AEAG8ԓ4BWC=G8ԓ4BWC=DBS9I/CD<8JGԓ4GWB-RN= -KF7DBS9I/CD<8JGԓ4GWB-RN= -KF7 ʉ5  ʉ5ʉ5 @K ʉ5@K ʉ5  ʉ520 Ͳ4ʉ5/%DHGAAOC4ˉ5%DHAAOC ʉ5  ʉ5ʉ5 @K ʉ5@K ʉ5  ʉ5  ʉ5ޚTDG@K5D@K ʉ5  ʉ5ʉ5 @K ʉ5@K ʉ5  ʉ5&$ ۚKʉ5RG̛<"&ۚK݉5G̛<" ʉ5  ʉ5ʉ5 @K ʉ5@K ʉ5  ʉ5ʉ5 8,T ʉ5,T ʉ5  ʉ5ʉ5 @K ʉ5@K ʉ5  ʉ5207 ʉ5ޚT4L/ȈXʉ5B-AB#!H6=>ʉ5B-AB ʉ5  ʉ5ʉ5 @K ʉ5@K ʉ5  ʉ5;9 ۚK4ʉ5G8OE>έ;LSDʡH9;,*ۚK4ʉ5GOE>٭;SDʡH9; ʉ5  ʉ5ʉ5 @K ʉ5@K ʉ5  ʉ5#!@ >ʉ5DSDA@>ʉ5DSDA ʉ5  ʉ5ʉ5 @K ʉ5@K ʉ5  ʉ5&$$6 6ʉ5@Ԛ<$66ʉ5@Ԛ<,*,BA@D64AE54A6O&$,BA@64AE54A6/-D4A,HB54A6OUP.T)'D4A,HB54A6UP.,*,BA@D64AE54A6O&$,BA@64AE54A6 @K-; @K-;,*,BA@D64AE54A6O&$,BA@64AE54A6/-D4A,HB54A6OUP.T)'D4A,HB54A6UP.,*,BA@D64AE54A6O&$,BA@64AE54A653.HB@M64A6OI0щQUP.T/-.HB@M64A6I0щQUP.,*,BA@D64AE54A6O&$,BA@64AE54A6/-D4A,HB54A6OUP.T)'D4A,HB54A6UP.,*,BA@D64AE54A6O&$,BA@64AE54A6><.HB@M64A6OHAVTJD8DAP20.HB@M64A6HAVTD8A,*,BA@D64AE54A6O&$,BA@64AE54A6/-D4A,HB54A6OUP.T)'D4A,HB54A6UP.,*,BA@D64AE54A6O&$,BA@64AE54A6)'.49B3I6OFUPUT#!.49B3I6FUPU,*,BA@D64AE54A6O&$,BA@64AE54A6/-D4A,HB54A6OUP.T)'D4A,HB54A6UP.,*,BA@D64AE54A6O&$,BA@64AE54A6A?ڤ55D>.1B@D4A= @6OG;P20ܤ5D>.1B@4A= @6G;P,*,BA@D64AE54A6O&$,BA@64AE54A6/-D4A,HB54A6OUP.T)'D4A,HB54A6UP.,*,BA@D64AE54A6O&$,BA@64AE54A6GE.JS=HB@DH4ADAP;0T?6T)!,*.SHB@H4AA;T6T),*,BA@D64AE54A6O&$,BA@64AE54A6/-D4A,HB54A6OUP.T)'D4A,HB54A6UP.,*,BA@D64AE54A6O&$,BA@64AE54A620.BKM4AHAVTJD8DAP)'.BKM4AHAVTD8A,*,BA@D64AE54A6O&$,BA@64AE54A6/-D4A,HB54A6OUP.T)'D4A,HB54A6UP.,*,BA@D64AE54A6O&$,BA@64AE54A6/-.HB@D4A=6OGUP9T#!.HB@4ASGUP9 @GMT  @GM>  BIɤU1.@GMTC3G9/-VN>BIɤU1.@GMC3G9 @GMT  @GMDB@G.MTA/B@G.MTQ8ޚTNGKTOT,*@G6A/@G6Q8+KTO @GMT  @GM;9@G.MT,;MT73;E=57TIַ;)'@G6,;M7;E57TI @GMT  @GM)'@G@MT/-56P9?ַ;#!@G@M/-56P9? @GMT  @GM@G.MTG@=@GMT.@MTC3G3G9ܞNTTOC3G98Iַ;@G.MTG@=@GMT.@MTki@G6G=@GM.@MC3G3G9NTC3G9I@G6G=@GM.@M @GMT  @GM86@G.4@ϚL4MT;M4߹-WHԓ6Iַ;&$@G.@4M6߹-WHԓ6I @GMT  @GM&$@G.MT߹-5TOOIַ;@G6߹-5TOI @GMT  @GM.@MT.MT@MTܞND>.MTE=.MT=.MTIϪJ1.M@G.@MTDC3G98Iַ;\Z.@M6@MN>6E=6=6IϪJ1.M@G.@MDC3G9I @GMT  @GM&$.M@GMTJ-U@ؙDT#!.M@GMJ-U@ؙDT @GMT  @GM)''=.@GMTIB.<.M@GM6.@M@MEM=6C3G9I @GMT  @GM/-@G=@G.MT=.MTIG@ @G=@G6=6IG @GMT  @GM>  BIɤU1.@GMTC3G9/-VN>BIɤU1.@GMC3G9 @GMT  @GMDBMU@G@MT@MTMTMU,HP5ѳBʈFP?53M@G@M@MMM,HP5ѳBʈFP? @GMT  @GM;9@G.MT,;MT73;E=57TIַ;)'@G6,;M7;E57TI @GMT  @GM53@G.MTַ;@G.MTD,BPַ;Υ6&$@G6ַ;@G6D,Pַ;Υ6cI6;0ڳQ  +0ڳQ I6;ٟ@9ٟ@0A@Ԛ<+90A@Ԛ<KI6;0ڳQ  +0ڳQI6;-N  +-NI6;0ڳQ  +0ڳQ20I6;0ʭBќ:-WI6;I6>S2&$+0ʭBќ:-WI6I6>SoI6;0ڳQ  +0ڳQ&$UII6;-N1D@@@UI+-N1ځD@I6;0ڳQ  +0ڳQSQI6;096WI-:PUPޜFTI—PRMTI6ޜF6JH+096WI-:PUPޜFTIRMTI6ޜF6I6;0ڳQ  +0ڳQA?Q2?EC=E@.=9QCB9QCͦ(!)'Q2?EC=@ƋQCBƋQCiI6;0ڳQ  +0ڳQ .IWI6;8TAB.IW+8TABI6;0ڳQ  +0ڳQ86I6;6U=9=>C<ʡH6IHC<ʡH6IHTI6>6;DPDA86>I6>6;DPDA<I6>6;DPDA86>I6>6;DPDA,*ä=FBNLI6>6;DPDA86>I6>6;DPDA3PϪJBE҄JJ9R>9ֈDCSW9ٟ@192D>9ED>9@S6;,DP>=/UP.T.M@D>3PϪJBEԄJ9R>DCSW@192D>BD>9@S6;,DP>=/UP.I6>6;DPDA86>I6>6;DPDAI6>6;DPDA86>I6>6;DPDA6E>6E>I6>6;DPDA86>I6>6;DPDAI6>6;DPDA86>I6>6;DPDASE>C=,B/7Ȼ;T=.LGENA=C,B/7Ȼ;T=LȥW> 1ڶ>SGȥW> 1SG,*A> Q5=Qڶ>SȥW@@@&$A> Q5=QSȥW@@ȥW> 1ڶ>SGȥW> 1SG53>W5CȥWG8E<=?N;†M8T)'>W5CȥWG8E<†M8ȥW> 1ڶ>SGȥW> 1SGDB> @GWC;9Q66BW4 ȥW@@@><> @GWC;9Q6BW4 ȥW@@ȥW> 1ڶ>SGȥW> 1SGhf;>>WȥW,:K>;=?N;7=?N;GTTT - !FD;>>WȥW,:K>;7GTTT+ȥW> 1ڶ>SGȥW> 1SG,*A> Q5=Qڶ>SȥW@@@&$A> Q5=QSȥW@@ȥW> 1ڶ>SGȥW> 1SGDB>W5CWȥWG8E<=?N;TTTG8̛<86>W5CWȥWG8E<TTTG8ȥW> 1ڶ>SGȥW> 1SGDB> @GWC;9Q66BW4 ȥW@@@><> @GWC;9Q6BW4 ȥW@@ȥW> 1ڶ>SGȥW> 1SG20ȥW>W2G/I֣.ŞG9/;7;20ȥW>W2G/I֣.ŞG9/;7;ȥW> 1ڶ>SGȥW> 1SG,*A> Q5=Qڶ>SȥW@@@&$A> Q5=QSȥW@@ȥW> 1ڶ>SGȥW> 1SG20> >QR@8S֗T7ȥW@@@/-> >QR@8S֗T7ȥW@@ȥW> 1ڶ>SGȥW> 1SGDB> @GWC;9Q66BW4 ȥW@@@><> @GWC;9Q6BW4 ȥW@@ȥW> 1ڶ>SGȥW> 1SG20> ȥWS8D0;T=?N;)'> ȥWS8D0;TȥW> 1ڶ>SGȥW> 1SG,*A> Q5=Qڶ>SȥW@@@&$A> Q5=QSȥW@@ȥW> 1ڶ>SGȥW> 1SG#!ȥWȥWKȥW,:ĝ ȥWȥWKȥW,:؝ȥW> 1ڶ>SGȥW> 1SGDB> @GWC;9Q66BW4 ȥW@@@><> @GWC;9Q6BW4 ȥW@@ȥW> 1ڶ>SGȥW> 1SG_]N9UL=>˾3ȥW> G/NIǡ6TTT=?N;T!DBNU=>˾3ȥW> G/NIǡ6TTTTK  ?J=  ?J=)'VHDJ>4=5D3Ȼ;>T VD>4=5D3Ȼ;>  ?J=  ?J=DJ>?=DJ>?=}  ?J=  ?J=?J=Uа.T ?J=*  ?J=  ?J= J?,= J?,=  ?J=  ?J=;9?EJ=׍Q7E70 NʡH -H064T53?EJ=׍Q,0 NʡH -H064T  ?J=  ?J=DJ>?=GĊA>TDJ>?=GĊA>  ?J=  ?J=/-D9DDG?>J>,NDSDA#!9G?>J>=DSDA  ?J=  ?J=?EJ׍QDG@K?EJ׍QD@K  ?J=  ?J= D/F;  DF;  ?J=  ?J=,*DJ>?=E?NKLF9@K)'DJ>?=E?NKLF9@  ?J=  ?J=?=EJ=׍QPB6?=EJ=׍QPB  ?J=  ?J=;?1KEJ>=׍QCPDCK9K>ٟ@9@9W>4R/ҾWB1.O>NB9KJK>N9͝,ڪ3.WȻBDEA¶7ģC:Q;?1KEJ>=׍QCPDC9>ٟ@9@9W>4R/ҾWB1.O>NB8J>N9Ν,.WȻBDENģC:Q  ?J=  ?J=20?>?J>,N166==@Ԛ<)'?>?J>=16=@Ԛ<  ?J=  ?J=DJ>?=@KDJ>?=@K  ?J=  ?J=>?=4FSCܞN/OJ-0E/-DJ>?=4FSNOJ7E  ?J=  ?J=?J=4Н?A3AT?J=4AA  ?J=  ?J=)'VHDJ>4=5D3Ȼ;>T VD>4=5D3Ȼ;>  ?J=  ?J= ?EJ=׍QFK AB ?EJ=׍QFK AB  ?J=  ?J=?J=Uа.T ?J=*  ?J=  ?J=)'J>?=ʡH۩RV-T.6.T&$J>?=ʡH۩RV-T.6.  ?J=  ?J=;9?EJ=׍Q7E70 NʡH -H064T53?EJ=׍Q,0 NʡH -H064T  ?J=  ?J=20UWX=6?KJJ=3WН?>AT,*UWX=6?KJJ=3W?A  ?J=  ?J=/-D9DDG?>J>,NDSDA#!9G?>J>=DSDA  ?J=  ?J=864?߸3ѝ6B5-0IJ?߸3==I̛=F>>@>T#!DJ7>=F>>@>IFET> IFT>_]IFE71UC56K7WE>VWA75SJS24.@7Uև9>TVTIF71UC6K7WE>VWA75SJS24.@7Uև9>IFET> IFT>&$1FEWK.WKC:ET1FWKWKC:EIFET> IFT>,*IFED6AS1F՟?>>@Ԛ<#!IFD6Aū1?>>@Ԛ<IFET> IFT>;9IFEAW̋?6FF1UK>626::@20IFA̋?6.1UK>626::@IFET> IFT>_]IFE71UC56K7WE>VWA75SJS24.@7Uև9>TVTIF71UC6K7WE>VWA75SJS24.@7Uև9>IFET> IFT>&$IKMFE->CϨHQRTIKMF-CΨQRTIFET> IFT>,*IFED6AS1F՟?>>@Ԛ<#!IFD6Aū1?>>@Ԛ<IFET> IFT>20IFED6AS1F՟?>>DSDA)'IFD6Aū1?>>DSDAIFET> IFT>_]IFE71UC56K7WE>VWA75SJS24.@7Uև9>TVTIF71UC6K7WE>VWA75SJS24.@7Uև9>IFET> IFT>53FE>>M*ɬI*I*55TH>M*ɬI*I*5THTIFET> IFT>,*IFED6AS1F՟?>>@Ԛ<#!IFD6Aū1?>>@Ԛ<IFET> IFT>53HFE>>@IU>J-F>TLP20HF>>@IU>J-F>TLPIFET> IFT>_]IFE71UC56K7WE>VWA75SJS24.@7Uև9>TVTIF71UC6K7WE>VWA75SJS24.@7Uև9>IFET> IFT>20I—P=E>>FEDH>QIB,ܔN)'I=E>>FDH>QIBG DEO; DEO;:O;J@Ԛ<:;J@Ԛ< DEO; DEO;:O;4P@Ԛ<:;4P@Ԛ< DEO; DEO;  N:O;BF8@K N:;BF8@K DEO; DEO; -:O;WL/?T -:;W. DEO; DEO;:O;J@Ԛ<:;J@Ԛ< DEO; DEO;O:4;DG@KO:;D@K DEO; DEO;  N:O;BF8@K N:;BF8@K DEO; DEO;:OD>;@K:D>;@K DEO; DEO;:O;J@Ԛ<:;J@Ԛ< DEO; DEO; DO;2  D;2 DEO; DEO;  N:O;BF8@K N:;BF8@K DEO; DEO; :O;2,LDG@K:;2,D@K DEO; DEO;:O;J@Ԛ<:;J@Ԛ< DEO; DEO; :O;2  :;2 DEO; DEO;  N:O;BF8@K N:;BF8@K DEO; DEO;:O;28,T:;2,T DEO; DEO;:O;J@Ԛ<:;J@Ԛ< DEO; DEO;&$ :OƔ>;21ET!! :Ɣ>;21ET DEO; DEO;  N:O;BF8@K N:;BF8@K DEO; DEO;:O;28,T:;2,T DEO; DEO;:O;J@Ԛ<:;J@Ԛ< DEO; DEO; P:O8;:I̺@:TP:8;:@ DEO; DEO;  N:O;BF8@K N:;BF8@K DEO; DEO;#!:O;J:O4974T:;J:474T DEO; DEO;:O;J@Ԛ<:;J@Ԛ< DEO; DEO;DO;2:TD;2:T DEO; DEO;  N:O;BF8@K N:;BF8@K DEO; DEO;:O;2DG@K:;2D@K DEO; DEO;:O;J@Ԛ<:;J@Ԛ< DEO; DEO;:O;27Cͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ?&$/IMTS;ͺ?ٟ@6A7BITS;ͺ?5+ (T;ͺ? (T;ͺ?(TR;>ͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ?&$(TS;>6/IM@@@(TS;>6I@@ (T;ͺ? (T;ͺ?(TR;>ͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ?86/IMTR;>>VBͺ?C7=V-AB)'ITR;>>Bͺ?C7VAB (T;ͺ? (T;ͺ?(TR;>ͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ?(TS64ͺ?(TS64ͺ? (T;ͺ? (T;ͺ?(TR;>ͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ? /IMT;ͺ?DSDAIT;ͺ?DSDA (T;ͺ? (T;ͺ?(TR;>ͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ?A?/IMPD;Fͺ?M7K/1I-I-@Ԛ<53IPD;Fͺ?MK/I-I-@Ԛ< (T;ͺ? (T;ͺ?(TR;>ͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ? /IMF̽>S6>NBIF̽>S6>NB (T;ͺ? (T;ͺ?(TR;>ͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ?53;ͺ?9T./I/J@/TA/IMT,*;ͺ?9T.I/J@/TAIT (T;ͺ? (T;ͺ?(TR;>ͺ?@Ԛ<(TR;>ͺ?@Ԛ< (T;ͺ? (T;ͺ?86/IM̺ٟ@6ʔ7;Vͺ?2(/IMI@)'I̺5ʔ7;Vͺ?2(II@G>SEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S8&$UJG>SIBEU3H8UG>SIB8H8G>SEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S8zx7HܞNDG>SEU7HܞNDG>SEUQ7HܞNDG>SEUDET߹-8Lԓ6Iַ;C=.b`7HNG>S87HNG>S8Q7HNG>S8DET߹-8Lԓ6IC=G>SEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S8ki/K@G>SEUSTSUQ=WBSEUSIBEU߹-=EMSIַ;BU1TPN/KG>S8SŘSEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S8DB-ܞNDG>! )SEUQ-Q;ۓRTCG0/--NG>S8Q-Q;ۓRCG0G>SEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S886RNUG>SEUIBSEU) :/B#!NG>S8IBS8:/G>SEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S8/-ܞNDG>SIBEU;SIBEU&$NG>SIB8;SIB8G>SEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S8SQ-ܞNDG>SEUQD2VFȣ84XIUҔB<֗TI7Iַ;ŒATJH-NG>S8QD2VFȣ84XIUҔB<֗TI7IŒATG>SEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S8 P PG>SEU G>S8/-L44ȣ8G>EUSIBEU̍ L4ȣ8G>8SIB8G>SEU G>S820DGIBEUSEUV;EUBEU#!DGIB8S8V8B8 DBCDIٟ@964>DBR@54>,*BDCD94>,6ODPDA&$BDR94>,6DPDA DBCDIٟ@964>DBR@54>#!BCDO94>6O@Ԛ<BRO94>6@Ԛ< DBCDIٟ@964>DBR@54>DBDBD>CD.NA>%>R6Iٟ@97DSDA53B>R.NA>%>R6@4DSDA DBCDIٟ@964>DBR@54>20DCD97UDE4Oٟ@6AA7B DR5UDMOٟ@6+ DBCDIٟ@964>DBR@54>,*BDCD94>,6ODPDA&$BDR94>,6DPDA DBCDIٟ@964>DBR@54>PNDBCDIٟ@964E>йSDK9ٟ@9SM>BU-щQ@Ԛ<>޹S @9SM>BU-щQ@Ԛ< DBCDIٟ@964>DBR@54>DBDBD>CD.NA>%>R6Iٟ@97DSDA53B>R.NA>%>R6@4DSDA DBCDIٟ@964>DBR@54>PNOD6>D=7ADBDCD=9>DIٟ@OD2O@@@>D=7ABR9>D@OD2O@@ DBCDIٟ@964>DBR@54>,*BDCD94>,6ODPDA&$BDR94>,6DPDA DBCDIٟ@964>DBR@54>b`DBDCDCٟ@9ɤKE7>RɤK/ϪJ>H=Q996ɤKA>A910TDPNBR@9ɤKE7>RɤK/ϪJ>H=Q95ɤKA>A10TD DBCDIٟ@964>DBR@54>DBDBD>CD.NA>%>R6Iٟ@97DSDA53B>R.NA>%>R6@4DSDA DBCDIٟ@964>DBR@54>_]DBCDN59OH348BD4R4O@4WOŮPO4/TDOTDBDBRN5O38BD4MO@4WX޵+TOT DBCDIٟ@964>DBR@54>,*BDCD94>,6ODPDA&$BDR94>,6DPDA DBCDIٟ@964>DBR@54>#!BCD94>A6O@Ԛ<BR94>A6@Ԛ< DBCDIٟ@964>DBR@54>DBDBD>CD.NA>%>R6Iٟ@97DSDA53B>R.NA>%>R6@4DSDA DBCDIٟ@964>DBR@54> UCD94>A6?,UR94>A6?, BU06˩5FE91PBU06FE1PA?BTS6˩5؇9?˩5OMR9I1FUFFPJ86BS6؇9?˩5OMR9I1FUFPJ BU06˩5FE91PBU06FE1P/-B؇96˩5ֲR1FQ?ٟ@SPG3&$B؇96ֲR1FQ?ٟ@SG BU06˩5FE91PBU06FE1P20UC>B06˩5NR31SFщQ@Ԛ</-UC>B06NR31SFщQ@Ԛ< BU06˩5FE91PBU06FE1P#!BOFR6˩5֛7>3PJBOFR673PJ BU06˩5FE91PBU06FE1PA?BTS6˩5؇9?˩5OMR9I1FUFFPJ86BS6؇9?˩5OMR9I1FUFPJ BU06˩5FE91PBU06FE1PkiBTS6˩50QN?9H9RIJIН?TXLI/I/I/B=6I6B=-0YWBS60QN?9H9RIJIܞ?ɜXI/II/B=6I6B=0 BU06˩5FE91PBU06FE1P20UC>B06˩5NR31SFщQ@Ԛ</-UC>B06NR31SFщQ@Ԛ< BU06˩5FE91PBU06FE1PDB05OȨKFD9IVBTELȨKF9IV:TН?>/-05OӨKDIVBELӨKIV:? BU06˩5FE91PBU06FE1PA?BTS6˩5؇9?˩5OMR9I1FUFFPJ86BS6؇9?˩5OMR9I1FUFPJ BU06˩5FE91PBU06FE1P20BTS6˩50BT6˩51T7H;T#!BS60B617H;T BU06˩5FE91PBU06FE1P20UC>B06˩5NR31SFщQ@Ԛ</-UC>B06NR31SFщQ@Ԛ< BU06˩5FE91PBU06FE1P BT66˩50QGН?>B660QG? BU06˩5FE91PBU06FE1PA?BTS6˩5؇9?˩5OMR9I1FUFFPJ86BS6؇9?˩5OMR9I1FUFPJ BU06˩5FE91PBU06FE1PBR6˩51?FBTBR61?BT BU06˩5FE91PBU06FE1P20UC>B06˩5NR31SFщQ@Ԛ</-UC>B06NR31SFщQ@Ԛ< BU06˩5FE91PBU06FE1P BT؇96˩5M5RFFB؇96M5RFFCE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6T.TGT6>?>P.TG6>?>PCE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6T@N>PC @N>PCE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6T;9G߹-.TGTޚT>9BKR9KϋIL‡KAB20G߹-.TGޚT>BR9KϋIL‡KABCE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6T)'.TGT6>7KM?U>T .TG6>7KM?,CE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6T20.T9Kʉ55>A>BK=U;Н?T)'.T9Kʉ55>A>BU;ܞ?CE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6T/-.T9Kʉ55>A>BK=3RT&$.T9Kʉ55>A>B3ҔRCE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6TDBO<>TRIO.TRIOVTIOB<ȬTIQ>86O<>TRO.TROVTIOB<ЬTQCE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6TMK.TGT9.DS>9>AK@—PB@ A6O:@@@><.TG9.DS>IAK@B@ A6:@@CE.TGTK6TCE.TGK6T><.,9T>GTP6ڜ>KDTWAПCDSDA;9.,9T>GP6ڜ>KDTWAПCDSDACE.TGTK6TCE.TGK6T.TGT6>@Ԛ<.TG6>@Ԛ<̾-,AJT0ޡ8;-AJT0AJT?@KAJT?@K̾-,AJT0ޡ8;-AJT0;9̾-,4FE4AJT54T?1WQ̛<7T/-;-4E4AJT54T?WQ̛<7̾-,AJT0ޡ8;-AJT0\Z̾--,̾-,6.ΩWH8443AJT4Q۹/85?1WK40ޡ8>1MK̾--,;-6ΩWH8443AJT4Q۹/85?WåK0>1̾-,AJT0ޡ8;-AJT0PN̾--H,̾-,6.ΩW4L5/B4W5H/OTANя7>1GE̾--H,;-6ΩW4L5/B4W5H/OTAN>1̾-,AJT0ޡ8;-AJT0,*7H984AJT54>0ޡ87̾-,AJT0ޡ8;-AJT0 ̾-/XT ̾-/XT̾-,AJT0ޡ8;-AJT0  ̾-CT  ̾-CT̾-,AJT0ޡ8;-AJT0,*H84AJT540ޡ8>1@K)'H84AJT540>1@K̾-,AJT0ޡ8;-AJT0AJT?@KAJT?@K̾-,AJT0ޡ8;-AJT0\ZH,̾-,XΩW84ALT540ޡ8>11DD>7U ̾-X̾-X-TMKH,;-X84ALT540>11D>7U ̾-X̾-X-̾-,AJT0ޡ8;-AJT0\Z̾--,̾-,6.ΩWH8443AJT4Q۹/85?1WK40ޡ8>1MK̾--,;-6ΩWH8443AJT4Q۹/85?WåK0>1̾-,AJT0ޡ8;-AJT0JH8AJTOC6̾-,84L5/TS:-1QBU/;868AJTOC6;-84L5/S:-ڠ#/̾-,AJT0ޡ8;-AJT0,*7H984AJT54>0ޡ87̾-,AJT0ޡ8;-AJT0/-̾-//?84AJT5T;U/T&$̾-//84AJT5T;*̾-,AJT0ޡ8;-AJT0  ̾-CT  ̾-CT̾-,AJT0ޡ8;-AJT0;9̾-,EAJTTDɍPMA:7.U/T/-;-EAJTTDӍPA:7.*̾-,AJT0ޡ8;-AJT0AJT?@KAJT?@K̾-,AJT0ޡ8;-AJT0ILIL̾-,AJT0ޡ8;-AJT0\Z̾--,̾-,6.ΩWH8443AJT4Q۹/85?1WK40ޡ8>1MK̾--,;-6ΩWH8443AJT4Q۹/85?WåK0>1̾-,AJT0ޡ8;-AJT0&$̾-4AT95/?V/?T ̾-4AT95/@?T)'FBUQDND6S?F: FBUQND6S?,*7F:BP1ND?F:@Ԛ<#!7:BP1ND?@Ԛ<)'FBUQDND6S?F: FBUQND6S?R6!8,TR6,T)'FBUQDND6S?F: FBUQND6S?207F:BP1ND?F:6S@Ԛ<)'7:BP1ND?6S@Ԛ<)'FBUQDND6S?F: FBUQND6S?531K>QP?F:Bб 4D=3-AB,*1K>QP?Bб 4D=-AB)'FBUQDND6S?F: FBUQND6S?,*7F:BP1ND?F:@Ԛ<#!7:BP1ND?@Ԛ<)'FBUQDND6S?F: FBUQND6S?;94F:̔6BUPV715CS?F:@Ԛ<204:̔6BUPV715CS?@Ԛ<)'FBUQDND6S?F: FBUQND6S?207F:BP1ND?F:6S@Ԛ<)'7:BP1ND?6S@Ԛ<)'FBUQDND6S?F: FBUQND6S?&$̔6ַ;IBUVԋ/CS?F:1IBUVԋ/CS?)'FBUQDND6S?F: FBUQND6S?,*7F:BP1ND?F:@Ԛ<#!7:BP1ND?@Ԛ<)'FBUQDND6S?F: FBUQND6S?GEF:̔6BU>ȣ89071KK6S?F:DSDA><:̔6BU>ȣ89071KK6S?DSDA)'FBUQDND6S?F: FBUQND6S?207F:BP1ND?F:6S@Ԛ<)'7:BP1ND?6S@Ԛ<)'FBUQDND6S?F: FBUQND6S? DA7O=—PRߑ4PTDA7=Rߑ4PT)'FBUQDND6S?F: FBUQND6S?,*7F:BP1ND?F:@Ԛ<#!7:BP1ND?@Ԛ<)'FBUQDND6S?F: FBUQND6S? ?F:6S>JK2@Ԛ<JHU2QNDHF/@SKDND SC>K2@Ԛ<UNDHF/UDHF/#!0-0:Nٟ@HFVFT0-:ٟ@HFFTUNDHF/UDHF/GEM:5UND8F/?PS6 1B>UDF?PS6UNDHF/UDHF/PNU2QN5DHF/Bٟ@SKDND SC>K2@Ԛ<JHU2QNDHF/@SKDND SC>K2@Ԛ<UNDHF/UDHF//-ӟ;N@R>8FS/"ҥ3!@;6&$ӟ;NR>8FS"ҥ3!@6UNDHF/UDHF/GEM:5K2@Ԛ<JHU2QNDHF/@SKDND SC>K2@Ԛ<UNDHF/UDHF/&$ FS5/ FS/UNDHF/UDHF/GEM:5K2@Ԛ<JHU2QNDHF/@SKDND SC>K2@Ԛ<UNDHF/UDHF/>/@K8FENܜ>@K  ,ݠ.A,A_]O70CT,ݠ.7>DGܤKP04TVAV07>?Q;GEO߫B>GK04TVAV07>?Q;  ,ݠ.A,A86,ݠ.>O/19O616ABTGA7B/-,>O/19O616ABTG+  ,ݠ.A,A,ݠ.ݠ.O ,ݠ.O  ,ݠ.A,AO,ݠ.B:DG@KO,BD@K  ,ݠ.A,A_]O70CT,ݠ.7>DGܤKP04TVAV07>?Q;GEO߫B>GK04TVAV07>?Q;  ,ݠ.A,A CN,ݠ.QADPDACN,QADPDA  ,ݠ.A,A,ݠ.ݠ.O ,ݠ.O  ,ݠ.A,A)'Iַ;DN0CT,ݠ.AщQ@Ԛ<Iַ;DNAщQ@Ԛ<  ,ݠ.A,A_]O70CT,ݠ.7>DGܤKP04TVAV07>?Q;GEO߫B>GK04TVAV07>?Q;  ,ݠ.A,A,*>T,ݠ.9ABAA4˛5DA4>,9ABA˛5DAn  ,ݠ.A,A,ݠ.ݠ.O ,ݠ.O  ,ݠ.A,A NT,ݠ.Nĵ*  ,ݠ.A,A_]O70CT,ݠ.7>DGܤKP04TVAV07>?Q;GEO߫B>GK04TVAV07>?Q;  ,ݠ.A,APNX>T9;;>X>QA7AO7RN;X7:U>E8DBX>;>X>QA7AO7N;X7:U>E8  ,ݠ.A,A,ݠ.ݠ.O ,ݠ.O  ,ݠ.A,AA?O߹-5,ݠ.߹-,ݠ.:߹-HİUMANC)O8,T53O߹-5,߹-,:߹-HMANC)O,TFIֈD:0DFI:0DIֈD:0@? I:0@FIֈD:0DFI:0D IֈDN0D:DG@KIN0DD@KFIֈD:0DFI:0D20D3ԚIֈD0>D:DSDA#!3IF>I>DDSDAFIֈD:0DFI:0DIֈDGC?DIGC?DFIֈD:0DFI:0DIֈD:0@? I:0@FIֈD:0DFI:0DD:IֈD14  DI1FIֈD:0DFI:0D20D3ԚIֈD0>D:DSDA#!3IF>I>DDSDAFIֈD:0DFI:0D20D3ԚIֈD0>D:DSDA#!3IF>I>DDSDAFIֈD:0DFI:0DIֈD:0@? I:0@FIֈD:0DFI:0D><يRIֈD:0DيR4IֈD:0BIيR4TC,>)'يRI:0DRI:0BIRCFIֈD:0DFI:0D20D3ԚIֈD0>D:DSDA#!3IF>I>DDSDAFIֈD:0DFI:0D;9IֈD>0EFR4:0>ğCѭDӮD:ٟ@H@Ԛ</-I>0EFM:0>ɟCܮDٟ@H@Ԛ<FIֈD:0DFI:0DIֈD:0@? I:0@FIֈD:0DFI:0D,*IֈD:0ߢ?DT7N79UAT#!I:0ߢ?D7N79UAFIֈD:0DFI:0D20D3ԚIֈD0>D:DSDA#!3IF>I>DDSDAFIֈD:0DFI:0D><0IֈD:0D04IֈD:0BI04TC,>/-0I:0D04I:0BI04CC@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>;9E87CC@N.H˱U=FCסE@@@2087CC@N.H˱U=FC@@C@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>GE= ->C@N7U0>ٟ@6MVIW>EDSDA><= ->C@NU0>ٟ@6V=>EDSDAC@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>A?C@N= -F>EMӛ?ߤ8>4FC@N@@@;9C@N= -F>EMӛ?ߤ8>4C@N@@C@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>DB= ->CסEC@NDE0**ԑ49A*/@@@;9= ->CC@ND0**ԑ49A*/@@C@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>b`B˩55=>O*7C@N7C@ĕ6TFR/HFH4ĕ6TPNB˩55=>O*C@ĕ6TFR/HF4ĕ6TC@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>_]6ɵO=>C@Nð.A ->>ٟ@9ٟ@DDܢESܤKA@CסESܤKA@Ԛ<SQ6ɵO=>C@Nð.A ->>9DܢESܤKA@CSܤKA@Ԛ<C@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>/-7C@N7 -=FSÐW7#! -=FSÐW7C@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>><= -F>C@NPEMӛ?M>>Fٟ@6@Ԛ<;9= -F>C@NPEMӛ?M>>F5@Ԛ<C@N= ->>C@N= ->>DB - -HE07!7LJ677/-H0LJ677C@N= ->>C@N= ->>)'C@N= -F(D>M@Ԛ<)'C@N= -F(D>M@Ԛ<HS/ON4/:HSON4/VT7H>S/OB4ʡH9ɰ5ȥ7/:į?I EL/ EHS/ON4/:HSON4/JHùBLW¶7/J7H>/B/WȥOB4784/:ĹBN/J84/HS/ON4/:HSON4/,*HS/ON4/:ҁX?L-T#!HSON4/ҁX?L-HS/ON4/:HSON4/&$HW>S/94/:AƭIHW>S94/AHS/ON4/:HSON4/)'7H/B/>ON47/:/HS/ON4/:HSON4/;9H>S/>4NO/://9¶7JùBL/#!>4NO//NJĹB/HS/ON4/:HSON4/;97H>S/>OB47BR:0ABBR:0ABHS/ON4/:HSON4/20/:7H>S/OB47/://HS/ON4/:HSON4/VT7H>S/OB4ʡH9ɰ5ȥ7/:į?I EL/ EHS/ON4/:HSON4/&$H>S/OB4">OB4>HS/ON4/:HSON4/,*HS/ON4/:ҁX?L-T#!HSON4/ҁX?L-HS/ON4/:HSON4/PN7HS/47/: ȥǶ,W¶7/>;GB20/ ȥǶ,N/>;GHS/ON4/:HSON4/)'7H/B/>ON47/:/HS/ON4/:HSON4/kiùBL9¶7/J7HS/9ȥ4NO7/:9¶7//:66ȈX4&20ĹBN/J/N//66ȈX4HS/ON4/:HSON4/;97H>S/>OB47BR:0ABBR:0ABHS/ON4/:HSON4/><ʡHU٨I7HS/47/::,AF> ʡHU٨I/:,>HS/ON4/:HSON4/VT7H>S/OB4ʡH9ɰ5ȥ7/:į?I EL/ EHS/ON4/:HSON4/HN1,;TLH1,;TLX:86˩5 X:86&$X:86˩5>X:86˩57 X:86>X:867X:86˩5 X:8686X:86˩54X:864VDT(!)'X:864X:86VDTX:86˩5 X:86&$X:86˩5>X:86˩57 X:86>X:867X:86˩5 X:86)'E8:X66˩5H38@@@#!E8:X66H38@@X:86˩5 X:86&$X:86˩5>X:86˩57 X:86>X:867X:86˩5 X:8620X:86ӻBOX:86˩5Q464T#!X:80X:86Q6TX:86˩5 X:86&$X:86˩5>X:86˩57 X:86>X:867X:86˩5 X:86GEX:86ӻBOX:86ӻBOX:86H6T$!20X:80X:86OX:866TX:86˩5 X:86&$X:86˩5>X:86˩57 X:86>X:867X:86˩5 X:86#!5X:8>6˩56R@Ԛ< 5X:8>66R@Ԛ<߹-U.:D>߹-U.:D>_]AU.?:D>>Rٟ@6U>G1@:?;0@W;0:GȻ;T=.LYWAU.?:D>>Rٟ@6>G1@:?;0@W;0:GȻ;T=L߹-U.:D>߹-U.:D> ߹-U.8 ߹-U.8߹-U.:D>߹-U.:D>#!߹-U.:DM=6S@Ԛ<#!߹-U.:DM=6S@Ԛ<߹-U.:D>߹-U.:D>/-U.>DP?14:щQȻ;T=.L)'U.>D?14:щQȻ;T=L߹-U.:D>߹-U.:D>ec1O .9.RU.,D6/EDCD>ڤ55J@C;ϵ>͵ATJ.PTVT1O.9.RU.,D6/EDCD>ܤ5J@Aϵ>͵ATJ.P߹-U.:D>߹-U.:D>)'кBU.6:DP߇;Ȼ;T=.L#!кBU.6:D߇;Ȼ;T=L߹-U.:D>߹-U.:D>_]AU.?:D>>Rٟ@6U>G1@:?;0@W;0:GȻ;T=.LYWAU.?:D>>Rٟ@6>G1@:?;0@W;0:GȻ;T=L߹-U.:D>߹-U.:D> U.8߹-U..ʺBPT U.8߹-U..ʺBPT߹-U.:D>߹-U.:D>#!߹-U.:DM=6S@Ԛ<#!߹-U.:DM=6S@Ԛ<߹-U.:D>߹-U.:D> ߹-U.:/0EFT6 ߹-U.:/0EFT6߹-U.:D>߹-U.:D>ec1O .9.RU.,D6/EDCD>ڤ55J@C;ϵ>͵ATJ.PTVT1O.9.RU.,D6/EDCD>ܤ5J@Aϵ>͵ATJ.P߹-U.:D>߹-U.:D>&$U.VP1B,, 5&$U.VP1B,, 5߹-U.:D>߹-U.:D>_]AU.?:D>>Rٟ@6U>G1@:?;0@W;0:GȻ;T=.LYWAU.?:D>>Rٟ@6>G1@:?;0@W;0:GȻ;T=L߹-U.:D>߹-U.:D>߹-V;T64߹-V;T6߹-U.:D>߹-U.:D>#!߹-U.:DM=6S@Ԛ<#!߹-U.:DM=6S@Ԛ<߹-U.:D>߹-U.:D>MK߹-U.6>P5,A߹-U.˭V6,3T߹-˭V6܈IU?90GE߹-U.6>P59߹-U.˭V6,3T߹-˭V6߈I?90߹-U.:D>߹-U.:D>ec1O .9.RU.,D6/EDCD>ڤ55J@C;ϵ>͵ATJ.PTVT1O.9.RU.,D6/EDCD>ܤ5J@Aϵ>͵ATJ.P߹-U.:D>߹-U.:D>MK N =.H= F0BU.$D: N =MPMPJH N =U= F0BU.$D: N =MPMP߹-U.:D>߹-U.:D>_]AU.?:D>>Rٟ@6U>G1@:?;0@W;0:GȻ;T=.LYWAU.?:D>>Rٟ@6>G1@:?;0@W;0:GȻ;T=L߹-U.:D>߹-U.:D>/-߹-U.DI429-DIV=RJ#!߹-U.D429-+RJ߹-U.:D>߹-U.:D>#!߹-U.:DM=6S@Ԛ<#!߹-U.:DM=6S@Ԛ<߹-U.:D>߹-U.:D>53߹-U./0Bб DD7=EUT۹/UD,*߹-U./0Bб DD7,U/D߹-U.:D>߹-U.:D>ec1O .9.RU.,D6/EDCD>ڤ55J@C;ϵ>͵ATJ.PTVT1O.9.RU.,D6/EDCD>ܤ5J@Aϵ>͵ATJ.P߹-U.:D>߹-U.:D>;9߹-U.0NUOބ2E   =ĪC'AB&$߹-U.0NUOǷ. =AB߹-U.:D>߹-U.:D>_]AU.?:D>>Rٟ@6U>G1@:?;0@W;0:GȻ;T=.LYWAU.?:D>>Rٟ@6>G1@:?;0@W;0:GȻ;T=L߹-U.:D>߹-U.:D>SQ:Aб =>U.=9V>D>9ԚU.V>D>1OISÄN989FT6߹-U.:D>߹-U.:D>#!߹-U.:DM=6S@Ԛ<#!߹-U.:DM=6S@Ԛ<߹-U.:D>߹-U.:D>)'U.>DP6:,Ȼ;T=.L#!U.>D6:,Ȼ;T=L߹-U.:D>߹-U.:D>ec1O .9.RU.,D6/EDCD>ڤ55J@C;ϵ>͵ATJ.PTVT1O.9.RU.,D6/EDCD>ܤ5J@Aϵ>͵ATJ.P߹-U.:D>߹-U.:D> ߹-1U.9TDSDA ߹-1U.9TDSDA߹-U.:D>߹-U.:D>_]AU.?:D>>Rٟ@6U>G1@:?;0@W;0:GȻ;T=.LYWAU.?:D>>Rٟ@6>G1@:?;0@W;0:GȻ;T=L߹-U.:D>߹-U.:D>GE3Ԛ9VC=6RMK -PT61TP6531U.D9VC6RK -PT61TڀP߹-U.:D>߹-U.:D>#!߹-U.:DM=6S@Ԛ<#!߹-U.:DM=6S@Ԛ<߹-U.:D>߹-U.:D>;9߹-U.:SM?B;BɵOMSB#**.T53߹-U.:SM?B;BֵOSB#**.  U8SUS/-1۠N -FɹKU=S5ۓR:ϡSFAT#!ޠN -FU=S5ۓR:ݡSA  U8SUS&$FMGMM>.3ˠS87TFMGMM>.87  U8SUSA?N,ˏR0#>ˌD3U=SNۥN&7><N,ˏR0#>ьDU=SNۥN&7  U8SUS)'VX?AM—PS>SM8GJ#!VX?AM—PS>SٶM1  U8SUS/-1۠N -FɹKU=S5ۓR:ϡSFAT#!ޠN -FU=S5ۓR:ݡSA  U8SUS/-U=Sб .65J?O4ʄ/&87&$U=Sб .6JO4ʄ/&8  U8SUSA?N,ˏR0#>ˌD3U=SNۥN&7><N,ˏR0#>ьDU=SNۥN&7  U8SUSVT70:7KU6A8>C¾98T—P7—PX>¾987;>C¾98—P7—PX>¾98;  U8SUS/-1۠N -FɹKU=S5ۓR:ϡSFAT#!ޠN -FU=S5ۓR:ݡSA  U8SUSA?U=Sб 7̛<87E7C77̛<(!53U=Sб 7̛<87E7C77̛<  U8SUSA?N,ˏR0#>ˌD3U=SNۥN&7><N,ˏR0#>ьDU=SNۥN&7  U8SUS86W7IU8>SESٟ@M߫U@U'@@@20W7IU>SESٟ@M߫U@U'@@  U8SUS/-1۠N -FɹKU=S5ۓR:ϡSFAT#!ޠN -FU=S5ۓR:ݡSA  U8SUS>< -4J6 NLF;8T786 -4J6 NLF87 N/,QEO. N/+O.53 N/,QI/E4OL/.DQET)' N/Q@E4OL/.T N/,QEO. N/+O.;9/,<7F NCN:QEI/4O5.L,*/<7F NN:+@4O5L N/,QEO. N/+O.53 N/,QI/E4OL/.DQET)' N/Q@E4OL/.T N/,QEO. N/+O.b`/QET N/QEVK/QEL9O/Լ=ET/QE/4/VQE1WJH/+T N/+V/+L9O/=T/+//V71W N/,QEO. N/+O.53 N/,QI/E4OL/.DQET)' N/Q@E4OL/.T N/,QEO. N/+O.&$ NCN/QEL)5E6>  )@?)@)ٟ@6E6>)5E6>)'UC9S;ٟ@>6E6>@Ԛ<)'UC9S;ٟ@>6E6>@Ԛ<)ٟ@6E6>)5E6>  )@?)@)ٟ@6E6>)5E6>&$VX,)EBٟ@&EϜVQTVX)E@&EϜVQ)ٟ@6E6>)5E6>  )@?)@)ٟ@6E6>)5E6>DBDԚ<(!ٟ@6ES>)%"6"&)'D5ES>)%"6")ٟ@6E6>)5E6>  )@?)@)ٟ@6E6>)5E6>#!;ښL)E6??OKT;ښL)E6?AT)ٟ@6E6>)5E6>  )@?)@)ٟ@6E6>)5E6>&$8V1)ٟ@>6E6>@Ԛ<#!81)ٟ@>6E6>@Ԛ<)ٟ@6E6>)5E6>  )@?)@)ٟ@6E6>)5E6>53K:S;ٟ@Sٟ@>6E66>GA7B/-K:S;ٟ@Sٟ@>6E66>G+)ٟ@6E6>)5E6>  )@?)@)ٟ@6E6>)5E6>\Z$B)KFE6>RDI6PGH>R5K9>66;NDSPԮK߀3VT$B)KFE6>RDI6PGH>RK9>66;NDSPٮK)ٟ@6E6>)5E6>  )@?)@)ٟ@6E6>)5E6>/-R—Pٟ@)%ٟ@6E6>DPDA&$R—Pٟ@)5E6>DPDA)ٟ@6E6>)5E6>  )@?)@)ٟ@6E6>)5E6>GE!Rٟ@6E6>ٟ@щQKB)B$&9U>щQ@Ԛ<;9!R5E6>ٟ@щQKB)BU>щQ@Ԛ< ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$hf$>I?9TWO$8$>I?9TWO$8Q$>I?9TWO$8,9PMK$>ɞ9WO$8$>ɞ9WO$8Q$>ɞ9WO$8,9P ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$)'֥>$8?9TW8QH.T#!֥>$8ɞ9W8QH.T ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$)'U"҈$4T޲F?9TU"4T޲Fɞ9 ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$trL:V1T>B;W8׫B!UH?I?9T$8CWO?98W8ɳQWQBHO_]L:V1T>;W8׫B!UH?Iɞ9$8CWOǞ9W8ɳQWвQH ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$;9µ$?9Tµ$?9T@M@>KT@/Bɞ9ɞ9@ܱM>K@/ ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$86<4T޲Fɞ9"A/4T޲Fɞ9"Q8+KTO ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$&$?9TQ0"lj:?9TɳQQɞ9Q0"lj:ɞ9ɳQQ ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$ec?9T88I?9T$8WO888O?98QD2CI0C98>ŒATSQɞ988Iɞ9$8WO888O?98QD2C0C9>ŒAT ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$20?9T$8ܞND֥>W8ݶ;UW89T#!ɞ9$8N֥>W΀8U89T ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$,*"҈$4T޲F?9Tlj:""4T޲Fɞ9lj:" ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$53"҈$4T޲F?9TQD2DT#!"4T޲Fɞ9QD2DT ?9T$ɞ9$A?W6J/?9T$8:W6J,HPHCI9I20WF/ɞ9$8:WF,HPHI9I ?9T$ɞ9$A?µ$?9TA=ULEQ?DZ.߰4>N.X8BLFJO;5ORܠ9ݩ5N.FJO:ݩ5ʅ>߰4>OXFJORܠ9љ55KUS̛SQT07>S7S˩5W˩5U˩5ORܠ9ݩ5JUS̛<N4NX8BLFաO5OMݩ5NFO:ݩ54OXFOMљ55US̛<աO3US̛SQT07>S7S˩5W˩5UOMߩ5US̛</N/40O;  N0աOMK/N/4ʅ>߰4>N.OX,FJO:9/N/4@@@,*N4NOX,FO:9N@@/N/40O;  N0աO/N/4ʅ>߰4>N.X8BLFJO;5ORܠ9ݩ5N.FJO:ݩ5ʅ>߰4>OXFJORܠ9љ55KUS̛SQT07>S7S˩5W˩5U˩5ORܠ9ݩ5JUS̛<N4NX8BLFաO5OMݩ5NFO:ݩ54OXFOMљ55US̛<աO3US̛SQT07>S7S˩5W˩5UOMߩ5US̛</N/40O;  N0աO>߰4>N.Xҥ3߫UBWOFJUQJ&$N4NXUBWOFUQJ/N/40O;  N0աO/N/4ʅ>߰4>N.X8BLFJO;5ORܠ9ݩ5N.FJO:ݩ5ʅ>߰4>OXFJORܠ9љ55KUS̛SQT07>S7S˩5W˩5U˩5ORܠ9ݩ5JUS̛<N4NX8BLFաO5OMݩ5NFO:ݩ54OXFOMљ55US̛<աO3US̛SQT07>S7S˩5W˩5UOMߩ5US̛</N/40O;  N0աO6Mӛ?6Mӛ?O;O/N/47>6744B9HS1HŞ1Kį?Dߋ5 Gބ24PK ۥNɿCR S2ބ2B@Bބ2ͩ- ۥN BDBM/N7߰4>N.X8BLFJO;5ORܠ9ݩ5N.FJO:ݩ5ʅ>߰4>OXFJORܠ9љ55KUS̛SQT07>S7S˩5W˩5U˩5ORܠ9ݩ5JUS̛<N4NX8BLFաO5OMݩ5NFO:ݩ54OXFOMљ55US̛<աO3US̛SQT07>S7S˩5W˩5UOMߩ5US̛</N/40O;  N0աO86/N/4ʅ>߰4>N.XWBOFJUQJ#!N4NXWBOFUQJ/N/40O;  N0աO/N/4ʅ>߰4>N.X8BLFJO;5ORܠ9ݩ5N.FJO:ݩ5ʅ>߰4>OXFJORܠ9љ55KUS̛SQT07>S7S˩5W˩5U˩5ORܠ9ݩ5JUS̛<N4NX8BLFաO5OMݩ5NFO:ݩ54OXFOMљ55US̛<աO3US̛SQT07>S7S˩5W˩5UOMߩ5US̛</N/40O;  N0աOSQ4/N/45F>JFJIݩ5ORܠ94/N/45F>JFJ,*4N54FIݩ5OM4N54F/N/40O;  N0աO/N/4ʅ>߰4>N.X8BLFJO;5ORܠ9ݩ5N.FJO:ݩ5ʅ>߰4>OXFJORܠ9љ55KUS̛SQT07>S7S˩5W˩5U˩5ORܠ9ݩ5JUS̛<N4NX8BLFաO5OMݩ5NFO:ݩ54OXFOMљ55US̛<աO3US̛SQT07>S7S˩5W˩5UOMߩ5US̛</N/40O;  N0աO 00,B4.Iַ;@?0,B4.I@/N/40O;  N0աO/N/4ʅ>߰4>N.X8BLFJO;5ORܠ9ݩ5N.FJO:ݩ5ʅ>߰4>OXFJORܠ9љ55KUS̛SQT07>S7S˩5W˩5U˩5ORܠ9ݩ5JUS̛<N4NX8BLFաO5OMݩ5NFO:ݩ54OXFOMљ55US̛<աO3US̛SQT07>S7S˩5W˩5UOMߩ5US̛</N/40O;  N0աO&$9:9;2—PX>9:;#!9:9;—PX>9:;,6BJ>P7BJ>P><76NJF3P;7N@N;JT;JQ;J/-7NJF3P;7NN;T;Q;,6BJ>P7BJ>P)'76BJPT;<̖@@TML&$7BJPT;<̖@@TML,6BJ>P7BJ>P/-176NJǭ;J2=>PQ@@@)'17NJǭ;J2=>PQ@@,6BJ>P7BJ>P,*CF76BJԿ7;˨OO/JIַ;&$CF7BJԿ7;˨OO/JI,6BJ>P7BJ>PUFJB76͎?/UFJB7͎?/,6BJ>P7BJ>P—PHIL2COJ—PHIL2COJسSB6BJDʿ7E>P—PHIL2COJ—PHIL2COJQ0N>>KJNBIL2COJBIL2COJ۳S6BJϿ7E>PBIL2COJBIL2COJQ0N׎>KɏJ,6BJ>P7BJ>P&$76BJ>PP/MGQT 7BJ>PPMGQT,6BJ>P7BJ>P,*JRJCJD6PV.6;JT)'JRJCJD6PV.6;T,6BJ>P7BJ>P 6BJDʿ7E>P@Ԛ<6BJϿ7E>P@Ԛ<,6BJ>P7BJ>P)'ARJBJD6PщQU;7P&$ARJBJD6PщQU;7,6BJ>P7BJ>P/-76BJF6F,QVMG.D6,*7BJF6F,QVMG.D6,6BJ>P7BJ>P53BܥNFCS7B76BR6HJ>AP/-BܥNFCS7B7B7HJ>AP,6BJ>P7BJ>P><76NJF3P;7N@N;JT;JQ;J/-7NJF3P;7NN;T;Q;,6BJ>P7BJ>PYWJǭ;N,6>PJǭ;DƂGщQJǭ;D@щQ,6>G3.ٟ@DƂGщQ@Ԛ<SQJǭ;N7>PJǭ;DƂGщQJǭ;D@щQ7>G3.ٟ@DƂGщQ@Ԛ<,6BJ>P7BJ>P/-176NJǭ;J2=>PQ@@@)'17NJǭ;J2=>PQ@@,6BJ>P7BJ>P/-FJō/NJD0PL36>;GB&$JNJD0PL36>;G,6BJ>P7BJ>PUFJB76͎?/UFJB7͎?/,6BJ>P7BJ>P#!6ǭ;>Q6NJ>P;7 6>Q6NJ>P;7,6BJ>P7BJ>P&$76BJ>PP/MGQT 7BJ>PPMGQT,6BJ>P7BJ>PCFJB6ǭ;@Ԛ<CFJB6@Ԛ<,6BJ>P7BJ>P 6BJDʿ7E>P@Ԛ<6BJϿ7E>P@Ԛ<,6BJ>P7BJ>P 6BJD6E>P@Ԛ< 6BJD6E>P@Ԛ<,6BJ>P7BJ>P/-76BJF6F,QVMG.D6,*7BJF6F,QVMG.D6,6BJ>P7BJ>P 76BJ>PHڶ>@Ԛ<7BJ>PHڶ>@Ԛ<,6BJ>P7BJ>P><76NJF3P;7N@N;JT;JQ;J/-7NJF3P;7NN;T;Q;,6BJ>P7BJ>P Lǭ;BϨHJ>PA7BLBϨHJ>P+,6BJ>P7BJ>P/-176NJǭ;J2=>PQ@@@)'17NJǭ;J2=>PQ@@,6BJ>P7BJ>P#!Lǭ;BϨHJ>PDG@KLBϨHJ>PD@K,6BJ>P7BJ>PUFJB76͎?/UFJB7͎?/,6BJ>P7BJ>P ;-M= ;-M=,6BJ>P7BJ>P&$76BJ>PP/MGQT 7BJ>PPMGQT,6BJ>P7BJ>P ;-M= ;-M=,6BJ>P7BJ>P 6BJDʿ7E>P@Ԛ<6BJϿ7E>P@Ԛ<,6BJ>P7BJ>P/-ϨHJō/BJ>PϨHJō/BJڶ>F=/-ϨHJō/BJ>PϨHJō/BJڶ>F=,6BJ>P7BJ>P/-76BJF6F,QVMG.D6,*7BJF6F,QVMG.D6,6BJ>P7BJ>P2076BCJ>P/G=Q>BD>ÐW,*7BCJ>PG=Q>BD>ÐW,6BJ>P7BJ>P><76NJF3P;7N@N;JT;JQ;J/-7NJF3P;7NN;T;Q;,6BJ>P7BJ>P Lǭ;BϨHJ>P:ÐW4LBϨHJ>P:ÐW44T7@<<>47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<> <6>7T<@9:T<6>7T?9:4T7@<<>47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<> M4TCT7@<@Ԛ<M4CT7@@Ԛ<4T7@<<>47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<>539TB@>TK7<:7@<ǭ;?AB,*9TB>TK7<:7@ՄNAB4T7@<<>47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<>A?>T<@>/26SCSET<@>-/7B6;9>T?>/26SCSET?>-/7B64T7@<<>47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<>/-T@47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<>,*4T<@HAVTJD8DAP4?HAVTD8A4T7@<<>47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<>4T47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<>;94TRF7@<5@2D0O6P6T,*4RI@5@20O6P64T7@<<>47@<>JH>CT<7@<6R>16R>7,O9ϪJ1<>@Ԛ<;9>CT<7@6>16>7,91<>@Ԛ<4T7@<<>47@<>,*C>8T<7@<1>DPDA&$C>8<7@1>DPDA6NBUC6O  @U66NBV1UC6O@V1U66NBUC6O  @U6866NBUC-9ԚETBET&$@6OCN3>ETBET,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9/-DHLKD‡?OAO6:,A7B)'DHLKD‡?OAO6:,+,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O986H:!DƇ>O-8WHOWK-4=RJ53H:!DƇ>O-8WHOWK-4RJ,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O986NA9=H5D‡?OJٟ@6:G2@@@,*N9H5D‡?OJ5:G2@@,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9SQDǭ;DQDUH:DO>&DB7DOOJDIPAFE>6MKDǭ;DQDUH:DO>&DB7DOOJDPAF>6,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9&$H=Dć?O=9=ϷAH@H=Dć?O9A@,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9A?,O-HDBٟ@;?=1PK@‡?O=9=@Ԛ<53,O-HD@?=1PK@‡?O9@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9JHH=WK=:B:D‡?O:D1=@9=D9D5@Ԛ<>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9&$H=Dć?O=9=DSDA H=Dć?O9DSDA,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9 VHLć?OD6L@Ԛ< VHLć?OD6L@Ԛ<,*@CӽD=HK:=-Ƈ>O=9=&$@CӽD=HK:=-Ƈ>O9>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>120H,82,ֈ;04VC7G/T>1)'H,82ڈ;4VCî7/T>1)'H8V2,7C7G/T>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>1,*V@,1V2,7C7G.V@ M,1V27Cî7.M)'H8V2,7C7G/T>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>153H82,7C7G/T>1?TJQ>,*H827Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>1/-W?A;OV2,7C7GA.T#!W?ҞMOV27Cî7A.)'H8V2,7C7G/T>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>12,>B-45J2>B-5)'H8V2,7C7G/T>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>1hfH8 -N2,ԓ4DC7G77BK;9/T>1KL/U5 -5>2,WFVTH8 -N24Cî77BK;9/T>1KL/U5 -5>2W)'H8V2,7C7G/T>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>186H,7H82,RNVC7G/T7>1 H,>1)'H8V2,7C7G/T>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>12C2C)'H8V2,7C7G/T>1#!H8V27Cî7/T>1GE2,߀3՟?4H8V2,7C7G/T>1?TJQ>;92߀3՟?4H8V27Cî7/T>1?TJQ)'H8V2,7C7G/T>1#!H8V27Cî7/T>1V2,7C7G¶;V27Cî7¶;BRADK BRADDBRADKC5—P=—Pބ2RADKC58:-9ET86RADC5=܉2RADC58:-9ETBRADK BRAD><@GD5ՂPRA5HDKϲLK2!QH9T;9@GD5ՂPRA5HDϲLK2!QH9TBRADK BRADJHH 5ՂP2CDKLARAK3DKMK5DKև9>TA?H 5ՂP2RKLARAK3DMK5DKև9>BRADK BRAD,*F7CPL߫WA=RADKS7)'F7CPL߫WA=RADS7BRADK BRADPNՂPLE;ߏGKCRADKCBAMKCK?KCCPD7LRABADK><,9;DR؇9U8ȴS>CPD7LRABADBRADK BRADDBRADKC5—P=—Pބ2RADKC58:-9ET86RADC5=܉2RADC58:-9ETBRADK BRAD\Z:DKCLCBCL5?LFL>HDKCRAK?MKߏGKCBùFPN:DCLCBC5?LL>HDCRAK?MKߏGKCBùFBRADK BRADJHH 5ՂP2CDKLARAK3DKMK5DKև9>TA?H 5ՂP2RKLARAK3DMK5DKև9>BRADK BRADqo -2CDKՂPLARAK3DKMKߏGK HӒC,NDK5=TUߋ5,,=>:J_] -2RKՂPLARAK3DMKߏGK HӒC,D5=TUߋ5,=>: 6ѤI; 6ѤI; ѤI;@?  ѤI;@ 6ѤI; 6ѤI;ѤI;;KFABѤI;;KFAB 6ѤI; 6ѤI; ѤI;@?  ѤI;@ 6ѤI; 6ѤI; ѤI;S>>ٟ@6;@Ԛ<ѤI;S>>5;@Ԛ< 6ѤI; 6ѤI; ѤI;@?  ѤI;@ 6ѤI; 6ѤI;JH3Ԛ<ѤI;>6;6SF;.TTD6;6SF;.TDTMSѤI22E7>>2OD@TDBѤI;A @69>TMSѤI22E7>>2OD@T 6ѤI; 6ѤI; ѤI;@?  ѤI;@ 6ѤI; 6ѤI;><ѤI;B2ѤI;2ѤI;0ѤI;SNѤI;NOFT><ѤI;B2ѤI;2ѤI;0ѤI;SNѤI;NOFT 6ѤI; 6ѤI; ѤI;@?  ѤI;@ 6ѤI; 6ѤI;53ѤI;>>;U0>;D6PGDSDA53ѤI;>>;U0>;D6PGDSDA 6ѤI; 6ѤI; ѤI;@?  ѤI;@ 6ѤI; 6ѤI;ѤI;M@KѤI;M@K 6ѤI; 6ѤI; ѤI;@?  ѤI;@ 6ѤI; 6ѤI; ѤI;8ٟ@>6CA7BѤI;8ٟ@>6C+&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG,*9EN39>ڹ3T21M1T)'9EN39>ڹ3T2M1T&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG,*:B7>B31CTCCԃP-C#!:B7>B31CCƠB7Dڹ32:TCG#!5D>B7Dڹ32:CG531TН?>/3>ND3>2HTC.:)'1?/3ND3>2HC.:&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG/-Ԋ/BNP92K1W>2Ԋ/Lؒ.=#!Ԋ/N9K1W>2Lؒ.=&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG,*V>NDͯ?ڹ3F1ȇN;9FGB)'V>NDͯ?ڹ3F1ׇN9FGB&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGDBNW>ڹ321%K9E?AFF?DJEʡH9?/86NW>ڹ32%K9E?AFFDJE9/&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG20;@7:TCUDTڹ3>NщQA7B#!;7:CUDڹ3>NщQ+&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG)'AFF?9E1ڹ321KW(#!AFF9E1ڹ32KW(&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG53EEO35B5Iٟ@7A:5Gς16T&$E>3B5@7A:5G+&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG86>>8RVGBڹ3;2F5>HK7<653>>8RVGBڹ3;2F5>H7<6&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGA?5BJH:ɚK73GHAVTJD8DAP865BJH:ɚK73GHAVTD8A&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGDBDNADV93>R9B>:D:TCS-@@@86DADV93>R9B>:D:CS@@&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGJB7>J3/:J7>J3/:&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG20AF?9C1NWڹ321K:&87)'AF9C1NWڹ32K:&8&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG,*9EN39>ڹ3T21M1T)'9EN39>ڹ3T2M1T&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGSQ9DBB3ҾW19659D:QTC2ʶU>3.ٟ@6ǽ=G@Ԛ<A?DBB3ҾW1965ՔDQC2ʶU>3ٟ@6G@Ԛ<&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG531TН?>/3>ND3>2HTC.:)'1?/3ND3>2HC.:&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGDB53>RD>B7HLTD>B7:LGDSDADB53>RD>B7HLTD>B7:LGDSDA&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG,*V>NDͯ?ڹ3F1ȇN;9FGB)'V>NDͯ?ڹ3F1ׇN9FGB&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG,*5DBڹ3G><97>?LS:)'5DBڹ3G><97>FS:&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG20;@7:TCUDTڹ3>NщQA7B#!;7:CUDڹ3>NщQ+&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGkiRV>NDڹ32į?1T9Fܫ7MN6K9D,K69.1R3RFBOBTec/>NDڹ32į?1T9Fܫ7MN6K9D,K69.1R3RFBOB&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG53EEO35B5Iٟ@7A:5Gς16T&$E>3B5@7A:5G+&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGSQ63P7S4DT9I871Dڹ32:TCRٍBKЅJCG>6DB63P7SCT871Dڹ32:CRٍBKЅJC>6&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CGA?5BJH:ɚK73GHAVTJD8DAP865BJH:ɚK73GHAVTD8A&$5D>B7Dڹ32:TCG#!5D>B7Dڹ32:CG&$>>8RVGBڹ3;2F5&$>>8RVGBڹ3;2F5يR28يR28DBOHD-6J=FHيR28>DН?>QTيR453OD6J=FHيR28D?QيR4يR28يR2886يR2A8>يR2A8>8J-IN=JT)'يR2ŞيR2Ş8J-I=JTيR28يR28DBOHD-6J=FHيR28>DН?>QTيR453OD6J=FHيR28D?QيR4يR28يR28_]>7JЁH?ʡHWOUA7J1HN=FFHيR28>G@K\Z>7JЁH?ʡHWOUA7J1HN=FFHيR28G@KيR28يR28DBOHD-6J=FHيR28>DН?>QTيR453OD6J=FHيR28D?QيR4يR28يR28zx(" -UA7J1H -N= FFHيR28>DA7JUA7DН?>QTيR453OD6J=FHيR28D?QيR4يR28يR28><يRJTيR8T يRDН?>QTيR453OD6J=FHيR28D?QيR4يR28يR2886يR2A8>يR2A8>8J-WN8T,*يR2ŞيR2Ş8J-WN8TيR28يR28DBOHD-6J=FHيR28>DН?>QTيR453OD6J=FHيR28D?QيR4يR28يR28VT -UA7J1H= FFHيR28>107 A@H۰M3AMK -UA7J1H= FFHيR28107 @H3AيR28يR28DBOHD-6J=FHيR28>DН?>QTيR453OD6J=FHيR28D?QيR4يR28يR28;9يR28>9KA8D6P>JщQN.6@Ԛ<53يR289KA8DP>JщQN.6@Ԛ<يR28يR28DBOHD-6J=FHيR28>DН?>QTيR453OD6J=FHيR28D?QيR4يR28يR28b` UA7J1H N=б FFHيR28>DA7JUA7D UP/ŕD/PPQAP,9P/PPAP,9PUP/ڶ>D UP/ŕD/UPG,NKQM/UPG,KQMUP/ڶ>D UP/ŕD/PPQAP,9P/PPAP,9PUP/ڶ>D UP/ŕD /JPC98?UPT/JP98?UPTUP/ڶ>D UP/ŕD/PPQAP,9P/PPAP,9PUP/ڶ>D UP/ŕDA?//P//PO—P=-//PC?KP//Pĩ8>D UP/ŕD/PPQAP,9P/PPAP,9PUP/ڶ>D UP/ŕD>9S9Ԛ9S1/9RK@Ԛ<UP/ڶ>D UP/ŕD/PPQAP,9P/PPAP,9PUP/ڶ>D UP/ŕD2059P/ַ;/P/PA/P?PF7,*59P/ַ;/P/P/P?PFUP/ڶ>D UP/ŕD/PPQAP,9P/PPAP,9PUP/ڶ>D UP/ŕDPNUP?İUHP.F-S51SSAPK85G6)ʪJHUP?İUH1F-S51SSAPK8G6)ʪUP/ڶ>D UP/ŕD/PPQAP,9P/PPAP,9PUP/ڶ>D UP/ŕD UPʡH98CCH/TUP9CCH/TUP/ڶ>D UP/ŕD/PPQAP,9P/PPAP,9PUP/ڶ>D UP/ŕDPʰD/Fַ; PʰD/1 ܷT18W  U8WܷT18W@? U8W@ ܷT18W  U8WGE>ܷT18W>/26SCSEܷT18W>-/7B6A?>U8W>/26SCSEU8W>-/7B6 ܷT18W  U8WܷT18W@? U8W@ ܷT18W  U8WܷT1W>/>/CSܷT1W>/USܷT1W>/ܷT1W>/>8M6@66>ќ:0F6267(%!"~UW>/>/CSUW>/USUW>/UW>/>8M6@66>ќ:0F6267 ܷT18W  U8WܷT18W@? U8W@ ܷT18W  U8WGE>ܷT18W>/26SCSEܷT18W>-/7B6A?>U8W>/26SCSEU8W>-/7B6 ܷT18W  U8WܷT18W@? U8W@ ܷT18W  U8WA?6DQ66NیVOH2ܷT18W/Q66;6=;96Q66NیVOH2U8W/Q66;6= ܷT18W  U8WܷT18W@? U8W@ ܷT18W  U8W8ܷT1OW=;8UOW=; ܷT18W  U8WܷT18W@? U8W@ ܷT18W  U8W ܷT1WFM>Л6;@KUWF>Л6;@ ܷT18W  U8WܷT18W@? U8W@ ܷT18W  U8W20A89QEܷT1G4WE>FWAB)'A8ƋQEUG4WE>FAB:?9WΚI=X:?9WΚI=X86:?9>WΚI5DXK8WщQ# @@@/-:?̖>WΚI5DXK8WщQ#@@:?9WΚI=X:?9WΚI=XMK:?:?LIMW#DE=XWΚI5DXK8WщQ# @@@/-:?̖>WΚI5DXK8WщQ#@@:?9WΚI=X:?9WΚI=X WR:?9Iʉ5X@Ԛ<WR:?Iʉ5X@Ԛ<:?9WΚI=X:?9WΚI=X86:?9>WΚI5DXK8WщQ# @@@/-:?̖>WΚI5DXK8WщQ#@@:?9WΚI=X:?9WΚI=XVT9WI>:?щQV46V6#6#%6# 6$ 6#88GE9WI>:?щQV6V6#6#6#66#88:?9WΚI=X:?9WΚI=X86:?9>WΚI5DXK8WщQ# @@@/-:?̖>WΚI5DXK8WщQ#@@:?9WΚI=X:?9WΚI=X9Wʉ5X@N9Wʉ5X@N:?9WΚI=X:?9WΚI=X86:?9>WΚI5DXK8WщQ# @@@/-:?̖>WΚI5DXK8WщQ#@@:?9WΚI=X:?9WΚI=X>ܤKV#%ѾCHTL6LT53WR:?IG>ܤKV#%5L6LT:?9WΚI=X:?9WΚI=X86:?9>WΚI5DXK8WщQ# @@@/-:?̖>WΚI5DXK8WщQ#@@:?9WΚI=X:?9WΚI=X;9:?б 9WڶU5PRT53:?9WڶU5PRT:?9WΚI=X:?9WΚI=X86:?9>WΚI5DXK8WщQ# @@@/-:?̖>WΚI5DXK8WщQ#@@:?9WΚI=X:?9WΚI=X53EWN6=A9S:?9I>WΚI5DXK8WщQ# @@@/-:?̖>WΚI5DXK8WщQ#@@:?9WΚI=X:?9WΚI=X86:?Gʉ5BW/UX7AE3D#&&$:?GBW/UXAED,?RFD,?RF;9,?RFQUBDAP;0T?6T)!&$,?RFQUA;T6T)D,?RFD,?RF/-?,FR>,62ɀ?EBP22>)'8FR>,62ɀ?EBP22D,?RFD,?RFMKD=D3Dٟ@FR?,1@?>19Kٟ@9ٟ@-4,@Ԛ<>19K9-4,@Ԛ<D,?RFD,?RF,*RF>BϨH,@?,6DPDA&$RF>B؋8@86DPDAD,?RFD,?RF>EщQ@Ԛ<53D,.F?H.JV9S6>EщQ@Ԛ<D,?RFD,?RF,*RF,?HAVTJD8DAP R8?HAVTD8AD,?RFD,?RFGED3DRIF,2?.@PیVDHAVDAPT>T0N6Q20S9Xֈ?NXIWN,ڶ>T0N6Q9CXֈ?NXIַ;9Xֈ?NXI,*9CXֈ?NXIַ;M/TۓR7K 9Xֈ?NXIMTۓR79CXֈ?NXIַ;9Xֈ?NXI)'9CXֈ?NXIַ;B<ނBB@2A6ODPDA&$17>B@2A6DPDA 7BO֊2  7BOPNDD7OC-SO֊2>SDɵO689HAVTJD8DAPA?DD7C-SO>SDɵO689HAVTD8A 7BO֊2  7BO)'17>B@2A6ODPDA&$17>B@2A6DPDA 7BO֊2  7BOA?78BBر/D2ѺKٟ@6TCMUB@2A6ODPDA&$17>B@2A6DPDA 7BO֊2  7BO 57:CDO֊2ѺK@Ԛ<57:CDOѺK@Ԛ< 7BO֊2  7BO)'17>B@2A6ODPDA&$17>B@2A6DPDA 7BO֊2  7BODBкB9N7:CO֊2>ٟ@6߇;1G3F7;Q67;QT><кB9N7:CO>5߇;1G3F7;Q67;QT 7BO֊2  7BO)'17>B@2A6ODPDA&$17>B@2A6DPDA 7BO֊2  7BODB7OB62>R@2A57;QԚ<7;QT7N3>M><7OB62>R@2A57;QԚ<7;QT7N> 7BO֊2  7BO)'17>B@2A6ODPDA&$17>B@2A6DPDA 7BO֊2  7BO)'VDD7BC92>/67T)'VDD7BC92>/67T 7BO֊2  7BO)'17>B@2A6ODPDA&$17>B@2A6DPDA 7BO֊2  7BO&$V7JR1:2R<@@@#!V7JR1:2R<@@28>1S6Mſ2>15M;9KS6MԚ<28DAP;0T?6T)!#!K5MԚ<ſ2A;T6T)28>1S6Mſ2>15M;928=S0M28GN06W,646T20ſ2=S0Mſ2GN06W,64628>1S6Mſ2>15M><28ٟ@6Q>D1.S6M>=6P6T20ſ25Q>D1.5M>=6P628>1S6Mſ2>15M/-28>M281S6MۓR9T,K&$ƿ2>Mƿ215MۓR9T,K28>1S6Mſ2>15M><281S6M>1H3PیVDHAVDAPT20ſ215M>1H3PیVDHAVAT28>1S6Mſ2>15M53A28=χ71S6MN1SщQχ7=RJ,*Aſ2=χ715MN1SщQχ7RJ28>1S6Mſ2>15M;9KS6MԚ<28DAP;0T?6T)!#!K5MԚ<ſ2A;T6T)28>1S6Mſ2>15MS6MES28@Ԛ<5MESſ2@Ԛ<28>1S6Mſ2>15M><28ٟ@6Q>D1.S6M>=6P6T20ſ25Q>D1.5M>=6P628>1S6Mſ2>15MYWDNԚ<281S6M1H3Vٟ@281DAP;0T?6T)!86Nſ215M1H3Vٟ@ſ21A;T6T)28>1S6Mſ2>15M><281S6M>1H3PیVDHAVDAPT20ſ215M>1H3PیVDHAVAT28>1S6Mſ2>15M53MVٟ@28DAP;0T?6T)!Mٟ@ſ2A;T6T)28>1S6Mſ2>15M;9KS6MԚ<28DAP;0T?6T)!#!K5MԚ<ſ2A;T6T)28>1S6Mſ2>15M#!A281S6MDSDAAƿ215MDSDA —PJ>RJЍ—PJ>RJ,*M: D>J6߻WDSDA,*M: D>J6߻WDSDA —PJ>RJЍ—PJ>RJA?VNN,̥6:D9SJ6OQNέ;LSDʡH9;86VN,̥6:D9SJ6QN٭;SDʡH9; —PJ>RJЍ—PJ>RJ/-R߻W—PۃJ>JR6߻W,ƛK9@Ԛ</-R߻W—PۃJ>JR6߻W,ƛK9@Ԛ< —PJ>RJЍ—PJ>RJ53DȂ3@>Q—PJ—PJ>RCRA7B/-DȂ3@>Q—PJ—PJ>RCR+ —PJ>RJЍ—PJ>RJqo=>QH,<5Wį?;>—PJB—PۃJD9SIF>J6RN7>809DSPԮK߀3hf=>QH,5Wį?;>—PJB—PۃJD9SIF>J6R7>809DSPٮK —PJ>RJЍ—PJ>RJ;95$,U, 6D>:5JЂJDJA7B/-5$,,Ѝ6D>:5JЂJDJ+ —PJ>RJЍ—PJ>RJPN P;>LCD9J9KBDL=Ė16ǽ=EX>PGEЍP;>LCD9J9KBDL=Ė16E>P —PJ>RJЍ—PJ>RJG7TQ-G7TQ- —PJ>RJЍ—PJ>RJ)'Q—PJR69:ADSDA#!Q—PJR9ADSDA —PJ>RJЍ—PJ>RJDBA2ûR9?A>;BTûR9?A>5653TA2ûR9?A>;BûR9?A>56 —PJ>RJЍ—PJ>RJ,*M: D>J6߻WDSDA,*M: D>J6߻WDSDA —PJ>RJЍ—PJ>RJ><6JD9SJ6ȻW̑-9ٟ@—PJ>RJ@Ԛ<866JD9SJ6ȻW̑- @—PJ>RJ@Ԛ< —PJ>RJЍ—PJ>RJ/-R߻W—PۃJ>JR6߻W,ƛK9@Ԛ</-R߻W—PۃJ>JR6߻W,ƛK9@Ԛ< —PJ>RJЍ—PJ>RJMK66DJQ—PL>JRJJQ—PL@BJ9Uڤ55@Ԛ<GE66DJQ—PL>JRJJQ—PL@BJUܤ5@Ԛ< —PJ>RJЍ—PJ>RJqo=>QH,<5Wį?;>—PJB—PۃJD9SIF>J6RN7>809DSPԮK߀3hf=>QH,5Wį?;>—PJB—PۃJD9SIF>J6R7>809DSPٮK —PJ>RJЍ—PJ>RJ4B4յGWGXF4B4WX —PJ>RJЍ—PJ>RJPN P;>LCD9J9KBDL=Ė16ǽ=EX>PGEЍP;>LCD9J9KBDL=Ė16E>P —PJ>RJЍ—PJ>RJ,* R:D>ڝJRK2DG@K&$ЍR:D>ڝJRK2D@K —PJ>RJЍ—PJ>RJ)'Q—PJR69:ADSDA#!Q—PJR9ADSDA —PJ>RJЍ—PJ>RJ;95$,U, 6D>:5JЂJ9WWC/-5$,,Ѝ6D>:5JЂJ9āRA —PJ>RJЍ—PJ>RJ,*M: D>J6߻WDSDA,*M: D>J6߻WDSDA —PJ>RJЍ—PJ>RJ AF8,TЍAF,T —PJ>RJЍ—PJ>RJ/-R߻W—PۃJ>JR6߻W,ƛK9@Ԛ</-R߻W—PۃJ>JR6߻W,ƛK9@Ԛ< —PJ>RJЍ—PJ>RJ  4B  4B —PJ>RJЍ—PJ>RJqo=>QH,<5Wį?;>—PJB—PۃJD9SIF>J6RN7>809DSPԮK߀3hf=>QH,5Wį?;>—PJB—PۃJD9SIF>J6R7>809DSPٮK —PJ>RJЍ—PJ>RJ/-UCUTʡH>/X>>A2  UUʡH>/X>2Ѝ —PJ>RJЍ—PJ>RJPN P;>LCD9J9KBDL=Ė16ǽ=EX>PGEЍP;>LCD9J9KBDL=Ė16E>P —PJ>RJЍ—PJ>RJ AFPCRJЍ—PJ>RJ)'Q—PJR69:ADSDA#!Q—PJR9ADSDA —PJ>RJЍ—PJ>RJ&$UR:D>JB/T&$UR:D>JB/TPC11ȯBPC1ȯB&$&DC1ȯBI91PI@Ԛ<#!&DC1ȯBI1PI@Ԛ<PC11ȯBPC1ȯB 2<;> 2<;>PC11ȯBPC1ȯB&$&DC1ȯBI91PI@Ԛ<#!&DC1ȯBI1PI@Ԛ<PC11ȯBPC1ȯB)'V2PKC4EȯB-;J6&$V2PKC4EȯB-;ϜJPC11ȯBPC1ȯB&$&DC1ȯBI91PI@Ԛ<#!&DC1ȯBI1PI@Ԛ<PC11ȯBPC1ȯB20T3=C;D9>:CO-֛7:CO-2P:ȯBK6NKDSDA,*>2P:ȯBK6NKDSDAPC11ȯBPC1ȯB&$&DC1ȯBI91PI@Ԛ<#!&DC1ȯBI1PI@Ԛ<PC11ȯBPC1ȯB#!PNȯB>9H-BV6#!PNȯB>9H-BV6PC11ȯBPC1ȯB&$&DC1ȯBI91PI@Ԛ<#!&DC1ȯBI1PI@Ԛ<PC11ȯBPC1ȯBJHDPRȯBIH,56:LIB,I;9V;KXܤK$GEDPRȯBIH,56:LIB,I;V;KXܤK$ X˩5R9: X˩5ֲ9/-' ڲ߹-:X>˩56I:,@Ԛ<,* ڲ߹-:X>˩56I:,@Ԛ< X˩5R9: X˩5ֲ9,*ȏBҲU>Rɸ˩5G@Ԛ<DBݩ5C B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ< X˩5R9: X˩5ֲ9GE B߹-;:XܷT6˩5J˩54 B߹-;:XܷT6˩5/7;9 B-:XܷT6J˩54 B-:XܷT6/7 X˩5R9: X˩5ֲ9DB: >˩5AKB: >˩5AK X˩5R9: X˩5ֲ96T' ߹-X6˩56T ߹-X6 X˩5R9: X˩5ֲ9/-' ڲ߹-:X>˩56I:,@Ԛ<,* ڲ߹-:X>˩56I:,@Ԛ< X˩5R9: X˩5ֲ9A?Uٟ@5߹-:XD˩5I:XB9D˩5ƛK6@@@;9Uٟ@5߹-:XD˩5I:XBD˩5ƛK6@@ X˩5R9: X˩5ֲ9GEݩ5TC B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ<DBݩ5C B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ< X˩5R9: X˩5ֲ9GE BI;:XܷT6˩5J˩54 BI;:XܷT6˩5/7A? BI;:XܷT6J˩54 BI;:XܷT6/7 X˩5R9: X˩5ֲ9DB: >˩5AKB: >˩5AK X˩5R9: X˩5ֲ9;95˱U̾-C3CIQ:> :X>6˩5,;865˱U̾-C3CIQ:> :X>6,; X˩5R9: X˩5ֲ9/-' ڲ߹-:X>˩56I:,@Ԛ<,* ڲ߹-:X>˩56I:,@Ԛ< X˩5R9: X˩5ֲ9\Z BH 6ӻBO ߹-:XܷTBH ߹-XܷT;W; N= FJ˩54YW BH 6O ߹-:XܷTBH ߹-XܷT;W; N= FJ˩54 X˩5R9: X˩5ֲ9GEݩ5TC B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ<DBݩ5C B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ< X˩5R9: X˩5ֲ9)' >6˩55WR9:DSDA  >65Wֲ9DSDA X˩5R9: X˩5ֲ9DB: >˩5AKB: >˩5AK X˩5R9: X˩5ֲ9A?б = F߹-=X B˩5HFST:TʡH?CگD/86б = F߹-=X BHFSTT9CگD/ X˩5R9: X˩5ֲ9/-' ڲ߹-:X>˩56I:,@Ԛ<,* ڲ߹-:X>˩56I:,@Ԛ< X˩5R9: X˩5ֲ9nlRA߹-:X> B6˩51D0;Hٟ@R9:KBB>5IBEKRFTD>6@Ԛ<_]RA߹-:X> B610Hٟ@ֲ9KBB>5IBEKRFTD>6@Ԛ< X˩5R9: X˩5ֲ9GEݩ5TC B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ<DBݩ5C B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ< X˩5R9: X˩5ֲ9GE KB6NEI:X5R9:˩5UIR>:DSDAA? KB6NEI:X5ֲ9˩5UIR>:DSDA X˩5R9: X˩5ֲ9DB: >˩5AKB: >˩5AK X˩5R9: X˩5ֲ9DB߹-:XܷT6H߹-:XܷT6˩5Q' ѲB6ӻBO453߹-:XܷT6߹-:XܷT6Q ѲB04 X˩5R9: X˩5ֲ9/-' ڲ߹-:X>˩56I:,@Ԛ<,* ڲ߹-:X>˩56I:,@Ԛ< X˩5R9: X˩5ֲ9/-0:X6˩50:X6˩5>464T&$0:X60:X6>46T X˩5R9: X˩5ֲ9GEݩ5TC B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ<DBݩ5C B6:X/ݩ5ٟ@5UI: .X>˩5G@Ԛ< X˩5R9: X˩5ֲ9A?б = F߹-=X B˩5HFST:TʡH?CگD/86б = F߹-=X BHFSTT9CگD/ X˩5R9: X˩5ֲ9DB: >˩5AKB: >˩5AK X˩5R9: X˩5ֲ9\ZDRA9į?߹-=X>6˩5H0-DE06EщQI.6щQ22DSDAYWDRA9į?߹-=X>6H0-DE06EщQI.6щQ22DSDA NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK#! N;WHEK9ݠ.ET N;WHE9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK&$ N;WHEKK9ݠ.ET N;WHE9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK)' N9ݠ.;WKE 9ݠ.ET  N9;WK 9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK#! N;WKEK9ݠ.ET N;WKK9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK#! NF;WEK9ݠ.ET  NF;WEK9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK)' NF;W2T9K9ݠ.ET&$ NF;W2T9K9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK#! NF;WHK9ݠ.ET  NF;WHK9ET NF;WH4EK NF;WH4EK&$ NF;WHEK9ݠ.ET#! NF;WHEK9ET NF;WH4EK NF;WH4EK)' N9ݠ.;WHE 9ݠ.ET#! N9;WHE 9ET:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I/-:T678:T67Iַ;—P=8-)':T678:T67I=8-:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I T18:CT67Iַ;T18:T67I:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67Iܥ60T67ȣ8Iַ;ܥ60T67I:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I,*:0EUPU,I:T67Iַ;#!:08P,I:T67I:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I0T67ȣ8Iַ;0T67I:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I:CT67Iַ;@?:T67I@:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I/-:CT67Iַ;:CT67Iַ;;#!:T67I:T67I;:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I,*0EU4J8:CT67Iַ;ܥ6 084J:T67Iܥ6:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I)':CT67Iַ;M/TۓR7K:T67IMTۓR7:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I)':CT67Iַ;M/TۓR7K:T67IMTۓR7:CT67Iַ;:T67I 7EU:CT67Iַ;78:T67I:CT67Iַ;:T67I P P4X>E1; 4X>B E1;>XHMʭBWTB>XHMʭBW4X>E1; 4X>B:D>75.T:D>75.T4X>E1; 4X>B/--XE1;7߹-WD7ՕNծH-XBՕNծH4X>E1; 4X>BMK%X6Xޡ8XSX8XNX.XCXCXFX2X4XCA?%X6Xޡ8XX8XNXXXXFX2X4XC4X>E1; 4X>B E1;/64DG@KB/6D@K4X>E1; 4X>BSQİFE1;/64X۹/>OX۹/>TʭBS>OʭBS>TU>6K53İFB/6X>OX>B>OB>U>64X>E1; 4X>BkiE1;MIB>ю2/4AT23WS;XIю2Xю2>ю2UATXIX)PNBMI>ю2/4F23WS;X22ю2UFXI)4X>E1; 4X>B/4?BOBT/4?BOB4X>E1; 4X>B E1;>XHMʭBWTB>XHMʭBW4X>E1; 4X>B)'/43>L??HF? FT#!/43>L?HF FT4X>E1; 4X>B/--XE1;7߹-WD7ՕNծH-XBՕNծH4X>E1; 4X>BGE˛59/=T4>X?ޡ8RV4>E1;6T44K2,*-4>/4>B6T5K24X>E1; 4X>B E1;/64DG@KB/6D@K4X>E1; 4X>BVTDG:/4X>3?X?FBTF?ޡ8H?.:FʭB.4?F6>3?XFBTFޡ8H.FF64X>E1; 4X>BkiE1;MIB>ю2/4AT23WS;XIю2Xю2>ю2UATXIX)PNBMI>ю2/4F23WS;X22ю2UFXI)4X>E1; 4X>BVTE1;>C6PKH,-X?71E70NʡHH064TDBB>C6PKH,-X0NʡHH064T4X>E1; 4X>B E1;>XHMʭBWTB>XHMʭBW4X>E1; 4X>B#!U/4X>3B?8,T U/4X>3B?,T4X>E1; 4X>B/--XE1;7߹-WD7ՕNծH-XBՕNծH4X>E1; 4X>B/--446M; ->>@W>W>)'-56M; ->>@>W>4X>E1; 4X>B E1;/64DG@KB/6D@K4X>E1; 4X>B53?41K>F7>>D<(6հL3T53?41K>F7>>D<(6հL3T4X>E1; 4X>BkiE1;MIB>ю2/4AT23WS;XIю2Xю2>ю2UATXIX)PNBMI>ю2/4F23WS;X22ю2UFXI)4X>E1; 4X>B_]E1;1-X?P@4BS?H-M>ԁ:FT,;J8L0(!MKB1-X?P@4BS?H-M>ԁ:FT,;J8L0X4X>E1; 4X>B E1;>XHMʭBWTB>XHMʭBW4X>E1; 4X>B)'/43?>LHJX/ENB#!/43?>LHJXEN4X>E1; 4X>B/--XE1;7߹-WD7ՕNծH-XBՕNծH4X>E1; 4X>B3H24CM΄/ǟ9=Tޡ8?$ڻ($!3H24CMτ/-8$ڻ($!4X>E1; 4X>B E1;/64DG@KB/6D@K4X>E1; 4X>B,*/43?>LHJX/E1ʞ:-)'/43?>LHJXE1ʞ:-4X>E1; 4X>BkiE1;MIB>ю2/4AT23WS;XIю2Xю2>ю2UATXIX)PNBMI>ю2/4F23WS;X22ю2UFXI)4X>E1; 4X>B,*HE1;>/4H?LB/4HLBBQT2>FWA>BL>F)'4>BWAQT2>JF@Ԛ< 4>BWAL>S@Ԛ<WA>BQT2>FWA>BL>F869GOBQT2>PVP.5AJ>P)'9GOBL>PP.J>PWA>BQT2>FWA>BL>F20R0W6>BйSQT2>FDSDA,*R0W6>BйSL>FDSDAWA>BQT2>FWA>BL>FA?COW>M>BWAQT296O8GDSDA;9COW>M>BWAL96O8GDSDAWA>BQT2>FWA>BL>FMKR9GMWWAI>BN==9=A>MNS9=A7B86RךGWWAI>BN==>MNS9=+WA>BQT2>FWA>BL>F209G>BQT2>VJ768T7=&$9G>BL>VќJ687=WA>BQT2>FWA>BL>F;9D9DI>BWRQT2>SQU>V@Ԛ<&$9I>BWRLS>V@Ԛ<WA>BQT2>FWA>BL>F/- -FWLSJ$2AB/- -FWLSJ$2ABWA>BQT2>FWA>BL>F86DS8G>BWAQT2>M@?@@@/-DS8G>BWAL>M@?@@WA>BQT2>FWA>BL>F)'NFHFOFOVVA4@K&$NFHFOFOVVA4@WA>BQT2>FWA>BL>F&$W>V>BWAQT2@Ԛ< W>V>BWAL@Ԛ<WA>BQT2>FWA>BL>F86>BQT2>΂PF;/U N5LUٶ,*>BL>΂PF;/U N5LUWA>BQT2>FWA>BL>F)'4>BWAQT2>JF@Ԛ< 4>BWAL>S@Ԛ<WA>BQT2>FWA>BL>F#!>BWBQT2>F@Ԛ<>BWBL>F@Ԛ<WA>BQT2>FWA>BL>F20R0W6>BйSQT2>FDSDA,*R0W6>BйSL>FDSDAWA>BQT2>FWA>BL>F#!W2E>DQT2ϩNFBWE>DLϩNFWA>BQT2>FWA>BL>FMKR9GMWWAI>BN==9=A>MNS9=A7B86RךGWWAI>BN==>MNS9=+WA>BQT2>FWA>BL>F8F5R.UES28F=.UESWA>BQT2>FWA>BL>F;9D9DI>BWRQT2>SQU>V@Ԛ<&$9I>BWRLS>V@Ԛ<WA>BQT2>FWA>BL>F)'J>R8"FK%FJ>RF%FWA>BQT2>FWA>BL>F86DS8G>BWAQT2>M@?@@@/-DS8G>BWAL>M@?@@WA>BQT2>FWA>BL>F53D96MEK>BQT2>VD@@@&$D96EK>BL>V@@WA>BQT2>FWA>BL>F&$W>V>BWAQT2@Ԛ< W>V>BWAL@Ԛ<WA>BQT2>FWA>BL>F ֖F>PMމ6J6J7+Mމ6J6J7WA>BQT2>FWA>BL>F)'4>BWAQT2>JF@Ԛ< 4>BWAL>S@Ԛ<WA>BQT2>FWA>BL>F/-UMӛ?1?7F,7MRQ#!UMӛ?1?MRQWA>BQT2>FWA>BL>F20R0W6>BйSQT2>FDSDA,*R0W6>BйSL>FDSDAWA>BQT2>FWA>BL>F/-D96M>BWAQT2DSDA&$D96>BWALDSDAIDT0I ID0IDBDT30IDT30I4DT30IDZ.>4I?86D30ID30I4D30IDZ.>4I2IDT0I ID0I,*IDT01,ICDT0IDT#!IDT01ID0IDTIDT0I ID0I&$RIDTN0I0I4@Ԛ<RID00I4@Ԛ<IDT0I ID0I/-0I9Q6S=KI8KI:@Ԛ</-0I9Q6S=KI8KI:@Ԛ<IDT0I ID0I0I5I?0I5I2IDT0I ID0IA?DT3I58DT38I5DT3X58I?53D3I58D38I5D3X58I2IDT0I ID0I0IIַ;4DG@K0II4D@KIDT0I ID0I&$IDTPDN0I0I@Ԛ<IDPD00I@Ԛ<IDT0I ID0I#!I0IػKI0I4I0I#!I0IػKI0I4I0IIDT0I ID0I/-0IDTFַ;8- 8T !0D18- 8IDT0I ID0I0I4@Ԛ<0I4@Ԛ<IDT0I ID0I20D0ID0I4D0IDZ.>4I?/-D0ID0I4D0IDZ.>4I2IDT0I ID0I0IDZ.>4@Ԛ<0IDZ.>4@Ԛ<IDT0I ID0I20IDT,;01,ICDT0IDT)'IDT,;01ID0IDTIDT0I ID0IDBDT30IDT30I4DT30IDZ.>4I?86D30ID30I4D30IDZ.>4I2IDT0I ID0IDB,TܷT0I,TܷT0I4,TܷT0IDZ.>4I?86,ܷT0I,ܷT0I4,ܷT0IDZ.>4I2IDT0I ID0I&$RIDTN0I0I4@Ԛ<RID00I4@Ԛ<IDT0I ID0IMKDT3N0IDT3N0I4DT3N0IDZ.>4I?/-D30D304D30DZ.>4I2IDT0I ID0I0I5I?0I5I2IDT0I ID0I0IػK4@K0IػK4@KIDT0I ID0I0IIַ;4DG@K0II4D@KIDT0I ID0I0IDG@K0ID@KIDT0I ID0I#!I0IػKI0I4I0I#!I0IػKI0I4I0IIDT0I ID0I53DT3IDT3Iַ;DT3OII?#!D3ID3ID3OI2L7ٟ@8 Lٟ@8 L7@?L@L7ٟ@8 Lٟ@8 L7B6  LB6L7ٟ@8 Lٟ@8,*6—P,L7ٟ@8H7@K7@Ԛ<#!6ٟ@8H7@K7@Ԛ<L7ٟ@8 Lٟ@8 L7@K  L@KL7ٟ@8 Lٟ@8 L7@?L@L7ٟ@8 Lٟ@8 L76?  L6?L7ٟ@8 Lٟ@8,*6—P,L7ٟ@8H7@K7@Ԛ<#!6ٟ@8H7@K7@Ԛ<L7ٟ@8 Lٟ@8,*6L78>ٟ@HF@F76>P)'6L8>ٟ@HF@F76>PL7ٟ@8 Lٟ@8 L7@?L@L7ٟ@8 Lٟ@820A7L7Hٟ@8EP;:PO@@@,*A7LHٟ@8EP;:PO@@L7ٟ@8 Lٟ@8,*6—P,L7ٟ@8H7@K7@Ԛ<#!6ٟ@8H7@K7@Ԛ<L7ٟ@8 Lٟ@8—P,L7?60 ?60L7ٟ@8 Lٟ@8 L7@?L@L7ٟ@8 Lٟ@8/-L7ٟ@8AR>:6>NDSDA,*Lٟ@8AR>:6>NDSDAL7ٟ@8 Lٟ@8,*6—P,L7ٟ@8H7@K7@Ԛ<#!6ٟ@8H7@K7@Ԛ<L7ٟ@8 Lٟ@8wuL7DF6L7B7L76<6—P,L7 -Gٟ@867@75L78>ٟ@;FJ>N1S_]LDF6LB7L6Ǥ< -Gٟ@867@75L8>ٟ@;FJ>N1S¨0A=Tɾ=S0=Tɾ=S20¨0A=Tɾ=SN.W0AT("0=T̗<.0AT¨0A=Tɾ=S0=Tɾ=S,*¨0A=Tɾ=CPI/C/9?T#!0=PI/C/9?T¨0A=Tɾ=S0=Tɾ=S¨0ʽ=>=Tɾ=R@Ԛ<0>=Tɾ=R@Ԛ<¨0A=Tɾ=S0=Tɾ=S86¨0ʽ==Tɾ=C6=Tɾ=C6AANTAT#!0=T6=T6AATA¨0A=Tɾ=S0=Tɾ=S20¨0ʽ=Dٟ@ޢ7C7C=Tɾ=CѲ/DT("0D>=Ѳ/DT¨0A=Tɾ=S0=Tɾ=S/-=Tɾ=>¨0ʽ=ʇXQޢ0ʇXQޢΉX˛5¨0A/TD¨0A/A4J53-ʇXDQ=>ΉX˛50/TD0/AJ¨0A=Tɾ=S0=Tɾ=S¨0ʽ=>=Tɾ=R@Ԛ<0>=Tɾ=R@Ԛ<¨0A=Tɾ=S0=Tɾ=S)'¨0A=Tɾ=W9L/͒A4T0=Tɾ=W/͒A4¨0A=Tɾ=S0=Tɾ=S20¨0ʽ=Dٟ@ޢ=Tɾ=CѲ/DT("0D>=Ѳ/DT¨0A=Tɾ=S0=Tɾ=S,*¨0A=Tɾ=6=T3OTDA4&$0=Tɾ=6=T3OTDA¨0A=Tɾ=S0=Tɾ=S53¨0A=Tɾ=CDA4AATUʡH9A/,*0=T˾=DAAATUʡH9A/¨0A=Tɾ=S0=Tɾ=S ¨0A=Tɾ=68,T0=Tɾ=6,T¨0A=Tɾ=S0=Tɾ=S20¨0A=Tɾ=SN.W0AT("0=T̗<.0AT¨0A=Tɾ=S0=Tɾ=SDBS48¨0ʽ=P=Tɾ=Cϛ)ϛ)))QTɾ=C98KT/-ФO8-=ϛ)ϛ)))Q98KT¨0A=Tɾ=S0=Tɾ=S¨0ʽ=>=Tɾ=R@Ԛ<0>=Tɾ=R@Ԛ<¨0A=Tɾ=S0=Tɾ=S#!E=¨0ʽ==Tɾ=.8?̛<=0=Tɾ=.?¨0A=Tɾ=S0=Tɾ=S20¨0ʽ=Dٟ@ޢ=Tɾ=CѲ/DT("0D>=Ѳ/DT¨0A=Tɾ=S0=Tɾ=S ¨0AD>=Tɾ=C@K0D>=@K¨0A=Tɾ=S0=Tɾ=S53¨0A=Tɾ=CDA4AATUʡH9A/,*0=T˾=DAAATUʡH9A/¨0A=Tɾ=S0=Tɾ=S=Tɾ=C6¨0AT=T60T  S1/W/߹-CʡH97Qן9ں-ʡH97Qן9  S1/W/)'//Æ.J:NLJS1/GB //Æ.J:NLW/G  S1/W/S1/B;AATW/BAAT  S1/W/ S1D?  WD?  S1/W/߹-CʡH97Qן9ں-ʡH97Qן9  S1/W/53S1/E70C/77S1/AB#!W/E7W/ABw  S1/W/S1/B;AATW/BAAT  S1/W/ABAB  S1/W/߹-CʡH97Qן9ں-ʡH97Qן9  S1/W/209J/?ſQ5ߕJCMCRURН?QT)'9J/?ſQ5ߕJCMCRQ  S1/W/S1/B;AATW/BAAT  S1/W/>9@VWF?Wַ;;E-S1Н?>AT20B>9@VWF?Wַ;;E-W?A  S1/W/߹-CʡH97Qן9ں-ʡH97Qן9  S1/W/S1/IA6W/IA6EG?>-EG?>-/-G?R142TN5=7@P:J#!G?142T5=@PJEG?>-EG?>-)'G?>-PL΅/Bڶ>SJ@Ԛ< G?>-΅/BSJ@Ԛ<EG?>-EG?>- G?T4 G?T4EG?>-EG?>- GW-TG*EG?>-EG?>-E,G?/-"D:EG?/-"DEG?>-EG?>-20G?>-G64?9ʉ5;˫N¶;PNT,*G?>-G4?9ʉ5;ΫNPNTEG?>-EG?>-86G?>-22΅/8B?¶7ģCCщQDPDA,*G?>-΅/8BNCщQDPDAEG?>-EG?>-20NE,G?>-?¶7ʡHWB:ģCO#!NEG?>-NW:CEG?>-EG?>-&$G?>-8G?>-4-2#!G?>-G?>-4-2EG?>-EG?>- G?>-/.BʭBѡ8¶;G?>-/BʭBѡ8¶;>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>,*K=9:ׄ9?DϪJP>؞C@@@ =:ׄ9?DϪJPρ>@@>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>>؞C19Tׄ9?@Ԛ<ρ>19Tׄ9?@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>Ư8Hׄ9?>؞C@@@Ư8Hׄ9?ρ>@@>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1> ׄ9?=7 ׄ9?=7>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>&$>؞Cׄ9?6R1TDPDA ρ>ׄ9?61TDPDA>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>DB=>19Tׄ9?ׄ9B9>>Ư8I>؞Cб †M86><=>19Tׄ9?ׄ9B9>>Ư8Iρ>б †M8>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>#!U—P۴2>MN,BMСGTUP>MNBMСGT>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>hf1 TSׄ9?AJ9JOT,Q SF>T9P,1R>؞Cб :6)ʪ_]1 TSׄ9?A˱9OT,Q SF>T9P,1Rρ>б :6)ʪ>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>;9>؞Cׄ9?B:9ڶ>ST=O>I,TJ@Ԛ<53ρ>ׄ9?B:9ST=O>I,TJ@Ԛ<>ׄ9?ϪJJ1>>ׄ9?ϪJJ1>A?:91STׄ9?9M,.T>BϪJ9>؞C@@@;9:91STׄ9?9M,.T>BϪJ9ρ>@@#!&6D>49@P>2#!&6D>49@P>26942A7B694+#!&6D>49@P>2#!&6D>49@P>2#!C14>@D2>@Ԛ<#!C14>@D2>@Ԛ<#!&6D>49@P>2#!&6D>49@P>2;9&FD6D249@D2>1XJVV53&FD6D249@D2>1JV#!&6D>49@P>2#!&6D>49@P>2SQ&L492IщQ—P=&1X4BD71XG:&T6GEީ L492IщQ=&14BD71G:&T6#!&6D>49@P>2#!&6D>49@P>26942A7B694+#!&6D>49@P>2#!&6D>49@P>2 Cڜ>42K.B@KCڜ>4K.@K#!&6D>49@P>2#!&6D>49@P>2;9&FD6D249@D2>1XJVV53&FD6D249@D2>1JV#!&6D>49@P>2#!&6D>49@P>2;961&6P>429Q1@&@@@2061&6P>4ƋQ1@&@@#!&6D>49@P>2#!&6D>49@P>26942A7B694+#!&6D>49@P>2#!&6D>49@P>2#! 6E424ڜ>2AЍ6E44ڜ>2A#!&6D>49@P>2#!&6D>49@P>2;9&FD6D249@D2>1XJVV53&FD6D249@D2>1JV#!&6D>49@P>2#!&6D>49@P>26>42EX@N6>4E@N#!&6D>49@P>2#!&6D>49@P>26942A7B694+#!&6D>49@P>2#!&6D>49@P>2>4ڜ>F5@Ԛ<>4ڜ>F5@Ԛ<#!&6D>49@P>2#!&6D>49@P>2;9&FD6D249@D2>1XJVV53&FD6D249@D2>1JV#!&6D>49@P>2#!&6D>49@P>2;9CRW6?۱URT:R&6D>62486CRW6?۱URT:R&6D>D4UEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@8MKUE;6֊2>W6,ϨH@FL6,B,TE;>A7BDBǠ2;6֊2>W6,ϨH@FL6,B,TE;>+UEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@853DUE>W@P21HSV9;W@Ԛ<,*DǠ2>W@71HSV9=@Ԛ<UEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@886UE2V=L296T=ȟN2DS>؞CԚ<20Ǡ22V=L296T=ȟN2DSρ>Ԛ<UEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@8JH>؞CXAN;WSV626DUE=WL6,6@Ԛ<A?ρ>XAN=SV626DǠ2=WL6,6@Ԛ<UEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@8PN9;2UEDSV16=GB<6>؞Cб :6)ʪDB9;2Ǡ2DSV16=G<ρ>б :6)ʪUEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@8DBD7>UE;ASVϨH,ϨHW;62>T6@Ԛ<>Ǡ2;ASV؋8ϨHW;62>T6@Ԛ<UEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@8;9>UE;FWOT7,>A8SVDPDA20>Ǡ2;FW37,>ASVDPDAUEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@886UE616=V6>6L=>؞C@@@/-Ǡ2616=V6>6L=ρ>@@UEϨHWV@8Ǡ2ϨHWV@8>V;>Wٟ@2>6@2>6>؞C@@@53Ǡ2>V;>Wٟ@2>6@2>6ρ>@@UEϨHWV@8Ǡ2ϨHWV@8)'>؞CUE;V626DSDA#!ρ>Ǡ2;V626DSDA# UDT #UDT@@@# UDT #UDTJHR6># HL6M9ٟ@UVUӁGDܤK8<# @@@;9R6>#HL6M@UVUӁGA8<#@@# UDT #UDT@@@# UDT #UDT UUD,A#%@@@UUD,A#@@# UDT #UDT@@@# UDT #UDT20UN.T5ƛK,6I16#%@@@,*UN.T5ƛK,6I16#@@# UDT #UDT@@@# UDT #UDTDB9Ԛ<6ϪJ># >Q@D9DFҾWSܤK# @@@,*16>#>Q@9FҾWS#@@# UDT #UDT@@@# UDT #UDT20#%>UӁGD9D.7>#%@@@#!#>UӁG9.7>#@@# UDT #UDT@@@# UDT #UDTMKR, 9S=ɵOʡH9B>UUD=UL9TM# @@@;9R, SɵO9>UUD=UL9TM#@@# UDT #UDT@@@# UDT #UDT&$DПC,UӁGDܤK# @@@DПC,UӁGA#@@# UDT #UDT@@@# UDT #UDT&$E>F# UDK0@@@ E>F#UDK0@@# UDT #UDT@@@# UDT #UDT,*# UDK-щQRQ# @@@#!#UDK-щQRQ#@@T;JC;XH-T;C;XH-DB;JIٟ@FXH-EDܤKV3ET)ʪ86;@FحXH-EDV3ET)ʪT;JC;XH-T;C;XH-YW9T:B7ٟ@)X-;J%)ѾCTO7%T87FD0A?9T:B7ٟ@X-;)ѾCTO7%T8F0T;JC;XH-T;C;XH-86;J85SXH-8E6O@Ԛ<&$;85SXH-8E6@Ԛ<T;JC;XH-T;C;XH-&$5M;J.B7H1R@Ԛ<#!5M;.B7H1R@Ԛ<T;JC;XH-T;C;XH-><;J85SXH-8E6ODSDA,*;85SXH-8E6DSDAT;JC;XH-T;C;XH-PN;JA5DN8R8EBS;76XH-NFK,DPDAA?;A5DNRNBS;5XH-NF,DPDAT;JC;XH-T;C;XH-DB;JIٟ@FXH-EDܤKV3ET)ʪ86;@FحXH-EDV3ET)ʪT;JC;XH-T;C;XH-_]5M;JDCٟ@F26K:X-RB9S8@D69>ҾWD,DPDAPN5M;D@F26K:X-RB9S8@6ߖ>D,DPDAT;JC;XH-T;C;XH-86;J85SXH-8E6O@Ԛ<&$;85SXH-8E6@Ԛ<T;JC;XH-T;C;XH-;J١-ܤKS/@N;١-ܤKS@NT;JC;XH-T;C;XH-><;J85SXH-8E6ODSDA,*;85SXH-8E6DSDAT;JC;XH-T;C;XH-866C; X-NWHT;J)ʪ/-6C;X-NWH;)ʪ/-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7GE5DR93A7.8RAƛK2TH?T!HA†M86A?5DR93A78RAƛK2TH?T!HA†M8/-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7865RAб D93A7.8RA!@@@205RAб D93A78RA!@@/-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7><ʡH9BR93AV7.RAϪJHA@@@209R93AV7RAϪJHA@@/-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7;9!HA5DR9L9BR7.RϪJ,@Ԛ<86!HA5DR9L9BR7RϪJ,@Ԛ</-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7ki5D93AJR7.BRFD3Bٟ@75Dٟ@7>HAKADP!HA†M86ec5D93AJR7BRFD3Bٟ@75Dٟ@7>HAKADP!HA†M8/-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7b`5DR9L9DR7.3>3RQKUDA-D3D!HA†M86\Z5DR9L9DR73>3RQKUDA-D3D!HA†M8/-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7/-5D9L9D7.RƭI!@@@)'5D9L9D7RƭI!@@/-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7hf95L9DRG7.3AWDEWKѾCHT7HA7:6)ʪVT95L9DRG73AWDEWK5:6)ʪ/-5DR9D93A8RR7.,*5DR9D93A8RR720R9D93AR7.6ǽ=DPDA,*R9D93AR76DPDA/-5DR9D93A8RR7.,*5DR9D93A8RR7><ϪJAHARA9D93ARADϪJ7.K5;9ϪJAHARA9D93ARADϪJ7K5.6O<-  .O</-<-N<-%%O܊7<0>T&$<-N<%%O܊70>.6O<-  .O<DBW<-7R:.6O/1EPٟ@9ٟ@MBʔ77>P/-W<7R:1EP9MBݔ7>P.6O<-  .O</-<-N<-%%O܊7<0>T&$<-N<%%O܊70>.6O<-  .O<R-R-.6O<-  .O</-<-N<-%%O܊7<0>T&$<-N<%%O܊70>.6O<-  .O<539.T&$<-N<%%O܊70>.6O<-  .O<20.6O37;0G .6.6T&$<-N<%%O܊70>.6O<-  .O<.6O8I6T.O8I6T.6O<-  .O</-<-N<-%%O܊7<0>T&$<-N<%%O܊70>.6O<-  .O<.6OTK6.OTK6.6O<-  .O</-<-N<-%%O܊7<0>T&$<-N<%%O܊70>.6O<-  .O<20 .6O/EED.6O/EE"W#! ED.6O/E"W.6O<-  .O</-<-N<-%%O܊7<0>T&$<-N<%%O܊70>.6O<-  .O<DBW<-7R:.6O/1EPٟ@9ٟ@MBDSDA20W<7R:1EP9MBDSDA.6O<-  .O</-<-N<-%%O܊7<0>T&$<-N<%%O܊70>.6O<-  .O<>4M54Н?A3AT UD1ձM4M54AA  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1,*UD1CT%8>9S1ME;)'UD1CT%8>9S1M;  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1 UD1U3ʡHWRDU UD1U3ʡHWRDU  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1 UD1M>4M5G3UD1ձM4M5G  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1/-U8JD1UHAʡH RGM=T,*U8JD1UHAʡH RGM=  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD120UD1FBLL¶7JѾC4W,M4;#!UD1BNJCW14;  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1&$UD1ʡHR:DGAʈO>6#!UD1ʡHR:DGA>6  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1)'UȂ3.1PD>J١-- AB&$UȂ3.1P>J١-- AB  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1SQ>KU9D1M.OGUʡH9>9U199>U69IT@Ԛ<DB>KU9D1M.ǼOU>9U19>U6IT@Ԛ<  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1#!UD19ҧK1B—PϪJ>D UD19ҧK1BJ>D  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1#!UD19ҧK1B—PϪJ>D UD19ҧK1BJ>D  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1)'UȂ31MC—PQ>DԃPEAB U͂3M—PQ>DUAB  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1)'UD1—PRޚ6HU49QÐWB&$UD1Rޚ6HU49QÐWB  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1&$UD1W>β7UщQDG@K UD1W>ƴ7щQD@K  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1UD1MʡHRHUUD1MʡHRHU  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1/-UD1@1GM3̛<:9T!#!UD1@1GM3:TW  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1UD1>NVNFUD1>NVNF  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1,*UD1MʡHWRHUJ6J7,*UD1MʡHWRHUJ6J7  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1JHUBMBUD19ҧK1B—PϪJ>DS1UBDBN@Ԛ<>Dū1UDBN@Ԛ<  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD120AʋMQU,D1U>4,3T5=T&$AQU,D1U>435=  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1534UD1M/5S7H47 N H)'4UD1M5S N H  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1)'UD1U/VӲU>/=WQT UD1*ӲU>/=WQ  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1DBUD1UʡHWR6U>G=SU/T()!/-UD1UʡHWR6U>GSUT  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1#!UD1M>U.61D3̛<2/ќ6HQT&$UD1KU>1D3/HQ  UD1  UD153UD1ۓRD;16ǁRK3K"'!)'UD1ۓRD;16ǁRK3K  UD1  UD1DBUD1ۓR4H5B—PϪJ>D3KT((!)'UD1ۓR4H5BJ>D3KEԼOR@C/8EC/8#!HԼOR@C/8>ٟ@@Ԛ<HC/8>ٟ@@Ԛ<EԼOR@C/8EC/8qoHԼOR@C/D8>ٟ@8 P@NLΊ;J@>@BΊ;RP@NLΊ;J@>DOָ:?ThfHC/D8>ٟ@8 P@NLΊ;J@>@BΊ;RP@NLΊ;J@>Dָ:?TEԼOR@C/8EC/8ԼO@K@K OK@KEԼOR@C/8EC/8nlHԼOR@C/8>ٟ@8PHۇLBDCɕH5ǟVGRPHGLBD=ږH5DOָ:?TecHC/8>ٟ@8PHۇLBDCɕH5ǟVGRPHGLBD=ږH5Dָ:?TEԼOR@C/8EC/8><ԼOR@E>1>THIԓ4C/8>ٟ@A7B,*E>1>TC/8>ٟ@+EԼOR@C/8EC/8}{M:İU;ԼOR@?R5BD5@E7K՞RWKD5C/8>ٟ@>:T(!K;86_]:?R5BD5@EG՞RʼGD5C/8>ٟ@>:TK;86EԼOR@C/8EC/8#!HԼOR@C/8>ٟ@@Ԛ<HC/8>ٟ@@Ԛ<EԼOR@C/8EC/8#!ß<:Dć?ԼO@C/8>ٟ@ ß<:Dć?OC/8>ٟ@EԼOR@C/8EC/8ԼO@K@K OK@KEԼOR@C/8EC/8,*HԼOR@NܒM̺2C/D8>ٟ@#!HNMC/D8>ٟ@EԼOR@C/8EC/8><ԼOR@E>1>THIԓ4C/8>ٟ@A7B,*E>1>TC/8>ٟ@+EԼOR@C/8EC/853HԼOR@C/D8>ٟ@RE@>DW/-HC/D8>ٟ@RE@>DWEԼOR@C/8EC/8#!HԼOR@C/8>ٟ@@Ԛ<HC/8>ٟ@@Ԛ<EԼOR@C/8EC/8&$EԼO@C/8>ٟ@DPDA#!EOC/8>ٟ@DPDAEԼOR@C/8EC/8ԼO@K@K OK@KEԼOR@C/8EC/8HԼOR@C/8>ٟ@D>AIH!D>HIH:@>Hٟ@/ў7:@՞R.ٟ@/ў79OEEXqoHC/8>ٟ@D>AIH!D>HIH:>Hٟ@/ў7:>ٟ@/ў79EEXEԼOR@C/8EC/8><ԼOR@E>1>THIԓ4C/8>ٟ@A7B,*E>1>TC/8>ٟ@+EԼOR@C/8EC/8;9HԼO@C/8>ٟ@H2992653HOC/8>ٟ@H2926EԼOR@C/8EC/8#!HԼOR@C/8>ٟ@@Ԛ<HC/8>ٟ@@Ԛ<EԼOR@C/8EC/820H?RSHIԓ4>ԼO@‹7C/8>ٟ@)'H?RS>O‹7C/8>ٟ@ \ No newline at end of file diff --git a/paddle/trainer/tests/gen_proto_data.py b/paddle/trainer/tests/gen_proto_data.py deleted file mode 100644 index 8cc6d44673b9f992c28ae95cc06db5ea5aca0642..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/gen_proto_data.py +++ /dev/null @@ -1,279 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from cStringIO import StringIO - -import paddle.proto.DataFormat_pb2 as DataFormat -from google.protobuf.internal.encoder import _EncodeVarint - -import logging -import pprint - -logging.basicConfig( - format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', ) -logger = logging.getLogger('paddle') -logger.setLevel(logging.INFO) - -OOV_POLICY_IGNORE = 0 -OOV_POLICY_USE = 1 -OOV_POLICY_ERROR = 2 - -num_original_columns = 3 - -# Feature combination patterns. -# [[-1,0], [0,0]] means previous token at column 0 and current token at -# column 0 are combined as one feature. -patterns = [ - [[-2, 0]], - [[-1, 0]], - [[0, 0]], - [[1, 0]], - [[2, 0]], - [[-1, 0], [0, 0]], - [[0, 0], [1, 0]], - [[-2, 1]], - [[-1, 1]], - [[0, 1]], - [[1, 1]], - [[2, 1]], - [[-2, 1], [-1, 1]], - [[-1, 1], [0, 1]], - [[0, 1], [1, 1]], - [[1, 1], [2, 1]], - [[-2, 1], [-1, 1], [0, 1]], - [[-1, 1], [0, 1], [1, 1]], - [[0, 1], [1, 1], [2, 1]], -] - - -def make_features(sequence): - length = len(sequence) - num_features = len(sequence[0]) - - def get_features(pos): - if pos < 0: - return ['#B%s' % -pos] * num_features - if pos >= length: - return ['#E%s' % (pos - length + 1)] * num_features - return sequence[pos] - - for i in xrange(length): - for pattern in patterns: - fname = '/'.join([get_features(i + pos)[f] for pos, f in pattern]) - sequence[i].append(fname) - - -''' -Source file format: -Each line is for one timestep. The features are separated by space. -An empty line indicates end of a sequence. - -cutoff: a list of numbers. If count of a feature is smaller than this, - it will be ignored. -if oov_policy[i] is OOV_POLICY_USE, id 0 is reserved for OOV features of -i-th column. - -return a list of dict for each column -''' - - -def create_dictionaries(filename, cutoff, oov_policy): - def add_to_dict(sequence, dicts): - num_features = len(dicts) - for features in sequence: - l = len(features) - assert l == num_features, "Wrong number of features " + line - for i in xrange(l): - if features[i] in dicts[i]: - dicts[i][features[i]] += 1 - else: - dicts[i][features[i]] = 1 - - num_features = len(cutoff) - dicts = [] - for i in xrange(num_features): - dicts.append(dict()) - - f = open(filename, 'rb') - - sequence = [] - - for line in f: - line = line.strip() - if not line: - make_features(sequence) - add_to_dict(sequence, dicts) - sequence = [] - continue - features = line.split(' ') - sequence.append(features) - - for i in xrange(num_features): - dct = dicts[i] - n = 1 if oov_policy[i] == OOV_POLICY_USE else 0 - todo = [] - for k, v in dct.iteritems(): - if v < cutoff[i]: - todo.append(k) - else: - dct[k] = n - n += 1 - - if oov_policy[i] == OOV_POLICY_USE: - # placeholder so that len(dct) will be the number of features - # including OOV - dct['#OOV#'] = 0 - - logger.info('column %d dict size=%d, ignored %d' % (i, n, len(todo))) - for k in todo: - del dct[k] - - f.close() - return dicts - - -def encode_varint(v): - out = StringIO() - _EncodeVarint(out.write, v) - return out.getvalue() - - -def write_proto(file, message): - s = message.SerializeToString() - packed_len = encode_varint(len(s)) - file.write(packed_len + s) - - -''' -if oov_policy[i] == OOV_POLICY_USE, features in i-th column which are not -existed in dicts[i] will be assigned to id 0. -if oov_policy[i] == OOV_POLICY_ERROR, all features in i-th column MUST exist -in dicts[i]. -''' - - -def gen_proto_file(input_file, dicts, oov_policy, output_file): - def write_sequence(out, sequence): - num_features = len(dicts) - is_beginning = True - for features in sequence: - assert len(features) == num_features, \ - "Wrong number of features: " + line - sample = DataFormat.DataSample() - for i in xrange(num_original_columns): - id = dicts[i].get(features[i], -1) - if id != -1: - sample.id_slots.append(id) - elif oov_policy[i] == OOV_POLICY_IGNORE: - sample.id_slots.append(0xffffffff) - elif oov_policy[i] == OOV_POLICY_ERROR: - logger.fatal("Unknown token: %s" % features[i]) - else: - sample.id_slots.append(0) - - if patterns: - dim = 0 - vec = sample.vector_slots.add() - for i in xrange(num_original_columns, num_features): - id = dicts[i].get(features[i], -1) - if id != -1: - vec.ids.append(dim + id) - elif oov_policy[i] == OOV_POLICY_IGNORE: - pass - elif oov_policy[i] == OOV_POLICY_ERROR: - logger.fatal("Unknown token: %s" % features[i]) - else: - vec.ids.append(dim + 0) - - dim += len(dicts[i]) - - sample.is_beginning = is_beginning - is_beginning = False - write_proto(out, sample) - - num_features = len(dicts) - f = open(input_file, 'rb') - out = open(output_file, 'wb') - - header = DataFormat.DataHeader() - if patterns: - slot_def = header.slot_defs.add() - slot_def.type = DataFormat.SlotDef.VECTOR_SPARSE_NON_VALUE - slot_def.dim = sum( - [len(dicts[i]) for i in xrange(num_original_columns, len(dicts))]) - logger.info("feature_dim=%s" % slot_def.dim) - - for i in xrange(num_original_columns): - slot_def = header.slot_defs.add() - slot_def.type = DataFormat.SlotDef.INDEX - slot_def.dim = len(dicts[i]) - - write_proto(out, header) - - num_sequences = 0 - sequence = [] - for line in f: - line = line.strip() - if not line: - make_features(sequence) - write_sequence(out, sequence) - sequence = [] - num_sequences += 1 - continue - features = line.split(' ') - sequence.append(features) - - f.close() - out.close() - - logger.info("num_sequences=%s" % num_sequences) - - -dict2 = { - 'B-ADJP': 0, - 'I-ADJP': 1, - 'B-ADVP': 2, - 'I-ADVP': 3, - 'B-CONJP': 4, - 'I-CONJP': 5, - 'B-INTJ': 6, - 'I-INTJ': 7, - 'B-LST': 8, - 'I-LST': 9, - 'B-NP': 10, - 'I-NP': 11, - 'B-PP': 12, - 'I-PP': 13, - 'B-PRT': 14, - 'I-PRT': 15, - 'B-SBAR': 16, - 'I-SBAR': 17, - 'B-UCP': 18, - 'I-UCP': 19, - 'B-VP': 20, - 'I-VP': 21, - 'O': 22 -} - -if __name__ == '__main__': - cutoff = [3, 1, 0] - cutoff += [3] * len(patterns) - oov_policy = [OOV_POLICY_IGNORE, OOV_POLICY_ERROR, OOV_POLICY_ERROR] - oov_policy += [OOV_POLICY_IGNORE] * len(patterns) - dicts = create_dictionaries('trainer/tests/train.txt', cutoff, oov_policy) - dicts[2] = dict2 - gen_proto_file('trainer/tests/train.txt', dicts, oov_policy, - 'trainer/tests/train_proto.bin') - gen_proto_file('trainer/tests/test.txt', dicts, oov_policy, - 'trainer/tests/test_proto.bin') diff --git a/paddle/trainer/tests/mnist.list b/paddle/trainer/tests/mnist.list deleted file mode 100644 index 703e87753d5a4f507aad11a6d875cea44787667b..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/mnist.list +++ /dev/null @@ -1 +0,0 @@ -trainer/tests/mnist_bin_part diff --git a/paddle/trainer/tests/mnist_bin_part b/paddle/trainer/tests/mnist_bin_part deleted file mode 100644 index 08b93a0ebb5698bdafbc36c3c757918a50bab621..0000000000000000000000000000000000000000 Binary files a/paddle/trainer/tests/mnist_bin_part and /dev/null differ diff --git a/paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data b/paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data deleted file mode 100644 index f189b21e86a50d70d317b5e43aa2d6e05af5e774..0000000000000000000000000000000000000000 Binary files a/paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data and /dev/null differ diff --git a/paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.protolist b/paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.protolist deleted file mode 100644 index 6b406dff0ba91b5f310d7eafa111c0d21d6542c3..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.protolist +++ /dev/null @@ -1 +0,0 @@ -./trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data diff --git a/paddle/trainer/tests/sample_trainer_config_compare_sparse.conf b/paddle/trainer/tests/sample_trainer_config_compare_sparse.conf deleted file mode 100644 index 92f32a18c0068ab4672034a270aa8c52f2716d59..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/sample_trainer_config_compare_sparse.conf +++ /dev/null @@ -1,154 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later. - -# Note: when making change to this file, please make sure -# sample_trainer_config_rnn.conf is changed accordingly so that the uniitest -# for comparing these two nets can pass (test_CompareTwoNets) - -default_initial_std(0.1) -default_device(0) - -word_dim = 999 -l1 = 0 -l2 = 0 - -model_type("nn") - -sparse_update = get_config_arg("sparse_update", bool, False) - -TrainData(ProtoData( - type = "proto_sequence", - files = ('trainer/tests/train_sparse.list'), - )) - -Settings( - algorithm='sgd', - batch_size=100, - learning_rate=0.0001, - learning_rate_decay_a=4e-08, - learning_rate_decay_b=0.0, - learning_rate_schedule='poly', -) - - -wordvec_dim = 32 -layer2_dim = 16 -layer3_dim = 16 -hidden_dim = 32 - -slot_names = ["qb", "qw", "tb", "tw"] - -def ltr_network(network_name, - word_dim=word_dim, - wordvec_dim=wordvec_dim, - layer2_dim=layer2_dim, - layer3_dim=layer3_dim, - hidden_dim=hidden_dim, - slot_names=slot_names, - l1=l1, - l2=l2): - - slotnum = len(slot_names) - for i in xrange(slotnum): - Inputs(slot_names[i] + network_name) - for i in xrange(slotnum): - Layer( - name = slot_names[i] + network_name, - type = "data", - size = word_dim, - device = -1, - ) - Layer( - name = slot_names[i] + "_embedding_" + network_name, - type = "mixed", - size = wordvec_dim, - bias = False, - device = -1, - inputs = TableProjection(slot_names[i] + network_name, - parameter_name = "embedding.w0", - decay_rate_l1=l1, - sparse_remote_update = True, - sparse_update = sparse_update, - ), - ) - Layer( - name = slot_names[i] + "_rnn1_" + network_name, - type = "recurrent", - active_type = "tanh", - bias = Bias(initial_std = 0, - parameter_name = "rnn1.bias"), - inputs = Input(slot_names[i] + "_embedding_" + network_name, - parameter_name = "rnn1.w0") - ) - Layer( - name = slot_names[i] + "_rnnlast_" + network_name, - type = "seqlastins", - inputs = [ - slot_names[i] + "_rnn1_" + network_name, - ], - ) - - Layer( - name = "layer2_" + network_name, - type = "fc", - active_type = "tanh", - size = layer2_dim, - bias = Bias(parameter_name = "layer2.bias"), - inputs = [Input(slot_name + "_rnnlast_" + network_name, - parameter_name = "_layer2_" + slot_name + ".w", - decay_rate = l2, - initial_smart = True) for slot_name in slot_names] - ) - Layer( - name = "layer3_" + network_name, - type = "fc", - active_type = "tanh", - size = layer3_dim, - bias = Bias(parameter_name = "layer3.bias"), - inputs = [ - Input("layer2_" + network_name, - parameter_name = "_layer3.w", - decay_rate = l2, - initial_smart = True), - ] - ) - Layer( - name = "output_" + network_name, - type = "fc", - size = 1, - bias = False, - inputs = [ - Input("layer3_" + network_name, - parameter_name = "_layerO.w"), - ], - ) - - -ltr_network("left") -ltr_network("right") -Inputs("label") -Layer( - name = "label", - type = "data", - size = 1, - ) -Outputs("cost", "qb_rnnlast_left") -Layer( - name = "cost", - type = "rank-cost", - inputs = ["output_left", "output_right", "label"], - ) diff --git a/paddle/trainer/tests/sample_trainer_config_opt_a.conf b/paddle/trainer/tests/sample_trainer_config_opt_a.conf deleted file mode 100644 index b1744db8d604c88ec47e7104f79b38bb9d0e4442..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/sample_trainer_config_opt_a.conf +++ /dev/null @@ -1,40 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -################################### Data Configuration ################################### -TrainData(ProtoData(files = "trainer/tests/mnist.list")) -################################### Algorithm Configuration ################################### -settings(batch_size = 1000, - learning_method = MomentumOptimizer(momentum=0.5, sparse=False)) -################################### Network Configuration ################################### -data = data_layer(name ="input", size=784) - -fc1 = fc_layer(input=data, size=800, - bias_attr=True, - act=SigmoidActivation()) - -fc2 = fc_layer(input=fc1, size=800, - bias_attr=True, - act=SigmoidActivation()) - -output = fc_layer(input=[fc1, fc2], size=10, - bias_attr=True, - act=SoftmaxActivation()) - -lbl = data_layer(name ="label", size=1) - -cost = classification_cost(input=output, label=lbl) -outputs(cost) diff --git a/paddle/trainer/tests/sample_trainer_config_opt_b.conf b/paddle/trainer/tests/sample_trainer_config_opt_b.conf deleted file mode 100644 index b1744db8d604c88ec47e7104f79b38bb9d0e4442..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/sample_trainer_config_opt_b.conf +++ /dev/null @@ -1,40 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -################################### Data Configuration ################################### -TrainData(ProtoData(files = "trainer/tests/mnist.list")) -################################### Algorithm Configuration ################################### -settings(batch_size = 1000, - learning_method = MomentumOptimizer(momentum=0.5, sparse=False)) -################################### Network Configuration ################################### -data = data_layer(name ="input", size=784) - -fc1 = fc_layer(input=data, size=800, - bias_attr=True, - act=SigmoidActivation()) - -fc2 = fc_layer(input=fc1, size=800, - bias_attr=True, - act=SigmoidActivation()) - -output = fc_layer(input=[fc1, fc2], size=10, - bias_attr=True, - act=SoftmaxActivation()) - -lbl = data_layer(name ="label", size=1) - -cost = classification_cost(input=output, label=lbl) -outputs(cost) diff --git a/paddle/trainer/tests/sample_trainer_config_qb_rnn.conf b/paddle/trainer/tests/sample_trainer_config_qb_rnn.conf deleted file mode 100644 index d19222360c2f424ddb306b155dfef07921098a6b..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/sample_trainer_config_qb_rnn.conf +++ /dev/null @@ -1,154 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later. - -# Note: when making change to this file, please make sure -# sample_trainer_config_rnn.conf is changed accordingly so that the uniitest -# for comparing these two nets can pass (test_CompareTwoNets) - -default_initial_std(0.1) -default_device(0) - -word_dim = 1451594 -l1 = 0 -l2 = 0 - -model_type("nn") - -sparse_update = get_config_arg("sparse_update", bool, False) - -TrainData(ProtoData( - type = "proto_sequence", - files = ('trainer/tests/train.list'), - )) - -Settings( - algorithm='sgd', - batch_size=100, - learning_rate=0.0001, - learning_rate_decay_a=4e-08, - learning_rate_decay_b=0.0, - learning_rate_schedule='poly', -) - - -wordvec_dim = 128 -layer2_dim = 96 -layer3_dim = 96 -hidden_dim = 128 - -slot_names = ["qb", "qw", "tb", "tw"] - -def ltr_network(network_name, - word_dim=word_dim, - wordvec_dim=wordvec_dim, - layer2_dim=layer2_dim, - layer3_dim=layer3_dim, - hidden_dim=hidden_dim, - slot_names=slot_names, - l1=l1, - l2=l2): - - slotnum = len(slot_names) - for i in xrange(slotnum): - Inputs(slot_names[i] + network_name) - for i in xrange(slotnum): - Layer( - name = slot_names[i] + network_name, - type = "data", - size = word_dim, - device = -1, - ) - Layer( - name = slot_names[i] + "_embedding_" + network_name, - type = "mixed", - size = wordvec_dim, - bias = False, - device = -1, - inputs = TableProjection(slot_names[i] + network_name, - parameter_name = "embedding.w0", - decay_rate_l1=l1, - sparse_remote_update = True, - sparse_update = sparse_update, - ), - ) - Layer( - name = slot_names[i] + "_rnn1_" + network_name, - type = "recurrent", - active_type = "tanh", - bias = Bias(initial_std = 0, - parameter_name = "rnn1.bias"), - inputs = Input(slot_names[i] + "_embedding_" + network_name, - parameter_name = "rnn1.w0") - ) - Layer( - name = slot_names[i] + "_rnnlast_" + network_name, - type = "seqlastins", - inputs = [ - slot_names[i] + "_rnn1_" + network_name, - ], - ) - - Layer( - name = "layer2_" + network_name, - type = "fc", - active_type = "tanh", - size = layer2_dim, - bias = Bias(parameter_name = "layer2.bias"), - inputs = [Input(slot_name + "_rnnlast_" + network_name, - parameter_name = "_layer2_" + slot_name + ".w", - decay_rate = l2, - initial_smart = True) for slot_name in slot_names] - ) - Layer( - name = "layer3_" + network_name, - type = "fc", - active_type = "tanh", - size = layer3_dim, - bias = Bias(parameter_name = "layer3.bias"), - inputs = [ - Input("layer2_" + network_name, - parameter_name = "_layer3.w", - decay_rate = l2, - initial_smart = True), - ] - ) - Layer( - name = "output_" + network_name, - type = "fc", - size = 1, - bias = False, - inputs = [ - Input("layer3_" + network_name, - parameter_name = "_layerO.w"), - ], - ) - - -ltr_network("left") -ltr_network("right") -Inputs("label") -Layer( - name = "label", - type = "data", - size = 1, - ) -Outputs("cost", "qb_rnnlast_left") -Layer( - name = "cost", - type = "rank-cost", - inputs = ["output_left", "output_right", "label"], - ) diff --git a/paddle/trainer/tests/sample_trainer_config_rnn.conf b/paddle/trainer/tests/sample_trainer_config_rnn.conf deleted file mode 100644 index b720d4d5a6ca59e207832a8c5410c2cb6074c439..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/sample_trainer_config_rnn.conf +++ /dev/null @@ -1,180 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later. - -# Note: when making change to this file, please make sure -# sample_trainer_config_qb_rnn.conf is changed accordingly so that the uniitest -# for comparing these two nets can pass (test_CompareTwoNets) - -default_initial_std(0.1) -default_device(0) - -word_dim = 1451594 -l1 = 0 -l2 = 0 - -model_type("recurrent_nn") - -sparse_update = get_config_arg("sparse_update", bool, False) - -TrainData(ProtoData( - type = "proto_sequence", - files = ('trainer/tests/train.list'), - )) - -Settings( - algorithm='sgd', - batch_size=100, - learning_rate=0.0001, - learning_rate_decay_a=4e-08, - learning_rate_decay_b=0.0, - learning_rate_schedule='poly', -) - - -wordvec_dim = 128 -layer2_dim = 96 -layer3_dim = 96 -hidden_dim = 128 - -slot_names = ["qb", "qw", "tb", "tw"] - -def SimpleRecurrentLayer(name, - size, - active_type, - bias, - input_layer_name, - parameter_name, - seq_reversed = False): - RecurrentLayerGroupBegin(name + "_layer_group", - in_links=[input_layer_name], - out_links=[name], - seq_reversed=seq_reversed) - memory_name = Memory(name=name, size=size) - Layer( - name = name, - type = "mixed", - size = size, - active_type = active_type, - bias = bias, - inputs = [IdentityProjection(input_layer_name), - FullMatrixProjection(memory_name, - parameter_name = parameter_name, - ), - ] - ) - RecurrentLayerGroupEnd(name + "_layer_group") - - -def ltr_network(network_name, - word_dim=word_dim, - wordvec_dim=wordvec_dim, - layer2_dim=layer2_dim, - layer3_dim=layer3_dim, - hidden_dim=hidden_dim, - slot_names=slot_names, - l1=l1, - l2=l2): - - slotnum = len(slot_names) - for i in xrange(slotnum): - Inputs(slot_names[i] + network_name) - for i in xrange(slotnum): - Layer( - name = slot_names[i] + network_name, - type = "data", - size = word_dim, - device = -1, - ) - Layer( - name = slot_names[i] + "_embedding_" + network_name, - type = "mixed", - size = wordvec_dim, - bias = False, - device = -1, - inputs = TableProjection(slot_names[i] + network_name, - parameter_name = "embedding.w0", - decay_rate_l1=l1, - sparse_remote_update = True, - sparse_update = sparse_update, - ), - ) - SimpleRecurrentLayer( - name = slot_names[i] + "_rnn1_" + network_name, - size = hidden_dim, - active_type = "tanh", - bias = Bias(initial_std = 0, - parameter_name = "rnn1.bias"), - input_layer_name = slot_names[i] + "_embedding_" + network_name, - parameter_name = "rnn1.w0", - ) - Layer( - name = slot_names[i] + "_rnnlast_" + network_name, - type = "seqlastins", - inputs = [ - slot_names[i] + "_rnn1_" + network_name, - ], - ) - Layer( - name = "layer2_" + network_name, - type = "fc", - active_type = "tanh", - size = layer2_dim, - bias = Bias(parameter_name = "layer2.bias"), - inputs = [Input(slot_name + "_rnnlast_" + network_name, - parameter_name = "_layer2_" + slot_name + ".w", - decay_rate = l2, - initial_smart = True) for slot_name in slot_names] - ) - Layer( - name = "layer3_" + network_name, - type = "fc", - active_type = "tanh", - size = layer3_dim, - bias = Bias(parameter_name = "layer3.bias"), - inputs = [ - Input("layer2_" + network_name, - parameter_name = "_layer3.w", - decay_rate = l2, - initial_smart = True), - ] - ) - Layer( - name = "output_" + network_name, - type = "fc", - size = 1, - bias = False, - inputs = [ - Input("layer3_" + network_name, - parameter_name = "_layerO.w"), - ], - ) - - -ltr_network("left") -ltr_network("right") -Inputs("label") -Layer( - name = "label", - type = "data", - size = 1, - ) -Outputs("cost", "qb_rnnlast_left") -Layer( - name = "cost", - type = "rank-cost", - inputs = ["output_left", "output_right", "label"], - ) diff --git a/paddle/trainer/tests/test.txt b/paddle/trainer/tests/test.txt deleted file mode 100644 index 3ad503b34f2e1a84c632d0894f180b5cf9ac550a..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/test.txt +++ /dev/null @@ -1,1000 +0,0 @@ -Confidence NN B-NP -in IN B-PP -the DT B-NP -pound NN I-NP -is VBZ B-VP -widely RB I-VP -expected VBN I-VP -to TO I-VP -take VB I-VP -another DT B-NP -sharp JJ I-NP -dive NN I-NP -if IN B-SBAR -trade NN B-NP -figures NNS I-NP -for IN B-PP -September NNP B-NP -, , O -due JJ B-ADJP -for IN B-PP -release NN B-NP -tomorrow NN B-NP -, , O -fail VB B-VP -to TO I-VP -show VB I-VP -a DT B-NP -substantial JJ I-NP -improvement NN I-NP -from IN B-PP -July NNP B-NP -and CC I-NP -August NNP I-NP -'s POS B-NP -near-record JJ I-NP -deficits NNS I-NP -. . O - -Chancellor NNP O -of IN B-PP -the DT B-NP -Exchequer NNP I-NP -Nigel NNP B-NP -Lawson NNP I-NP -'s POS B-NP -restated VBN I-NP -commitment NN I-NP -to TO B-PP -a DT B-NP -firm NN I-NP -monetary JJ I-NP -policy NN I-NP -has VBZ B-VP -helped VBN I-VP -to TO I-VP -prevent VB I-VP -a DT B-NP -freefall NN I-NP -in IN B-PP -sterling NN B-NP -over IN B-PP -the DT B-NP -past JJ I-NP -week NN I-NP -. . O - -But CC O -analysts NNS B-NP -reckon VBP B-VP -underlying VBG B-NP -support NN I-NP -for IN B-PP -sterling NN B-NP -has VBZ B-VP -been VBN I-VP -eroded VBN I-VP -by IN B-PP -the DT B-NP -chancellor NN I-NP -'s POS B-NP -failure NN I-NP -to TO B-VP -announce VB I-VP -any DT B-NP -new JJ I-NP -policy NN I-NP -measures NNS I-NP -in IN B-PP -his PRP$ B-NP -Mansion NNP I-NP -House NNP I-NP -speech NN I-NP -last JJ B-NP -Thursday NNP I-NP -. . O - -This DT B-NP -has VBZ B-VP -increased VBN I-VP -the DT B-NP -risk NN I-NP -of IN B-PP -the DT B-NP -government NN I-NP -being VBG B-VP -forced VBN I-VP -to TO I-VP -increase VB I-VP -base NN B-NP -rates NNS I-NP -to TO B-PP -16 CD B-NP -% NN I-NP -from IN B-PP -their PRP$ B-NP -current JJ I-NP -15 CD I-NP -% NN I-NP -level NN I-NP -to TO B-VP -defend VB I-VP -the DT B-NP -pound NN I-NP -, , O -economists NNS B-NP -and CC O -foreign JJ B-NP -exchange NN I-NP -market NN I-NP -analysts NNS I-NP -say VBP B-VP -. . O - -`` `` O -The DT B-NP -risks NNS I-NP -for IN B-PP -sterling NN B-NP -of IN B-PP -a DT B-NP -bad JJ I-NP -trade NN I-NP -figure NN I-NP -are VBP B-VP -very RB B-ADVP -heavily RB I-ADVP -on IN B-PP -the DT B-NP -down JJ I-NP -side NN I-NP -, , O -'' '' O -said VBD B-VP -Chris NNP B-NP -Dillow NNP I-NP -, , O -senior JJ B-NP -U.K. NNP I-NP -economist NN I-NP -at IN B-PP -Nomura NNP B-NP -Research NNP I-NP -Institute NNP I-NP -. . O - -`` `` O -If IN B-SBAR -there EX B-NP -is VBZ B-VP -another DT B-NP -bad JJ I-NP -trade NN I-NP -number NN I-NP -, , O -there EX B-NP -could MD B-VP -be VB I-VP -an DT B-NP -awful JJ I-NP -lot NN I-NP -of IN B-PP -pressure NN B-NP -, , O -'' '' O -noted VBD B-VP -Simon NNP B-NP -Briscoe NNP I-NP -, , O -U.K. NNP B-NP -economist NN I-NP -for IN B-PP -Midland NNP B-NP -Montagu NNP I-NP -, , O -a DT B-NP -unit NN I-NP -of IN B-PP -Midland NNP B-NP -Bank NNP I-NP -PLC NNP I-NP -. . O - -Forecasts NNS B-NP -for IN B-PP -the DT B-NP -trade NN I-NP -figures NNS I-NP -range VBP B-VP -widely RB B-ADVP -, , O -but CC O -few JJ B-NP -economists NNS I-NP -expect VBP B-VP -the DT B-NP -data NNS I-NP -to TO B-VP -show VB I-VP -a DT B-NP -very RB I-NP -marked VBN I-NP -improvement NN I-NP -from IN B-PP -the DT O -# # O -2 CD O -billion CD O --LRB- ( O -$ $ B-ADJP -3.2 CD O -billion CD O --RRB- ) O -deficit NN B-NP -in IN B-PP -the DT B-NP -current JJ I-NP -account NN I-NP -reported VBD B-VP -for IN B-PP -August NNP B-NP -. . O - -The DT B-NP -August NNP I-NP -deficit NN I-NP -and CC O -the DT B-NP -# # I-NP -2.2 CD I-NP -billion CD I-NP -gap NN I-NP -registered VBN B-VP -in IN B-PP -July NNP B-NP -are VBP B-VP -topped VBN I-VP -only RB B-ADVP -by IN B-PP -the DT B-NP -# # I-NP -2.3 CD I-NP -billion CD I-NP -deficit NN I-NP -of IN B-PP -October NNP B-NP -1988 CD I-NP -. . O - -Sanjay NNP B-NP -Joshi NNP I-NP -, , O -European JJ B-NP -economist NN I-NP -at IN B-PP -Baring NNP B-NP -Brothers NNPS I-NP -& CC I-NP -Co. NNP I-NP -, , O -said VBD B-VP -there EX B-NP -is VBZ B-VP -no DT B-NP -sign NN I-NP -that IN B-SBAR -Britain NNP B-NP -'s POS B-NP -manufacturing NN I-NP -industry NN I-NP -is VBZ B-VP -transforming VBG I-VP -itself PRP B-NP -to TO B-VP -boost VB I-VP -exports NNS B-NP -. . O - -At IN B-PP -the DT B-NP -same JJ I-NP -time NN I-NP -, , O -he PRP B-NP -remains VBZ B-VP -fairly RB B-ADJP -pessimistic JJ I-ADJP -about IN B-PP -the DT B-NP -outlook NN I-NP -for IN B-PP -imports NNS B-NP -, , O -given VBN B-PP -continued VBD B-NP -high JJ I-NP -consumer NN I-NP -and CC I-NP -capital NN I-NP -goods NNS I-NP -inflows NNS I-NP -. . O - -He PRP B-NP -reckons VBZ B-VP -the DT B-NP -current JJ I-NP -account NN I-NP -deficit NN I-NP -will MD B-VP -narrow VB I-VP -to TO B-PP -only RB B-NP -# # I-NP -1.8 CD I-NP -billion CD I-NP -in IN B-PP -September NNP B-NP -. . O - -However RB B-ADVP -, , O -Mr. NNP B-NP -Dillow NNP I-NP -said VBD B-VP -he PRP B-NP -believes VBZ B-VP -that IN B-SBAR -a DT B-NP -reduction NN I-NP -in IN B-PP -raw JJ B-NP -material NN I-NP -stockbuilding VBG I-NP -by IN B-PP -industry NN B-NP -could MD B-VP -lead VB I-VP -to TO B-PP -a DT B-NP -sharp JJ I-NP -drop NN I-NP -in IN B-PP -imports NNS B-NP -. . O - -Combined VBN B-PP -with IN B-PP -at IN B-ADVP -least JJS I-ADVP -some DT B-NP -rebound NN I-NP -in IN B-PP -exports NNS B-NP -after IN B-PP -August NNP B-NP -'s POS B-NP -unexpected JJ I-NP -decline NN I-NP -, , O -the DT B-NP -deficit NN I-NP -could MD B-VP -narrow VB I-VP -to TO B-PP -as RB B-NP -little JJ I-NP -as IN I-NP -# # I-NP -1.3 CD I-NP -billion CD I-NP -. . O - -Mr. NNP B-NP -Briscoe NNP I-NP -, , O -who WP B-NP -also RB B-ADVP -forecasts VBZ B-VP -a DT B-NP -# # I-NP -1.3 CD I-NP -billion CD I-NP -current JJ I-NP -account NN I-NP -gap NN I-NP -, , O -warns VBZ B-VP -that IN B-SBAR -even RB B-SBAR -if IN I-SBAR -the DT B-NP -trade NN I-NP -figures NNS I-NP -are VBP B-VP -bullish JJ B-ADJP -for IN B-PP -sterling NN B-NP -, , O -the DT B-NP -currency NN I-NP -wo MD B-VP -n't RB I-VP -advance VB I-VP -much JJ B-NP -because IN B-SBAR -investors NNS B-NP -will MD B-VP -want VB I-VP -to TO I-VP -see VB I-VP -further JJ B-NP -evidence NN I-NP -of IN B-PP -the DT B-NP -turnaround NN I-NP -before IN B-PP -adjusting VBG B-VP -positions NNS B-NP -. . O - -Nevertheless RB B-ADVP -, , O -he PRP B-NP -noted VBD B-VP -, , O -`` `` O -No DT B-NP -one PRP I-NP -will MD B-VP -want VB I-VP -to TO I-VP -go VB I-VP -into IN B-PP -the DT B-NP -trade NN I-NP -figures NNS I-NP -without IN B-PP -a DT B-NP -flat JJ I-NP -position NN I-NP -'' '' O -in IN B-PP -the DT B-NP -pound NN I-NP -. . O - -Meanwhile RB B-ADVP -, , O -overall JJ B-NP -evidence NN I-NP -on IN B-PP -the DT B-NP -economy NN I-NP -remains VBZ B-VP -fairly RB B-ADJP -clouded VBN I-ADJP -. . O - -In IN B-PP -his PRP$ B-NP -Mansion NNP I-NP -House NNP I-NP -speech NN I-NP -, , O -Mr. NNP B-NP -Lawson NNP I-NP -warned VBD B-VP -that IN B-SBAR -a DT B-NP -further JJ I-NP -slowdown NN I-NP -can MD B-VP -be VB I-VP -expected VBN I-VP -as IN B-SBAR -the DT B-NP -impact NN I-NP -of IN B-PP -the DT B-NP -last JJ I-NP -rise NN I-NP -in IN B-PP -interest NN B-NP -rates NNS I-NP -earlier RBR B-NP -this DT I-NP -month NN I-NP -takes VBZ B-VP -effect NN B-NP -. . O - -U.K. JJ B-NP -base NN I-NP -rates NNS I-NP -are VBP B-VP -at IN B-PP -their PRP$ B-NP -highest JJS I-NP -level NN I-NP -in IN B-PP -eight CD B-NP -years NNS I-NP -. . O - -But CC O -consumer NN B-NP -expenditure NN I-NP -data NNS I-NP -released VBD B-VP -Friday NNP B-NP -do VBP B-VP -n't RB I-VP -suggest VB I-VP -that IN B-SBAR -the DT B-NP -U.K. NNP I-NP -economy NN I-NP -is VBZ B-VP -slowing VBG I-VP -that DT B-ADVP -quickly RB I-ADVP -. . O - -The DT B-NP -figures NNS I-NP -show VBP B-VP -that DT O -spending NN B-NP -rose VBD B-VP -0.1 CD B-NP -% NN I-NP -in IN B-PP -the DT B-NP -third JJ I-NP -quarter NN I-NP -from IN B-PP -the DT B-NP -second JJ I-NP -quarter NN I-NP -and CC O -was VBD B-VP -up IN B-ADVP -3.8 CD B-NP -% NN I-NP -from IN B-PP -a DT B-NP -year NN I-NP -ago RB B-ADVP -. . O - -This DT B-NP -compares VBZ B-VP -with IN B-PP -a DT B-NP -1.6 CD I-NP -% NN I-NP -rise NN I-NP -in IN B-PP -the DT B-NP -second NN I-NP -from IN B-PP -the DT B-NP -first JJ I-NP -quarter NN I-NP -and CC O -a DT B-NP -5.4 CD I-NP -% NN I-NP -increase NN I-NP -from IN B-PP -the DT B-NP -second JJ I-NP -quarter NN I-NP -of IN B-PP -1988 CD B-NP -. . O - -Mr. NNP B-NP -Dillow NNP I-NP -said VBD B-VP -the DT B-NP -data NNS I-NP -show VBP B-VP -the DT B-NP -economy NN I-NP -`` `` O -is VBZ B-VP -still RB B-ADVP -quite RB B-ADJP -strong JJ I-ADJP -, , O -'' '' O -but CC O -suggestions NNS B-NP -that IN B-SBAR -much NN B-NP -of IN B-PP -the DT B-NP -spending NN I-NP -went VBD B-VP -on IN B-PP -services NNS B-NP -rather RB B-PP -than IN I-PP -consumer NN B-NP -goods NNS I-NP -should MD B-VP -reduce VB I-VP -fears NNS B-NP -of IN B-PP -more JJR B-NP -import NN I-NP -rises NNS I-NP -. . O - -Certainly RB B-ADVP -, , O -the DT B-NP -chancellor NN I-NP -has VBZ B-VP -made VBN I-VP -it PRP B-NP -clear JJ B-ADJP -that IN B-SBAR -he PRP B-NP -is VBZ B-VP -prepared VBN I-VP -to TO I-VP -increase VB I-VP -interest NN B-NP -rates NNS I-NP -again RB B-ADVP -if IN B-SBAR -necessary JJ B-ADJP -to TO B-VP -both DT I-VP -ensure VB I-VP -that IN B-SBAR -a DT B-NP -substantial JJ I-NP -slowdown NN I-NP -does VBZ B-VP -take VB I-VP -place NN B-NP -and CC O -that DT O -sterling NN B-NP -does VBZ B-VP -n't RB I-VP -decline VB I-VP -further JJ B-ADVP -. . O - -Thursday NNP B-NP -, , O -he PRP B-NP -reminded VBD B-VP -his PRP$ B-NP -audience NN I-NP -that IN B-SBAR -the DT B-NP -government NN I-NP -`` `` O -can MD B-VP -not RB I-VP -allow VB I-VP -the DT B-NP -necessary JJ I-NP -rigor NN I-NP -of IN B-PP -monetary JJ B-NP -policy NN I-NP -to TO B-VP -be VB I-VP -undermined VBN I-VP -by IN B-PP -exchange NN B-NP -rate NN I-NP -weakness NN I-NP -. . O -'' '' O - -Analysts NNS B-NP -agree VBP B-VP -there EX B-NP -is VBZ B-VP -little JJ B-NP -holding NN B-VP -sterling NN B-NP -firm NN B-ADJP -at IN B-PP -the DT B-NP -moment NN I-NP -other JJ B-ADJP -than IN B-PP -Mr. NNP B-NP -Lawson NNP I-NP -'s POS B-NP -promise NN I-NP -that IN B-SBAR -rates NNS B-NP -will MD B-VP -be VB I-VP -pushed VBN I-VP -higher JJR B-ADJP -if IN B-SBAR -necessary JJ B-ADJP -. . O - -And CC O -, , O -they PRP B-NP -warn VBP B-VP -, , O -any DT B-NP -further JJ I-NP -drop NN I-NP -in IN B-PP -the DT B-NP -government NN I-NP -'s POS B-NP -popularity NN I-NP -could MD B-VP -swiftly RB I-VP -make VB I-VP -this DT B-NP -promise NN I-NP -sound NN B-VP -hollow JJ B-ADJP -. . O - -Sterling NNP B-NP -was VBD B-VP -already RB I-VP -showing VBG I-VP -some DT B-NP -signs NNS I-NP -of IN B-PP -a DT B-NP -lack NN I-NP -of IN B-PP -confidence NN B-NP -in IN B-PP -Mr. NNP B-NP -Lawson NNP I-NP -'s POS B-NP -promise NN I-NP -Friday NNP B-NP -. . O - -In IN B-PP -European JJ B-NP -trading NN I-NP -it PRP B-NP -declined VBD B-VP -to TO B-PP -$ $ B-NP -1.5890 CD I-NP -and CC O -2.9495 CD B-NP -marks NNS I-NP -from IN B-PP -$ $ B-NP -1.5940 CD I-NP -and CC O -2.9429 CD B-NP -marks NNS I-NP -late JJ B-NP -Thursday NNP I-NP -. . O - -Economists NNS B-NP -suggested VBD B-VP -that IN B-SBAR -if IN B-SBAR -the DT B-NP -pound NN I-NP -falls VBZ B-VP -much JJ B-NP -below IN B-PP -2.90 CD B-NP -marks NNS I-NP -, , O -the DT B-NP -government NN I-NP -will MD B-VP -be VB I-VP -forced VBN I-VP -to TO I-VP -increase VB I-VP -rates NNS B-NP -to TO B-PP -16 CD B-NP -% NN I-NP -, , O -both DT B-VP -to TO I-VP -halt VB B-VP -any DT B-NP -further JJ I-NP -decline NN I-NP -and CC O -ensure VB B-VP -that IN B-SBAR -the DT B-NP -balance NN I-NP -of IN B-PP -monetary JJ B-NP -policy NN I-NP -remains VBZ B-VP -unchanged JJ B-ADJP -. . O - -Friday NNP B-NP -'s POS B-NP -Market NNP I-NP -Activity NN I-NP - -The DT B-NP -dollar NN I-NP -posted VBD B-VP -gains NNS B-NP -in IN B-PP -quiet JJ B-NP -trading NN I-NP -as IN B-SBAR -concerns NNS B-NP -about IN B-PP -equities NNS B-NP -abated VBN B-VP -. . O - -Foreign JJ B-NP -exchange NN I-NP -dealers NNS I-NP -said VBD B-VP -that IN B-SBAR -the DT B-NP -currency NN I-NP -market NN I-NP -has VBZ B-VP -begun VBN I-VP -to TO I-VP -distance VB I-VP -itself PRP B-NP -from IN B-PP -the DT B-NP -volatile JJ I-NP -stock NN I-NP -exchange NN I-NP -, , O -which WDT B-NP -has VBZ B-VP -preoccupied VBN I-VP -the DT B-NP -market NN I-NP -since IN B-PP -Oct. NNP B-NP -13 CD I-NP -, , O -when WRB B-ADVP -the DT B-NP -Dow NNP I-NP -Jones NNP I-NP -Industrial NNP I-NP -Average NNP I-NP -plunged VBD B-VP -more JJR B-NP -than IN I-NP -190 CD I-NP -points NNS I-NP -. . O - -Currency NN B-NP -analysts NNS I-NP -predict VBP B-VP -that IN B-SBAR -in IN B-PP -the DT B-NP -coming VBG I-NP -week NN I-NP -the DT B-NP -foreign JJ I-NP -exchange NN I-NP -market NN I-NP -will MD B-VP -shift VB I-VP -its PRP$ B-NP -focus NN I-NP -back RB B-ADVP -to TO B-PP -economic JJ B-NP -fundamentals NNS I-NP -, , O -keeping VBG B-VP -a DT B-NP -close NN I-NP -eye NN I-NP -out IN B-ADVP -for IN B-PP -any DT B-NP -signs NNS I-NP -of IN B-PP -monetary JJ B-NP -easing NN I-NP -by IN B-PP -U.S. NNP B-NP -Federal NNP I-NP -Reserve NNP I-NP -. . O - -Late RB B-ADVP -in IN B-PP -the DT B-NP -New NNP I-NP -York NNP I-NP -trading NN I-NP -day NN I-NP -, , O -the DT B-NP -dollar NN I-NP -was VBD B-VP -quoted VBN I-VP -at IN B-PP -1.8578 CD B-NP -marks NNS I-NP -, , O -up IN B-ADVP -from IN B-PP -1.8470 CD B-NP -marks NNS I-NP -late JJ B-NP -Thursday NNP I-NP -in IN B-PP -New NNP B-NP -York NNP I-NP -. . O - -The DT B-NP -U.S. NNP I-NP -currency NN I-NP -was VBD B-VP -also RB I-VP -changing VBG I-VP -hands NNS B-NP -at IN B-PP -142.43 CD B-NP -yen NN I-NP -, , O -up IN B-ADVP -from IN B-PP -141.70 CD B-NP -yen NN I-NP -in IN B-PP -New NNP B-NP -York NNP I-NP -late JJ B-NP -Thursday NNP I-NP -. . O - -In IN B-PP -Tokyo NNP B-NP -on IN B-PP -Monday NNP B-NP -, , O -the DT B-NP -U.S. NNP I-NP -currency NN I-NP -opened VBD B-VP -for IN B-PP -trading NN B-NP -at IN B-PP -141.95 CD B-NP -yen NN I-NP -, , O -up IN B-ADVP -from IN B-PP -Friday NNP B-NP -'s POS B-NP -Tokyo NNP I-NP diff --git a/paddle/trainer/tests/testPyDataWrapper.py b/paddle/trainer/tests/testPyDataWrapper.py index 2c29a274339747b78fbd6c27ae4070f0abbd4028..a76eeeacb91cdba305d2f71c6292f79e4b98dd73 100644 --- a/paddle/trainer/tests/testPyDataWrapper.py +++ b/paddle/trainer/tests/testPyDataWrapper.py @@ -20,28 +20,6 @@ import random import json import string - -@provider(slots=[ - SparseNonValueSlot(10), DenseSlot(2), SparseValueSlot(10), StringSlot(1), - IndexSlot(3) -]) -def processNonSequenceData(obj, filename): - with open(filename, "rb") as f: - for line in f: - slots_str = line.split(';') - index = int(slots_str[0]) - non_values = map(int, slots_str[1].split()[1:]) - dense = map(float, slots_str[2].split()[1:]) - strs = slots_str[4].strip().split(' ', 1)[1] - - def __values_mapper__(s): - s = s.split(":") - return int(s[0]), float(s[1]) - - values = map(__values_mapper__, slots_str[3].split()[1:]) - yield [non_values, dense, values, strs, index] - - SPARSE_ID_LIMIT = 1000 SPARSE_ID_COUNT = 100 SEQUENCE_LIMIT = 50 @@ -146,8 +124,6 @@ def processSubSeqAndGenerateData(obj, name): if __name__ == "__main__": - pvd = processNonSequenceData("test.txt") - print pvd.getNextBatch(100) pvd = processSeqAndGenerateData("_") print pvd.getNextBatch(100) pvd = processSubSeqAndGenerateData("_") diff --git a/paddle/trainer/tests/test_CompareTwoOpts.cpp b/paddle/trainer/tests/test_CompareTwoOpts.cpp deleted file mode 100644 index 383505f8131264844069d6f0fa13f4e0ac1f97af..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/test_CompareTwoOpts.cpp +++ /dev/null @@ -1,184 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include -#include -#include -#include - -#include "paddle/trainer/Trainer.h" - -using namespace paddle; // NOLINT -using namespace std; // NOLINT - -DECLARE_int32(gpu_id); - -DECLARE_bool(local); -DECLARE_bool(use_gpu); - -DECLARE_string(config); -DECLARE_string(nics); - -DEFINE_string(config_file_a, "", "config of one network to compare"); -DEFINE_string(config_file_b, "", "config of another network to compare"); -DEFINE_bool(need_high_accuracy, - true, - "whether need to run in double accuracy (recommended)"); -DEFINE_double( - max_diff_ratio, - 0.0f, - "max diff ratio allowed for outputs and parameters (value/gradient)"); - -struct ComData { - vector outArgs; - vector parameters; -}; - -void calcGradient(ComData& data, const string configFile) { - FLAGS_config = configFile; - - FLAGS_local = true; - FLAGS_use_gpu = false; - - FLAGS_nics = ""; - - *ThreadLocalRand::getSeed() = 0; - srand(0); - - Trainer trainer; - trainer.init(TrainerConfigHelper::createFromFlagConfig(), false); - - data.parameters = trainer.getGradientMachine()->getParameters(); - trainer.getDataProvider()->setSkipShuffle(); - trainer.train(); -} - -void checkBuffer(real* A, - const char* desA, - real* B, - const char* desB, - size_t len, - size_t width = 1) { - int nNum = 0; - for (size_t i = 0; i < len; ++i) { - real diff = fabs(A[i] - B[i]); - if (diff > 0.0f && - diff / std::max(fabs(A[i]), fabs(B[i])) > FLAGS_max_diff_ratio) { - nNum++; - LOG(INFO) << "Row: " << i / width << ", " << desA << " : " << A[i] - << " " << desB << " : " << B[i]; - } - } - EXPECT_EQ(0, nNum); - LOG(INFO) << "\n\n"; -} - -void compareGradient(ComData& comDataA, ComData& comDataB) { - vector outArgsA = comDataA.outArgs; - vector outArgsB = comDataB.outArgs; - - for (size_t i = 0; i < outArgsA.size(); ++i) { - CpuMatrix matA(outArgsA[i].value->getHeight(), - outArgsA[i].value->getWidth()); - CpuMatrix matB(outArgsB[i].value->getHeight(), - outArgsB[i].value->getWidth()); - - matA.copyFrom(*outArgsA[i].value); - matB.copyFrom(*outArgsB[i].value); - - LOG(INFO) << "\n--------------------------------" - << " Check Network Output_" << i << ":" - << " -------------------------------------\n"; - checkBuffer(matA.getData(), - "network A output", - matB.getData(), - "network B output", - matA.getElementCnt(), - matA.getWidth()); - } - - vector& parametersA = comDataA.parameters; - vector& parametersB = comDataB.parameters; - - LOG(INFO) << "\n\n--------------------------------" - << " Check Gradient Machine Parameters:" - << " -------------------------------------\n"; - for (size_t i = 0; i < parametersA.size(); ++i) { - ParameterPtr parameterA, parameterB; - parameterA = parametersA[i]; - parameterB = parametersB[i]; - - CpuVector paraA(parameterA->getSize()); - CpuVector paraB(parameterB->getSize()); - paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE)); - paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE)); - - LOG(INFO) << "\n\n----------- PARAMETER_VALUE: " << parameterA->getName() - << " ; size : " << paraA.getSize() << " ------------"; - checkBuffer(paraA.getData(), - "Network A", - paraB.getData(), - "Network B", - paraA.getSize()); - - CpuVector gradA(*parameterA->getBuf(PARAMETER_GRADIENT)); - CpuVector gradB(*parameterB->getBuf(PARAMETER_GRADIENT)); - - LOG(INFO) << "\n\n----------- PARAMETER_GRADIENT: " << parameterA->getName() - << " ; size : " << gradA.getSize() << " -----------"; - checkBuffer(gradA.getData(), - "Network A", - gradB.getData(), - "Network B", - gradA.getSize()); - } -} - -TEST(Trainer, create) { - ComData dataA; - calcGradient(dataA, FLAGS_config_file_a); - LOG(INFO) << "\n\ntraining of Network A is finished\n\n"; - - ComData dataB; - calcGradient(dataB, FLAGS_config_file_b); - LOG(INFO) << "\n\ntraining of the Network B is finished\n\n"; - - compareGradient(dataA, dataB); -} - -int main(int argc, char** argv) { - paddle::initMain(argc, argv); - testing::InitGoogleTest(&argc, argv); - initPython(argc, argv); - -#ifndef PADDLE_TYPE_DOUBLE - if (FLAGS_need_high_accuracy) { - LOG(INFO) << "skip test due to it's need high accuracy"; - return 0; - } - if (FLAGS_max_diff_ratio == 0.0f) { - FLAGS_max_diff_ratio = 2e-4; - LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio - << " in low accuracy mode"; - } -#else - if (FLAGS_max_diff_ratio == 0.0f) { - FLAGS_max_diff_ratio = 2e-7; - LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio - << " in high accuracy mode"; - } -#endif - int ret = RUN_ALL_TESTS(); - return ret; -} diff --git a/paddle/trainer/tests/test_PyDataProviderWrapper.cpp b/paddle/trainer/tests/test_PyDataProviderWrapper.cpp index 66ec65e340a435a7260028611828fb28845e0728..92dc8aa9ec5ce281d1950d84260c1b9555e686a7 100644 --- a/paddle/trainer/tests/test_PyDataProviderWrapper.cpp +++ b/paddle/trainer/tests/test_PyDataProviderWrapper.cpp @@ -25,45 +25,9 @@ limitations under the License. */ #include #include "picojson.h" -void checkEqual(const paddle::Argument& expect, const paddle::Argument& actual); void checkValue(std::vector& arguments, picojson::array& arr); const std::string kDir = "./trainer/tests/pydata_provider_wrapper_dir/"; -TEST(PyDataProviderWrapper, NoSequenceData) { - paddle::DataConfig conf; - conf.set_type("py"); - conf.set_load_data_module(std::string("testPyDataWrapper")); - conf.set_load_data_object(std::string("processNonSequenceData")); - conf.set_async_load_data(false); - conf.clear_files(); - conf.set_files(kDir + "test_pydata_provider_wrapper.list"); - paddle::DataProviderPtr provider(paddle::DataProvider::create(conf, false)); - provider->setSkipShuffle(); - provider->reset(); - paddle::DataBatch batchFromPy; - provider->getNextBatch(100, &batchFromPy); - - paddle::DataConfig conf2; - conf2.set_type("proto"); - conf2.set_async_load_data(false); - conf2.clear_files(); - conf2.set_files(kDir + "test_pydata_provider_wrapper.protolist"); - - provider.reset(paddle::DataProvider::create(conf2, false)); - provider->setSkipShuffle(); - provider->reset(); - paddle::DataBatch batchFromProto; - provider->getNextBatch(100, &batchFromProto); - - std::vector& pyArguments = batchFromPy.getStreams(); - std::vector& protoArguments = batchFromProto.getStreams(); - EXPECT_EQ(pyArguments.size(), protoArguments.size()); - - for (size_t i = 0; i < pyArguments.size(); ++i) { - checkEqual(protoArguments[i], pyArguments[i]); - } -} - TEST(PyDataProviderWrapper, SequenceData) { paddle::DataConfig conf; conf.set_type("py"); @@ -148,66 +112,6 @@ int main(int argc, char** argv) { return RUN_ALL_TESTS(); } -void checkEqual(const paddle::Argument& expect, - const paddle::Argument& actual) { - if (expect.value) { - EXPECT_TRUE(actual.value != nullptr); - paddle::Matrix* e = expect.value.get(); - paddle::Matrix* a = actual.value.get(); - EXPECT_EQ(e->getWidth(), a->getWidth()); - EXPECT_EQ(e->getHeight(), a->getHeight()); - if (dynamic_cast(e)) { - paddle::CpuSparseMatrix* se = dynamic_cast(e); - paddle::CpuSparseMatrix* sa = dynamic_cast(a); - EXPECT_EQ(se->getFormat(), sa->getFormat()); - EXPECT_EQ(se->getElementCnt(), sa->getElementCnt()); - size_t rowSize = se->getFormat() == paddle::SPARSE_CSC - ? se->getElementCnt() - : se->getHeight() + 1; - size_t colSize = se->getFormat() == paddle::SPARSE_CSC - ? se->getWidth() + 1 - : se->getElementCnt(); - for (size_t i = 0; i < rowSize; ++i) { - EXPECT_EQ(se->getRows()[i], sa->getRows()[i]); - } - for (size_t i = 0; i < colSize; ++i) { - EXPECT_EQ(se->getCols()[i], sa->getCols()[i]); - } - if (se->getValueType() == paddle::FLOAT_VALUE) { - EXPECT_EQ(paddle::FLOAT_VALUE, sa->getValueType()); - for (size_t i = 0; i < se->getElementCnt(); ++i) { - EXPECT_EQ(se->getValue()[i], sa->getValue()[i]); - } - } - } else if (dynamic_cast(e)) { - EXPECT_EQ(e->getElementCnt(), a->getElementCnt()); - for (size_t i = 0; i < e->getElementCnt(); ++i) { - EXPECT_EQ(e->getData()[i], a->getData()[i]); - } - } - } - - if (expect.ids) { - EXPECT_TRUE(actual.ids != nullptr); - paddle::VectorT* e = expect.ids.get(); - paddle::VectorT* a = actual.ids.get(); - EXPECT_EQ(e->getSize(), a->getSize()); - for (size_t i = 0; i < e->getSize(); ++i) { - EXPECT_EQ(e->getData()[i], a->getData()[i]); - } - } - - if (expect.strs) { - EXPECT_TRUE(actual.strs != nullptr); - std::vector* e = expect.strs.get(); - std::vector* a = actual.strs.get(); - EXPECT_EQ(e->size(), a->size()); - for (size_t i = 0; i < e->size(); ++i) { - EXPECT_EQ((*e)[i], (*a)[i]); - } - } -} - void checkValue(std::vector& arguments, picojson::array& arr) { // CHECK SLOT 0, Sparse Value. diff --git a/paddle/trainer/tests/test_Trainer.cpp b/paddle/trainer/tests/test_Trainer.cpp index 425b3d10a38086463784ba2a18db1293efe96e92..394038cf730f13cb957fbbc5ae0e5719b8fe9db6 100644 --- a/paddle/trainer/tests/test_Trainer.cpp +++ b/paddle/trainer/tests/test_Trainer.cpp @@ -24,7 +24,6 @@ using namespace std; // NOLINT static const string& configFile1 = "trainer/tests/sample_trainer_config.conf"; static const string& configFile2 = "trainer/tests/sample_trainer_config_hsigmoid.conf"; -static const string& configFile3 = "trainer/tests/chunking.conf"; static const string& configFile4 = "trainer/tests/sample_trainer_config_parallel.conf"; @@ -95,13 +94,6 @@ TEST(checkGradient, multi) { TEST(checkGradient, hsigmoid) { checkGradientTest(configFile2, false, false); } -TEST(checkGradient, chunk) { - checkGradientTest(configFile3, false, false); -#ifdef PADDLE_WITH_CUDA - checkGradientTest(configFile3, true, true); -#endif -} - TEST(checkGradient, non_parallel) { checkGradientTest(configFile4, false, false); } diff --git a/paddle/trainer/tests/test_config.conf b/paddle/trainer/tests/test_config.conf index d1bb9b877fe26702948586dbe90b9ff0ee27c1d6..2f86aaa75316fa2a5a28edfef31c01e15a44b3d0 100644 --- a/paddle/trainer/tests/test_config.conf +++ b/paddle/trainer/tests/test_config.conf @@ -15,12 +15,7 @@ from paddle.trainer_config_helpers import * -TrainData(ProtoData( - files = "dummy_list", - constant_slots = [1.0], - async_load_data = True)) - -TestData(SimpleData( +TrainData(SimpleData( files = "trainer/tests/sample_filelist.txt", feat_dim = 3, context_len = 0, diff --git a/paddle/trainer/tests/test_files.txt b/paddle/trainer/tests/test_files.txt deleted file mode 100644 index 49002677a848c499610d5e869ce61efb2105e3c8..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/test_files.txt +++ /dev/null @@ -1 +0,0 @@ -trainer/tests/test_proto.bin diff --git a/paddle/trainer/tests/train.list b/paddle/trainer/tests/train.list deleted file mode 100644 index f41e8e8893de6068deb43b08ec6a3bcdd4039326..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/train.list +++ /dev/null @@ -1 +0,0 @@ -trainer/tests/data_bin_part diff --git a/paddle/trainer/tests/train.txt b/paddle/trainer/tests/train.txt deleted file mode 100644 index 2313aee987ba71ba7ea779d3cf7705478e7fbde2..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/train.txt +++ /dev/null @@ -1,5000 +0,0 @@ -Confidence NN B-NP -in IN B-PP -the DT B-NP -pound NN I-NP -is VBZ B-VP -widely RB I-VP -expected VBN I-VP -to TO I-VP -take VB I-VP -another DT B-NP -sharp JJ I-NP -dive NN I-NP -if IN B-SBAR -trade NN B-NP -figures NNS I-NP -for IN B-PP -September NNP B-NP -, , O -due JJ B-ADJP -for IN B-PP -release NN B-NP -tomorrow NN B-NP -, , O -fail VB B-VP -to TO I-VP -show VB I-VP -a DT B-NP -substantial JJ I-NP -improvement NN I-NP -from IN B-PP -July NNP B-NP -and CC I-NP -August NNP I-NP -'s POS B-NP -near-record JJ I-NP -deficits NNS I-NP -. . O - -Chancellor NNP O -of IN B-PP -the DT B-NP -Exchequer NNP I-NP -Nigel NNP B-NP -Lawson NNP I-NP -'s POS B-NP -restated VBN I-NP -commitment NN I-NP -to TO B-PP -a DT B-NP -firm NN I-NP -monetary JJ I-NP -policy NN I-NP -has VBZ B-VP -helped VBN I-VP -to TO I-VP -prevent VB I-VP -a DT B-NP -freefall NN I-NP -in IN B-PP -sterling NN B-NP -over IN B-PP -the DT B-NP -past JJ I-NP -week NN I-NP -. . O - -But CC O -analysts NNS B-NP -reckon VBP B-VP -underlying VBG B-NP -support NN I-NP -for IN B-PP -sterling NN B-NP -has VBZ B-VP -been VBN I-VP -eroded VBN I-VP -by IN B-PP -the DT B-NP -chancellor NN I-NP -'s POS B-NP -failure NN I-NP -to TO B-VP -announce VB I-VP -any DT B-NP -new JJ I-NP -policy NN I-NP -measures NNS I-NP -in IN B-PP -his PRP$ B-NP -Mansion NNP I-NP -House NNP I-NP -speech NN I-NP -last JJ B-NP -Thursday NNP I-NP -. . O - -This DT B-NP -has VBZ B-VP -increased VBN I-VP -the DT B-NP -risk NN I-NP -of IN B-PP -the DT B-NP -government NN I-NP -being VBG B-VP -forced VBN I-VP -to TO I-VP -increase VB I-VP -base NN B-NP -rates NNS I-NP -to TO B-PP -16 CD B-NP -% NN I-NP -from IN B-PP -their PRP$ B-NP -current JJ I-NP -15 CD I-NP -% NN I-NP -level NN I-NP -to TO B-VP -defend VB I-VP -the DT B-NP -pound NN I-NP -, , O -economists NNS B-NP -and CC O -foreign JJ B-NP -exchange NN I-NP -market NN I-NP -analysts NNS I-NP -say VBP B-VP -. . O - -`` `` O -The DT B-NP -risks NNS I-NP -for IN B-PP -sterling NN B-NP -of IN B-PP -a DT B-NP -bad JJ I-NP -trade NN I-NP -figure NN I-NP -are VBP B-VP -very RB B-ADVP -heavily RB I-ADVP -on IN B-PP -the DT B-NP -down JJ I-NP -side NN I-NP -, , O -'' '' O -said VBD B-VP -Chris NNP B-NP -Dillow NNP I-NP -, , O -senior JJ B-NP -U.K. NNP I-NP -economist NN I-NP -at IN B-PP -Nomura NNP B-NP -Research NNP I-NP -Institute NNP I-NP -. . O - -`` `` O -If IN B-SBAR -there EX B-NP -is VBZ B-VP -another DT B-NP -bad JJ I-NP -trade NN I-NP -number NN I-NP -, , O -there EX B-NP -could MD B-VP -be VB I-VP -an DT B-NP -awful JJ I-NP -lot NN I-NP -of IN B-PP -pressure NN B-NP -, , O -'' '' O -noted VBD B-VP -Simon NNP B-NP -Briscoe NNP I-NP -, , O -U.K. NNP B-NP -economist NN I-NP -for IN B-PP -Midland NNP B-NP -Montagu NNP I-NP -, , O -a DT B-NP -unit NN I-NP -of IN B-PP -Midland NNP B-NP -Bank NNP I-NP -PLC NNP I-NP -. . O - -Forecasts NNS B-NP -for IN B-PP -the DT B-NP -trade NN I-NP -figures NNS I-NP -range VBP B-VP -widely RB B-ADVP -, , O -but CC O -few JJ B-NP -economists NNS I-NP -expect VBP B-VP -the DT B-NP -data NNS I-NP -to TO B-VP -show VB I-VP -a DT B-NP -very RB I-NP -marked VBN I-NP -improvement NN I-NP -from IN B-PP -the DT O -# # O -2 CD O -billion CD O --LRB- ( O -$ $ B-ADJP -3.2 CD O -billion CD O --RRB- ) O -deficit NN B-NP -in IN B-PP -the DT B-NP -current JJ I-NP -account NN I-NP -reported VBD B-VP -for IN B-PP -August NNP B-NP -. . O - -The DT B-NP -August NNP I-NP -deficit NN I-NP -and CC O -the DT B-NP -# # I-NP -2.2 CD I-NP -billion CD I-NP -gap NN I-NP -registered VBN B-VP -in IN B-PP -July NNP B-NP -are VBP B-VP -topped VBN I-VP -only RB B-ADVP -by IN B-PP -the DT B-NP -# # I-NP -2.3 CD I-NP -billion CD I-NP -deficit NN I-NP -of IN B-PP -October NNP B-NP -1988 CD I-NP -. . O - -Sanjay NNP B-NP -Joshi NNP I-NP -, , O -European JJ B-NP -economist NN I-NP -at IN B-PP -Baring NNP B-NP -Brothers NNPS I-NP -& CC I-NP -Co. NNP I-NP -, , O -said VBD B-VP -there EX B-NP -is VBZ B-VP -no DT B-NP -sign NN I-NP -that IN B-SBAR -Britain NNP B-NP -'s POS B-NP -manufacturing NN I-NP -industry NN I-NP -is VBZ B-VP -transforming VBG I-VP -itself PRP B-NP -to TO B-VP -boost VB I-VP -exports NNS B-NP -. . O - -At IN B-PP -the DT B-NP -same JJ I-NP -time NN I-NP -, , O -he PRP B-NP -remains VBZ B-VP -fairly RB B-ADJP -pessimistic JJ I-ADJP -about IN B-PP -the DT B-NP -outlook NN I-NP -for IN B-PP -imports NNS B-NP -, , O -given VBN B-PP -continued VBD B-NP -high JJ I-NP -consumer NN I-NP -and CC I-NP -capital NN I-NP -goods NNS I-NP -inflows NNS I-NP -. . O - -He PRP B-NP -reckons VBZ B-VP -the DT B-NP -current JJ I-NP -account NN I-NP -deficit NN I-NP -will MD B-VP -narrow VB I-VP -to TO B-PP -only RB B-NP -# # I-NP -1.8 CD I-NP -billion CD I-NP -in IN B-PP -September NNP B-NP -. . O - -However RB B-ADVP -, , O -Mr. NNP B-NP -Dillow NNP I-NP -said VBD B-VP -he PRP B-NP -believes VBZ B-VP -that IN B-SBAR -a DT B-NP -reduction NN I-NP -in IN B-PP -raw JJ B-NP -material NN I-NP -stockbuilding VBG I-NP -by IN B-PP -industry NN B-NP -could MD B-VP -lead VB I-VP -to TO B-PP -a DT B-NP -sharp JJ I-NP -drop NN I-NP -in IN B-PP -imports NNS B-NP -. . O - -Combined VBN B-PP -with IN B-PP -at IN B-ADVP -least JJS I-ADVP -some DT B-NP -rebound NN I-NP -in IN B-PP -exports NNS B-NP -after IN B-PP -August NNP B-NP -'s POS B-NP -unexpected JJ I-NP -decline NN I-NP -, , O -the DT B-NP -deficit NN I-NP -could MD B-VP -narrow VB I-VP -to TO B-PP -as RB B-NP -little JJ I-NP -as IN I-NP -# # I-NP -1.3 CD I-NP -billion CD I-NP -. . O - -Mr. NNP B-NP -Briscoe NNP I-NP -, , O -who WP B-NP -also RB B-ADVP -forecasts VBZ B-VP -a DT B-NP -# # I-NP -1.3 CD I-NP -billion CD I-NP -current JJ I-NP -account NN I-NP -gap NN I-NP -, , O -warns VBZ B-VP -that IN B-SBAR -even RB B-SBAR -if IN I-SBAR -the DT B-NP -trade NN I-NP -figures NNS I-NP -are VBP B-VP -bullish JJ B-ADJP -for IN B-PP -sterling NN B-NP -, , O -the DT B-NP -currency NN I-NP -wo MD B-VP -n't RB I-VP -advance VB I-VP -much JJ B-NP -because IN B-SBAR -investors NNS B-NP -will MD B-VP -want VB I-VP -to TO I-VP -see VB I-VP -further JJ B-NP -evidence NN I-NP -of IN B-PP -the DT B-NP -turnaround NN I-NP -before IN B-PP -adjusting VBG B-VP -positions NNS B-NP -. . O - -Nevertheless RB B-ADVP -, , O -he PRP B-NP -noted VBD B-VP -, , O -`` `` O -No DT B-NP -one PRP I-NP -will MD B-VP -want VB I-VP -to TO I-VP -go VB I-VP -into IN B-PP -the DT B-NP -trade NN I-NP -figures NNS I-NP -without IN B-PP -a DT B-NP -flat JJ I-NP -position NN I-NP -'' '' O -in IN B-PP -the DT B-NP -pound NN I-NP -. . O - -Meanwhile RB B-ADVP -, , O -overall JJ B-NP -evidence NN I-NP -on IN B-PP -the DT B-NP -economy NN I-NP -remains VBZ B-VP -fairly RB B-ADJP -clouded VBN I-ADJP -. . O - -In IN B-PP -his PRP$ B-NP -Mansion NNP I-NP -House NNP I-NP -speech NN I-NP -, , O -Mr. NNP B-NP -Lawson NNP I-NP -warned VBD B-VP -that IN B-SBAR -a DT B-NP -further JJ I-NP -slowdown NN I-NP -can MD B-VP -be VB I-VP -expected VBN I-VP -as IN B-SBAR -the DT B-NP -impact NN I-NP -of IN B-PP -the DT B-NP -last JJ I-NP -rise NN I-NP -in IN B-PP -interest NN B-NP -rates NNS I-NP -earlier RBR B-NP -this DT I-NP -month NN I-NP -takes VBZ B-VP -effect NN B-NP -. . O - -U.K. JJ B-NP -base NN I-NP -rates NNS I-NP -are VBP B-VP -at IN B-PP -their PRP$ B-NP -highest JJS I-NP -level NN I-NP -in IN B-PP -eight CD B-NP -years NNS I-NP -. . O - -But CC O -consumer NN B-NP -expenditure NN I-NP -data NNS I-NP -released VBD B-VP -Friday NNP B-NP -do VBP B-VP -n't RB I-VP -suggest VB I-VP -that IN B-SBAR -the DT B-NP -U.K. NNP I-NP -economy NN I-NP -is VBZ B-VP -slowing VBG I-VP -that DT B-ADVP -quickly RB I-ADVP -. . O - -The DT B-NP -figures NNS I-NP -show VBP B-VP -that DT O -spending NN B-NP -rose VBD B-VP -0.1 CD B-NP -% NN I-NP -in IN B-PP -the DT B-NP -third JJ I-NP -quarter NN I-NP -from IN B-PP -the DT B-NP -second JJ I-NP -quarter NN I-NP -and CC O -was VBD B-VP -up IN B-ADVP -3.8 CD B-NP -% NN I-NP -from IN B-PP -a DT B-NP -year NN I-NP -ago RB B-ADVP -. . O - -This DT B-NP -compares VBZ B-VP -with IN B-PP -a DT B-NP -1.6 CD I-NP -% NN I-NP -rise NN I-NP -in IN B-PP -the DT B-NP -second NN I-NP -from IN B-PP -the DT B-NP -first JJ I-NP -quarter NN I-NP -and CC O -a DT B-NP -5.4 CD I-NP -% NN I-NP -increase NN I-NP -from IN B-PP -the DT B-NP -second JJ I-NP -quarter NN I-NP -of IN B-PP -1988 CD B-NP -. . O - -Mr. NNP B-NP -Dillow NNP I-NP -said VBD B-VP -the DT B-NP -data NNS I-NP -show VBP B-VP -the DT B-NP -economy NN I-NP -`` `` O -is VBZ B-VP -still RB B-ADVP -quite RB B-ADJP -strong JJ I-ADJP -, , O -'' '' O -but CC O -suggestions NNS B-NP -that IN B-SBAR -much NN B-NP -of IN B-PP -the DT B-NP -spending NN I-NP -went VBD B-VP -on IN B-PP -services NNS B-NP -rather RB B-PP -than IN I-PP -consumer NN B-NP -goods NNS I-NP -should MD B-VP -reduce VB I-VP -fears NNS B-NP -of IN B-PP -more JJR B-NP -import NN I-NP -rises NNS I-NP -. . O - -Certainly RB B-ADVP -, , O -the DT B-NP -chancellor NN I-NP -has VBZ B-VP -made VBN I-VP -it PRP B-NP -clear JJ B-ADJP -that IN B-SBAR -he PRP B-NP -is VBZ B-VP -prepared VBN I-VP -to TO I-VP -increase VB I-VP -interest NN B-NP -rates NNS I-NP -again RB B-ADVP -if IN B-SBAR -necessary JJ B-ADJP -to TO B-VP -both DT I-VP -ensure VB I-VP -that IN B-SBAR -a DT B-NP -substantial JJ I-NP -slowdown NN I-NP -does VBZ B-VP -take VB I-VP -place NN B-NP -and CC O -that DT O -sterling NN B-NP -does VBZ B-VP -n't RB I-VP -decline VB I-VP -further JJ B-ADVP -. . O - -Thursday NNP B-NP -, , O -he PRP B-NP -reminded VBD B-VP -his PRP$ B-NP -audience NN I-NP -that IN B-SBAR -the DT B-NP -government NN I-NP -`` `` O -can MD B-VP -not RB I-VP -allow VB I-VP -the DT B-NP -necessary JJ I-NP -rigor NN I-NP -of IN B-PP -monetary JJ B-NP -policy NN I-NP -to TO B-VP -be VB I-VP -undermined VBN I-VP -by IN B-PP -exchange NN B-NP -rate NN I-NP -weakness NN I-NP -. . O -'' '' O - -Analysts NNS B-NP -agree VBP B-VP -there EX B-NP -is VBZ B-VP -little JJ B-NP -holding NN B-VP -sterling NN B-NP -firm NN B-ADJP -at IN B-PP -the DT B-NP -moment NN I-NP -other JJ B-ADJP -than IN B-PP -Mr. NNP B-NP -Lawson NNP I-NP -'s POS B-NP -promise NN I-NP -that IN B-SBAR -rates NNS B-NP -will MD B-VP -be VB I-VP -pushed VBN I-VP -higher JJR B-ADJP -if IN B-SBAR -necessary JJ B-ADJP -. . O - -And CC O -, , O -they PRP B-NP -warn VBP B-VP -, , O -any DT B-NP -further JJ I-NP -drop NN I-NP -in IN B-PP -the DT B-NP -government NN I-NP -'s POS B-NP -popularity NN I-NP -could MD B-VP -swiftly RB I-VP -make VB I-VP -this DT B-NP -promise NN I-NP -sound NN B-VP -hollow JJ B-ADJP -. . O - -Sterling NNP B-NP -was VBD B-VP -already RB I-VP -showing VBG I-VP -some DT B-NP -signs NNS I-NP -of IN B-PP -a DT B-NP -lack NN I-NP -of IN B-PP -confidence NN B-NP -in IN B-PP -Mr. NNP B-NP -Lawson NNP I-NP -'s POS B-NP -promise NN I-NP -Friday NNP B-NP -. . O - -In IN B-PP -European JJ B-NP -trading NN I-NP -it PRP B-NP -declined VBD B-VP -to TO B-PP -$ $ B-NP -1.5890 CD I-NP -and CC O -2.9495 CD B-NP -marks NNS I-NP -from IN B-PP -$ $ B-NP -1.5940 CD I-NP -and CC O -2.9429 CD B-NP -marks NNS I-NP -late JJ B-NP -Thursday NNP I-NP -. . O - -Economists NNS B-NP -suggested VBD B-VP -that IN B-SBAR -if IN B-SBAR -the DT B-NP -pound NN I-NP -falls VBZ B-VP -much JJ B-NP -below IN B-PP -2.90 CD B-NP -marks NNS I-NP -, , O -the DT B-NP -government NN I-NP -will MD B-VP -be VB I-VP -forced VBN I-VP -to TO I-VP -increase VB I-VP -rates NNS B-NP -to TO B-PP -16 CD B-NP -% NN I-NP -, , O -both DT B-VP -to TO I-VP -halt VB B-VP -any DT B-NP -further JJ I-NP -decline NN I-NP -and CC O -ensure VB B-VP -that IN B-SBAR -the DT B-NP -balance NN I-NP -of IN B-PP -monetary JJ B-NP -policy NN I-NP -remains VBZ B-VP -unchanged JJ B-ADJP -. . O - -Friday NNP B-NP -'s POS B-NP -Market NNP I-NP -Activity NN I-NP - -The DT B-NP -dollar NN I-NP -posted VBD B-VP -gains NNS B-NP -in IN B-PP -quiet JJ B-NP -trading NN I-NP -as IN B-SBAR -concerns NNS B-NP -about IN B-PP -equities NNS B-NP -abated VBN B-VP -. . O - -Foreign JJ B-NP -exchange NN I-NP -dealers NNS I-NP -said VBD B-VP -that IN B-SBAR -the DT B-NP -currency NN I-NP -market NN I-NP -has VBZ B-VP -begun VBN I-VP -to TO I-VP -distance VB I-VP -itself PRP B-NP -from IN B-PP -the DT B-NP -volatile JJ I-NP -stock NN I-NP -exchange NN I-NP -, , O -which WDT B-NP -has VBZ B-VP -preoccupied VBN I-VP -the DT B-NP -market NN I-NP -since IN B-PP -Oct. NNP B-NP -13 CD I-NP -, , O -when WRB B-ADVP -the DT B-NP -Dow NNP I-NP -Jones NNP I-NP -Industrial NNP I-NP -Average NNP I-NP -plunged VBD B-VP -more JJR B-NP -than IN I-NP -190 CD I-NP -points NNS I-NP -. . O - -Currency NN B-NP -analysts NNS I-NP -predict VBP B-VP -that IN B-SBAR -in IN B-PP -the DT B-NP -coming VBG I-NP -week NN I-NP -the DT B-NP -foreign JJ I-NP -exchange NN I-NP -market NN I-NP -will MD B-VP -shift VB I-VP -its PRP$ B-NP -focus NN I-NP -back RB B-ADVP -to TO B-PP -economic JJ B-NP -fundamentals NNS I-NP -, , O -keeping VBG B-VP -a DT B-NP -close NN I-NP -eye NN I-NP -out IN B-ADVP -for IN B-PP -any DT B-NP -signs NNS I-NP -of IN B-PP -monetary JJ B-NP -easing NN I-NP -by IN B-PP -U.S. NNP B-NP -Federal NNP I-NP -Reserve NNP I-NP -. . O - -Late RB B-ADVP -in IN B-PP -the DT B-NP -New NNP I-NP -York NNP I-NP -trading NN I-NP -day NN I-NP -, , O -the DT B-NP -dollar NN I-NP -was VBD B-VP -quoted VBN I-VP -at IN B-PP -1.8578 CD B-NP -marks NNS I-NP -, , O -up IN B-ADVP -from IN B-PP -1.8470 CD B-NP -marks NNS I-NP -late JJ B-NP -Thursday NNP I-NP -in IN B-PP -New NNP B-NP -York NNP I-NP -. . O - -The DT B-NP -U.S. NNP I-NP -currency NN I-NP -was VBD B-VP -also RB I-VP -changing VBG I-VP -hands NNS B-NP -at IN B-PP -142.43 CD B-NP -yen NN I-NP -, , O -up IN B-ADVP -from IN B-PP -141.70 CD B-NP -yen NN I-NP -in IN B-PP -New NNP B-NP -York NNP I-NP -late JJ B-NP -Thursday NNP I-NP -. . O - -In IN B-PP -Tokyo NNP B-NP -on IN B-PP -Monday NNP B-NP -, , O -the DT B-NP -U.S. NNP I-NP -currency NN I-NP -opened VBD B-VP -for IN B-PP -trading NN B-NP -at IN B-PP -141.95 CD B-NP -yen NN I-NP -, , O -up IN B-ADVP -from IN B-PP -Friday NNP B-NP -'s POS B-NP -Tokyo NNP I-NP -close NN I-NP -of IN B-PP -141.35 CD B-NP -yen NN I-NP -. . O - -On IN B-PP -the DT B-NP -Commodity NNP I-NP -Exchange NNP I-NP -in IN B-PP -New NNP B-NP -York NNP I-NP -, , O -gold NN B-NP -for IN B-PP -current JJ B-NP -delivery NN I-NP -settled VBD B-VP -at IN B-PP -$ $ B-NP -367.30 CD I-NP -an DT B-NP -ounce NN I-NP -, , O -up IN B-ADVP -20 CD B-NP -cents NNS I-NP -. . O - -Estimated VBN B-NP -volume NN I-NP -was VBD B-VP -a DT B-NP -light NN I-NP -2.4 CD I-NP -million CD I-NP -ounces NNS I-NP -. . O - -In IN B-PP -early JJ B-NP -trading NN I-NP -in IN B-PP -Hong NNP B-NP -Kong NNP I-NP -Monday NNP B-NP -, , O -gold NN B-NP -was VBD B-VP -quoted VBN I-VP -at IN B-PP -$ $ B-NP -366.50 CD I-NP -an DT B-NP -ounce NN I-NP -. . O - -East NNP B-NP -Rock NNP I-NP -Partners NNP I-NP -Limited NNP I-NP -Partnership NNP I-NP -said VBD B-VP -it PRP B-NP -proposed VBD B-VP -to TO I-VP -acquire VB I-VP -A.P. NNP B-NP -Green NNP I-NP -Industries NNP I-NP -Inc. NNP I-NP -for IN B-PP -$ $ B-NP -40 CD I-NP -a DT B-NP -share NN I-NP -. . O - -In IN B-PP -an DT B-NP -Oct. NNP I-NP -19 CD I-NP -letter NN I-NP -to TO B-PP -A.P. NNP B-NP -Green NNP I-NP -'s POS B-NP -board NN I-NP -, , O -East NNP B-NP -Rock NNP I-NP -said VBD B-VP -the DT B-NP -offer NN I-NP -is VBZ B-VP -subject NN B-ADJP -to TO B-PP -the DT B-NP -signing NN I-NP -of IN B-PP -a DT B-NP -merger NN I-NP -agreement NN I-NP -by IN B-PP -no DT B-ADVP -later RB I-ADVP -than IN B-PP -Oct. NNP B-NP -31 CD I-NP -. . O - -The DT B-NP -letter NN I-NP -, , O -attached VBN B-VP -to TO B-PP -a DT B-NP -filing NN I-NP -with IN B-PP -the DT B-NP -Securities NNP I-NP -and CC I-NP -Exchange NNP I-NP -Commission NNP I-NP -, , O -said VBD B-VP -the DT B-NP -approval NN I-NP -is VBZ B-VP -also RB B-ADVP -contingent JJ B-ADJP -upon IN B-PP -obtaining VBG B-VP -satisfactory JJ B-NP -financing NN I-NP -. . O - -An DT B-NP -A.P. NNP I-NP -Green NNP I-NP -official NN I-NP -declined VBD B-VP -to TO I-VP -comment VB I-VP -on IN B-PP -the DT B-NP -filing NN I-NP -. . O - -The DT B-NP -$ $ I-NP -40-a-share JJ I-NP -proposal NN I-NP -values VBZ B-VP -the DT B-NP -company NN I-NP -at IN B-PP -about RB B-NP -$ $ I-NP -106.6 CD I-NP -million CD I-NP -. . O - -A.P. NNP B-NP -Green NNP I-NP -currently RB B-ADVP -has VBZ B-VP -2,664,098 CD B-NP -shares NNS I-NP -outstanding JJ B-ADJP -. . O - -Its PRP$ B-NP -stock NN I-NP -closed VBD B-VP -at IN B-PP -$ $ B-NP -38 CD I-NP -, , O -up IN B-ADVP -$ $ B-NP -1.875 CD I-NP -, , O -in IN B-PP -national JJ B-NP -over-the-counter JJ I-NP -trading NN I-NP -. . O - -The DT B-NP -company NN I-NP -is VBZ B-VP -a DT B-NP -Mexico NNP I-NP -, , I-NP -Mo. NNP I-NP -, , I-NP -maker NN I-NP -of IN B-PP -refractory JJ B-NP -products NNS I-NP -. . O - -East NNP B-NP -Rock NNP I-NP -also RB B-ADVP -said VBD B-VP -in IN B-PP -the DT B-NP -filing NN I-NP -that IN B-SBAR -it PRP B-NP -boosted VBD B-VP -its PRP$ B-NP -stake NN I-NP -in IN B-PP -A.P. NNP B-NP -Green NNP I-NP -to TO B-PP -8.7 CD B-NP -% NN I-NP -. . O - -It PRP B-NP -now RB B-ADVP -holds VBZ B-VP -233,000 CD B-NP -A.P. NNP I-NP -Green NNP I-NP -common JJ I-NP -shares NNS I-NP -, , O -including VBG B-PP -30,000 CD B-NP -shares NNS I-NP -bought VBD B-VP -last JJ B-NP -Thursday NNP I-NP -for IN B-PP -$ $ B-NP -35.50 CD I-NP -to TO I-NP -$ $ I-NP -36.50 CD I-NP -a DT B-NP -share NN I-NP -. . O - -New NNP B-NP -York-based JJ I-NP -John NNP I-NP -Kuhns NNP I-NP -and CC I-NP -Robert NNP I-NP -MacDonald NNP I-NP -control NN B-VP -East NNP B-NP -Rock NNP I-NP -Partners NNP I-NP -Inc. NNP I-NP -, , O -the DT B-NP -sole JJ I-NP -general JJ I-NP -partner NN I-NP -of IN B-PP -East NNP B-NP -Rock NNP I-NP -Partners NNP I-NP -L.P NNP I-NP -. . O - -The DT B-NP -sole JJ I-NP -limited JJ I-NP -partner NN I-NP -of IN B-PP -the DT B-NP -partnership NN I-NP -is VBZ B-VP -Westwood NNP B-NP -Brick NNP I-NP -Lime NNP I-NP -Inc. NNP I-NP -, , O -an DT B-NP -indirect JJ I-NP -subsidiary NN I-NP -of IN B-PP -Westwood NNP B-NP -Group NNP I-NP -Inc NNP I-NP -. . O - -Both DT B-NP -Westwood NNP B-NP -Brick NNP I-NP -and CC O -Westwood NNP B-NP -Group NNP I-NP -are VBP B-VP -based VBN I-VP -in IN B-PP -Boston NNP B-NP -. . O - -Freight NN B-NP -rates NNS I-NP -, , O -declining VBG B-VP -for IN B-PP -most RBS B-NP -of IN B-PP -the DT B-NP -decade NN I-NP -because IN B-PP -of IN I-PP -competition NN B-NP -spurred VBN B-VP -by IN B-PP -deregulation NN B-NP -, , O -are VBP B-VP -bottoming VBG I-VP -out IN B-PRT -, , O -turning VBG B-VP -upward RB B-ADVP -and CC O -threatening VBG B-VP -to TO I-VP -fuel VB I-VP -inflation NN B-NP -. . O - -Trucking NNP B-NP -, , I-NP -shipping VBG I-NP -and CC I-NP -air-freight NN I-NP -companies NNS I-NP -have VBP B-VP -announced VBN I-VP -rate NN B-NP -increases NNS I-NP -, , O -scheduled VBN B-VP -for IN B-PP -this DT B-NP -fall NN I-NP -or CC O -early JJ B-NP -next JJ I-NP -year NN I-NP -, , O -reflecting VBG B-VP -higher JJR B-NP -costs NNS I-NP -and CC O -tightened VBD B-NP -demand NN I-NP -for IN B-PP -freight NN B-NP -transport NN I-NP -. . O - -Major JJ B-NP -shippers NNS I-NP -say VBP B-VP -they PRP B-NP -expect VBP B-VP -freight NN B-NP -rates NNS I-NP -to TO B-VP -rise VB I-VP -at IN B-ADVP -least JJS I-ADVP -as RB B-ADVP -fast RB I-ADVP -as IN B-PP -inflation NN B-NP -and CC B-ADVP -maybe RB I-ADVP -faster RBR B-ADVP -in IN B-PP -the DT B-NP -next JJ I-NP -few JJ I-NP -years NNS I-NP -. . O - -That DT B-NP -'s VBZ B-VP -a DT B-NP -big JJ I-NP -change NN I-NP -from IN B-PP -recent JJ B-NP -years NNS I-NP -when WRB B-ADVP -freight NN B-NP -haulage NN I-NP -was VBD B-VP -a DT B-NP -bright JJ I-NP -spot NN I-NP -for IN B-PP -U.S. NNP B-NP -productivity NN I-NP -, , O -helping VBG B-VP -to TO I-VP -restrain VB I-VP -inflation NN B-NP -and CC O -make VB B-VP -U.S. NNP B-NP -industry NN I-NP -more RBR B-ADJP -competitive JJ I-ADJP -abroad RB B-ADVP -. . O - -`` `` O -Demand NN B-NP -has VBZ B-VP -caught VBN I-VP -up IN B-PRT -with IN B-PP -the DT B-NP -supply NN I-NP -of IN B-PP -certain JJ B-NP -types NNS I-NP -of IN B-PP -freight NN B-NP -transportation NN I-NP -, , O -and CC O -rates NNS B-NP -are VBP B-VP -starting VBG I-VP -to TO I-VP -move VB I-VP -up IN B-ADVP -'' '' O -at IN B-PP -a DT B-NP -rate NN I-NP -`` `` O -close RB B-ADJP -to TO B-PP -or CC O -slightly RB B-ADJP -more JJR I-ADJP -than IN B-PP -the DT B-NP -inflation NN I-NP -rate NN I-NP -, , O -'' '' O -said VBD B-VP -Clifford NNP B-NP -Sayre NNP I-NP -, , O -director NN B-NP -of IN B-PP -logistics NNS B-NP -at IN B-PP -Du NNP B-NP -Pont NNP I-NP -Co NNP I-NP -. . O - -Shippers NNS B-NP -surveyed VBN B-VP -recently RB B-ADVP -by IN B-PP -Ohio NNP B-NP -State NNP I-NP -University NNP I-NP -said VBD B-VP -they PRP B-NP -expect VBP B-VP -their PRP$ B-NP -freight-transport JJ I-NP -, , I-NP -storage NN I-NP -and CC I-NP -distribution NN I-NP -costs NNS I-NP -to TO B-VP -rise VB I-VP -about IN B-NP -4 CD I-NP -% NN I-NP -this DT B-NP -year NN I-NP -. . O - -Only RB B-NP -10 CD I-NP -% NN I-NP -of IN B-PP -the DT B-NP -250 CD I-NP -shippers NNS I-NP -polled VBN B-VP -expected VBN B-VP -their PRP$ B-NP -freight-transport JJ I-NP -costs NNS I-NP -to TO B-VP -decrease VB I-VP -, , O -compared VBN B-PP -with IN B-PP -30 CD B-NP -% NN I-NP -who WP B-NP -had VBD B-VP -looked VBN I-VP -to TO B-PP -freight VB B-NP -transport NN I-NP -to TO B-VP -reduce VB I-VP -costs NNS B-NP -in IN B-PP -past JJ B-NP -years NNS I-NP -. . O - -`` `` O -This DT B-NP -is VBZ B-VP -the DT B-NP -first JJ I-NP -year NN I-NP -since IN B-PP -transportation NN B-NP -deregulation NN I-NP -in IN B-PP -1980 CD B-NP -that IN B-ADVP -we PRP B-NP -have VBP B-VP -had VBN I-VP -such JJ B-NP -a DT I-NP -dramatic JJ I-NP -and CC I-NP -broad-based JJ I-NP -upturn NN I-NP -in IN B-PP -perceived VBN B-NP -transportation NN I-NP -rates NNS I-NP -, , O -'' '' O -said VBD B-VP -Bernard NNP B-NP -LaLonde NNP I-NP -, , O -a DT B-NP -transportation NN I-NP -logistics NNS I-NP -professor NN I-NP -at IN B-PP -Ohio NNP B-NP -State NNP I-NP -in IN B-PP -Columbus NNP B-NP -. . O - -The DT B-NP -deregulation NN I-NP -of IN B-PP -railroads NNS B-NP -and CC I-NP -trucking NN I-NP -companies NNS I-NP -that WDT B-NP -began VBD B-VP -in IN B-PP -1980 CD B-NP -enabled VBD B-VP -shippers NNS B-NP -to TO B-VP -bargain VB I-VP -for IN B-PP -transportation NN B-NP -. . O - -Carriers NNP B-NP -could MD B-VP -use VB I-VP -their PRP$ B-NP -equipment NN I-NP -more RBR B-ADVP -efficiently RB I-ADVP -, , O -leading VBG B-VP -to TO B-PP -overcapacity NN B-NP -they PRP B-NP -were VBD B-VP -eager JJ B-ADJP -to TO B-VP -fill VB I-VP -. . O - -Shippers NNS B-NP -cut VBP B-VP -about RB B-NP -$ $ I-NP -35 CD I-NP -billion CD I-NP -from IN B-PP -their PRP$ B-NP -annual JJ I-NP -, , I-NP -inter-city JJ I-NP -truck NN I-NP -and CC I-NP -rail NN I-NP -costs NNS I-NP -, , O -to TO B-PP -about RB B-NP -$ $ I-NP -150 CD I-NP -billion CD I-NP -, , O -or CC O -about IN B-NP -6.4 CD I-NP -% NN I-NP -of IN B-PP -gross JJ B-NP -national JJ I-NP -product NN I-NP -, , O -down RB B-ADVP -from IN B-PP -8 CD B-NP -% NN I-NP -of IN B-PP -GNP NNP B-NP -in IN B-PP -1981 CD B-NP -. . O - -But CC O -with IN B-PP -much NN B-NP -of IN B-PP -the DT B-NP -inefficiency NN I-NP -squeezed VBN B-VP -out IN B-PP -of IN B-PP -the DT B-NP -freight-transport JJ I-NP -system NN I-NP -, , O -rising VBG B-NP -costs NNS I-NP -are VBP B-VP -likely JJ B-ADJP -to TO B-VP -be VB I-VP -reflected VBN I-VP -directly RB B-ADVP -in IN B-PP -higher JJR B-NP -freight NN I-NP -rates NNS I-NP -. . O - -`` `` O -Shippers NNS B-NP -are VBP B-VP -saying VBG I-VP -` `` O -the DT B-NP -party NN I-NP -'s POS B-VP -over IN B-ADJP -, , O -' '' O -'' '' O -said VBD B-VP -Mr. NNP B-NP -LaLonde NNP I-NP -. . O - -`` `` O -Shippers NNS B-NP -wo MD B-VP -n't RB I-VP -be VB I-VP -able JJ B-ADJP -to TO B-VP -look VB I-VP -for IN B-PP -transportation-cost JJ B-NP -savings NNS I-NP -as IN B-SBAR -they PRP B-NP -have VBP B-VP -for IN B-PP -the DT B-NP -last JJ I-NP -eight CD I-NP -or CC I-NP -nine CD I-NP -years NNS I-NP -. . O - -Transport NN B-NP -rates NNS I-NP -wo MD B-VP -n't RB I-VP -be VB I-VP -an DT B-NP -opportunity NN I-NP -for IN B-PP -offsetting VBG B-VP -cost NN B-NP -increases NNS I-NP -in IN B-PP -other JJ B-NP -segments NNS I-NP -of IN B-PP -the DT B-NP -economy NN I-NP -. . O -'' '' O - -Robert NNP B-NP -Delaney NNP I-NP -, , O -a DT B-NP -consultant NN I-NP -at IN B-PP -Arthur NNP B-NP -D. NNP I-NP -Little NNP I-NP -Inc. NNP I-NP -, , O -Cambridge NNP B-NP -, , O -Mass. NNP B-NP -, , O -said VBD B-VP -`` `` O -We PRP B-NP -'ve VBP B-VP -gotten VBN I-VP -all PDT B-NP -the DT I-NP -benefits NNS I-NP -of IN B-PP -deregulation NN B-NP -in IN B-PP -freight-cost JJ B-NP -reductions NNS I-NP -. . O - -Now RB B-ADVP -we PRP B-NP -are VBP B-VP -starting VBG I-VP -to TO I-VP -see VB I-VP -real JJ B-NP -freight-rate JJ I-NP -increases NNS I-NP -as IN B-SBAR -carriers NNS B-NP -replace VBP B-VP -equipment NN B-NP -, , O -pay VB B-VP -higher JJR B-NP -fuel NN I-NP -costs NNS I-NP -and CC O -pay VB B-VP -more JJR B-NP -for IN B-PP -labor NN B-NP -. . O - -You PRP B-NP -'ll MD B-VP -see VB I-VP -carriers NNS B-NP -try VB B-VP -to TO I-VP -recoup VB I-VP -some DT B-NP -of IN B-PP -the DT B-NP -price NN I-NP -cutting VBG I-NP -that WDT B-NP -occurred VBD B-VP -previously RB B-ADVP -. . O -'' '' O - -Not RB B-NP -everyone NN I-NP -believes VBZ B-VP -that IN B-SBAR -the DT B-NP -good JJ I-NP -times NNS I-NP -are VBP B-VP -over IN B-ADJP -for IN B-PP -shippers NNS B-NP -. . O - -`` `` O -There EX B-NP -'s VBZ B-VP -still RB B-ADVP -a DT B-NP -lot NN I-NP -of IN B-PP -pressure NN B-NP -on IN B-PP -rates NNS B-NP -in IN B-PP -both DT B-NP -rail NN I-NP -and CC I-NP -truck NN I-NP -, , O -'' '' O -said VBD B-VP -Gerard NNP B-NP -McCullough NNP I-NP -, , O -lecturer NN B-NP -in IN B-PP -transportation NN B-NP -at IN B-PP -Massachusetts NNP B-NP -Institute NNP I-NP -of IN B-PP -Technology NNP B-NP -. . O - -Less-than-truckload JJ B-NP -companies NNS I-NP -, , O -which WDT B-NP -carry VBP B-VP -the DT B-NP -freight NN I-NP -of IN B-PP -several JJ B-NP -shippers NNS I-NP -in IN B-PP -each DT B-NP -truck NN I-NP -trailer NN I-NP -, , O -discounted VBD B-VP -away RB B-ADVP -a DT B-NP -4.7 CD I-NP -% NN I-NP -rate NN I-NP -increase NN I-NP -implemented VBD B-VP -last JJ B-NP -April NNP I-NP -. . O - -The DT B-NP -carriers NNS I-NP -were VBD B-VP -competing VBG I-VP -fiercely RB B-ADVP -for IN B-PP -market NN B-NP -share NN I-NP -. . O - -Railroad-rate JJ B-NP -increases NNS I-NP -are VBP B-VP -likely JJ B-ADJP -to TO B-VP -be VB I-VP -restrained VBN I-VP -by IN B-PP -weakening VBG B-NP -rail-traffic JJ I-NP -levels NNS I-NP -and CC O -keen JJ B-NP -competition NN I-NP -for IN B-PP -freight NN B-NP -from IN B-PP -trucks NNS B-NP -. . O - -An DT B-NP -official NN I-NP -at IN B-PP -Consolidated NNP B-NP -Freightways NNP I-NP -Inc. NNP I-NP -, , O -a DT B-NP -Menlo NNP I-NP -Park NNP I-NP -, , I-NP -Calif. NNP I-NP -, , I-NP -less-than-truckload JJ I-NP -carrier NN I-NP -, , O -said VBD B-VP -rate NN B-NP -discounting NN I-NP -in IN B-PP -that DT B-NP -industry NN I-NP -has VBZ B-VP -begun VBN I-VP -to TO I-VP -`` `` O -stabilize VB B-VP -. . O -'' '' O - -Consolidated NNP B-NP -Freightways NNP I-NP -plans VBZ B-VP -to TO I-VP -raise VB I-VP -its PRP$ B-NP -rates NNS I-NP -5.3 CD B-NP -% NN I-NP -late JJ B-NP -this DT I-NP -year NN I-NP -or CC O -early JJ B-NP -next JJ I-NP -year NN I-NP -, , O -and CC O -at IN B-NP -least JJS I-NP -two CD I-NP -competitors NNS I-NP -have VBP B-VP -announced VBN I-VP -similar JJ B-NP -increases NNS I-NP -. . O - -Truckers NNS B-NP -are VBP B-VP -`` `` O -trying VBG B-VP -to TO I-VP -send VB I-VP -signals NNS B-NP -that IN B-SBAR -they PRP B-NP -need VBP B-VP -to TO I-VP -stop VB I-VP -the DT B-NP -bloodletting NN I-NP -, , O -forget VB B-VP -about IN B-PP -market NN B-NP -share NN I-NP -and CC O -go VB B-VP -for IN B-PP -higher JJR B-NP -rates NNS I-NP -, , O -'' '' O -said VBD B-VP -Michael NNP B-NP -Lloyd NNP I-NP -, , O -an DT B-NP -analyst NN I-NP -at IN B-PP -Salomon NNP B-NP -Bros NNP I-NP -. . O - -And CC O -`` `` O -shippers NNS B-NP -are VBP B-VP -getting VBG I-VP -the DT B-NP -feeling NN I-NP -that IN B-SBAR -they PRP B-NP -have VBP B-VP -played VBN I-VP -one CD B-NP -trucker NN I-NP -off IN B-ADVP -against IN B-PP -another DT B-NP -as RB B-NP -much JJ I-NP -as IN B-SBAR -they PRP B-NP -can MD B-VP -, , O -'' '' O -he PRP B-NP -said VBD B-VP -. . O - -Air-freight NN B-NP -carriers NNS I-NP -raised VBD B-VP -their PRP$ B-NP -rates NNS I-NP -for IN B-PP -U.S. NNP B-NP -products NNS I-NP -going VBG B-VP -across IN B-PP -the DT B-NP -Pacific NNP I-NP -to TO B-PP -Asia NNP B-NP -by IN B-PP -about IN B-NP -20 CD I-NP -% NN I-NP -earlier RBR B-NP -this DT I-NP -month NN I-NP -. . O - -And CC O -Japan NNP B-NP -Air NNP I-NP -Lines NNPS I-NP -said VBD B-VP -it PRP B-NP -plans VBZ B-VP -to TO I-VP -boost VB I-VP -its PRP$ B-NP -rates NNS I-NP -a DT B-NP -further JJ I-NP -25 CD I-NP -% NN I-NP -over IN B-PP -the DT B-NP -next JJ I-NP -two CD I-NP -years NNS I-NP -. . O - -Such JJ B-NP -rate NN I-NP -increases NNS I-NP -`` `` O -will MD B-VP -increase VB I-VP -the DT B-NP -total JJ I-NP -cost NN I-NP -of IN B-PP -U.S. NNP B-NP -products NNS I-NP -and CC O -slow JJ B-VP -down RP B-PRT -the DT B-NP -rate NN I-NP -of IN B-PP -increase NN B-NP -of IN B-PP -U.S. NNP B-NP -exports NNS I-NP -, , O -'' '' O -said VBD B-VP -Richard NNP B-NP -Connors NNP I-NP -, , O -a DT B-NP -senior JJ I-NP -vice NN I-NP -president NN I-NP -of IN B-PP -Yusen NNP B-NP -Air NNP I-NP -& CC I-NP -Sea NNP I-NP -Service NNP I-NP -U.S.A. NNP I-NP -Inc. NNP I-NP -, , O -the DT B-NP -U.S. NNP I-NP -air-freight-forwarding JJ I-NP -subsidiary NN I-NP -of IN B-PP -Nippon NNP B-NP -Yusen NNP I-NP -Kaisha NNP I-NP -of IN B-PP -Japan NNP B-NP -. . O - -Ship NN B-NP -companies NNS I-NP -carrying VBG B-VP -bulk NN B-NP -commodities NNS I-NP -, , O -such JJ B-PP -as IN I-PP -oil NN B-NP -, , O -grain NN B-NP -, , O -coal NN B-NP -and CC O -iron NN B-NP -ore NN I-NP -, , O -have VBP B-VP -been VBN I-VP -able JJ B-ADJP -to TO B-VP -increase VB I-VP -their PRP$ B-NP -rates NNS I-NP -in IN B-PP -the DT B-NP -last JJ I-NP -couple NN I-NP -of IN B-PP -years NNS B-NP -. . O - -Some DT B-NP -bulk NN I-NP -shipping VBG I-NP -rates NNS I-NP -have VBP B-VP -increased VBN I-VP -`` `` O -3 CD B-NP -% NN I-NP -to TO I-NP -4 CD I-NP -% NN I-NP -in IN B-PP -the DT B-NP -past JJ I-NP -few JJ I-NP -months NNS I-NP -, , O -'' '' O -said VBD B-VP -Salomon NNP B-NP -'s POS B-NP -Mr. NNP I-NP -Lloyd NNP I-NP -. . O - -And CC O -ship NN B-NP -lines NNS I-NP -carrying VBG B-VP -containers NNS B-NP -are VBP B-VP -also RB I-VP -trying VBG I-VP -to TO I-VP -raise VB I-VP -their PRP$ B-NP -rates NNS I-NP -. . O - -Carriers NNP B-NP -boosted VBD B-VP -rates NNS B-NP -more JJR B-NP -than IN I-NP -10 CD I-NP -% NN I-NP -in IN B-PP -the DT B-NP -North NNP I-NP -Atlantic NNP I-NP -between IN B-PP -the DT B-NP -U.S. NNP I-NP -and CC O -Europe NNP B-NP -last JJ B-NP -September NNP I-NP -, , O -hoping VBG B-VP -to TO I-VP -partly RB I-VP -restore VB I-VP -rates NNS B-NP -to TO B-PP -earlier JJR B-NP -levels NNS I-NP -. . O - -Ship NN B-NP -lines NNS I-NP -operating VBG B-VP -in IN B-PP -the DT B-NP -Pacific NNP I-NP -plan NN B-VP -to TO I-VP -raise VB I-VP -rates NNS B-NP -on IN B-PP -containers NNS B-NP -carrying VBG B-VP -U.S. NNP B-NP -exports NNS I-NP -to TO B-PP -Asia NNP B-NP -about IN B-NP -10 CD I-NP -% NN I-NP -, , O -effective JJ B-ADJP -next JJ B-NP -April NNP I-NP -. . O - -MGM NNP B-NP -Grand NNP I-NP -Inc. NNP I-NP -said VBD B-VP -it PRP B-NP -filed VBD B-VP -a DT B-NP -registration NN I-NP -statement NN I-NP -with IN B-PP -the DT B-NP -Securities NNP I-NP -and CC I-NP -Exchange NNP I-NP -Commission NNP I-NP -for IN B-PP -a DT B-NP -public JJ I-NP -offering NN I-NP -of IN B-PP -six CD B-NP -million CD I-NP -common JJ I-NP -shares NNS I-NP -. . O - -The DT B-NP -Beverly NNP I-NP -Hills NNP I-NP -, , I-NP -Calif.-based JJ I-NP -company NN I-NP -said VBD B-VP -it PRP B-NP -would MD B-VP -have VB I-VP -26.9 CD B-NP -million CD I-NP -common JJ I-NP -shares NNS I-NP -outstanding JJ B-ADJP -after IN B-PP -the DT B-NP -offering NN I-NP -. . O - -The DT B-NP -hotel NN I-NP -and CC I-NP -Gaming NNP I-NP -company NN I-NP -said VBD B-VP -Merrill NNP B-NP -Lynch NNP I-NP -Capital NNP I-NP -Markets NNPS I-NP -will MD B-VP -lead VB I-VP -the DT B-NP -underwriters NNS I-NP -. . O - -Proceeds NNS B-NP -from IN B-PP -the DT B-NP -sale NN I-NP -will MD B-VP -be VB I-VP -used VBN I-VP -for IN B-PP -remodeling VBG B-NP -and CC I-NP -refurbishing VBG I-NP -projects NNS I-NP -, , B-PP -as RB I-PP -well RB I-PP -as IN I-PP -for IN B-PP -the DT B-NP -planned VBN I-NP -MGM NNP I-NP -Grand NNP I-NP -hotel\/casino NN I-NP -and CC I-NP -theme NN I-NP -park NN I-NP -. . O - -Bob NNP B-NP -Stone NNP I-NP -stewed JJ B-VP -over IN B-PP -a DT B-NP -letter NN I-NP -from IN B-PP -his PRP$ B-NP -manager NN I-NP -putting VBG B-VP -him PRP B-NP -on IN B-PP -probation NN B-NP -for IN B-PP -insubordination NN B-NP -. . O - -Mr. NNP B-NP -Stone NNP I-NP -thought VBD B-VP -the DT B-NP -discipline NN I-NP -was VBD B-VP -unfair JJ B-ADJP -; : O -he PRP B-NP -believed VBD B-VP -that IN B-SBAR -his PRP$ B-NP -manager NN I-NP -wanted VBD B-VP -to TO I-VP -get VB I-VP -rid JJ B-ADJP -of IN B-PP -him PRP B-NP -for IN B-PP -personal JJ B-NP -reasons NNS I-NP -. . O - -Unable JJ B-ADJP -to TO B-VP -persuade VB I-VP -the DT B-NP -manager NN I-NP -to TO B-VP -change VB I-VP -his PRP$ B-NP -decision NN I-NP -, , O -he PRP B-NP -went VBD B-VP -to TO B-PP -a DT B-NP -`` `` I-NP -company NN I-NP -court NN I-NP -'' '' O -for IN B-PP -a DT B-NP -hearing NN I-NP -. . O - -At IN B-PP -the DT B-NP -scheduled VBN I-NP -time NN I-NP -, , O -Mr. NNP B-NP -Stone NNP I-NP -entered VBD B-VP -a DT B-NP -conference NN I-NP -room NN I-NP -in IN B-PP -a DT B-NP -building NN I-NP -near IN B-PP -where WRB B-ADVP -he PRP B-NP -worked VBD B-VP -. . O - -After IN B-SBAR -the DT B-NP -three CD I-NP -members NNS I-NP -of IN B-PP -the DT B-NP -court NN I-NP -introduced VBD B-VP -themselves PRP B-NP -, , O -the DT B-NP -chairman NN I-NP -of IN B-PP -the DT B-NP -panel NN I-NP -said VBD B-VP -: : O -`` `` O -Go VB B-VP -ahead RB B-ADVP -and CC O -tell VB B-VP -us PRP B-NP -what WP B-NP -happened VBD B-VP -. . O - -We PRP B-NP -may MD B-VP -ask VB I-VP -questions NNS B-NP -as IN B-SBAR -you PRP B-NP -go VBP B-VP -along IN B-PRT -, , O -or CC O -we PRP B-NP -may MD B-VP -wait VB I-VP -until IN B-PP -the DT B-NP -end NN I-NP -. . O -'' '' O - -No DT B-NP -lawyers NNS I-NP -or CC I-NP -tape NN I-NP -recorders NNS I-NP -were VBD B-VP -present JJ B-ADJP -. . O - -The DT B-NP -only RB I-NP -extra JJ I-NP -people NNS I-NP -were VBD B-VP -a DT B-NP -couple NN I-NP -of IN B-PP -personnel NNS B-NP -specialists NNS I-NP -, , O -one CD B-NP -of IN B-PP -whom WP B-NP -knew VBD B-VP -Mr. NNP B-NP -Stone NNP I-NP -'s POS B-NP -case NN I-NP -intimately RB B-ADVP -and CC O -would MD B-VP -help VB I-VP -fill VB I-VP -in IN B-PRT -any DT B-NP -facts NNS I-NP -needed VBN B-VP -to TO B-VP -give VB I-VP -the DT B-NP -court NN I-NP -the DT B-NP -full JJ I-NP -picture NN I-NP -. . O - -Over IN B-PP -a DT B-NP -cup NN I-NP -of IN B-PP -coffee NN B-NP -, , O -Mr. NNP B-NP -Stone NNP I-NP -told VBD B-VP -his PRP$ B-NP -story NN I-NP -. . O - -He PRP B-NP -talked VBD B-VP -about IN B-NP -20 CD I-NP -minutes NNS I-NP -. . O - -When WRB B-ADVP -he PRP B-NP -was VBD B-VP -through IN B-ADJP -, , O -the DT B-NP -court NN I-NP -members NNS I-NP -asked VBD B-VP -many JJ B-NP -questions NNS I-NP -, , O -then RB B-ADVP -the DT B-NP -chairman NN I-NP -said VBD B-VP -they PRP B-NP -would MD B-VP -like VB I-VP -to TO I-VP -hear VB I-VP -his PRP$ B-NP -manager NN I-NP -'s POS B-NP -side NN I-NP -and CC O -talk VB B-VP -to TO B-PP -witnesses NNS B-NP -. . O - -The DT B-NP -chairman NN I-NP -promised VBD B-VP -Mr. NNP B-NP -Stone NNP I-NP -a DT B-NP -decision NN I-NP -within IN B-PP -two CD B-NP -weeks NNS I-NP -. . O - -Bob NNP B-NP -Stone NNP I-NP -is VBZ B-VP -a DT B-NP -fictional JJ I-NP -name NN I-NP -, , O -but CC O -the DT B-NP -incident NN I-NP -described VBN B-VP -is VBZ B-VP -real JJ B-ADJP -. . O - -It PRP B-NP -happened VBD B-VP -at IN B-PP -Northrop NNP B-NP -Corp. NNP I-NP -in IN B-PP -Los NNP B-NP -Angeles NNP I-NP -. . O - -The DT B-NP -court NN I-NP -is VBZ B-VP -called VBN I-VP -the DT B-NP -Management NNP I-NP -Appeals NNP I-NP -Committee NNP I-NP -, , O -or CC O -just RB B-NP -`` `` I-NP -MAC NNP I-NP -, , O -'' '' O -and CC O -it PRP B-NP -is VBZ B-VP -likely JJ B-ADJP -to TO B-VP -hear VB I-VP -a DT B-NP -couple NN I-NP -of IN I-NP -dozen NN I-NP -cases VBZ I-NP -a DT B-NP -year NN I-NP -. . O - -Alter VB B-VP -some DT B-NP -details NNS I-NP -of IN B-PP -this DT B-NP -example NN I-NP -and CC O -it PRP B-NP -could MD B-VP -be VB I-VP -taking VBG I-VP -place NN B-NP -today NN B-ADVP -at IN B-PP -Federal NNP B-NP -Express NNP I-NP -in IN B-PP -Memphis NNP B-NP -, , O -the DT B-NP -Defense NNP I-NP -and CC I-NP -Underseas NNP I-NP -Systems NNP I-NP -divisions NNS I-NP -of IN B-PP -Honeywell NNP B-NP -in IN B-PP -Minneapolis NNP B-NP -, , O -a DT B-NP -General NNP I-NP -Electric NNP I-NP -plant NN I-NP -in IN B-PP -Columbia NNP B-NP -, , O -Md. NNP B-NP -, , O -or CC O -a DT B-NP -number NN I-NP -of IN B-PP -other JJ B-NP -companies NNS I-NP -. . O - -These DT B-NP -firms NNS I-NP -are VBP B-VP -pioneers NNS B-NP -in IN B-PP -a DT B-NP -significant JJ I-NP -new JJ I-NP -trend NN I-NP -in IN B-PP -the DT B-NP -corporate JJ I-NP -world NN I-NP -: : O -the DT B-NP -rise NN I-NP -of IN B-PP -what WP B-NP -I PRP B-NP -call VBP B-VP -corporate JJ B-NP -due JJ I-NP -process NN I-NP -. . O - -Although IN B-SBAR -corporate JJ B-NP -due JJ I-NP -process NN I-NP -is VBZ B-VP -practiced VBN I-VP -today NN B-NP -in IN B-PP -few JJ B-NP -companies NNS I-NP --- : O -perhaps RB B-ADVP -40 CD B-NP -to TO I-NP -60 CD I-NP --- : O -it PRP B-NP -is VBZ B-VP -one CD B-NP -of IN B-PP -the DT B-NP -fastest JJS I-NP -developing VBG I-NP -trends NNS I-NP -in IN B-PP -industry NN B-NP -. . O - -In IN B-PP -the DT B-NP -coming VBG I-NP -decade NN I-NP -a DT B-NP -majority NN I-NP -of IN B-PP -people-oriented JJ B-NP -companies NNS I-NP -are VBP B-VP -likely JJ B-ADJP -to TO B-VP -adopt VB I-VP -it PRP B-NP -. . O - -Corporate JJ B-NP -due JJ I-NP -process NN I-NP -appeals NNS B-VP -to TO B-PP -management NN B-NP -for IN B-PP -a DT B-NP -variety NN I-NP -of IN B-PP -reasons NNS B-NP -. . O - -It PRP B-NP -reduces VBZ B-VP -lawsuits NNS B-NP -from IN B-PP -disgruntled JJ B-NP -employees NNS I-NP -and CC I-NP -ex-employees NNS I-NP -, , O -with IN B-PP -all DT B-NP -that WDT B-NP -means VBZ B-VP -for IN B-PP -reduced VBN B-NP -legal JJ I-NP -costs NNS I-NP -and CC O -better RBR B-NP -public JJ I-NP -relations NNS I-NP -. . O - -It PRP B-NP -helps VBZ B-VP -to TO I-VP -keep VB I-VP -out IN B-PRT -unions NNS B-NP -. . O - -It PRP B-NP -increases VBZ B-VP -employee NN B-NP -commitment NN I-NP -to TO B-PP -the DT B-NP -company NN I-NP -, , O -with IN B-PP -all DT B-NP -that WDT B-NP -means VBZ B-VP -for IN B-PP -efficiency NN B-NP -and CC O -quality NN B-NP -control NN I-NP -. . O - -What WP B-NP -must MD O -your PRP$ B-NP -management NN I-NP -team NN I-NP -do VBP B-VP -to TO B-VP -establish VB I-VP -corporate JJ B-NP -due JJ I-NP -process NN I-NP -? . O - -Here RB B-ADVP -are VBP B-VP -four CD B-NP -key JJ I-NP -steps NNS I-NP -: : O - -1 CD B-LST -. . O -Make VB B-VP -sure JJ B-ADJP -you PRP B-NP -have VBP B-VP -a DT B-NP -strong JJ I-NP -personnel NNS I-NP -department NN I-NP -. . O - -It PRP B-NP -must MD B-VP -be VB I-VP -able JJ B-ADJP -to TO B-VP -handle VB I-VP -most RBS B-NP -of IN B-PP -the DT B-NP -complaints NNS I-NP -that WDT B-NP -can MD B-VP -not RB I-VP -be VB I-VP -solved VBN I-VP -in IN B-PP -the DT B-NP -trenches NNS I-NP -by IN B-PP -managers NNS B-NP -and CC O -their PRP$ B-NP -subordinates NNS I-NP -, , O -else RB B-ADVP -the DT B-NP -company NN I-NP -court NN I-NP -or CC I-NP -adjudicators NNS I-NP -will MD B-VP -be VB B-VP -inundated VBN I-VP -with IN B-PP -cases NNS B-NP -. . O - -At IN B-PP -Polaroid NNP B-NP -, , O -the DT B-NP -Personnel NNP I-NP -Policy NNP I-NP -Planning NNP I-NP -Committee NNP I-NP -may MD B-VP -hear VB I-VP -only RB B-NP -about IN I-NP -20 CD I-NP -cases VBZ I-NP -a DT B-NP -year NN I-NP -; : O -the DT B-NP -rest NN I-NP -of IN B-PP -the DT B-NP -many JJ I-NP -hundreds NNS I-NP -of IN B-PP -complaints NNS B-NP -are VBP B-VP -resolved VBN I-VP -at IN B-PP -earlier JJR B-NP -stages NNS I-NP -. . O - -At IN B-PP -TWA NNP B-NP -, , O -the DT B-NP -System NNP I-NP -Board NNP I-NP -of IN B-PP -Adjustment NNP B-NP -hears VBZ B-VP -50 CD B-NP -to TO I-NP -75 CD I-NP -cases VBZ I-NP -a DT B-NP -year NN I-NP -, , O -only RB B-NP -a DT I-NP -fraction NN I-NP -of IN B-PP -the DT B-NP -complaints NNS I-NP -brought VBN B-VP -to TO B-PP -personnel NNS B-NP -specialists NNS I-NP -. . O - -At IN B-PP -Citicorp NNP B-NP -, , O -the DT B-NP -Problem NNP I-NP -Review NNP I-NP -Board NNP I-NP -may MD B-VP -hear VB I-VP -only RB B-NP -12 CD I-NP -or CC I-NP -so RB I-NP -cases VBZ I-NP -because IN B-PP -of IN I-PP -personnel NNS B-NP -'s POS B-NP -skill NN I-NP -in IN B-PP -complaint-resolution NN B-NP -. . O - -In IN B-PP -a DT B-NP -typical JJ I-NP -year NN I-NP -, , O -up IN B-NP -to TO I-NP -20 CD I-NP -% NN I-NP -of IN B-PP -the DT B-NP -work NN I-NP -force NN I-NP -goes VBZ B-VP -to TO B-PP -personnel NNS B-NP -specialists NNS I-NP -with IN B-PP -complaints NNS B-NP -of IN B-PP -unfair JJ B-NP -treatment NN I-NP -. . O - -In IN B-PP -a DT B-NP -large JJ I-NP -company NN I-NP -that WDT B-NP -means VBZ B-VP -many JJ B-NP -hundreds NNS I-NP -of IN B-PP -complaints NNS B-NP -for IN B-PP -personnel NNS B-NP -to TO B-VP -handle VB I-VP -. . O - -2 CD B-LST -. . O -Formally RB B-ADVP -or CC I-ADVP -informally RB I-ADVP -, , O -train NN B-VP -all DT B-NP -your PRP$ I-NP -managers NNS I-NP -and CC I-NP -supervisors NNS I-NP -in IN B-PP -the DT B-NP -company NN I-NP -'s POS B-NP -due-process NN I-NP -approach NN I-NP -. . O - -See VB B-VP -that IN B-SBAR -they PRP B-NP -know VBP B-VP -company NN B-NP -personnel NNS I-NP -policy NN I-NP -backwards RB B-ADVP -and CC I-ADVP -forwards RB I-ADVP -, , O -for IN O -it PRP B-NP -is VBZ B-VP -the DT B-NP -`` `` I-NP -law NN I-NP -'' '' O -governing VBG B-VP -company NN B-NP -courts NNS I-NP -and CC I-NP -adjudicators NNS I-NP -. . O - -Coach NNP B-VP -them PRP B-NP -in IN B-PP -handling NN B-VP -complaints NNS B-NP -so RB B-SBAR -that IN I-SBAR -they PRP B-NP -can MD B-VP -resolve VB I-VP -problems NNS B-NP -immediately RB B-ADVP -. . O - -In IN B-SBAR -case NN O -managers NNS B-NP -and CC O -personnel NNS B-NP -specialists NNS I-NP -are VBP B-VP -unsuccessful JJ B-ADJP -and CC O -subordinates NNS B-NP -take VBP B-VP -their PRP$ B-NP -complaints NNS I-NP -to TO B-PP -a DT B-NP -company NN I-NP -court NN I-NP -or CC I-NP -adjudicator NN I-NP -, , O -teach VB B-VP -managers NNS B-NP -to TO B-VP -accept VB I-VP -reversals NNS B-NP -as IN B-PP -a DT B-NP -fact NN I-NP -of IN B-PP -business NN B-NP -life NN I-NP -, , O -for IN O -in IN B-PP -a DT B-NP -good JJ I-NP -due-process NN I-NP -system NN I-NP -they PRP B-NP -are VBP B-VP -bound VBN I-VP -to TO I-VP -happen VB I-VP -. . O - -In IN B-PP -the DT B-NP -15 CD I-NP -companies NNS I-NP -I PRP B-NP -studied VBD B-VP -, , O -reversal NN B-NP -rates NNS I-NP -range VBP B-VP -on IN B-PP -the DT B-NP -average NN I-NP -from IN B-PP -20 CD B-NP -% NN I-NP -to TO B-PP -40 CD B-NP -% NN I-NP -. . O - -3 CD B-LST -. . O -Decide VB B-VP -whether IN O -you PRP B-NP -want VBP B-VP -a DT B-NP -panel NN I-NP -system NN I-NP -or CC O -a DT B-NP -single JJ I-NP -adjudicator NN I-NP -. . O - -A DT B-NP -panel NN I-NP -system NN I-NP -like IN B-PP -that DT B-NP -in NN B-PP -the DT B-NP -Bob NNP I-NP -Stone NNP I-NP -example NN I-NP -enjoys VBZ B-VP -such JJ B-NP -advantages NNS I-NP -as IN B-PP -high JJ B-NP -credibility NN I-NP -and CC O -, , O -for IN B-PP -the DT B-NP -panelists NNS I-NP -, , O -mutual JJ B-NP -support NN I-NP -. . O - -An DT B-NP -adjudicator NN I-NP -system NN I-NP --- : O -that DT B-INTJ -is VBZ I-INTJ -, , O -an DT B-NP -investigator NN I-NP -who WP B-NP -acts VBZ B-VP -first JJ B-ADVP -as IN B-PP -a DT B-NP -fact-finder NN I-NP -and CC O -then RB O -switches VBZ B-VP -hats NNS B-NP -and CC O -arbitrates VBZ B-VP -the DT B-NP -facts NNS I-NP --- : O -has VBZ B-VP -such JJ B-NP -advantages NNS I-NP -as IN B-PP -speed NN B-NP -, , O -flexibility NN B-NP -and CC O -maximum JJ B-NP -privacy NN I-NP -. . O - -International NNP B-NP -Business NNP I-NP -Machines NNPS I-NP -and CC O -Bank NNP B-NP -of IN B-PP -America NNP B-NP -are VBP B-VP -among IN B-PP -the DT B-NP -companies NNS I-NP -using VBG B-VP -the DT B-NP -single-adjudicator JJ I-NP -approach NN I-NP -. . O - -4 CD B-LST -. . O -Make VB B-VP -your PRP$ B-NP -due-process NN I-NP -system NN I-NP -visible JJ B-ADJP -. . O - -It PRP B-NP -wo MD B-VP -n't RB I-VP -do VB I-VP -any DT B-NP -good NN I-NP -for IN B-PP -anybody NN B-NP -unless IN B-SBAR -employees NNS B-NP -know VBP B-VP -about IN B-PP -it PRP B-NP -. . O - -Most JJS B-NP -managements NNS I-NP -hesitate VBP B-VP -to TO I-VP -go VB I-VP -all DT B-ADVP -out NN I-ADVP -in IN B-PP -advertising VBG B-VP -their PRP$ B-NP -due-process NN I-NP -systems NNS I-NP -for IN B-PP -fear NN B-NP -of IN B-PP -encouraging VBG B-VP -cranks NNS B-NP -and CC O -chronic JJ B-NP -soreheads NNS I-NP -to TO B-VP -file VB I-VP -complaints NNS B-NP -. . O - -On IN B-PP -the DT B-NP -other JJ I-NP -hand NN I-NP -, , O -they PRP B-NP -make VBP B-VP -sure JJ B-ADJP -at IN B-PP -a DT B-NP -minimum NN I-NP -that IN B-SBAR -their PRP$ B-NP -systems NNS I-NP -are VBP B-VP -described VBN I-VP -in IN B-PP -their PRP$ B-NP -employee NN I-NP -handbooks NNS I-NP -and CC O -talked VBD B-VP -up IN B-PRT -by IN B-PP -personnel NNS B-NP -specialists NNS I-NP -. . O - -Smith-Kline NNP B-NP -Beecham NNP I-NP -goes VBZ B-VP -further JJ B-ADVP -and CC O -sometimes RB B-VP -features VBZ I-VP -its PRP$ B-NP -grievance NN I-NP -procedure NN I-NP -in IN B-PP -closed-circuit JJ B-NP -TV NN I-NP -programs NNS I-NP -. . O - -Naturally RB B-ADVP -, , O -one CD B-NP -of IN B-PP -the DT B-NP -best JJS I-NP -ways NNS I-NP -to TO B-VP -guarantee VB I-VP -visibility NN B-NP -for IN B-PP -your PRP$ B-NP -due-process NN I-NP -system NN I-NP -is VBZ B-VP -for IN B-SBAR -top JJ B-NP -management NN I-NP -to TO B-VP -support VB I-VP -it PRP B-NP -. . O - -At IN B-PP -IBM NNP B-NP -, , O -the DT B-NP -company NN I-NP -'s POS B-NP -Open NNP I-NP -Door NNP I-NP -system NN I-NP -is VBZ B-VP -sometimes RB B-ADVP -the DT B-NP -subject NN I-NP -of IN B-PP -memorandums NNS B-NP -from IN B-PP -the DT B-NP -chief JJ I-NP -executive NN I-NP -. . O - -Federal NNP B-NP -Express NNP I-NP -goes VBZ B-VP -further JJ B-ADVP -in IN B-PP -this DT B-NP -respect NN I-NP -than IN B-PP -any DT B-NP -company NN I-NP -I PRP B-NP -know VBP B-VP -of IN B-PP -with IN B-PP -both DT B-NP -Frederick NNP B-NP -Smith NNP I-NP -and CC O -James NNP B-NP -Barksdale NNP I-NP -, , O -chief JJ B-NP -executive NN I-NP -and CC O -chief JJ B-NP -operating VBG I-NP -officer NN I-NP -, , O -respectively RB B-ADVP -, , O -sitting VBG B-VP -in IN B-PRT -on IN B-PP -the DT B-NP -Appeals NNP I-NP -Board NNP I-NP -almost RB B-NP -every DT I-NP -Tuesday NNP I-NP -to TO B-VP -decide VB I-VP -cases NNS B-NP -. . O - -Mr. NNP B-NP -Ewing NNP I-NP -is VBZ B-VP -a DT B-NP -consultant NN I-NP -based VBN B-VP -in IN B-PP -Winchester NNP B-NP -, , O -Mass. NNP B-NP -, , O -and CC O -author NN B-NP -of IN B-PP -`` `` O -Justice NNP B-NP -on IN B-PP -the DT B-NP -Job NNP I-NP -: : O -Resolving NNP B-VP -Grievances NNP B-NP -in IN B-PP -the DT B-NP -Nonunion NNP I-NP -Workplace NN I-NP -'' '' O --LRB- ( O -Harvard NNP B-NP -Business NNP I-NP -School NNP I-NP -Press NNP I-NP -, , O -1989 CD B-NP --RRB- ) O -. . O - -Tokyo NNP B-NP -stocks NNS I-NP -closed VBD B-VP -higher JJR B-ADVP -in IN B-PP -active JJ B-NP -trading NN I-NP -Friday NNP B-NP -, , O -marking VBG B-VP -the DT B-NP -fourth JJ I-NP -consecutive JJ I-NP -daily JJ I-NP -gain NN I-NP -since IN B-PP -Monday NNP B-NP -'s POS B-NP -sharp JJ I-NP -fall NN I-NP -. . O - -London JJ B-NP -shares NNS I-NP -closed VBD B-VP -moderately RB B-ADVP -lower JJR I-ADVP -in IN B-PP -thin JJ B-NP -trading NN I-NP -. . O - -At IN B-PP -Tokyo NNP B-NP -, , O -the DT B-NP -Nikkei NNP I-NP -index NN I-NP -of IN B-PP -225 CD B-NP -selected VBN I-NP -issues NNS I-NP -was VBD B-VP -up IN B-ADVP -112.16 CD B-NP -points NNS I-NP -to TO B-PP -35486.38 CD B-NP -. . O - -The DT B-NP -index NN I-NP -advanced VBD B-VP -266.66 CD B-NP -points NNS I-NP -Thursday NNP B-NP -. . O - -In IN B-PP -early JJ B-NP -trading NN I-NP -in IN B-PP -Tokyo NNP B-NP -Monday NNP B-NP -, , O -the DT B-NP -Nikkei NNP I-NP -index NN I-NP -rose VBD B-VP -101.98 CD B-NP -points NNS I-NP -to TO B-PP -35588.36 CD B-NP -. . O - -Friday NNP B-NP -'s POS B-NP -volume NN I-NP -on IN B-PP -the DT B-NP -First NNP I-NP -Section NN I-NP -was VBD B-VP -estimated VBN I-VP -at IN B-PP -one CD B-NP -billion CD I-NP -shares NNS I-NP -, , O -up IN B-ADVP -from IN B-PP -862 CD B-NP -million CD I-NP -Thursday NNP B-NP -. . O - -Winners NNS B-NP -outpaced VBD B-VP -losers NNS B-NP -, , O -572 CD B-ADVP -to TO I-ADVP -368 CD I-ADVP -, , O -while IN B-SBAR -181 CD B-NP -issues NNS I-NP -remained VBD B-VP -unchanged JJ B-ADJP -. . O - -With IN B-SBAR -investors NNS B-NP -relieved VBN B-ADJP -at IN B-PP -the DT B-NP -overnight JJ I-NP -gain NN I-NP -in IN B-PP -New NNP B-NP -York NNP I-NP -stocks NNS I-NP -, , O -small-lot JJ B-NP -buying NN I-NP -orders NNS I-NP -streamed VBD B-VP -into IN B-PP -the DT B-NP -market NN I-NP -from IN B-PP -early JJ B-NP -morning NN I-NP -, , O -making VBG B-VP -traders NNS B-NP -believe VBP B-VP -the DT B-NP -market NN I-NP -was VBD B-VP -back RB B-ADVP -to TO B-PP -normal JJ B-NP -. . O - -The DT B-NP -Nikkei NNP I-NP -, , O -which WDT B-NP -reached VBD B-VP -as RB B-ADJP -high JJ I-ADJP -as IN B-PP -35611.38 CD B-NP -right NN B-ADVP -after IN B-PP -the DT B-NP -opening NN I-NP -, , O -surrendered VBD B-VP -part NN B-NP -of IN B-PP -its PRP$ B-NP -early JJ I-NP -advance NN I-NP -toward IN B-PP -the DT B-NP -end NN I-NP -of IN B-PP -the DT B-NP -day NN I-NP -because IN B-PP -of IN I-PP -profit-taking NN B-NP -. . O - -`` `` O -Investors NNS B-NP -, , B-NP -especially RB I-NP -dealers NNS B-NP -, , O -do VBP B-VP -n't RB I-VP -want VB I-VP -to TO I-VP -hold VB I-VP -a DT B-NP -position NN I-NP -over IN B-PP -the DT B-NP -weekend NN I-NP -, , O -'' '' O -a DT B-NP -trader NN I-NP -at IN B-PP -Dai-ichi NNP B-NP -Securities NNP I-NP -said VBD B-VP -, , O -adding VBG B-VP -, , O -though RB B-ADVP -, , O -that IN B-SBAR -the DT B-NP -trading NN I-NP -mood NN I-NP -remained VBD B-VP -positive JJ B-ADJP -through IN B-PP -the DT B-NP -afternoon NN I-NP -session NN I-NP -. . O - -The DT B-NP -Tokyo NNP I-NP -Stock NNP I-NP -Price NNP I-NP -Index NNP I-NP --LRB- ( O -Topix NNP B-NP --RRB- ) O -of IN B-PP -all DT B-NP -issues NNS I-NP -listed VBN B-VP -in IN B-PP -the DT B-NP -First NNP I-NP -Section NN I-NP -, , O -which WDT B-NP -gained VBD B-VP -22.78 CD B-NP -points NNS I-NP -Thursday NNP B-NP -, , O -was VBD B-VP -up IN B-ADVP -14.06 CD B-NP -points NNS I-NP -, , O -or CC O -0.53 CD B-NP -% NN I-NP -, , O -at IN B-PP -2679.72 CD B-NP -. . O - -The DT B-NP -Second JJ I-NP -Section NN I-NP -index NN I-NP -, , O -which WDT B-NP -rose VBD B-VP -15.72 CD B-NP -points NNS I-NP -Thursday NNP B-NP -, , O -was VBD B-VP -up IN B-ADVP -11.88 CD B-NP -points NNS I-NP -, , O -or CC O -0.32 CD B-NP -% NN I-NP -, , O -to TO B-VP -close VB I-VP -at IN B-PP -3717.46 CD B-NP -. . O - -Volume NN B-NP -in IN B-PP -the DT B-NP -second JJ I-NP -section NN I-NP -was VBD B-VP -estimated VBN I-VP -at IN B-PP -30 CD B-NP -million CD I-NP -shares NNS I-NP -, , O -up IN B-ADVP -from IN B-PP -28 CD B-NP -million CD I-NP -Thursday NNP B-NP -. . O - -In IN B-PP -turmoil NN B-NP -caused VBN B-VP -by IN B-PP -the DT O -previous JJ B-NP -Friday NNP I-NP -'s POS B-NP -plunge NN I-NP -in IN B-PP -New NNP B-NP -York NNP I-NP -stocks NNS I-NP -, , O -the DT B-NP -Nikkei NNP I-NP -marked VBD B-VP -a DT B-NP -sharp JJ I-NP -647.33-point JJ I-NP -fall NN I-NP -Monday NNP B-NP -. . O - -But CC O -the DT B-NP -Nikkei NNP I-NP -fell VBD B-VP -an DT B-NP -overall JJ I-NP -1.8 CD I-NP -% NN I-NP -in IN B-PP -value NN B-NP -that DT B-NP -day NN I-NP -compared VBN B-PP -with IN B-PP -Wall NNP B-NP -Street NNP I-NP -'s POS I-NP -far RB B-ADJP -sharper JJR I-ADJP -6.9 CD B-ADJP -% NN I-ADJP -drop NN B-NP -on IN B-PP -Oct. NNP B-NP -13 CD I-NP -. . O - -The DT B-NP -Tokyo NNP I-NP -market NN I-NP -'s POS B-NP -resiliency NN I-NP -helped VBD B-VP -participants NNS B-NP -to TO B-VP -regain VB I-VP -confidence NN B-NP -gradually RB B-ADVP -as IN B-SBAR -they PRP B-NP -spent VBD B-VP -more JJR B-NP -time NN I-NP -on IN B-PP -analyzing VBG B-VP -factors NNS B-NP -that WDT B-NP -caused VBD B-VP -the DT B-NP -Friday NNP I-NP -plunge NN I-NP -and CC O -realized VBD B-VP -these DT B-NP -problems NNS I-NP -were VBD B-VP -unique JJ B-ADJP -to TO B-PP -New NNP B-NP -York NNP I-NP -stocks NNS I-NP -and CC B-ADJP -not RB I-ADJP -directly RB B-ADJP -related VBN I-ADJP -to TO B-PP -Tokyo NNP B-NP -. . O - -The DT B-NP -Nikkei NNP I-NP -continued VBD B-VP -to TO I-VP -gain VB I-VP -for IN B-PP -the DT B-NP -rest NN I-NP -of IN B-PP -the DT B-NP -week NN I-NP -, , O -adding VBG B-VP -1017.69 CD B-NP -points NNS I-NP -in IN B-PP -four CD B-NP -days NNS I-NP --- : O -more JJR B-VP -than IN I-VP -erasing VBG I-VP -Monday NNP B-NP -'s POS B-NP -losses NNS I-NP -. . O - -But CC O -further JJ B-NP -major JJ I-NP -advances NNS I-NP -on IN B-PP -the DT B-NP -Nikkei NNP I-NP -are VBP B-VP -n't RB I-VP -foreseen VBN I-VP -this DT B-NP -week NN I-NP -by IN B-PP -market NN B-NP -observers NNS I-NP -. . O - -Investors NNS B-NP -are VBP B-VP -still RB I-VP -waiting VBG I-VP -to TO I-VP -see VB I-VP -how WRB B-ADVP -the DT B-NP -U.S. NNP I-NP -government NN I-NP -will MD B-VP -decide VB I-VP -on IN B-PP -interest NN B-NP -rates NNS I-NP -and CC O -how WRB B-ADVP -the DT B-NP -dollar NN I-NP -will MD B-VP -be VB I-VP -stabilized VBN I-VP -. . O - -Some DT B-NP -high-priced JJ I-NP -issues NNS I-NP -made VBD B-VP -a DT B-NP -comeback NN I-NP -Friday NNP B-NP -. . O - -Pioneer NNP B-NP -surged VBD B-VP -450 CD B-NP -yen NN I-NP --LRB- ( O -$ $ B-NP -3.16 CD I-NP --RRB- ) O -to TO B-PP -6,050 CD B-NP -yen NN I-NP --LRB- ( O -$ $ B-NP -42.60 CD I-NP --RRB- ) O -. . O - -Kyocera NNP B-NP -advanced VBD B-VP -80 CD B-NP -yen NN I-NP -to TO B-PP -5,440 CD B-NP -. . O - -Fanuc NNP B-NP -gained VBD B-VP -100 CD B-NP -to TO B-PP -7,580 CD B-NP -. . O - -Breweries NNP B-NP -attracted VBD B-VP -investors NNS B-NP -because IN B-PP -of IN I-PP -their PRP$ B-NP -land NN I-NP -property NN I-NP -holdings NNS I-NP -that WDT B-NP -could MD B-VP -figure VB I-VP -in IN B-PP -development NN B-NP -or CC O -other JJ B-NP -plans NNS I-NP -, , O -traders NNS B-NP -said VBD B-VP -. . O - -Sapporo NNP B-NP -gained VBD B-VP -80 CD B-NP -to TO B-PP -1,920 CD B-NP -and CC O -Kirin NNP B-NP -added VBD B-VP -60 CD B-NP -to TO B-PP -2,070 CD B-NP -. . O - -Housings NNS B-NP -, , I-NP -constructions NNS I-NP -and CC I-NP -pharmaceuticals NNS I-NP -continued VBD B-VP -to TO I-VP -be VB I-VP -bought VBN I-VP -following VBG B-PP -Thursday NNP B-NP -'s POS B-NP -gains NNS I-NP -because IN B-PP -of IN I-PP -strong JJ B-NP -earnings NNS I-NP -outlooks NNS I-NP -. . O - -Daiwa NNP B-NP -House NNP I-NP -gained VBD B-VP -50 CD B-NP -to TO B-PP -2,660 CD B-NP -. . O - -Misawa NNP B-NP -Homes NNP I-NP -was VBD B-VP -up IN B-ADVP -20 CD B-NP -at IN B-PP -2,960 CD B-NP -. . O - -Kajima NNP B-NP -advanced VBD B-VP -40 CD B-NP -to TO B-PP -2,120 CD B-NP -and CC O -Ohbayashi NNP B-NP -added VBD B-VP -50 CD B-NP -to TO B-PP -1,730 CD B-NP -. . O - -Fujisawa NNP B-NP -added VBD B-VP -80 CD B-NP -to TO B-PP -2,010 CD B-NP -and CC O -Mochida NNP B-NP -advanced VBD B-VP -230 CD B-NP -to TO B-PP -4,400 CD B-NP -. . O - -London JJ B-NP -share NN I-NP -prices NNS I-NP -were VBD B-VP -influenced VBN I-VP -largely RB B-ADVP -by IN B-PP -declines NNS B-NP -on IN B-PP -Wall NNP B-NP -Street NNP I-NP -and CC O -weakness NN B-NP -in IN B-PP -the DT B-NP -British JJ I-NP -pound NN I-NP -. . O - -The DT B-NP -key JJ I-NP -Financial NNP I-NP -Times-Stock NNP I-NP -Exchange NNP I-NP -100-share JJ I-NP -index NN I-NP -ended VBD B-VP -10.2 CD B-NP -points NNS I-NP -lower JJR B-ADVP -at IN B-PP -2179.1 CD B-NP -, , O -above IN B-ADVP -its PRP$ B-NP -intraday JJ I-NP -low NN I-NP -of IN B-PP -2176.9 CD B-NP -, , B-ADVP -but CC I-ADVP -off IN B-ADVP -the DT B-NP -day NN I-NP -'s POS I-NP -high NN B-NP -of IN B-PP -2189 CD B-NP -. . O - -The DT B-NP -index NN I-NP -finished VBD B-VP -2.4 CD B-NP -% NN I-NP -under IN B-PP -its PRP$ B-NP -close NN I-NP -of IN B-PP -2233.9 CD B-NP -the DT B-NP -previous JJ I-NP -Friday NNP I-NP -, , O -although IN B-SBAR -it PRP B-NP -recouped VBD B-VP -some DT B-NP -of IN B-PP -the DT B-NP -sharp JJ I-NP -losses NNS I-NP -staged VBD B-VP -early JJ B-NP -last JJ I-NP -week NN I-NP -on IN B-PP -the DT B-NP -back RB I-NP -of IN B-PP -Wall NNP B-NP -Street NNP I-NP -'s POS B-NP -fall NN I-NP -. . O - -London NNP B-NP -was VBD B-VP -weak JJ B-ADJP -throughout IN B-PP -Friday NNP B-NP -'s POS B-NP -trading NN I-NP -, , O -however RB B-ADVP -, , O -on IN B-PP -what WP B-NP -dealers NNS B-NP -attributed VBD B-VP -to TO B-PP -generally RB B-NP -thin JJ I-NP -interest NN I-NP -ahead RB B-ADVP -of IN B-PP -the DT B-NP -weekend NN I-NP -and CC O -this DT B-NP -week NN I-NP -'s POS I-NP -potentially RB B-ADJP -important JJ I-ADJP -U.K. NNP B-NP -trade NN I-NP -figures NNS I-NP -for IN B-PP -September NNP B-NP -. . O - -The DT B-NP -FT-SE NNP I-NP -100 CD I-NP -largely RB B-ADVP -remained VBD B-VP -within IN B-PP -an DT B-NP -11-point JJ I-NP -range NN I-NP -establshed VBN B-VP -within IN B-PP -the DT B-NP -first JJ I-NP -hour NN I-NP -of IN B-PP -trading NN B-NP -before IN B-PP -it PRP B-NP -eased VBD B-VP -to TO B-PP -an DT B-NP -intraday JJ I-NP -low JJ I-NP -late RB B-ADVP -in IN B-PP -the DT B-NP -session NN I-NP -when WRB B-ADVP -a DT B-NP -flurry NN I-NP -of IN B-PP -program NN B-NP -selling VBG I-NP -pushed VBN B-VP -Wall NNP B-NP -Street NNP I-NP -lower JJR B-ADVP -. . O - -The DT B-NP -FT NNP I-NP -30-share JJ I-NP -index NN I-NP -closed VBD B-VP -11.0 CD B-NP -points NNS I-NP -lower JJR B-ADVP -at IN B-PP -1761.0 CD B-NP -. . O - -Volume NN B-NP -was VBD B-VP -extremely RB B-ADJP -thin JJ I-ADJP -at IN B-PP -351.3 CD B-NP -million CD I-NP -shares NNS I-NP -, , O -the DT B-NP -lightest JJS I-NP -volume NN I-NP -of IN B-PP -the DT B-NP -week NN I-NP -and CC O -modestly RB B-ADVP -under IN B-PP -Thursday NNP B-NP -'s POS B-NP -387.4 CD I-NP -million CD I-NP -shares NNS I-NP -. . O - -Dealers NNS B-NP -said VBD B-VP -the DT B-NP -day NN I-NP -'s POS B-NP -action NN I-NP -was VBD B-VP -featureless JJ B-ADJP -outside IN B-PP -some DT B-NP -response NN I-NP -to TO B-PP -sterling NN B-NP -'s POS B-NP -early JJ I-NP -weakness NN I-NP -against IN B-PP -the DT B-NP -mark NN I-NP -, , O -and CC O -fears NNS B-NP -that IN B-SBAR -Wall NNP B-NP -Street NNP I-NP -might MD B-VP -open RB I-VP -lower JJR B-ADVP -after IN B-PP -its PRP$ B-NP -strong JJ I-NP -leap NN I-NP -forward RB B-ADVP -Thursday NNP B-NP -. . O - -They PRP B-NP -added VBD B-VP -that IN B-SBAR -market-makers NNS B-NP -were VBD B-VP -largely RB I-VP -sidelined VBN I-VP -after IN B-PP -aggressively RB B-VP -supporting VBG I-VP -the DT B-NP -market NN I-NP -Thursday NNP B-NP -in IN B-PP -their PRP$ B-NP -quest NN I-NP -to TO B-VP -cover VB I-VP -internal JJ B-NP -shortages NNS I-NP -of IN B-PP -FT-SE NNP B-NP -100 CD I-NP -shares NNS I-NP -. . O - -Interest NN B-NP -may MD B-VP -remain VB I-VP -limited JJ B-ADJP -into IN B-PP -tomorrow NN B-NP -'s POS B-NP -U.K. NNP I-NP -trade NN I-NP -figures NNS I-NP -, , O -which WDT B-NP -the DT B-NP -market NN I-NP -will MD B-VP -be VB I-VP -watching VBG I-VP -closely RB B-ADVP -to TO B-VP -see VB I-VP -if IN B-SBAR -there EX B-NP -is VBZ B-VP -any DT B-NP -improvement NN I-NP -after IN B-PP -disappointing JJ B-NP -numbers NNS I-NP -in IN B-PP -the DT B-NP -previous JJ I-NP -two CD I-NP -months NNS I-NP -. . O - -The DT B-NP -key JJ I-NP -corporate JJ I-NP -news NN I-NP -of IN B-PP -the DT B-NP -day NN I-NP -was VBD B-VP -that IN B-SBAR -British JJ B-NP -Airways NNPS I-NP -decided VBD B-VP -to TO I-VP -withdraw VB I-VP -from IN B-PP -a DT B-NP -management-led JJ I-NP -bid NN I-NP -for IN B-PP -UAL NNP B-NP -Corp. NNP I-NP -, , O -the DT B-NP -parent NN I-NP -of IN B-PP -United NNP B-NP -Airlines NNPS I-NP -. . O - -British JJ B-NP -Airways NNPS I-NP -rose VBD B-VP -initially RB B-ADVP -after IN B-PP -announcing VBG B-VP -its PRP$ B-NP -withdrawal NN I-NP -from IN B-PP -the DT B-NP -UAL NNP I-NP -deal NN I-NP -. . O - -Dealers NNS B-NP -said VBD B-VP -they PRP B-NP -viewed VBD B-VP -the DT O -initial JJ O -# # O -390-million CD O --LRB- ( O -$ $ B-ADJP -622 CD O -million CD O --RRB- ) O -outlay NN B-NP -for IN B-PP -a DT B-NP -15 CD I-NP -% NN I-NP -stake NN I-NP -in IN B-PP -the DT B-NP -airline NN I-NP -as IN B-PP -a DT B-NP -bit NN I-NP -much JJ I-NP -. . O - -Its PRP$ B-NP -shares NNS I-NP -slid VBD B-VP -in IN B-PP -late JJ B-NP -dealings NNS I-NP -to TO B-VP -close VB I-VP -a DT B-NP -penny NN I-NP -per IN B-PP -share NN B-NP -lower JJR B-ADVP -at IN B-PP -197 CD B-NP -pence NN I-NP -. . O - -The DT B-NP -airline NN I-NP -was VBD B-VP -the DT B-NP -most RBS I-NP -active JJ I-NP -FT-SE NNP I-NP -100 CD I-NP -at IN B-PP -8.2 CD B-NP -million CD I-NP -shares NNS I-NP -traded VBN B-VP -. . O - -The DT B-NP -next JJ I-NP -most RBS I-NP -active JJ I-NP -top-tier JJ I-NP -stock NN I-NP -was VBD B-VP -B.A.T NNP B-NP -Industries NNPS I-NP -, , O -the DT B-NP -target NN I-NP -of IN B-PP -Sir NNP B-NP -James NNP I-NP -Goldsmith NNP I-NP -'s POS B-NP -# # B-ADJP -13.4 CD O -billion CD O -bid NN B-NP -. . O - -The DT B-NP -company NN I-NP -gained VBD B-VP -shareholder NN B-NP -approval NN I-NP -Thursday NNP B-NP -to TO B-VP -restructure VB I-VP -in IN B-PP -a DT B-NP -bid NN I-NP -to TO B-VP -fend VB I-VP -off IN B-PRT -the DT B-NP -hostile JJ I-NP -takeover NN I-NP -. . O - -Sir NNP B-NP -James NNP I-NP -said VBD B-VP -Thursday NNP B-NP -night NN I-NP -that IN B-SBAR -his PRP$ B-NP -plans NNS I-NP -for IN B-PP -the DT B-NP -takeover NN I-NP -had VBD B-VP -n't RB I-VP -changed VBN I-VP -. . O - -B.A.T NNP B-NP -ended VBD B-VP -the DT B-NP -day NN I-NP -at IN B-PP -778 CD B-NP -, , O -down JJ B-ADVP -5 NN B-NP -, , O -on IN B-PP -turnover NN B-NP -of IN B-PP -7.5 CD B-NP -million CD I-NP -shares NNS I-NP -. . O - -Dealers NNS B-NP -said VBD B-VP -it PRP B-NP -was VBD B-VP -hit VBN I-VP -by IN B-PP -some DT B-NP -profit-taking NN I-NP -after IN B-PP -gains NNS B-NP -since IN B-PP -mid-week NN B-NP -. . O - -In IN B-PP -other JJ B-NP -active JJ I-NP -shares NNS I-NP -, , O -Trusthouse NNP B-NP -Forte NNP I-NP -shed VB B-VP -10 CD B-NP -to TO B-PP -294 CD B-NP -on IN B-PP -volume NN B-NP -of IN B-PP -6.4 CD B-NP -million CD I-NP -shares NNS I-NP -after IN B-PP -a DT B-NP -Barclays NNP I-NP -De NNP I-NP -Zoete NNP I-NP -Wedd NNP I-NP -downgrading NN I-NP -, , O -while IN B-SBAR -Hillsdown NNP B-NP -Holdings NNP I-NP -, , O -a DT B-NP -food NN I-NP -products NNS I-NP -concern VBP I-NP -, , O -was VBD B-VP -boosted VBN I-VP -2 CD B-NP -to TO B-PP -271 CD B-NP -after IN O -it PRP B-NP -disclosed VBD B-VP -it PRP B-NP -would MD B-VP -seek VB I-VP -shareholder NN B-NP -approval NN I-NP -to TO B-VP -begin VB I-VP -share NN B-NP -repurchases NNS I-NP -. . O - -Elsewhere RB B-ADVP -in IN B-PP -Europe NNP B-NP -, , O -share NN B-NP -prices NNS I-NP -closed VBD B-VP -higher JJR B-ADVP -in IN B-PP -Stockholm NNP B-NP -, , I-NP -Brussels NNP I-NP -and CC I-NP -Milan NNP I-NP -. . O - -Prices NNS B-NP -were VBD B-VP -lower JJR B-ADJP -in IN B-PP -Frankfurt NNP B-NP -, , I-NP -Zurich NNP I-NP -, , I-NP -Paris NNP I-NP -and CC I-NP -Amsterdam NNP I-NP -. . O - -South JJ B-NP -African JJ I-NP -gold NN I-NP -stocks NNS I-NP -closed VBD B-VP -moderately RB B-ADVP -lower JJR I-ADVP -. . O - -Share NN B-NP -prices NNS I-NP -closed VBD B-VP -higher JJR B-ADVP -in IN B-PP -Sydney NNP B-NP -, , O -Taipei NNP B-NP -, , O -Wellington NNP B-NP -, , O -Manila NNP B-NP -, , O -Hong NNP B-NP -Kong NNP I-NP -and CC O -Singapore NNP B-NP -and CC O -were VBD B-VP -lower JJR B-ADJP -in IN B-PP -Seoul NNP B-NP -. . O - -Here RB B-ADVP -are VBP B-VP -price NN B-NP -trends NNS I-NP -on IN B-PP -the DT B-NP -world NN I-NP -'s POS B-NP -major JJ I-NP -stock NN I-NP -markets NNS I-NP -, , O -as IN B-SBAR -calculated VBN B-VP -by IN B-PP -Morgan NNP B-NP -Stanley NNP I-NP -Capital NNP I-NP -International NNP I-NP -Perspective NNP I-NP -, , O -Geneva NNP B-NP -. . O - -To TO B-VP -make VB I-VP -them PRP B-NP -directly RB B-ADJP -comparable JJ I-ADJP -, , O -each DT B-NP -index NN I-NP -is VBZ B-VP -based VBN I-VP -on IN B-PP -the DT B-NP -close NN I-NP -of IN B-PP -1969 CD B-NP -equaling VBG B-VP -100 CD B-NP -. . O - -The DT B-NP -percentage NN I-NP -change NN I-NP -is VBZ B-VP -since IN B-PP -year-end NN B-NP -. . O - -The DT B-NP -U.S. NNP I-NP -is VBZ B-VP -required VBN I-VP -to TO I-VP -notify VB I-VP -foreign JJ B-NP -dictators NNS I-NP -if IN B-SBAR -it PRP B-NP -knows VBZ B-VP -of IN B-PP -coup NN B-NP -plans NNS I-NP -likely JJ B-ADJP -to TO B-VP -endanger VB I-VP -their PRP$ B-NP -lives NNS I-NP -, , O -government NN B-NP -officials NNS I-NP -said VBD B-VP -. . O - -The DT B-NP -notification NN I-NP -policy NN I-NP -was VBD B-VP -part NN B-NP -of IN B-PP -a DT B-NP -set NN I-NP -of IN B-PP -guidelines NNS B-NP -on IN B-PP -handling NN B-VP -coups NNS B-NP -outlined VBN B-VP -in IN B-PP -a DT B-NP -secret JJ I-NP -1988 CD I-NP -exchange NN I-NP -of IN B-PP -letters NNS B-NP -between IN B-PP -the DT B-NP -Reagan NNP I-NP -administration NN I-NP -and CC O -the DT B-NP -Senate NNP I-NP -Intelligence NNP I-NP -Committee NNP I-NP -. . O - -The DT B-NP -existence NN I-NP -of IN B-PP -the DT B-NP -guidelines NNS I-NP -has VBZ B-VP -become VBN I-VP -known VBN I-VP -since IN B-SBAR -President NNP B-NP -Bush NNP I-NP -disclosed VBD B-VP -them PRP B-NP -privately RB B-ADVP -to TO B-PP -seven CD B-NP -Republican NNP I-NP -senators NNS I-NP -at IN B-PP -a DT B-NP -White NNP I-NP -House NNP I-NP -meeting NN I-NP -last JJ B-NP -Monday NNP I-NP -. . O - -Officials NNS B-NP -familiar JJ B-ADJP -with IN B-PP -the DT B-NP -meeting NN I-NP -said VBD B-VP -Mr. NNP B-NP -Bush NNP I-NP -cited VBD B-VP -the DT B-NP -policy NN I-NP -as IN B-PP -an DT B-NP -example NN I-NP -of IN B-PP -the DT B-NP -sort NN I-NP -of IN B-PP -congressional JJ B-NP -requirements NNS I-NP -the DT B-NP -administration NN I-NP -contends VBZ B-VP -contribute VB B-VP -to TO B-PP -the DT B-NP -failure NN I-NP -of IN B-PP -such JJ B-NP -covert JJ I-NP -actions NNS I-NP -as IN B-PP -this DT B-NP -month NN I-NP -'s POS B-NP -futile JJ I-NP -effort NN I-NP -to TO B-VP -oust VB I-VP -Panamanian JJ B-NP -dictator NN I-NP -Manuel NNP I-NP -Noriega NNP I-NP -. . O - -According VBG B-PP -to TO B-PP -the DT B-NP -officials NNS I-NP -, , O -Mr. NNP B-NP -Bush NNP I-NP -even RB B-ADVP -read VB B-VP -to TO B-PP -the DT B-NP -senators NNS I-NP -selections NNS B-NP -from IN B-PP -a DT B-NP -highly RB I-NP -classified VBN I-NP -letter NN I-NP -from IN B-PP -the DT B-NP -committee NN I-NP -to TO B-PP -the DT B-NP -White NNP I-NP -House NNP I-NP -discussing VBG B-VP -the DT B-NP -guidelines NNS I-NP -. . O - -They PRP B-NP -said VBD B-VP -the DT B-NP -president NN I-NP -conceded VBD B-VP -the DT B-NP -notification NN I-NP -requirement NN I-NP -did VBD B-VP -n't RB I-VP -affect VB I-VP -his PRP$ B-NP -decision NN I-NP -to TO B-VP -lend VB I-VP -only RB B-NP -minor JJ I-NP -support NN I-NP -to TO B-PP -this DT B-NP -month NN I-NP -'s POS B-NP -Panama NNP I-NP -coup NN I-NP -effort NN I-NP -. . O - -No DT B-NP -notification NN I-NP -was VBD B-VP -ever RB I-VP -considered VBN I-VP -, , O -officials NNS B-NP -said VBD B-VP -, , O -apparently RB B-ADVP -because IN B-SBAR -the DT B-NP -U.S. NNP I-NP -did VBD B-VP -n't RB I-VP -think VB I-VP -the DT B-NP -coup NN I-NP -plotters NNS I-NP -intended VBN B-VP -to TO I-VP -kill VB I-VP -Mr. NNP B-NP -Noriega NNP I-NP -, , O -but CC O -merely RB B-VP -sought VBD I-VP -to TO I-VP -imprison VB I-VP -him PRP B-NP -. . O - -What WP B-NP -'s VBZ B-VP -more JJR B-NP -, , O -both DT B-NP -administration NN B-NP -and CC O -congressional JJ B-NP -officials NNS I-NP -hint VBP B-VP -that IN B-SBAR -the DT B-NP -notification NN I-NP -requirement NN I-NP -is VBZ B-VP -likely JJ B-ADJP -to TO B-VP -be VB I-VP -dropped VBN I-VP -from IN B-PP -the DT B-NP -guidelines NNS I-NP -on IN B-PP -coup NN B-NP -attempts NNS I-NP -that WDT B-NP -are VBP B-VP -being VBG I-VP -rewritten VBN I-VP -by IN B-PP -the DT B-NP -panel NN I-NP -and CC O -the DT B-NP -White NNP I-NP -House NNP I-NP -. . O - -The DT B-NP -rewriting VBG I-NP -was VBD B-VP -launched VBN I-VP -at IN B-PP -a DT B-NP -meeting NN I-NP -between IN B-PP -Mr. NNP B-NP -Bush NNP I-NP -and CC O -intelligence NN B-NP -committee NN I-NP -leaders NNS I-NP -Oct. NNP B-NP -12 CD I-NP -, , O -a DT B-NP -few JJ I-NP -days NNS I-NP -before IN B-PP -the DT B-NP -meeting NN I-NP -at IN B-PP -which WDT B-NP -the DT B-NP -president NN I-NP -complained VBD B-VP -about IN B-PP -the DT B-NP -rules NNS I-NP -. . O - -However RB B-ADVP -, , O -the DT B-NP -disclosure NN I-NP -of IN B-PP diff --git a/paddle/trainer/tests/train_files.txt b/paddle/trainer/tests/train_files.txt deleted file mode 100644 index 1c268914953ff090ae47c56051fcf1cad0e1707b..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/train_files.txt +++ /dev/null @@ -1 +0,0 @@ -trainer/tests/train_proto.bin diff --git a/paddle/trainer/tests/train_sparse.list b/paddle/trainer/tests/train_sparse.list deleted file mode 100644 index 6ea020e2202f8464f8a647cd96c84a9d17a03ae3..0000000000000000000000000000000000000000 --- a/paddle/trainer/tests/train_sparse.list +++ /dev/null @@ -1 +0,0 @@ -trainer/tests/compare_sparse_data diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 064933802f21e56e31d5d0691fee3a25ea2072f3..5ba0e50c6ba0f84a3ea87d5a5199fef23a5b05ea 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -1116,35 +1116,6 @@ def PyData(files=None, return data_config -@config_func -def ProtoData(files=None, - type=None, - file_group_queue_capacity=None, - load_file_count=None, - constant_slots=None, - load_thread_num=None, - **xargs): - data_config = create_data_config_proto(**xargs) - if type is None: - data_config.type = 'proto' - else: - data_config.type = type - data_config.files = files - - # When type="proto_group", one data provider contains at most - # load_file_count files, and there are at most - # (queue_capacity + load_thread_num + 1) data providers in memory - if file_group_queue_capacity is not None: - data_config.file_group_conf.queue_capacity = file_group_queue_capacity - if load_file_count is not None: - data_config.file_group_conf.load_file_count = load_file_count - if load_thread_num is not None: - data_config.file_group_conf.load_thread_num = load_thread_num - if constant_slots: - data_config.constant_slots.extend(constant_slots) - return data_config - - #real data for training is actually provided by "sub_data" data providers. @config_func def MultiData(sub_data=[]): @@ -1826,7 +1797,7 @@ class FCLayer(LayerBase): self.layer_type = 'mkldnn_fc' config_assert( len(inputs) == 1, - "MkldnnFCLayer support one and only one input!") + "MKLDNNFCLayer support one and only one input!") super(FCLayer, self).__init__( name, self.layer_type, size, inputs=inputs, **xargs) for input_index in xrange(len(self.inputs)): @@ -1837,7 +1808,7 @@ class FCLayer(LayerBase): sparse = format == "csr" or format == "csc" if use_mkldnn: config_assert(not sparse, - "MkldnnFCLayer do not support sparse format yet") + "MKLDNNFCLayer do not support sparse format yet") if use_mkldnn_wgt: dims = [self.config.size, input_layer.size] if sparse: @@ -1853,7 +1824,7 @@ class FCLayer(LayerBase): @config_layer('mkldnn_fc') -class MkldnnFcLayer(FCLayer): +class MKLDNNFcLayer(FCLayer): layer_type = 'mkldnn_fc' @@ -2066,13 +2037,20 @@ class ParameterReluLayer(LayerBase): def __init__(self, name, inputs, partial_sum=1, **args): super(ParameterReluLayer, self).__init__( name, self.layer_type, 0, inputs=inputs, **args) + input_layer = self.get_input_layer(0) config_assert(len(self.inputs) == 1, "prelu layer has only one input.") config_assert(input_layer.size % partial_sum == 0, "a wrong setting for partial_sum") + + dims = [1, input_layer.size / partial_sum] self.set_layer_size(input_layer.size) self.config.partial_sum = partial_sum - self.create_input_parameter(0, input_layer.size / partial_sum) + self.create_input_parameter(0, input_layer.size / partial_sum, dims) + + self.set_layer_height_width(self.get_input_layer(0).height, \ + self.get_input_layer(0).width) + self.set_layer_depth(self.get_input_layer(0).depth) @config_layer('conv') @@ -2718,7 +2696,7 @@ Usage: max_sort_size = -1, inputs = ["output", "score"]) Input data: Samples of the same query should be loaded as a sequence, - by ProtoDataProvider or PyDataProvider etc.. User should provide + by PyDataProvider etc.. User should provide scores for each sample. The score slot should be the 2nd input of lambdaRank layer. @@ -3213,6 +3191,18 @@ class SubNestedSequenceLayer(LayerBase): self.set_layer_size(size) +@config_layer('dot_prod') +class DotProdLayer(LayerBase): + def __init__(self, name, inputs, device=None): + super(DotProdLayer, self).__init__( + name, 'dot_prod', 0, inputs, device=device) + config_assert(len(inputs) == 2, 'DotProdLayer must have 2 inputs.') + config_assert( + self.get_input_layer(0).size == self.get_input_layer(1).size, + "Two inputs should have the same size.") + self.set_layer_size(1) + + @config_layer('out_prod') class OuterProdLayer(LayerBase): def __init__(self, name, inputs, device=None): @@ -3334,6 +3324,20 @@ class RowL2NormLayer(LayerBase): self.set_layer_size(input_layer.size) +@config_layer('cos') +class CosSimLayer(LayerBase): + def __init__(self, name, inputs, cos_scale=1, device=None): + super(CosSimLayer, self).__init__( + name, 'cos', 1, inputs=inputs, device=device) + config_assert( + len(self.inputs) == 2, + 'The CosSimLayer expects two and only two inputs.') + config_assert( + self.get_input_layer(0).size == self.get_input_layer(1).size, + 'The two inputs of CosSimLayer must have the same dimensionality.') + self.config.cos_scale = cos_scale + + @config_layer('cos_vm') class CosSimVecMatLayer(LayerBase): def __init__(self, name, size, inputs, cos_scale=1.0, device=None): @@ -3341,10 +3345,24 @@ class CosSimVecMatLayer(LayerBase): name, 'cos_vm', size, inputs=inputs, device=device) self.config.cos_scale = cos_scale config_assert( - len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs') + len(self.inputs) == 2, 'The CosSimVecMatLayer must have 2 inputs.') config_assert( size * self.get_input_layer(0).size == self.get_input_layer(1).size, - 'Wrong input size for CosSimVecMatLayer') + 'Wrong input size for CosSimVecMatLayer.') + + +@config_layer('l2_distance') +class L2DistanceLayer(LayerBase): + def __init__(self, name, inputs, device=None): + super(L2DistanceLayer, self).__init__( + name, 'l2_distance', 1, inputs=inputs, device=device) + config_assert( + len(self.inputs) == 2, ('The L2DistanceLayer must have ' + 'and only have 2 inputs.')) + config_assert( + self.get_input_layer(0).size == self.get_input_layer(1).size, + ('Two inputs of the L2DistanceLayer must have ' + 'the same dimensionality.')) @config_layer('sampling_id') @@ -3388,18 +3406,6 @@ class AverageLayer(LayerBase): self.create_bias_parameter(bias, self.config.size) -@config_layer('cos') -class CosSimLayer(LayerBase): - def __init__(self, name, inputs, cos_scale=1, device=None): - super(CosSimLayer, self).__init__( - name, 'cos', 1, inputs=inputs, device=device) - config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs') - config_assert( - self.get_input_layer(0).size == self.get_input_layer(1).size, - 'inputs of CosSimLayer must have same dim') - self.config.cos_scale = cos_scale - - @config_layer('tensor') class TensorLayer(LayerBase): def __init__(self, name, size, inputs, bias=True, **xargs): @@ -3510,11 +3516,17 @@ def ExpressionLayer(name, inputs, **xargs): @config_layer('concat') class ConcatenateLayer(LayerBase): + layer_type = 'concat' + def __init__(self, name, inputs, bias=False, **xargs): config_assert(inputs, 'inputs cannot be empty') config_assert(not bias, 'ConcatenateLayer cannot support bias.') + use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0))) + if self.layer_type == "mkldnn_concat": + config_assert(use_mkldnn, "mkldnn_concat only support MKLDNN") + self.layer_type = 'mkldnn_concat' if use_mkldnn else 'concat' super(ConcatenateLayer, self).__init__( - name, 'concat', 0, inputs=inputs, **xargs) + name, self.layer_type, 0, inputs=inputs, **xargs) size = 0 for input_index in xrange(len(self.inputs)): assert self.get_input_layer(0).height == self.get_input_layer( @@ -3534,6 +3546,11 @@ class ConcatenateLayer(LayerBase): self.set_layer_size(size) +@config_layer('mkldnn_concat') +class MKLDNNConcatLayer(ConcatenateLayer): + layer_type = 'mkldnn_concat' + + # like concat layer, but each input layer was processed by a Projection. @config_layer('concat2') class ConcatenateLayer2(LayerBase): diff --git a/python/paddle/trainer_config_helpers/activations.py b/python/paddle/trainer_config_helpers/activations.py index c749fa827fea4a808ab715dcb3442aa24d06a4d2..00efc01c0592107314f5b23c951706d039d49a88 100644 --- a/python/paddle/trainer_config_helpers/activations.py +++ b/python/paddle/trainer_config_helpers/activations.py @@ -17,7 +17,8 @@ __all__ = [ "IdentityActivation", "LinearActivation", 'SequenceSoftmaxActivation', 'ExpActivation', "ReluActivation", "BReluActivation", "SoftReluActivation", "STanhActivation", "AbsActivation", "SquareActivation", "BaseActivation", - "LogActivation", "SqrtActivation", "ReciprocalActivation" + "LogActivation", "SqrtActivation", "ReciprocalActivation", + "SoftSignActivation" ] @@ -243,8 +244,20 @@ class ReciprocalActivation(BaseActivation): Reciprocal Activation. .. math:: - f(z) = 1/z + f(z)=\\frac{1}{z} """ def __init__(self): BaseActivation.__init__(self, 'reciprocal', False) + + +class SoftSignActivation(BaseActivation): + """ + SoftSign Activation. + + .. math:: + f(z)=\\frac{z}{1 + |z|} + """ + + def __init__(self): + BaseActivation.__init__(self, 'softsign', False) diff --git a/python/paddle/trainer_config_helpers/evaluators.py b/python/paddle/trainer_config_helpers/evaluators.py index 57979db4de08989ab583b0ab41589c09789a0921..95797fba8f67bacb421f5c2813ad6332bc53cbc9 100644 --- a/python/paddle/trainer_config_helpers/evaluators.py +++ b/python/paddle/trainer_config_helpers/evaluators.py @@ -297,7 +297,7 @@ def auc_evaluator( def pnpair_evaluator( input, label, - info, + query_id, weight=None, name=None, ): """ @@ -308,16 +308,20 @@ def pnpair_evaluator( .. code-block:: python - eval = pnpair_evaluator(input, label, info) + eval = pnpair_evaluator(input, label, query_id) :param input: Input Layer name. The output prediction of network. :type input: LayerOutput :param label: Label layer name. :type label: LayerOutput - :param info: Info layer name. (TODO, explaination) - :type info: LayerOutput + :param query_id: Query_id layer name. Query_id indicates that which query + each sample belongs to. Its shape should be + the same as output of Label layer. + :type query_id: LayerOutput :param weight: Weight Layer name. It should be a matrix with size - [sample_num, 1]. (TODO, explaination) + [sample_num, 1] which indicates the weight of each sample. + The default weight of sample is 1 if the weight layer is None. + And the pair weight is the mean of the two samples' weight. :type weight: LayerOutput :param name: Evaluator name. :type name: None|basestring @@ -326,8 +330,8 @@ def pnpair_evaluator( input = [input] if label: input.append(label) - if info: - input.append(info) + if query_id: + input.append(query_id) evaluator_base( input=input, type="pnpair", diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 4964c1245d8020d4c7c8875c92463acc5860fd02..8e127c9489ca5a4ed190e6d4e12ec4c9b28ad9cf 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -51,6 +51,7 @@ __all__ = [ 'last_seq', 'first_seq', 'cos_sim', + 'l2_distance_layer', 'hsigmoid', 'conv_projection', 'square_error_cost', @@ -115,6 +116,7 @@ __all__ = [ 'huber_classification_cost', 'block_expand_layer', 'maxout_layer', + 'dot_prod_layer', 'out_prod_layer', 'printer_layer', 'print_layer', @@ -167,6 +169,7 @@ class LayerType(object): COST = 'cost' COSINE_SIM_VEC = 'cos_vm' COSINE_SIM = 'cos' + L2_DISTANCE = 'l2_distance' HSIGMOID = 'hsigmoid' CONV_LAYER = 'conv' CONVTRANS_LAYER = 'convt' @@ -197,6 +200,7 @@ class LayerType(object): SCALING_LAYER = 'scaling' TRANS_LAYER = 'trans' ROTATE_LAYER = 'rotate' + DOT_PROD_LAYER = 'dot_prod' OUT_PROD_LAYER = 'out_prod' FEATURE_MAP_EXPAND_LAYER = 'featmap_expand' @@ -2332,6 +2336,51 @@ def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None): return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size) +@wrap_name_default() +@layer_support() +def l2_distance_layer(x, y, name=None, layer_attr=None): + """ + This layer calculates and returns the Euclidean distance between two input + vectors x and y. The equation is as follows: + + .. math:: + l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)} + + The output size of this layer is fixed to be 1. Note that the above + computation is for one sample. Multiple samples are processed in one batch. + + The example usage is: + + .. code-block:: python + + l2_sim = l2_distance(x=layer1, y=layer2) + + :param name: The name of this layer. It is optional. + :type name: basestring + :param x: The first input x for this layer, whose output is a matrix with + dimensionality N x D. N is the sample number in a mini-batch. + D is the dimensionality of x's output. + :type x: LayerOutput + :param y: The second input y for this layer, whose output is a matrix with + dimensionality N x D. N is the sample number in a mini-batch. + D is the dimensionality of y's output. + :type y: LayerOutput + :param layer_attr: The extra layer attributes, for example, drop rate. + See ExtraLayerAttribute for more details. + :type layer_attr: ExtraLayerAttribute + :return: The returned LayerOutput object. + :rtype: LayerOutput + """ + + assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput) + Layer( + name=name, + type=LayerType.L2_DISTANCE, + inputs=[x.name, y.name], + **ExtraLayerAttribute.to_kwargs(layer_attr)) + return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1) + + @wrap_name_default() @wrap_bias_attr_default(has_bias=True) @wrap_param_attr_default() @@ -2458,12 +2507,12 @@ def img_conv_layer(input, input is raw pixels of image(mono or RGB), or it may be the previous layer's num_filters * num_group. - There are several group of filter in PaddlePaddle implementation. - Each group will process some channel of the inputs. For example, if an input + There are several groups of filters in PaddlePaddle implementation. + Each group will process some channels of the input. For example, if num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create - 32*4 = 128 filters to process inputs. The channels will be split into 4 - pieces. First 256/4 = 64 channels will process by first 32 filters. The - rest channels will be processed by rest group of filters. + 32*4 = 128 filters to process the input. The channels will be split into 4 + pieces. First 256/4 = 64 channels will be processed by first 32 filters. The + rest channels will be processed by the rest groups of filters. The example usage is: @@ -2479,53 +2528,68 @@ def img_conv_layer(input, :type name: basestring :param input: The input of this layer. :type input: LayerOutput - :param filter_size: The x dimension of a filter kernel. Or input a tuple for - two image dimension. + :param filter_size: The dimensions of the filter kernel. If the parameter is + set to one integer, the two dimensions on x and y axises + will be same when filter_size_y is not set. If it is set + to a list, the first element indicates the dimension on + the x axis, and the second is used to specify the dimension + on the y axis when filter_size_y is not provided. :type filter_size: int | tuple | list - :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle - currently supports rectangular filters, the filter's - shape will be (filter_size, filter_size_y). - :type filter_size_y: int | None + :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter + is not set, it will be set automatically according to filter_size. + :type filter_size_y: int :param num_filters: Each filter group's number of filter :param act: Activation type. ReluActivation is the default activation. :type act: BaseActivation - :param groups: Group size of filters. + :param groups: The group number. 1 is the default group number. :type groups: int - :param stride: The x dimension of the stride. Or input a tuple for two image - dimension. + :param stride: The strides. If the parameter is set to one integer, the strides + on x and y axises will be same when stride_y is not set. If it is + set to a list, the first element indicates the stride on the x axis, + and the second is used to specify the stride on the y axis when + stride_y is not provided. 1 is the default value. :type stride: int | tuple | list - :param stride_y: The y dimension of the stride. + :param stride_y: The stride on the y axis. :type stride_y: int - :param padding: The x dimension of the padding. Or input a tuple for two - image dimension + :param padding: The padding sizes. If the parameter is set to one integer, the padding + sizes on x and y axises will be same when padding_y is not set. If it + is set to a list, the first element indicates the padding size on the + x axis, and the second is used to specify the padding size on the y axis + when padding_y is not provided. 0 is the default padding size. :type padding: int | tuple | list - :param padding_y: The y dimension of the padding. + :param padding_y: The padding size on the y axis. :type padding_y: int - :param dilation: The x dimension of the dilation. Or input a tuple for two - image dimension + :param dilation: The dimensions of the dilation. If the parameter is set to one integer, + the two dimensions on x and y axises will be same when dilation_y is not + set. If it is set to a list, the first element indicates the dimension + on the x axis, and the second is used to specify the dimension on the y + axis when dilation_y is not provided. 1 is the default dimension. :type dilation: int | tuple | list - :param dilation_y: The y dimension of the dilation. + :param dilation_y: The dimension of the dilation on the y axis. :type dilation_y: int :param bias_attr: The bias attribute. If the parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param num_channels: number of input channels. If None will be set - automatically from previous output. + :param num_channels: The number of input channels. If the parameter is not set or + set to None, its actual value will be automatically set to + the channel number of the input. :type num_channels: int - :param param_attr: Convolution param attribute. None means default attribute + :param param_attr: The parameter attribute. See ParameterAttribute for + details. :type param_attr: ParameterAttribute - :param shared_biases: Is biases will be shared between filters or not. + :param shared_biases: Whether biases will be shared between filters or not. :type shared_biases: bool - :param layer_attr: Layer Extra Attribute. + :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute - :param trans: true if it is a convTransLayer, false if it is a convLayer + :param trans: True if it is a convTransLayer, False if it is a convLayer :type trans: bool - :param layer_type: specify the layer_type, default is None. If trans=True, - layer_type has to be "exconvt" or "cudnn_convt", - otherwise layer_type has to be either "exconv" or - "cudnn_conv" - :type layer_type: String + :param layer_type: Specify the layer type. If the dilation's dimension on one axis is + larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt". + If trans=True, layer_type has to be "exconvt" or "cudnn_convt", + otherwise layer_type has to be either "exconv" or "cudnn_conv". + :type layer_type: basestring :return: LayerOutput object. :rtype: LayerOutput """ @@ -2630,7 +2694,7 @@ def img_pool_layer(input, """ Image pooling Layer. - The details of pooling layer, please refer ufldl's pooling_ . + The details of pooling layer, please refer to ufldl's pooling_ . .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/ @@ -2662,32 +2726,37 @@ def img_pool_layer(input, padding_y=2, pool_type=MaxPooling()) - :param padding: pooling padding width. + :param padding: The padding size on the x axis. 0 is the default padding size. :type padding: int - :param padding_y: pooling padding height. It's equal to padding by default. - :type padding_y: int | None - :param name: name of pooling layer - :type name: basestring. + :param padding_y: The padding size on the y axis. If the parameter is not set + or set to None, it will be set to 'padding' automatically. + :param name: The name of this layer. It is optional. + :type name: basestring :param input: The input of this layer. :type input: LayerOutput - :param pool_size: pooling window width + :param pool_size: The pooling window length on the x axis. :type pool_size: int - :param pool_size_y: pooling window height. It's eaqual to pool_size by default. - :type pool_size_y: int | None - :param num_channels: number of input channel. + :param pool_size_y: The pooling window length on the y axis. If the parameter is + not set or set to None, its actual value will be automatically + set to pool_size. + :type pool_size_y: int + :param num_channels: The number of input channels. If the parameter is not set or + set to None, its actual value will be automatically set to + the channels number of the input. :type num_channels: int - :param pool_type: pooling type. MaxPooling or AvgPooling. Default is - MaxPooling. + :param pool_type: Pooling type. MaxPooling is the default pooling. :type pool_type: BasePoolingType - :param stride: stride width of pooling. + :param stride: The stride on the x axis. 1 is the default value. :type stride: int - :param stride_y: stride height of pooling. It is equal to stride by default. - :type stride_y: int | None - :param layer_attr: Extra Layer attribute. + :param stride_y: The stride on the y axis. If the parameter is not set or set to + None, its actual value will be automatically set to 'stride'. + :type stride_y: int + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute - :param ceil_mode: Wether to use ceil mode to calculate output height and with. - Defalut is True. If set false, Otherwise use floor. - + :param ceil_mode: Wether to use the ceil function to calculate output height and width. + True is the default. If it is set to False, the floor function will + be used. :type ceil_mode: bool :return: LayerOutput object. :rtype: LayerOutput @@ -2793,24 +2862,32 @@ def img_pool3d_layer(input, :param padding: pooling padding width. :type padding: int | tuple | list - :param name: name of pooling layer + :param name: The name of this layer. It is optional. :type name: basestring. :param input: The input of this layer. :type input: LayerOutput - :param pool_size: pooling window width + :param pool_size: The pooling window lengths along three axises. If the parameter + is set to one integer, the three lengths will be same. :type pool_size: int | tuple | list - :param num_channels: number of input channel. + :param num_channels: The number of input channels. If the parameter is not set or + set to None, its actual value will be automatically set to + the channels number of the input. :type num_channels: int - :param pool_type: pooling type. MaxPooling or AvgPooling. Default is - MaxPooling. + :param pool_type: Pooling type. MaxPooling is the default pooling. :type pool_type: BasePoolingType - :param stride: stride width of pooling. + :param stride: The strides of the pooling along three axises. If the parameter + is set to one integer, the three strides will be same. 1 is the + default value. :type stride: int | tuple | list - :param layer_attr: Extra Layer attribute. + :param padding: The sizes of padding along three axises. If the parameter is set to + one integer, they will be same. 0 is the default padding size. + :type padding: int | tuple | list + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute - :param ceil_mode: Wether to use ceil mode to calculate output height and with. - Defalut is True. If set false, Otherwise use floor. - + :param ceil_mode: Wether to use the ceil function to calculate output height and width. + True is the default. If it is set to False, the floor function will + be used. :type ceil_mode: bool :return: LayerOutput object. :rtype: LayerOutput @@ -2889,9 +2966,11 @@ def spp_layer(input, pyramid_height=None, layer_attr=None): """ - Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. - The details please refer to - `Kaiming He's paper `_. + A layer performs spatial pyramid pooling. + + Reference: + Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition + https://arxiv.org/abs/1406.4729 The example usage is: @@ -2906,13 +2985,16 @@ def spp_layer(input, :type name: basestring :param input: The input of this layer. :type input: LayerOutput - :param num_channels: number of input channel. + :param num_channels: The number of input channels. If the parameter is not set or + set to None, its actual value will be automatically set to + the channels number of the input. :type num_channels: int - :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling. + :param pool_type: Pooling type. MaxPooling is the default pooling. :type scale: BasePoolingType - :param pyramid_height: pyramid height. + :param pyramid_height: The pyramid height of this pooling. :type pyramid_height: int - :param layer_attr: Extra Layer Attribute. + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput @@ -3876,7 +3958,7 @@ def recurrent_layer(input, :type input: LayerOutput :param act: Activation type. TanhActivation is the default activation. :type act: BaseActivation - :param bias_attr: The parameter attribute for bias. If this parameter is set to + :param bias_attr: The parameter attribute for bias. If this parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. @@ -4145,6 +4227,45 @@ def maxid_layer(input, name=None, layer_attr=None): size=l.config.size) +@wrap_name_default() +def dot_prod_layer(input1, input2, name=None, layer_attr=None): + """ + A layer for computing the dot product of two vectors. + + The example usage is: + + .. code-block:: python + + dot_prod = dot_prod_layer(input1=vec1, input2=vec2) + + :param name: The name of this layer. It is optional. + :type name: basestring + :param input1: The first input layer. + :type input: LayerOutput + :param input2: The second input layer. + :type input2: LayerOutput + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. + :type layer_attr: ExtraLayerAttribute. + :return: LayerOutput object. + :rtype: LayerOutput + """ + assert isinstance(input1, LayerOutput) + assert isinstance(input2, LayerOutput) + assert input1.size == input2.size, ("Two inputs should have the same size.") + + l = Layer( + name=name, + type=LayerType.DOT_PROD_LAYER, + inputs=[input1.name, input2.name], + **ExtraLayerAttribute.to_kwargs(layer_attr)) + return LayerOutput( + name=name, + layer_type=LayerType.DOT_PROD_LAYER, + parents=[input1, input2], + size=l.config.size) + + @wrap_name_default() def out_prod_layer(input1, input2, name=None, layer_attr=None): """ @@ -4611,7 +4732,7 @@ def conv_projection(input, will be same when filter_size_y is not set. If it is set to a list, the first element indicates the dimension on the x axis, and the second is used to specify the dimension - on the y axis when filter_size is not provided. + on the y axis when filter_size_y is not provided. :type filter_size: int | tuple | list :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter is not set, it will be set automatically according to filter_size. @@ -6488,10 +6609,11 @@ def row_conv_layer(input, @layer_support() @wrap_name_default() -@wrap_param_attr_default() def prelu_layer(input, name=None, partial_sum=1, + channel_shared=None, + num_channels=None, param_attr=None, layer_attr=None): """ @@ -6522,6 +6644,14 @@ def prelu_layer(input, - partial_sum = number of outputs, indicates all elements share the same weight. :type partial_sum: int + :param channel_shared: whether or not the parameter are shared across channels. + + - channel_shared = True, we set the partial_sum to the number of outputs. + - channel_shared = False, we set the partial_sum to the number of elements in one channel. + + :type channel_shared: bool + :param num_channels: number of input channel. + :type num_channels: int :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for @@ -6532,7 +6662,25 @@ def prelu_layer(input, """ assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.' - assert isinstance(param_attr, ParameterAttribute) + + if not param_attr: + param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0) + else: + assert isinstance(param_attr, ParameterAttribute) + + if num_channels is None: + assert input.num_filters is not None, \ + 'the input channel cannot be detected, please specify the num_channels parameter' + num_channels = input.num_filters + + if channel_shared is not None: + assert isinstance(channel_shared, bool) + assert (input.height != 0 and input.width != 0), \ + 'input height and widht must be setted' + if channel_shared: + partial_sum = input.height * input.width * num_channels + else: + partial_sum = input.height * input.width l = Layer( name=name, @@ -6544,6 +6692,7 @@ def prelu_layer(input, name=name, layer_type=LayerType.PRELU, parents=input, + num_filters=num_channels, size=l.config.size) @@ -6993,7 +7142,7 @@ def img_conv3d_layer(input, :type layer_attr: ExtraLayerAttribute :param trans: True if it is a convTransLayer, False if it is a convLayer :type trans: bool - :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d" + :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d" when trans=True. If not set, it will be automatically set to "deconv3d" when trans=True and "conv3d" when trans=False. :type layer_type: basestring diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py index d323d34c3ff47614342934c2a02492f66d27dc10..9776ae18057d57dd994fac8b62090258252922c6 100644 --- a/python/paddle/trainer_config_helpers/networks.py +++ b/python/paddle/trainer_config_helpers/networks.py @@ -11,7 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - +import math from activations import LinearActivation, ReluActivation, SoftmaxActivation, \ IdentityActivation, TanhActivation, SequenceSoftmaxActivation @@ -26,9 +26,9 @@ __all__ = [ 'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool", "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg', 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru', - 'simple_attention', 'dot_product_attention', 'simple_gru2', - 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm', 'inputs', - 'outputs' + 'simple_attention', 'dot_product_attention', 'multi_head_attention', + 'simple_gru2', 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm', + 'inputs', 'outputs' ] ###################################################### @@ -1476,10 +1476,8 @@ def dot_product_attention(encoded_sequence, expand_as=encoded_sequence, name='%s_expand' % name) - m = linear_comb_layer( - weights=expanded, - vectors=encoded_sequence, - name='%s_dot-product' % name) + m = dot_prod_layer( + input1=expanded, input2=encoded_sequence, name='%s_dot-product' % name) attention_weight = fc_layer( input=m, @@ -1498,6 +1496,134 @@ def dot_product_attention(encoded_sequence, input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name) +@wrap_name_default() +def multi_head_attention(query, + key, + value, + key_proj_size, + value_proj_size, + head_num, + attention_type, + softmax_param_attr=None, + name=None): + """ + Calculate and return a context vector with dot-product attention mechanism. + The dimension of the context vector equals to value_proj_size * head_num. + + Please refer to **Attention Is All You Need** for more details. The link is + as follows: + https://arxiv.org/abs/1706.03762. + + The example usage is: + + .. code-block:: python + + context = multi_head_attention(query=decoder_state, + key=enc_seq, + value=enc_seq, + key_proj_size=64, + value_pro_size=64, + head_num=8, + attention_type='dot-product attention') + + :param name: A prefix attached to the name of each layer that defined inside + the multi_head_attention. + :type name: basestring + :param softmax_param_attr: The parameter attribute of sequence softmax + that is used to produce attention weight. + :type softmax_param_attr: ParameterAttribute + :param query: query is used to calculate attention weights over values at current step. + :type query: LayerOutput + :param key: key is used to calculate the attention weight of the corresponding value. + :type key: LayerOutput + :param value: value is the sequence to be attended. + :type value: LayerOutput + :param key_proj_size: The dimension of the linear projection performed on key and query. + :type key_proj_size: int + :param value_proj_size: The dimension of the linear projection performed on value. + :type value_proj_size: int + :param head_num: The number of attention heads. + :type head_num: int + :param attention_type: The type of the attention mechanism used in each attention + heads. Now, we only support scaled dot-product attention and + additive attention. + :type attention_type: basestring + :return: The context vector. + :rtype: LayerOutput + """ + assert attention_type in ['dot-product attention', 'additive attention'] + + with mixed_layer( + size=key_proj_size * head_num, + name='%s_query_proj' % name) as query_proj: + query_proj += full_matrix_projection(query) + query_proj = expand_layer(input=query_proj, expand_as=key) + + with mixed_layer( + size=key_proj_size * head_num, + name='%s_key_proj' % name) as key_proj: + key_proj += full_matrix_projection(key) + + with mixed_layer( + size=value_proj_size * head_num, + name='%s_value_proj' % name) as value_proj: + value_proj += full_matrix_projection(value) + + head_list = [] + for i in range(head_num): + with mixed_layer(size=key_proj_size) as sub_query_proj: + sub_query_proj += identity_projection( + query_proj, offset=key_proj_size * i, size=key_proj_size) + + with mixed_layer(size=key_proj_size) as sub_key_proj: + sub_key_proj += identity_projection( + key_proj, offset=key_proj_size * i, size=key_proj_size) + + with mixed_layer(size=value_proj_size) as sub_value_proj: + sub_value_proj += identity_projection( + value_proj, offset=value_proj_size * i, size=value_proj_size) + + if attention_type == 'dot-product attention': + m = dot_prod_layer( + input1=sub_query_proj, + input2=sub_key_proj, + name='%s_dot-product_%d' % (name, i)) + m = slope_intercept_layer( + input=m, + slope=math.sqrt(1.0 / key_proj_size), + name='%s_dot-product_scaling_%d' % (name, i)) + else: + with mixed_layer( + size=key_proj_size, + act=TanhActivation(), + name='%s_combine_%d' % (name, i)) as m: + m += identity_projection(sub_query_proj) + m += identity_projection(sub_key_proj) + + attention_weight = fc_layer( + input=m, + size=1, + act=SequenceSoftmaxActivation(), + param_attr=softmax_param_attr, + name="%s_softmax_%d" % (name, i), + bias_attr=False) + + scaled = scaling_layer( + weight=attention_weight, + input=sub_value_proj, + name='%s_scaling_%d' % (name, i)) + head = pooling_layer( + input=scaled, + pooling_type=SumPooling(), + name="%s_pooling_%d" % (name, i)) + + head_list.append(head) + + attended = concat_layer(head_list) + + return attended + + def inputs(layers, *args): """ Declare the inputs of network. The order of input should be as same as diff --git a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh index 1c7451e0abf5dc1b99671f292e2ffc2d2282abe9..a21f67a2d99e7eab39708e2a571d30d7e9f20ce6 100755 --- a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh +++ b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh @@ -10,6 +10,7 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer test_seq_slice_layer test_cross_entropy_over_beam test_roi_pool_layer test_pooling3D_layer -test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer test_scale_sub_region_layer) +test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer +test_scale_sub_region_layer test_dot_prod_layer test_l2_distance_layer) export whole_configs=(test_split_datasource) diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_dot_prod_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_dot_prod_layer.protostr new file mode 100644 index 0000000000000000000000000000000000000000..f1530c382c3d81a82592af2c43c06eb4278e2b4a --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_dot_prod_layer.protostr @@ -0,0 +1,38 @@ +type: "nn" +layers { + name: "vector1" + type: "data" + size: 10 + active_type: "" +} +layers { + name: "vector2" + type: "data" + size: 10 + active_type: "" +} +layers { + name: "__dot_prod_layer_0__" + type: "dot_prod" + size: 1 + active_type: "" + inputs { + input_layer_name: "vector1" + } + inputs { + input_layer_name: "vector2" + } +} +input_layer_names: "vector1" +input_layer_names: "vector2" +output_layer_names: "__dot_prod_layer_0__" +sub_models { + name: "root" + layer_names: "vector1" + layer_names: "vector2" + layer_names: "__dot_prod_layer_0__" + input_layer_names: "vector1" + input_layer_names: "vector2" + output_layer_names: "__dot_prod_layer_0__" + is_recurrent_layer_group: false +} diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_l2_distance_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_l2_distance_layer.protostr new file mode 100644 index 0000000000000000000000000000000000000000..9ba33689edc893c2169a73679a04a6f51cfc83a8 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_l2_distance_layer.protostr @@ -0,0 +1,39 @@ +type: "nn" +layers { + name: "x" + type: "data" + size: 128 + active_type: "" +} +layers { + name: "y" + type: "data" + size: 128 + active_type: "" +} +layers { + name: "__l2_distance_layer_0__" + type: "l2_distance" + size: 1 + active_type: "" + inputs { + input_layer_name: "x" + } + inputs { + input_layer_name: "y" + } +} +input_layer_names: "x" +input_layer_names: "y" +output_layer_names: "__l2_distance_layer_0__" +sub_models { + name: "root" + layer_names: "x" + layer_names: "y" + layer_names: "__l2_distance_layer_0__" + input_layer_names: "x" + input_layer_names: "y" + output_layer_names: "__l2_distance_layer_0__" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr index 94ad56cab063df9e6a11bb1c293727fb9dec810f..63fb38c6508675d379f577b965ea17ad4c3b4942 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr @@ -4,6 +4,8 @@ layers { type: "data" size: 300 active_type: "" + height: 10 + width: 10 } layers { name: "__prelu_layer_0__" @@ -15,6 +17,9 @@ layers { input_parameter_name: "___prelu_layer_0__.w0" } partial_sum: 1 + height: 10 + width: 10 + depth: 1 } layers { name: "__prelu_layer_1__" @@ -26,6 +31,9 @@ layers { input_parameter_name: "___prelu_layer_1__.w0" } partial_sum: 1 + height: 10 + width: 10 + depth: 1 } layers { name: "__prelu_layer_2__" @@ -37,41 +45,100 @@ layers { input_parameter_name: "___prelu_layer_2__.w0" } partial_sum: 5 + height: 10 + width: 10 + depth: 1 +} +layers { + name: "__prelu_layer_3__" + type: "prelu" + size: 300 + active_type: "" + inputs { + input_layer_name: "input" + input_parameter_name: "___prelu_layer_3__.w0" + } + partial_sum: 300 + height: 10 + width: 10 + depth: 1 +} +layers { + name: "__prelu_layer_4__" + type: "prelu" + size: 300 + active_type: "" + inputs { + input_layer_name: "input" + input_parameter_name: "___prelu_layer_4__.w0" + } + partial_sum: 100 + height: 10 + width: 10 + depth: 1 } parameters { name: "___prelu_layer_0__.w0" size: 300 - initial_mean: 0.0 - initial_std: 0.057735026919 + initial_mean: 0.25 + initial_std: 0.0 + dims: 1 + dims: 300 initial_strategy: 0 - initial_smart: true + initial_smart: false } parameters { name: "___prelu_layer_1__.w0" size: 300 - initial_mean: 0.0 - initial_std: 0.057735026919 + initial_mean: 0.25 + initial_std: 0.0 + dims: 1 + dims: 300 initial_strategy: 0 - initial_smart: true + initial_smart: false } parameters { name: "___prelu_layer_2__.w0" size: 60 - initial_mean: 0.0 - initial_std: 0.129099444874 + initial_mean: 0.25 + initial_std: 0.0 + dims: 1 + dims: 60 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "___prelu_layer_3__.w0" + size: 1 + initial_mean: 0.25 + initial_std: 0.0 + dims: 1 + dims: 1 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "___prelu_layer_4__.w0" + size: 3 + initial_mean: 0.25 + initial_std: 0.0 + dims: 1 + dims: 3 initial_strategy: 0 - initial_smart: true + initial_smart: false } input_layer_names: "input" -output_layer_names: "__prelu_layer_2__" +output_layer_names: "__prelu_layer_4__" sub_models { name: "root" layer_names: "input" layer_names: "__prelu_layer_0__" layer_names: "__prelu_layer_1__" layer_names: "__prelu_layer_2__" + layer_names: "__prelu_layer_3__" + layer_names: "__prelu_layer_4__" input_layer_names: "input" - output_layer_names: "__prelu_layer_2__" + output_layer_names: "__prelu_layer_4__" is_recurrent_layer_group: false } diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_dot_prod_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_dot_prod_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..e52d48dde0084aacd3f7874cc384d59287a0c7d5 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_dot_prod_layer.py @@ -0,0 +1,7 @@ +from paddle.trainer_config_helpers import * + +vec1 = data_layer(name='vector1', size=10) +vec2 = data_layer(name='vector2', size=10) +dot_product = dot_prod_layer(input1=vec1, input2=vec2) + +outputs(dot_product) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_l2_distance_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_l2_distance_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..b36a5c6d1222860ee4b77f89ad4b6148ccd89589 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_l2_distance_layer.py @@ -0,0 +1,7 @@ +from paddle.trainer_config_helpers import * + +outputs( + l2_distance_layer( + x=data_layer( + name='x', size=128), y=data_layer( + name='y', size=128))) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py index aae90fab32db78a70c2169ed8fafb930433f4136..45b02fbf325bb63b057bbbf64d59af8debf0bc9d 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py @@ -1,8 +1,10 @@ from paddle.trainer_config_helpers import * -data = data_layer(name='input', size=300) -prelu = prelu_layer(input=data) -prelu = prelu_layer(input=data, partial_sum=1) -prelu = prelu_layer(input=data, partial_sum=5) +data = data_layer(name='input', size=300, height=10, width=10) +prelu = prelu_layer(input=data, num_channels=3) +prelu = prelu_layer(input=data, partial_sum=1, num_channels=3) +prelu = prelu_layer(input=data, partial_sum=5, num_channels=3) +prelu = prelu_layer(input=data, channel_shared=True, num_channels=3) +prelu = prelu_layer(input=data, channel_shared=False, num_channels=3) outputs(prelu) diff --git a/python/paddle/v2/fluid/framework.py b/python/paddle/v2/fluid/framework.py index a6eca2d7194c30aabeafc34de0957792feeebbec..7f7c310ad87f64e5d047ecfc2876d516914c75c8 100644 --- a/python/paddle/v2/fluid/framework.py +++ b/python/paddle/v2/fluid/framework.py @@ -4,7 +4,10 @@ import collections import numpy as np import copy -__all__ = ['Block', 'Variable', 'Program', 'Operator', 'default_startup_program', 'default_main_program'] +__all__ = [ + 'Block', 'Variable', 'Program', 'Operator', 'default_startup_program', + 'default_main_program' +] def unique_name(prefix): @@ -12,6 +15,37 @@ def unique_name(prefix): return "_".join([prefix, str(uid)]) +def convert_np_dtype_to_dtype_(np_dtype): + dtype = np.dtype(np_dtype) + if dtype == np.float32: + return core.DataType.FP32 + elif dtype == np.float64: + return core.DataType.FP64 + elif dtype == np.float16: + return core.DataType.FP16 + elif dtype == np.int32: + return core.DataType.INT32 + elif dtype == np.int16: + return core.DataType.INT16 + elif dtype == np.int64: + return core.DataType.INT64 + elif dtype == np.bool: + return core.DataType.BOOL + else: + raise ValueError("Not supported numpy dtype " + str(dtype)) + + +def dtype_is_floating(dtype): + if not isinstance(dtype, core.DataType): + dtype = convert_np_dtype_to_dtype_(dtype) + + if (dtype == core.DataType.FP16 or dtype == core.DataType.FP32 or + dtype == core.DataType.FP64): + return True + else: + return False + + def _debug_string_(proto, throw_on_error=True): error_fields = list() if not proto.IsInitialized(error_fields) and throw_on_error: @@ -63,7 +97,7 @@ class Variable(object): "matched.".format(self.name, old_shape, shape)) if dtype is not None: if not isinstance(dtype, core.DataType): - dtype = Variable._convert_np_dtype_to_dtype_(dtype) + dtype = convert_np_dtype_to_dtype_(dtype) if is_new_var: self.desc.set_data_type(dtype) else: @@ -145,26 +179,6 @@ class Variable(object): uid = core.unique_integer(prefix) # unique during whole process. return "_".join([prefix, str(uid)]) - @staticmethod - def _convert_np_dtype_to_dtype_(np_dtype): - dtype = np.dtype(np_dtype) - if dtype == np.float32: - return core.DataType.FP32 - elif dtype == np.float64: - return core.DataType.FP64 - elif dtype == np.float16: - return core.DataType.FP16 - elif dtype == np.int32: - return core.DataType.INT32 - elif dtype == np.int16: - return core.DataType.INT16 - elif dtype == np.int64: - return core.DataType.INT64 - elif dtype == np.bool: - return core.DataType.BOOL - else: - raise ValueError("Not supported numpy dtype " + str(dtype)) - def get_all_op_protos(): """ @@ -232,17 +246,17 @@ class Operator(object): in_proto.name) if found: - in_argus = inputs[in_proto.name] - if not isinstance(in_argus, list): - in_argus = [in_argus] - if not in_proto.duplicable and len(in_argus) > 1: + in_args = inputs[in_proto.name] + if not isinstance(in_args, list): + in_args = [in_args] + if not in_proto.duplicable and len(in_args) > 1: raise ValueError( "Input %s expects only one input, but %d are given." - % (in_proto.name, len(in_argus))) - in_argu_names = [] - for argu in in_argus: - in_argu_names.append(argu.name) - self.desc.set_input(in_proto.name, in_argu_names) + % (in_proto.name, len(in_args))) + in_arg_names = [] + for arg in in_args: + in_arg_names.append(arg.name) + self.desc.set_input(in_proto.name, in_arg_names) else: self.desc.set_input(in_proto.name, []) @@ -260,18 +274,18 @@ class Operator(object): str(e) for e in given))) for out_proto in proto.outputs: - out_argus = outputs[out_proto.name] - if not isinstance(out_argus, list): - out_argus = [out_argus] - if not out_proto.duplicable and len(out_argus) > 1: + out_args = outputs[out_proto.name] + if not isinstance(out_args, list): + out_args = [out_args] + if not out_proto.duplicable and len(out_args) > 1: raise ValueError( "Output %s expects only one output, but %d are given." % - (out_proto.name, len(out_argus))) - out_argu_names = [] - for argu in out_argus: - out_argu_names.append(argu.name) - argu.op = self - self.desc.set_output(out_proto.name, out_argu_names) + (out_proto.name, len(out_args))) + out_arg_names = [] + for arg in out_args: + out_arg_names.append(arg.name) + arg.op = self + self.desc.set_output(out_proto.name, out_arg_names) if attrs is not None: if not isinstance(attrs, dict): @@ -582,8 +596,10 @@ class Parameter(Variable): g_main_program = Program() g_startup_program = Program() + def default_startup_program(): return g_startup_program + def default_main_program(): return g_main_program diff --git a/python/paddle/v2/fluid/layer_helper.py b/python/paddle/v2/fluid/layer_helper.py index a97e07982bd89be72386970f28a0dd049f82372d..5697eaa460cf21bf73add1b460947e4f3d4edfc3 100644 --- a/python/paddle/v2/fluid/layer_helper.py +++ b/python/paddle/v2/fluid/layer_helper.py @@ -2,7 +2,7 @@ import copy import itertools from paddle.v2.fluid.framework import Variable, g_main_program, \ - g_startup_program, unique_name, Program + g_startup_program, unique_name, Program, dtype_is_floating from paddle.v2.fluid.initializer import ConstantInitializer, \ UniformInitializer, XavierInitializer @@ -61,7 +61,7 @@ class LayerHelper(object): @property def param_attr(self): - default = {'name': None, 'initializer': XavierInitializer()} + default = {'name': None} actual = self.kwargs.get('param_attr', None) if actual is None: actual = default @@ -72,7 +72,7 @@ class LayerHelper(object): @property def bias_attr(self): - default = {'name': None, 'initializer': ConstantInitializer()} + default = {'name': None} bias_attr = self.kwargs.get('bias_attr', None) if bias_attr is None: bias_attr = default @@ -119,6 +119,8 @@ class LayerHelper(object): attr_copy = copy.deepcopy(attr) if initializer is not None: attr_copy['initializer'] = initializer + else: + attr_copy['initializer'] = self._get_default_initializer(dtype) if attr_copy['name'] is None: attr_copy['name'] = unique_name(".".join([self.name, suffix])) self.startup_program.global_block().create_parameter( @@ -149,13 +151,19 @@ class LayerHelper(object): persistable=True, initializer=initializer) - def append_bias_op(self, input_var, dim_start=1, dim_end=None): + def append_bias_op(self, + input_var, + bias_initializer, + dim_start=1, + dim_end=None): """ Append bias operator and return its output. If the user does not set bias_attr, append_bias_op will return input_var - :param input_var: the input variable. The len(input_var.shape) is larger - or equal than 2. + :param input_var: the input variable. The len(input_var.shape) is + larger or equal than 2. + :bias_initializer: an instance of a subclass of Initializer used to + initialize the bias :param dim_start: :param dim_end: the shape of the bias will be input_var.shape[dim_start:dim_end]. The bias is broadcasted to other @@ -167,7 +175,11 @@ class LayerHelper(object): return input_var b = self.create_parameter( - attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b') + attr=bias_attr, + shape=size, + dtype=input_var.data_type, + suffix='b', + initializer=bias_initializer) tmp = self.create_tmp_variable(dtype=input_var.data_type) self.append_op( type='elementwise_add', @@ -191,3 +203,10 @@ class LayerHelper(object): outputs={"Y": [tmp]}, attrs=act) return tmp + + def _get_default_initializer(self, dtype): + if dtype is None or dtype_is_floating(dtype) is True: + return XavierInitializer() + else: + # For integer and boolean types, initialize with all zeros + return ConstantInitializer() diff --git a/python/paddle/v2/fluid/layers.py b/python/paddle/v2/fluid/layers.py index 1789d2f82a8813331b3610fc69f8447925cd7501..abd4b22e8b68f3b5c3e961df83db34e419e7f4d5 100644 --- a/python/paddle/v2/fluid/layers.py +++ b/python/paddle/v2/fluid/layers.py @@ -3,7 +3,7 @@ import paddle.v2.fluid.proto.framework_pb2 as framework_pb2 from paddle.v2.fluid.framework import OpProtoHolder, Variable, Program, \ Operator from paddle.v2.fluid.initializer import ConstantInitializer, \ - NormalInitializer + NormalInitializer, XavierInitializer from paddle.v2.fluid.layer_helper import LayerHelper, unique_name import re import cStringIO @@ -17,11 +17,13 @@ __all__ = [ def fc(input, size, + num_flatten_dims=1, param_attr=None, + param_initializer=None, bias_attr=None, - name=None, + bias_initializer=None, act=None, - num_flatten_dims=1, + name=None, main_program=None, startup_program=None): """ @@ -30,11 +32,15 @@ def fc(input, Args: input: The input tensor to the function size: The size of the layer + num_flatten_dims: Number of columns in input param_attr: The parameters/weights to the FC Layer + param_initializer: Initializer used for the weight/parameter. + If None, XavierInitializer() is used bias_attr: The bias parameter for the FC layer - name: Name/alias of the function + bias_initializer: Initializer used for the bias. + If None, then ConstantInitializer() is used act: Activation to be applied to the output of FC layer - num_flatten_dims: Number of columns in input + name: Name/alias of the function main_program: Name of the main program that calls this startup_program: Name of the startup program @@ -50,10 +56,23 @@ def fc(input, to the LayerHelper constructor. """ + + def _get_default_param_initializer(): + return XavierInitializer() + + def _get_default_bias_initializer(): + return ConstantInitializer() + helper = LayerHelper('fc', **locals()) dtype = helper.input_dtype() + if param_initializer is None: + param_initializer = _get_default_param_initializer() + + if bias_initializer is None: + bias_initializer = _get_default_bias_initializer() + mul_results = [] for input_var, param_attr in helper.iter_inputs_and_params(): input_shape = input_var.shape @@ -61,7 +80,10 @@ def fc(input, reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) ] + [size] w = helper.create_parameter( - attr=param_attr, shape=param_shape, dtype=dtype) + attr=param_attr, + initializer=param_initializer, + shape=param_shape, + dtype=dtype) tmp = helper.create_tmp_variable(dtype) helper.append_op( type="mul", @@ -82,16 +104,16 @@ def fc(input, helper.append_op( type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}) # add bias - pre_activation = helper.append_bias_op(pre_bias) + pre_activation = helper.append_bias_op(pre_bias, bias_initializer) # add activation return helper.append_activation(pre_activation) def embedding(input, size, - data_type='float32', is_sparse=False, param_attr=None, + data_type='float32', main_program=None, startup_program=None): """ @@ -100,9 +122,9 @@ def embedding(input, Args: input: The input to the function size: The size of the layer - data_type: The type of data : float32, float_16, int etc is_sparse: A flag that decleares whether the input is sparse param_attr: Parameters for this layer + data_type: The type of data : float32, float_16, int etc main_program: Name of the main program that calls this startup_program: Name of the startup program @@ -130,7 +152,6 @@ def embedding(input, # TODO(qijun): expose H0 and C0 def dynamic_lstm(input, size, - data_type='float32', param_attr=None, bias_attr=None, use_peepholes=True, @@ -138,6 +159,7 @@ def dynamic_lstm(input, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', + data_type='float32', main_program=None, startup_program=None): helper = LayerHelper('lstm', **locals()) @@ -178,9 +200,9 @@ def dynamic_lstm(input, def data(name, shape, + append_batch_size=True, data_type='float32', type=core.VarDesc.VarType.LOD_TENSOR, - append_batch_size=True, main_program=None, startup_program=None, stop_gradient=True): @@ -190,9 +212,9 @@ def data(name, Args: name: The name/alias of the function shape: Tuple declaring the shape. + append_batch_size: Whether or not to append the data as a batch. data_type: The type of data : float32, float_16, int etc type: The output type. By default it is LOD_TENSOR. - append_batch_size: Whether or not to append the data as a batch. main_program: Name of the main program that calls this startup_program: Name of the startup program stop_gradient: A boolean that mentions whether gradient should flow. @@ -226,7 +248,7 @@ def data(name, stop_gradient=stop_gradient) -def create_tensor(dtype, name=None, main_program=None): +def create_tensor(dtype, name=None, main_program=None, startup_program=None): helper = LayerHelper("create_tensor", **locals()) return helper.create_variable(name=helper.name, dtype=dtype) @@ -390,30 +412,12 @@ _create_op_func_('mul') _create_op_func_('elementwise_add') _create_op_func_('dropout') _create_op_func_('reshape') -_create_op_func_('elementwise_add') _create_op_func_('sigmoid') _create_op_func_('scale') _create_op_func_('reshape') _create_op_func_('transpose') -def fill_constant(data_type, shape, value=None, program=None): - """ - This function creates a tensor , with shape as mentioned in the input and - specified data_type and fills this up with a constant value that - comes in the input. - """ - helper = LayerHelper('fill_constant', **locals()) - out = helper.create_tmp_variable(dtype=data_type) - helper.append_op( - type='fill_constant', - outputs={'Out': [out]}, - attrs={'data_type': data_type, - 'shape': shape, - 'value': value}) - return out - - def cast(x, data_type, main_program=None): """ This function takes in the input with input_data_type @@ -456,7 +460,7 @@ def sums(input, main_program=None, startup_program=None): return out -def assign(input, output, main_program=None): +def assign(input, output, main_program=None, startup_program=None): helper = LayerHelper('assign', **locals()) helper.append_op( type='scale', @@ -468,7 +472,7 @@ def assign(input, output, main_program=None): def split_lod_tensor(input, mask, - level, + level=0, main_program=None, startup_program=None): helper = LayerHelper('split_lod_tensor', **locals()) @@ -490,11 +494,11 @@ def merge_lod_tensor(in_true, in_false, x, mask, - level, + level=0, main_program=None, startup_program=None): helper = LayerHelper('merge_lod_tensor', **locals()) - out = helper.create_tmp_variable(dtype=x.data_type) + out = helper.create_tmp_variable(dtype=in_true.data_type) helper.append_op( type='merge_lod_tensor', inputs={'X': x, @@ -596,10 +600,12 @@ def sequence_conv(input, num_filters, filter_size=3, filter_stride=1, - act=None, padding=None, bias_attr=None, + bias_initializer=None, param_attr=None, + param_initializer=None, + act=None, main_program=None, startup_program=None): """ @@ -607,6 +613,13 @@ def sequence_conv(input, other convolutional configurations for the filters and stride as given in the input parameters to the function. """ + + def _get_default_bias_initializer(): + return ConstantInitializer() + + def _get_default_param_initializer(): + return XavierInitializer() + # FIXME(dzh) : want to unify the argument of python layer # function. So we ignore some unecessary attributes. # such as, padding_trainable, context_start. @@ -614,9 +627,17 @@ def sequence_conv(input, helper = LayerHelper('sequence_conv', **locals()) dtype = helper.input_dtype() + if param_initializer is None: + param_initializer = _get_default_param_initializer() + if bias_initializer is None: + bias_initializer = _get_default_bias_initializer() + filter_shape = [filter_size * input.shape[1], num_filters] filter = helper.create_parameter( - attr=helper.param_attr, shape=filter_shape, dtype=dtype) + attr=helper.param_attr, + shape=filter_shape, + dtype=dtype, + initializer=param_initializer) pre_bias = helper.create_tmp_variable(dtype) helper.append_op( @@ -631,20 +652,22 @@ def sequence_conv(input, 'contextStart': -int(filter_size / 2), 'contextLength': filter_size }) - pre_act = helper.append_bias_op(pre_bias) + pre_act = helper.append_bias_op(pre_bias, bias_initializer) return helper.append_activation(pre_act) def conv2d(input, num_filters, - name=None, - filter_size=[1, 1], - act=None, - groups=None, + filter_size, stride=[1, 1], padding=None, - bias_attr=None, + groups=None, param_attr=None, + param_initializer=None, + bias_attr=None, + bias_initializer=None, + act=None, + name=None, main_program=None, startup_program=None): """ @@ -654,6 +677,14 @@ def conv2d(input, This funciton can also append an activation on top of the conv-2d output, if mentioned in the input parameters. """ + + def _get_default_bias_initializer(): + return ConstantInitializer() + + def _get_default_param_initializer(filter_size, num_channels): + std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 + return NormalInitializer(0.0, std, 0) + helper = LayerHelper('conv2d', **locals()) dtype = helper.input_dtype() @@ -661,7 +692,7 @@ def conv2d(input, if groups is None: num_filter_channels = num_channels else: - if num_channels % groups is not 0: + if num_channels % groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = num_channels / groups @@ -675,12 +706,17 @@ def conv2d(input, input_shape = input.shape filter_shape = [num_filters, num_filter_channels] + filter_size - std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 + if param_initializer is None: + param_initializer = _get_default_param_initializer(filter_size, + num_channels) + if bias_initializer is None: + bias_initializer = _get_default_bias_initializer() + filter = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype, - initializer=NormalInitializer(0.0, std, 0)) + initializer=param_initializer) pre_bias = helper.create_tmp_variable(dtype) helper.append_op( @@ -694,7 +730,8 @@ def conv2d(input, 'paddings': padding, 'groups': groups}) - pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) + pre_act = helper.append_bias_op( + pre_bias, bias_initializer, dim_start=1, dim_end=2) return helper.append_activation(pre_act) @@ -1311,7 +1348,7 @@ def array_to_lod_tensor(x, table, main_program=None): return tmp -def fill_constant(shape, dtype, value, main_program=None): +def fill_constant(shape, dtype, value, main_program=None, startup_program=None): """ This function creates a tensor , with shape as mentioned in the input and specified data_type and fills this up with a constant value that @@ -1332,6 +1369,31 @@ def fill_constant(shape, dtype, value, main_program=None): return out +def fill_constant_batch_size_like(input, + shape, + dtype, + value, + input_dim_idx=0, + output_dim_idx=0, + main_program=None, + startup_program=None): + helper = LayerHelper("fill_constant_batch_size_like", **locals()) + out = helper.create_tmp_variable(dtype=dtype) + helper.append_op( + type='fill_constant_batch_size_like', + inputs={'Input': input}, + outputs={'Out': [out]}, + attrs={ + 'shape': shape, + 'data_type': out.data_type, + 'value': float(value), + 'input_dim_idx': input_dim_idx, + 'output_dim_idx': output_dim_idx + }) + out.stop_gradient = True + return out + + def ones(shape, dtype, main_program=None): """ This function performs the same function as fill_constant() declared above @@ -1394,7 +1456,7 @@ def create_array(dtype, main_program=None): dtype=dtype) -def less_than(x, y, cond=None, main_program=None): +def less_than(x, y, cond=None, main_program=None, **ignored): helper = LayerHelper("less_than", **locals()) if cond is None: cond = helper.create_tmp_variable(dtype='bool') @@ -1472,13 +1534,20 @@ class ConditionalBlockGuard(BlockGuard): class ConditionalBlock(object): - def __init__(self, inputs, name=None, main_program=None): + def __init__(self, + inputs, + name=None, + main_program=None, + startup_program=None): for each_input in inputs: if not isinstance(each_input, Variable): raise TypeError("Each input should be variable") self.inputs = inputs self.helper = LayerHelper( - 'conditional_block', name=name, main_program=main_program) + 'conditional_block', + name=name, + main_program=main_program, + startup_program=startup_program) def block(self): return ConditionalBlockGuard(self) @@ -1523,3 +1592,148 @@ class ConditionalBlock(object): outputs={'Out': out_list, 'Scope': [step_scope]}, attrs={'block': inside_block}) + + +class IfElseBlockGuard(object): + def __init__(self, is_true, ifelse): + if not isinstance(ifelse, IfElse): + raise TypeError("ifelse must be an instance of IfElse class") + + if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: + raise ValueError("You cannot invoke IfElse.block() inside a block") + + self.is_true = is_true + self.ie = ifelse + if is_true: + self.cond_block = ifelse.conditional_true_block + else: + self.cond_block = ifelse.conditional_false_block + + if not isinstance(self.cond_block, ConditionalBlock): + raise TypeError("Unexpected situation") + + self.cond_block = self.cond_block.block() + + def __enter__(self): + self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS + self.cond_block.__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): + # re-raise inside exception + return False + if len(self.ie.output_table[1 if self.is_true else 0]) == 0: + raise ValueError("Must set output inside block") + self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS + + +class IfElse(object): + OUT_IF_ELSE_BLOCKS = 0 + IN_IF_ELSE_TRUE_BLOCKS = 1 + IN_IF_ELSE_FALSE_BLOCKS = 2 + + def __init__(self, cond, name=None, main_program=None, + startup_program=None): + if not isinstance(cond, Variable): + raise TypeError("cond must be a Variable") + self.helper = LayerHelper( + 'ifelse', + name=name, + main_program=main_program, + startup_program=startup_program) + self.cond = cond + self.input_table = {} + self.status = IfElse.OUT_IF_ELSE_BLOCKS + self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) + self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) + self.output_table = ([], []) # (true_outs, false_outs) + + def input(self, x): + if self.status == IfElse.OUT_IF_ELSE_BLOCKS: + raise ValueError("input must in true/false blocks") + if id(x) not in self.input_table: + parent_block = self.parent_block() + out_true = parent_block.create_var( + name=unique_name('ifelse_input' + self.helper.name), + dtype=x.data_type) + + out_false = parent_block.create_var( + name=unique_name('ifelse_input' + self.helper.name), + dtype=x.data_type) + parent_block.append_op( + type='split_lod_tensor', + inputs={ + 'X': x, + 'Mask': self.cond, + }, + outputs={'OutTrue': out_true, + 'OutFalse': out_false}, + attrs={'level': 0}) + self.input_table[id(x)] = (out_true, out_false) + else: + out_true, out_false = self.input_table[id(x)] + + if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: + return out_true + else: + return out_false + + def parent_block(self): + current_block = self.helper.main_program.current_block() + return self.helper.main_program.block(current_block.parent_idx) + + def true_block(self): + return IfElseBlockGuard(True, self) + + def false_block(self): + return IfElseBlockGuard(False, self) + + def output(self, *outs): + if self.status == self.OUT_IF_ELSE_BLOCKS: + raise ValueError("output can only be invoked in the sub-block") + + out_table = self.output_table[1 if self.status == + self.IN_IF_ELSE_TRUE_BLOCKS else 0] + parent_block = self.parent_block() + for each_out in outs: + if not isinstance(each_out, Variable): + raise TypeError("Each output should be a variable") + # create outside tensor + outside_out = parent_block.create_var( + name=unique_name("_".join([self.helper.name, 'output'])), + dtype=each_out.data_type) + out_table.append(outside_out) + + # assign local var to outside + assign( + input=each_out, + output=outside_out, + main_program=self.helper.main_program, + startup_program=self.helper.startup_program) + + def __call__(self): + if self.status != self.OUT_IF_ELSE_BLOCKS: + raise ValueError("IfElse::__call__ must be out of sub-block") + false_len, true_len = map(len, self.output_table) + if false_len == 0 and true_len == 0: + raise ValueError("Must invoke true_block/false_block before " + "__call__") + elif false_len != true_len and false_len != 0 and true_len != 0: + raise ValueError("The output side must be same") + elif false_len == 0 or true_len == 0: + return self.output_table[0 if false_len != 0 else 1] + + # else none of false_len/true_len is zero + # merge together + rlist = [] + for false_var, true_var in zip(*self.output_table): + rlist.append( + merge_lod_tensor( + in_true=true_var, + in_false=false_var, + mask=self.cond, + x=self.cond, + level=0, + main_program=self.helper.main_program, + startup_program=self.helper.startup_program)) + return rlist diff --git a/python/paddle/v2/fluid/tests/book/test_fit_a_line.py b/python/paddle/v2/fluid/tests/book/test_fit_a_line.py index ee677a2c5670a092c509b9ce1c555223bf22957f..a7f3bfc0caf76302674a00c80c2bd9ebf834f872 100644 --- a/python/paddle/v2/fluid/tests/book/test_fit_a_line.py +++ b/python/paddle/v2/fluid/tests/book/test_fit_a_line.py @@ -1,33 +1,22 @@ +import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid.layers as layers import paddle.v2.fluid.core as core -import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.framework as framework -from paddle.v2.fluid.io import save_persistables, load_persistables +import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor +from paddle.v2.fluid.io import save_persistables, load_persistables +from paddle.v2.fluid.optimizer import SGDOptimizer -import numpy as np - -x = layers.data( - name='x', - shape=[13], - data_type='float32') +x = layers.data(name='x', shape=[13], data_type='float32') -y_predict = layers.fc(input=x, - size=1, - act=None) +y_predict = layers.fc(input=x, size=1, act=None) -y = layers.data( - name='y', - shape=[1], - data_type='float32') +y = layers.data(name='y', shape=[1], data_type='float32') -cost = layers.square_error_cost( - input=y_predict, - label=y) +cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(x=cost) -sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) +sgd_optimizer = SGDOptimizer(learning_rate=0.001) opts = sgd_optimizer.minimize(avg_cost) BATCH_SIZE = 20 diff --git a/python/paddle/v2/fluid/tests/book/test_image_classification_train.py b/python/paddle/v2/fluid/tests/book/test_image_classification_train.py index f4be835b3ad57d5b0076e8a816c2c3def46e0663..efe63a68f0745eb728b569a03d0344877c1484f7 100644 --- a/python/paddle/v2/fluid/tests/book/test_image_classification_train.py +++ b/python/paddle/v2/fluid/tests/book/test_image_classification_train.py @@ -1,21 +1,17 @@ import numpy as np import paddle.v2 as paddle import paddle.v2.fluid.core as core +import paddle.v2.fluid.framework as framework import paddle.v2.fluid.layers as layers import paddle.v2.fluid.nets as nets -import paddle.v2.fluid.optimizer as optimizer +import paddle.v2.fluid.evaluator as evaluator from paddle.v2.fluid.executor import Executor -import paddle.v2.fluid.framework as framework from paddle.v2.fluid.initializer import XavierInitializer +from paddle.v2.fluid.optimizer import AdamOptimizer def resnet_cifar10(input, depth=32): - def conv_bn_layer(input, - ch_out, - filter_size, - stride, - padding, - act='relu'): + def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): tmp = layers.conv2d( input=input, filter_size=filter_size, @@ -24,9 +20,7 @@ def resnet_cifar10(input, depth=32): padding=padding, act=None, bias_attr=False) - return layers.batch_norm( - input=tmp, - act=act) + return layers.batch_norm(input=tmp, act=act) def shortcut(input, ch_in, ch_out, stride, program, init_program): if ch_in != ch_out: @@ -35,28 +29,11 @@ def resnet_cifar10(input, depth=32): else: return input - def basicblock(input, - ch_in, - ch_out, - stride): - tmp = conv_bn_layer( - input, - ch_out, - 3, - stride, - 1) - tmp = conv_bn_layer( - tmp, - ch_out, - 3, - 1, - 1, - act=None) + def basicblock(input, ch_in, ch_out, stride): + tmp = conv_bn_layer(input, ch_out, 3, stride, 1) + tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None) short = shortcut(input, ch_in, ch_out, stride) - return layers.elementwise_add( - x=tmp, - y=short, - act='relu') + return layers.elementwise_add(x=tmp, y=short, act='relu') def layer_warp(block_func, input, ch_in, ch_out, count, stride): tmp = block_func(input, ch_in, ch_out, stride) @@ -67,45 +44,17 @@ def resnet_cifar10(input, depth=32): assert (depth - 2) % 6 == 0 n = (depth - 2) / 6 conv1 = conv_bn_layer( - input=input, - ch_out=16, - filter_size=3, - stride=1, - padding=1) - res1 = layer_warp( - basicblock, - conv1, - 16, - 16, - n, - 1) - res2 = layer_warp( - basicblock, - res1, - 16, - 32, - n, - 2) - res3 = layer_warp( - basicblock, - res2, - 32, - 64, - n, - 2) + input=input, ch_out=16, filter_size=3, stride=1, padding=1) + res1 = layer_warp(basicblock, conv1, 16, 16, n, 1) + res2 = layer_warp(basicblock, res1, 16, 32, n, 2) + res3 = layer_warp(basicblock, res2, 32, 64, n, 2) pool = layers.pool2d( - input=res3, - pool_size=8, - pool_type='avg', - pool_stride=1) + input=res3, pool_size=8, pool_type='avg', pool_stride=1) return pool def vgg16_bn_drop(input): - def conv_block(input, - num_filter, - groups, - dropouts): + def conv_block(input, num_filter, groups, dropouts): return nets.img_conv_group( input=input, pool_size=2, @@ -123,22 +72,14 @@ def vgg16_bn_drop(input): conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) - drop = layers.dropout( - x=conv5, - dropout_prob=0.5) + drop = layers.dropout(x=conv5, dropout_prob=0.5) fc1 = layers.fc(input=drop, size=512, act=None, param_attr={"initializer": XavierInitializer()}) - reshape1 = layers.reshape( - x=fc1, - shape=list(fc1.shape + (1, 1))) - bn = layers.batch_norm( - input=reshape1, - act='relu') - drop2 = layers.dropout( - x=bn, - dropout_prob=0.5) + reshape1 = layers.reshape(x=fc1, shape=list(fc1.shape + (1, 1))) + bn = layers.batch_norm(input=reshape1, act='relu') + drop2 = layers.dropout(x=bn, dropout_prob=0.5) fc2 = layers.fc(input=drop2, size=512, act=None, @@ -163,12 +104,13 @@ net = vgg16_bn_drop(images) predict = layers.fc(input=net, size=classdim, act='softmax') cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(x=cost) -accuracy = layers.accuracy(input=predict, label=label) -# optimizer = optimizer.SGDOptimizer(learning_rate=0.001) -optimizer = optimizer.AdamOptimizer(learning_rate=0.001) +# optimizer = SGDOptimizer(learning_rate=0.001) +optimizer = AdamOptimizer(learning_rate=0.001) opts = optimizer.minimize(avg_cost) +accuracy, acc_out = evaluator.accuracy(input=predict, label=label) + BATCH_SIZE = 128 PASS_NUM = 1 @@ -184,6 +126,7 @@ exe.run(framework.default_startup_program()) for pass_id in range(PASS_NUM): batch_id = 0 + accuracy.reset(exe) for data in train_reader(): img_data = np.array(map(lambda x: x[0].reshape(data_shape), data)).astype("float32") @@ -201,12 +144,14 @@ for pass_id in range(PASS_NUM): outs = exe.run(framework.default_main_program(), feed={"pixel": tensor_img, "label": tensor_y}, - fetch_list=[avg_cost, accuracy]) + fetch_list=[avg_cost, acc_out]) loss = np.array(outs[0]) acc = np.array(outs[1]) + pass_acc = accuracy.eval(exe) print("pass_id:" + str(pass_id) + " batch_id:" + str(batch_id) + - " loss:" + str(loss) + " acc:" + str(acc)) + " loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( + pass_acc)) batch_id = batch_id + 1 if batch_id > 1: diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py index f330ff58137068e429008bc7aa07bbc8d2e35ac4..8f737689609fec4d1819ae58b9665298547a3716 100644 --- a/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py +++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py @@ -1,22 +1,15 @@ +import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid.layers as layers -import paddle.v2.fluid.nets as nets import paddle.v2.fluid.core as core -import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.evaluator as evaluator import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.nets as nets from paddle.v2.fluid.executor import Executor +from paddle.v2.fluid.optimizer import AdamOptimizer -import numpy as np - -images = layers.data( - name='pixel', - shape=[1, 28, 28], - data_type='float32') -label = layers.data( - name='label', - shape=[1], - data_type='int64') +images = layers.data(name='pixel', shape=[1, 28, 28], data_type='float32') +label = layers.data(name='label', shape=[1], data_type='int64') conv_pool_1 = nets.simple_img_conv_pool( input=images, filter_size=5, @@ -32,17 +25,13 @@ conv_pool_2 = nets.simple_img_conv_pool( pool_stride=2, act="relu") -predict = layers.fc(input=conv_pool_2, - size=10, - act="softmax") +predict = layers.fc(input=conv_pool_2, size=10, act="softmax") cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(x=cost) -optimizer = optimizer.AdamOptimizer(learning_rate=0.01, beta1=0.9, beta2=0.999) +optimizer = AdamOptimizer(learning_rate=0.01, beta1=0.9, beta2=0.999) opts = optimizer.minimize(avg_cost) -accuracy, acc_out = evaluator.accuracy( - input=predict, - label=label) +accuracy, acc_out = evaluator.accuracy(input=predict, label=label) BATCH_SIZE = 50 PASS_NUM = 3 @@ -57,7 +46,6 @@ exe = Executor(place) exe.run(framework.default_startup_program()) for pass_id in range(PASS_NUM): - count = 0 accuracy.reset(exe) for data in train_reader(): img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]), @@ -77,13 +65,14 @@ for pass_id in range(PASS_NUM): loss = np.array(outs[0]) acc = np.array(outs[1]) pass_acc = accuracy.eval(exe) - print "pass id : ", pass_id, pass_acc + print("pass_id=" + str(pass_id) + " acc=" + str(acc) + " pass_acc=" + + str(pass_acc)) # print loss, acc - if loss < 10.0 and acc > 0.9: + if loss < 10.0 and pass_acc > 0.9: # if avg cost less than 10.0 and accuracy is larger than 0.9, we think our code is good. exit(0) pass_acc = accuracy.eval(exe) - print "pass id : ", pass_id, pass_acc + print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc)) exit(1) diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py index b0164e3e3659c19edf2af45e706fb48ac1fe2b1c..e42e4c9cc0024e193b0732df6d9ca3200df5f0b9 100644 --- a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py +++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py @@ -1,19 +1,16 @@ +import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid.layers as layers import paddle.v2.fluid.core as core -import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.evaluator as evaluator from paddle.v2.fluid.executor import Executor -from paddle.v2.fluid.regularizer import L2DecayRegularizer from paddle.v2.fluid.initializer import UniformInitializer - -import numpy as np +from paddle.v2.fluid.optimizer import MomentumOptimizer +from paddle.v2.fluid.regularizer import L2DecayRegularizer BATCH_SIZE = 128 -image = layers.data( - name='x', - shape=[784], - data_type='float32') +image = layers.data(name='x', shape=[784], data_type='float32') param_attr = { 'name': None, @@ -22,34 +19,24 @@ param_attr = { 'regularization': L2DecayRegularizer(0.0005 * BATCH_SIZE) } -hidden1 = layers.fc(input=image, - size=128, - act='relu', - param_attr=param_attr) -hidden2 = layers.fc(input=hidden1, - size=64, - act='relu', - param_attr=param_attr) +hidden1 = layers.fc(input=image, size=128, act='relu', param_attr=param_attr) +hidden2 = layers.fc(input=hidden1, size=64, act='relu', param_attr=param_attr) predict = layers.fc(input=hidden2, size=10, act='softmax', param_attr=param_attr) -label = layers.data( - name='y', - shape=[1], - data_type='int64') +label = layers.data(name='y', shape=[1], data_type='int64') cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(x=cost) -accuracy = layers.accuracy( - input=predict, - label=label) -optimizer = optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9) +optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) opts = optimizer.minimize(avg_cost) +accuracy, acc_out = evaluator.accuracy(input=predict, label=label) + train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), @@ -62,6 +49,7 @@ exe.run(framework.default_startup_program()) PASS_NUM = 100 for pass_id in range(PASS_NUM): + accuracy.reset(exe) for data in train_reader(): x_data = np.array(map(lambda x: x[0], data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") @@ -76,9 +64,13 @@ for pass_id in range(PASS_NUM): outs = exe.run(framework.default_main_program(), feed={'x': tensor_x, 'y': tensor_y}, - fetch_list=[avg_cost, accuracy]) + fetch_list=[avg_cost, acc_out]) out = np.array(outs[0]) acc = np.array(outs[1]) - if out[0] < 5.0: - exit(0) # if avg cost less than 5.0, we think our code is good. + pass_acc = accuracy.eval(exe) + + if pass_acc > 0.7: + exit(0) + # print("pass_id=" + str(pass_id) + " auc=" + + # str(acc) + " pass_acc=" + str(pass_acc)) exit(1) diff --git a/python/paddle/v2/fluid/tests/book/test_recommender_system.py b/python/paddle/v2/fluid/tests/book/test_recommender_system.py index eefcb55bebff41eb9c67d9f0c8e83a5f1d4599bd..55ded3aed3a23c8cd7795f915dc1cbd512c6d945 100644 --- a/python/paddle/v2/fluid/tests/book/test_recommender_system.py +++ b/python/paddle/v2/fluid/tests/book/test_recommender_system.py @@ -1,12 +1,11 @@ +import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid.layers as layers -import paddle.v2.fluid.nets as nets import paddle.v2.fluid.core as core -import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.nets as nets from paddle.v2.fluid.executor import Executor - -import numpy as np +from paddle.v2.fluid.optimizer import SGDOptimizer IS_SPARSE = True USE_GPU = False @@ -19,10 +18,7 @@ def get_usr_combined_features(): USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 - uid = layers.data( - name='user_id', - shape=[1], - data_type='int64') + uid = layers.data(name='user_id', shape=[1], data_type='int64') usr_emb = layers.embedding( input=uid, @@ -31,15 +27,11 @@ def get_usr_combined_features(): param_attr={'name': 'user_table'}, is_sparse=IS_SPARSE) - usr_fc = layers.fc(input=usr_emb, - size=32) + usr_fc = layers.fc(input=usr_emb, size=32) USR_GENDER_DICT_SIZE = 2 - usr_gender_id = layers.data( - name='gender_id', - shape=[1], - data_type='int64') + usr_gender_id = layers.data(name='gender_id', shape=[1], data_type='int64') usr_gender_emb = layers.embedding( input=usr_gender_id, @@ -47,14 +39,10 @@ def get_usr_combined_features(): param_attr={'name': 'gender_table'}, is_sparse=IS_SPARSE) - usr_gender_fc = layers.fc(input=usr_gender_emb, - size=16) + usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) - usr_age_id = layers.data( - name='age_id', - shape=[1], - data_type="int64") + usr_age_id = layers.data(name='age_id', shape=[1], data_type="int64") usr_age_emb = layers.embedding( input=usr_age_id, @@ -62,14 +50,10 @@ def get_usr_combined_features(): is_sparse=IS_SPARSE, param_attr={'name': 'age_table'}) - usr_age_fc = layers.fc(input=usr_age_emb, - size=16) + usr_age_fc = layers.fc(input=usr_age_emb, size=16) USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 - usr_job_id = layers.data( - name='job_id', - shape=[1], - data_type="int64") + usr_job_id = layers.data(name='job_id', shape=[1], data_type="int64") usr_job_emb = layers.embedding( input=usr_job_id, @@ -77,16 +61,12 @@ def get_usr_combined_features(): param_attr={'name': 'job_table'}, is_sparse=IS_SPARSE) - usr_job_fc = layers.fc(input=usr_job_emb, - size=16) + usr_job_fc = layers.fc(input=usr_job_emb, size=16) concat_embed = layers.concat( - input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], - axis=1) + input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1) - usr_combined_features = layers.fc(input=concat_embed, - size=200, - act="tanh") + usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh") return usr_combined_features @@ -95,10 +75,7 @@ def get_mov_combined_features(): MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 - mov_id = layers.data( - name='movie_id', - shape=[1], - data_type='int64') + mov_id = layers.data(name='movie_id', shape=[1], data_type='int64') mov_emb = layers.embedding( input=mov_id, @@ -107,36 +84,24 @@ def get_mov_combined_features(): param_attr={'name': 'movie_table'}, is_sparse=IS_SPARSE) - mov_fc = layers.fc(input=mov_emb, - size=32) + mov_fc = layers.fc(input=mov_emb, size=32) CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) - category_id = layers.data( - name='category_id', - shape=[1], - data_type='int64') + category_id = layers.data(name='category_id', shape=[1], data_type='int64') mov_categories_emb = layers.embedding( - input=category_id, - size=[CATEGORY_DICT_SIZE, 32], - is_sparse=IS_SPARSE) + input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) mov_categories_hidden = layers.sequence_pool( - input=mov_categories_emb, - pool_type="sum") + input=mov_categories_emb, pool_type="sum") MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) - mov_title_id = layers.data( - name='movie_title', - shape=[1], - data_type='int64') + mov_title_id = layers.data(name='movie_title', shape=[1], data_type='int64') mov_title_emb = layers.embedding( - input=mov_title_id, - size=[MOV_TITLE_DICT_SIZE, 32], - is_sparse=IS_SPARSE) + input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) mov_title_conv = nets.sequence_conv_pool( input=mov_title_emb, @@ -146,13 +111,10 @@ def get_mov_combined_features(): pool_type="sum") concat_embed = layers.concat( - input=[mov_fc, mov_categories_hidden, mov_title_conv], - axis=1) + input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1) # FIXME(dzh) : need tanh operator - mov_combined_features = layers.fc(input=concat_embed, - size=200, - act="tanh") + mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh") return mov_combined_features @@ -162,18 +124,11 @@ def model(): mov_combined_features = get_mov_combined_features() # need cos sim - inference = layers.cos_sim( - X=usr_combined_features, - Y=mov_combined_features) + inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features) - label = layers.data( - name='score', - shape=[1], - data_type='float32') + label = layers.data(name='score', shape=[1], data_type='float32') - square_cost = layers.square_error_cost( - input=inference, - label=label) + square_cost = layers.square_error_cost(input=inference, label=label) avg_cost = layers.mean(x=square_cost) @@ -182,7 +137,7 @@ def model(): def main(): cost = model() - sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.2) + sgd_optimizer = SGDOptimizer(learning_rate=0.2) opts = sgd_optimizer.minimize(cost) if USE_GPU: diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py index 91fc79a9870a31205098d8a40de6c033d5bf60b9..4929f7cf615e61de5c4f61ef44c5340e9ac4492a 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py @@ -1,12 +1,12 @@ +import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid.layers as layers -import paddle.v2.fluid.nets as nets import paddle.v2.fluid.core as core -import paddle.v2.fluid.optimizer as optimizer +import paddle.v2.fluid.evaluator as evaluator import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.nets as nets from paddle.v2.fluid.executor import Executor - -import numpy as np +from paddle.v2.fluid.optimizer import AdamOptimizer def convolution_net(input_dim, class_dim=2, emb_dim=32, hid_dim=32): @@ -31,10 +31,10 @@ def convolution_net(input_dim, class_dim=2, emb_dim=32, hid_dim=32): act="softmax") cost = layers.cross_entropy(input=prediction, label=label) avg_cost = layers.mean(x=cost) - adam_optimizer = optimizer.AdamOptimizer(learning_rate=0.002) + adam_optimizer = AdamOptimizer(learning_rate=0.002) opts = adam_optimizer.minimize(avg_cost) - acc = layers.accuracy(input=prediction, label=label) - return avg_cost, acc + accuracy, acc_out = evaluator.accuracy(input=prediction, label=label) + return avg_cost, accuracy, acc_out def to_lodtensor(data, place): @@ -60,7 +60,8 @@ def main(): dict_dim = len(word_dict) class_dim = 2 - cost, acc = convolution_net(input_dim=dict_dim, class_dim=class_dim) + cost, accuracy, acc_out = convolution_net( + input_dim=dict_dim, class_dim=class_dim) train_data = paddle.batch( paddle.reader.shuffle( @@ -72,6 +73,7 @@ def main(): exe.run(framework.default_startup_program()) for pass_id in xrange(PASS_NUM): + accuracy.reset(exe) for data in train_data(): tensor_words = to_lodtensor(map(lambda x: x[0], data), place) @@ -84,12 +86,13 @@ def main(): outs = exe.run(framework.default_main_program(), feed={"words": tensor_words, "label": tensor_label}, - fetch_list=[cost, acc]) + fetch_list=[cost, acc_out]) cost_val = np.array(outs[0]) acc_val = np.array(outs[1]) - - print("cost=" + str(cost_val) + " acc=" + str(acc_val)) - if cost_val < 1.0 and acc_val > 0.7: + pass_acc = accuracy.eval(exe) + print("cost=" + str(cost_val) + " acc=" + str(acc_val) + + " pass_acc=" + str(pass_acc)) + if cost_val < 1.0 and pass_acc > 0.8: exit(0) exit(1) diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py index 8c3d4488354eb363cd1d378ebd4cb8069e7c1b1d..b3ee91938865afb929670a388a561b156aec1fe9 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py @@ -1,12 +1,11 @@ +import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid.layers as layers -import paddle.v2.fluid.nets as nets import paddle.v2.fluid.core as core -import paddle.v2.fluid.optimizer as optimizer +import paddle.v2.fluid.evaluator as evaluator import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor - -import numpy as np +from paddle.v2.fluid.optimizer import AdamOptimizer def stacked_lstm_net(input_dim, @@ -41,10 +40,10 @@ def stacked_lstm_net(input_dim, act='softmax') cost = layers.cross_entropy(input=prediction, label=label) avg_cost = layers.mean(x=cost) - adam_optimizer = optimizer.AdamOptimizer(learning_rate=0.002) + adam_optimizer = AdamOptimizer(learning_rate=0.002) opts = adam_optimizer.minimize(avg_cost) - acc = layers.accuracy(input=prediction, label=label) - return avg_cost, acc + accuracy, acc_out = evaluator.accuracy(input=prediction, label=label) + return avg_cost, accuracy, acc_out def to_lodtensor(data, place): @@ -71,7 +70,8 @@ def main(): dict_dim = len(word_dict) class_dim = 2 - cost, acc = stacked_lstm_net(input_dim=dict_dim, class_dim=class_dim) + cost, accuracy, acc_out = stacked_lstm_net( + input_dim=dict_dim, class_dim=class_dim) train_data = paddle.batch( paddle.reader.shuffle( @@ -83,6 +83,7 @@ def main(): exe.run(framework.default_startup_program()) for pass_id in xrange(PASS_NUM): + accuracy.reset(exe) for data in train_data(): tensor_words = to_lodtensor(map(lambda x: x[0], data), place) @@ -95,12 +96,13 @@ def main(): outs = exe.run(framework.default_main_program(), feed={"words": tensor_words, "label": tensor_label}, - fetch_list=[cost, acc]) + fetch_list=[cost, acc_out]) cost_val = np.array(outs[0]) acc_val = np.array(outs[1]) - - print("cost=" + str(cost_val) + " acc=" + str(acc_val)) - if cost_val < 1.0 and acc_val > 0.7: + pass_acc = accuracy.eval(exe) + print("cost=" + str(cost_val) + " acc=" + str(acc_val) + + " pass_acc=" + str(pass_acc)) + if cost_val < 1.0 and acc_val > 0.8: exit(0) exit(1) diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py index a7d791c1f38d4843f084127e879d613b21ae8daf..9a51a2f207ebed340b8e5c60e7ebeb82a611dbc5 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py @@ -1,11 +1,10 @@ +import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid.layers as layers import paddle.v2.fluid.core as core -import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor - -import numpy as np +from paddle.v2.fluid.optimizer import AdamOptimizer def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): @@ -33,7 +32,7 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): cost = layers.cross_entropy(input=prediction, label=label) avg_cost = layers.mean(x=cost) - adam_optimizer = optimizer.AdamOptimizer(learning_rate=0.002) + adam_optimizer = AdamOptimizer(learning_rate=0.002) opts = adam_optimizer.minimize(avg_cost) acc = layers.accuracy(input=prediction, label=label) @@ -55,17 +54,17 @@ def to_lodtensor(data, place): return res -def chop_data(data, chop_len=80, batch_len=50): +def chop_data(data, chop_len=80, batch_size=50): data = [(x[0][:chop_len], x[1]) for x in data if len(x[0]) >= chop_len] - return data[:batch_len] + return data[:batch_size] def prepare_feed_data(data, place): tensor_words = to_lodtensor(map(lambda x: x[0], data), place) label = np.array(map(lambda x: x[1], data)).astype("int64") - label = label.reshape([50, 1]) + label = label.reshape([len(label), 1]) tensor_label = core.LoDTensor() tensor_label.set(label, place) @@ -73,33 +72,41 @@ def prepare_feed_data(data, place): def main(): - word_dict = paddle.dataset.imdb.word_dict() - cost, acc = lstm_net(dict_dim=len(word_dict), class_dim=2) + BATCH_SIZE = 100 + PASS_NUM = 5 - batch_size = 100 - train_data = paddle.batch( - paddle.reader.buffered( - paddle.dataset.imdb.train(word_dict), size=batch_size * 10), - batch_size=batch_size) + word_dict = paddle.dataset.imdb.word_dict() + print "load word dict successfully" + dict_dim = len(word_dict) + class_dim = 2 - data = chop_data(next(train_data())) + cost, acc = lstm_net(dict_dim=dict_dim, class_dim=class_dim) + train_data = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.imdb.train(word_dict), buf_size=BATCH_SIZE * 10), + batch_size=BATCH_SIZE) place = core.CPUPlace() - tensor_words, tensor_label = prepare_feed_data(data, place) exe = Executor(place) + exe.run(framework.default_startup_program()) - while True: - outs = exe.run(framework.default_main_program(), - feed={"words": tensor_words, - "label": tensor_label}, - fetch_list=[cost, acc]) - cost_val = np.array(outs[0]) - acc_val = np.array(outs[1]) - - print("cost=" + str(cost_val) + " acc=" + str(acc_val)) - if acc_val > 0.9: - break + for pass_id in xrange(PASS_NUM): + for data in train_data(): + chopped_data = chop_data(data) + tensor_words, tensor_label = prepare_feed_data(chopped_data, place) + + outs = exe.run(framework.default_main_program(), + feed={"words": tensor_words, + "label": tensor_label}, + fetch_list=[cost, acc]) + cost_val = np.array(outs[0]) + acc_val = np.array(outs[1]) + + print("cost=" + str(cost_val) + " acc=" + str(acc_val)) + if acc_val > 0.7: + exit(0) + exit(1) if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/book/test_word2vec.py b/python/paddle/v2/fluid/tests/book/test_word2vec.py index 9dcb6f2fea06ea8cd061be4f148854408779f990..afa7b285198e0349317e123e4bd98e8336217afa 100644 --- a/python/paddle/v2/fluid/tests/book/test_word2vec.py +++ b/python/paddle/v2/fluid/tests/book/test_word2vec.py @@ -1,11 +1,10 @@ +import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid.layers as layers import paddle.v2.fluid.core as core -import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor - -import numpy as np +from paddle.v2.fluid.optimizer import SGDOptimizer PASS_NUM = 100 EMBED_SIZE = 32 @@ -17,26 +16,11 @@ IS_SPARSE = True word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) -first_word = layers.data( - name='firstw', - shape=[1], - data_type='int64') -second_word = layers.data( - name='secondw', - shape=[1], - data_type='int64') -third_word = layers.data( - name='thirdw', - shape=[1], - data_type='int64') -forth_word = layers.data( - name='forthw', - shape=[1], - data_type='int64') -next_word = layers.data( - name='nextw', - shape=[1], - data_type='int64') +first_word = layers.data(name='firstw', shape=[1], data_type='int64') +second_word = layers.data(name='secondw', shape=[1], data_type='int64') +third_word = layers.data(name='thirdw', shape=[1], data_type='int64') +forth_word = layers.data(name='forthw', shape=[1], data_type='int64') +next_word = layers.data(name='nextw', shape=[1], data_type='int64') embed_first = layers.embedding( input=first_word, @@ -64,19 +48,12 @@ embed_forth = layers.embedding( param_attr={'name': 'shared_w'}) concat_embed = layers.concat( - input=[embed_first, embed_second, embed_third, embed_forth], - axis=1) -hidden1 = layers.fc(input=concat_embed, - size=HIDDEN_SIZE, - act='sigmoid') -predict_word = layers.fc(input=hidden1, - size=dict_size, - act='softmax') -cost = layers.cross_entropy( - input=predict_word, - label=next_word) + input=[embed_first, embed_second, embed_third, embed_forth], axis=1) +hidden1 = layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid') +predict_word = layers.fc(input=hidden1, size=dict_size, act='softmax') +cost = layers.cross_entropy(input=predict_word, label=next_word) avg_cost = layers.mean(x=cost) -sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) +sgd_optimizer = SGDOptimizer(learning_rate=0.001) opts = sgd_optimizer.minimize(avg_cost) train_reader = paddle.batch( diff --git a/python/paddle/v2/fluid/tests/test_conv2d_op.py b/python/paddle/v2/fluid/tests/test_conv2d_op.py index 907b52c405d9e5c02c70f611e4c777ba21948c40..2240dc73cdd31f320fed174dd811e93c6640137f 100644 --- a/python/paddle/v2/fluid/tests/test_conv2d_op.py +++ b/python/paddle/v2/fluid/tests/test_conv2d_op.py @@ -110,13 +110,30 @@ class TestConv2dOp(OpTest): self.op_type = "conv2d" +class TestWithPad(TestConv2dOp): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + assert np.mod(self.input_size[1], self.groups) == 0 + f_c = self.input_size[1] / self.groups + self.filter_size = [6, f_c, 3, 3] + + +class TestWithStride(TestConv2dOp): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [2, 2] + self.input_size = [2, 3, 6, 6] # NCHW + assert np.mod(self.input_size[1], self.groups) == 0 + f_c = self.input_size[1] / self.groups + self.filter_size = [6, f_c, 3, 3] + + class TestWithGroup(TestConv2dOp): def init_group(self): self.groups = 3 - def init_op_type(self): - self.op_type = "conv2d" - class TestWith1x1(TestConv2dOp): def init_test_case(self): @@ -127,15 +144,9 @@ class TestWith1x1(TestConv2dOp): f_c = self.input_size[1] / self.groups self.filter_size = [6, f_c, 1, 1] - def init_dilation(self): - self.dilations = [1, 1] - def init_group(self): self.groups = 3 - def init_op_type(self): - self.op_type = "conv2d" - class TestWithDilation(TestConv2dOp): def init_test_case(self): @@ -152,14 +163,19 @@ class TestWithDilation(TestConv2dOp): def init_group(self): self.groups = 3 + +#----------------Conv2dCudnn---------------- +class TestCudnn(TestConv2dOp): def init_op_type(self): - self.op_type = "conv2d" + self.op_type = "conv_cudnn" -#----------------Conv2dCudnn---------------- +class TestCudnnWithPad(TestWithPad): + def init_op_type(self): + self.op_type = "conv_cudnn" -class TestCudnn(TestConv2dOp): +class TestCudnnWithStride(TestWithStride): def init_op_type(self): self.op_type = "conv_cudnn" diff --git a/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py b/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py index 54349c018c4a53b8767d6cd4f94d99c719dc0237..d7b1f2f2a3abf6335998742dbbef8e17794170fa 100644 --- a/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py +++ b/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py @@ -4,9 +4,7 @@ from op_test import OpTest def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): - # [2, 3, 5, 5] in_n, in_c, in_h, in_w = input_.shape - # [3, 6, 3, 3] f_c, out_c, f_h, f_w = filter_.shape assert in_c == f_c @@ -29,6 +27,7 @@ def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): j1, j2 = j * stride[0], j * stride[0] + f_w out[n, k, i1:i2, j1:j2] += tmp_out + out = out[:, :, pad[0]:out_h - pad[0], pad[1]:out_w - pad[1]] return out @@ -36,8 +35,6 @@ class TestConv2dTransposeOp(OpTest): def setUp(self): # init as conv transpose self.init_op_type() - - # [2, 3, 5, 5] -> kernel [3, 6, 3, 3] -> output [2, 6, 7, 7] self.init_test_case() conv2dtranspose_param = {'stride': self.stride, 'pad': self.pad} @@ -55,7 +52,6 @@ class TestConv2dTransposeOp(OpTest): self.outputs = {'Output': output} def test_check_output(self): - print 'check output here for', self.op_type self.check_output() def test_check_grad_no_input(self): @@ -88,6 +84,26 @@ class TestConv2dTransposeOp(OpTest): self.op_type = "conv2d_transpose" +class TestWithPad(TestConv2dTransposeOp): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [1, 1] + self.dilations = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + +class TestWithStride(TestConv2dTransposeOp): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [2, 2] + self.dilations = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + # ------------ test_cudnn ------------ class TestCudnn(TestConv2dTransposeOp): def init_op_type(self): diff --git a/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py b/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py index 132fe7931438a30cf02e4ad2894c0838e48ffc9f..8fd34b87bfea91307f52fdcbb9f71f2e1a9c6c56 100644 --- a/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py +++ b/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py @@ -4,9 +4,7 @@ from op_test import OpTest def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param): - # [2, 3, 5, 5, 5] in_n, in_c, in_d, in_h, in_w = input_.shape - # [3, 6, 3, 3, 3] f_c, out_c, f_d, f_h, f_w = filter_.shape assert in_c == f_c @@ -14,7 +12,6 @@ def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param): out_d = (in_d - 1) * stride[0] + f_d out_h = (in_h - 1) * stride[1] + f_h out_w = (in_w - 1) * stride[2] + f_w - out = np.zeros((in_n, out_c, out_d, out_h, out_w)) for n in range(in_n): @@ -33,6 +30,8 @@ def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param): j1, j2 = j * stride[2], j * stride[2] + f_w out[n, k, d1:d2, i1:i2, j1:j2] += tmp_out + out = out[:, :, pad[0]:out_d - pad[0], pad[1]:out_h - pad[1], pad[2]:out_w - + pad[2]] return out @@ -40,8 +39,6 @@ class TestConv3dTransposeOp(OpTest): def setUp(self): # init as conv transpose self.init_op_type() - - # [2, 3, 5, 5, 5] -> kernel [3, 6, 3, 3, 3] -> output [2, 6, 7, 7, 7] self.init_test_case() conv3dtranspose_param = {'stride': self.stride, 'pad': self.pad} @@ -49,7 +46,6 @@ class TestConv3dTransposeOp(OpTest): filter_ = np.random.random(self.filter_size).astype("float32") output = conv3dtranspose_forward_naive( input_, filter_, conv3dtranspose_param).astype("float32") - # print 'deconv output py', output, output.shape self.inputs = {'Input': input_, 'Filter': filter_} self.attrs = { @@ -60,7 +56,6 @@ class TestConv3dTransposeOp(OpTest): self.outputs = {'Output': output} def test_check_output(self): - print 'check output here' self.check_output() def test_check_grad(self): @@ -85,7 +80,7 @@ class TestConv3dTransposeOp(OpTest): self.pad = [0, 0, 0] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] - self.input_size = [2, 3, 5, 5, 5] # NCHW + self.input_size = [2, 3, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] @@ -93,5 +88,31 @@ class TestConv3dTransposeOp(OpTest): self.op_type = "conv3d_transpose" +class TestWithPad(TestConv3dTransposeOp): + def init_test_case(self): + self.pad = [1, 1, 1] + self.stride = [1, 1, 1] + self.dilations = [1, 1, 1] + self.input_size = [2, 3, 5, 5, 5] # NCDHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3, 3] + + +class TestWithStride(TestConv3dTransposeOp): + def init_test_case(self): + self.pad = [1, 1, 1] + self.stride = [2, 2, 2] + self.dilations = [1, 1, 1] + self.input_size = [2, 3, 5, 5, 5] # NCDHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3, 3] + + +# ------------ test_cudnn ------------ +class TestCudnn(TestConv3dTransposeOp): + def init_op_type(self): + self.op_type = "conv3d_transpose_cudnn" + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_gru_op.py b/python/paddle/v2/fluid/tests/test_gru_op.py index b2474cff94c6c71cc62bc8e69a5d83e38d51c511..fa2c5a53ec4a01b6545e25f773c11277a4d24706 100644 --- a/python/paddle/v2/fluid/tests/test_gru_op.py +++ b/python/paddle/v2/fluid/tests/test_gru_op.py @@ -6,7 +6,8 @@ from test_lstm_op import identity, sigmoid, tanh, relu class TestGRUOp(OpTest): - batch_size = 9 + lod = [[0, 2, 6, 9]] + batch_size = lod[0][-1] frame_size = 5 activate = { 'identity': identity, @@ -35,7 +36,7 @@ class TestGRUOp(OpTest): seq_starts[sorted_seqs[i]] + batch_idx) idx_in_seq.append(idx) idx_in_seq_list.append(idx_in_seq) - return idx_in_seq_list + return idx_in_seq_list, sorted_seqs def gru_step(self, x, h_p, w, b): batch_size = x.shape[0] @@ -66,8 +67,8 @@ class TestGRUOp(OpTest): batch_hidden = self.outputs['BatchHidden'] hidden = self.outputs['Hidden'] idx_in_seq_list = self.idx_in_seq_list - h_p = self.inputs['H0'] if self.inputs.has_key('H0') else np.zeros( - (len(idx_in_seq_list[0]), self.frame_size)) + h_p = self.inputs['H0'][self.sorted_seqs] if self.inputs.has_key( + 'H0') else np.zeros((len(idx_in_seq_list[0]), self.frame_size)) num_batch = len(idx_in_seq_list) end_idx = 0 for batch_idx in range(num_batch): @@ -84,8 +85,9 @@ class TestGRUOp(OpTest): return batch_gate, batch_reset_hidden_prev, hidden def set_data(self): - lod = [[0, 2, 6, self.batch_size]] - self.idx_in_seq_list = self.seq_to_batch(lod, self.is_reverse) + lod = self.lod + self.idx_in_seq_list, self.sorted_seqs = self.seq_to_batch( + lod, self.is_reverse) batch_size = self.batch_size frame_size = self.frame_size input = np.random.rand(batch_size, frame_size * 3).astype('float64') @@ -146,7 +148,7 @@ class TestGRUOpReverse(TestGRUOp): def set_confs(self): self.is_reverse = True self.attrs = { - 'activation': 'identity', + 'activation': 'tanh', 'gate_activation': 'sigmoid', 'is_reverse': self.is_reverse } diff --git a/python/paddle/v2/framework/tests/test_is_empty_op.py b/python/paddle/v2/fluid/tests/test_is_empty_op.py similarity index 92% rename from python/paddle/v2/framework/tests/test_is_empty_op.py rename to python/paddle/v2/fluid/tests/test_is_empty_op.py index 129d1c19447990fb0affa8fb10bc7156ec5c8cc3..ed6e3fe24f6333c9c90d760787eb13241a7e1868 100644 --- a/python/paddle/v2/framework/tests/test_is_empty_op.py +++ b/python/paddle/v2/fluid/tests/test_is_empty_op.py @@ -1,7 +1,7 @@ import unittest import numpy as np -from paddle.v2.framework.op import Operator -import paddle.v2.framework.core as core +from paddle.v2.fluid.op import Operator +import paddle.v2.fluid.core as core def create_tensor(scope, name, np_data): diff --git a/python/paddle/v2/fluid/tests/test_logical_op.py b/python/paddle/v2/fluid/tests/test_logical_op.py new file mode 100644 index 0000000000000000000000000000000000000000..ac90bf839cb96053387bb82c112692136707744c --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_logical_op.py @@ -0,0 +1,35 @@ +import op_test +import unittest +import numpy as np + + +def create_test_class(op_type, callback, binary_op=True): + class Cls(op_test.OpTest): + def setUp(self): + a = np.random.choice(a=[True, False], size=(10, 7)).astype(bool) + if binary_op: + b = np.random.choice(a=[True, False], size=(10, 7)).astype(bool) + c = callback(a, b) + else: + c = callback(a) + self.outputs = {'Out': c} + self.op_type = op_type + if binary_op: + self.inputs = {'X': a, 'Y': b} + else: + self.inputs = {'X': a} + + def test_output(self): + self.check_output() + + Cls.__name__ = op_type + globals()[op_type] = Cls + + +create_test_class('logical_and', lambda _a, _b: np.logical_and(_a, _b)) +create_test_class('logical_or', lambda _a, _b: np.logical_or(_a, _b)) +create_test_class('logical_not', lambda _a: np.logical_not(_a), False) +create_test_class('logical_xor', lambda _a, _b: np.logical_xor(_a, _b)) + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_maxout_op.py b/python/paddle/v2/fluid/tests/test_maxout_op.py new file mode 100644 index 0000000000000000000000000000000000000000..05e42f315833cab5bc5272cbd2173ea8012ff7f5 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_maxout_op.py @@ -0,0 +1,39 @@ +import unittest +import numpy as np +from op_test import OpTest + + +def maxout_forward_naive(input, groups): + s0, s1, s2, s3 = input.shape + return np.ndarray([s0, s1 / groups, groups, s2, s3], \ + buffer = input, dtype=input.dtype).max(axis=(2)) + + +class TestMaxOutOp(OpTest): + def setUp(self): + self.op_type = "maxout" + self.init_test_case() + input = np.random.random(self.shape).astype("float32") + output = self.MaxOut_forward_naive(input, self.groups).astype("float32") + + self.inputs = {'X': input} + self.attrs = {'groups': self.groups} + + self.outputs = {'Out': output.astype('float32')} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + def init_test_case(self): + self.MaxOut_forward_naive = maxout_forward_naive + self.shape = [100, 6, 2, 2] + self.groups=2 + + + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py b/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py new file mode 100644 index 0000000000000000000000000000000000000000..8af99005dc0b5d50de60ca89c2ddf870b1537edb --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py @@ -0,0 +1,154 @@ +import paddle.v2.fluid.layers as layers +from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.executor import Executor +from paddle.v2.fluid.optimizer import MomentumOptimizer +import paddle.v2.fluid.core as core +import paddle.v2 as paddle +import unittest +import numpy as np + + +class TestMNISTIfElseOp(unittest.TestCase): + def test_raw_api(self): + kwargs = {'startup_program': Program(), 'main_program': Program()} + image = layers.data( + name='x', shape=[784], data_type='float32', **kwargs) + + label = layers.data(name='y', shape=[1], data_type='int64', **kwargs) + + limit = layers.fill_constant_batch_size_like( + input=label, dtype='int64', shape=[1], value=5.0, **kwargs) + + cond = layers.less_than(x=label, y=limit, **kwargs) + true_image, false_image = layers.split_lod_tensor( + input=image, mask=cond, **kwargs) + + true_out = layers.create_tensor(dtype='float32', **kwargs) + true_cond = layers.ConditionalBlock([true_image], **kwargs) + + with true_cond.block(): + hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs) + prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) + layers.assign(input=prob, output=true_out, **kwargs) + + false_out = layers.create_tensor(dtype='float32', **kwargs) + false_cond = layers.ConditionalBlock([false_image], **kwargs) + + with false_cond.block(): + hidden = layers.fc(input=false_image, + size=200, + act='tanh', + **kwargs) + prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) + layers.assign(input=prob, output=false_out, **kwargs) + + prob = layers.merge_lod_tensor( + in_true=true_out, in_false=false_out, mask=cond, x=image, **kwargs) + loss = layers.cross_entropy(input=prob, label=label, **kwargs) + avg_loss = layers.mean(x=loss, **kwargs) + + optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) + optimizer.minimize(avg_loss, kwargs['startup_program']) + + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=8192), + batch_size=200) + + place = core.CPUPlace() + exe = Executor(place) + + exe.run(kwargs['startup_program']) + PASS_NUM = 100 + for pass_id in range(PASS_NUM): + for data in train_reader(): + x_data = np.array(map(lambda x: x[0], data)).astype("float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int64") + y_data = np.expand_dims(y_data, axis=1) + + tensor_x = core.LoDTensor() + tensor_x.set(x_data, place) + + tensor_y = core.LoDTensor() + tensor_y.set(y_data, place) + + outs = map(np.array, + exe.run(kwargs['main_program'], + feed={'x': tensor_x, + 'y': tensor_y}, + fetch_list=[avg_loss])) + print outs[0] + if outs[0] < 1.0: + return + self.assertFalse(True) + + def test_ifelse(self): + kwargs = {'startup_program': Program(), 'main_program': Program()} + image = layers.data( + name='x', shape=[784], data_type='float32', **kwargs) + + label = layers.data(name='y', shape=[1], data_type='int64', **kwargs) + + limit = layers.fill_constant_batch_size_like( + input=label, dtype='int64', shape=[1], value=5.0, **kwargs) + + cond = layers.less_than(x=label, y=limit, **kwargs) + + ie = layers.IfElse(cond, **kwargs) + + with ie.true_block(): + true_image = ie.input(image) + hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs) + prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) + ie.output(prob) + + with ie.false_block(): + false_image = ie.input(image) + hidden = layers.fc(input=false_image, + size=200, + act='tanh', + **kwargs) + prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) + ie.output(prob) + + prob = ie() + loss = layers.cross_entropy(input=prob[0], label=label, **kwargs) + avg_loss = layers.mean(x=loss, **kwargs) + + optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) + optimizer.minimize(avg_loss, kwargs['startup_program']) + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=8192), + batch_size=200) + + place = core.CPUPlace() + exe = Executor(place) + + exe.run(kwargs['startup_program']) + PASS_NUM = 100 + for pass_id in range(PASS_NUM): + for data in train_reader(): + x_data = np.array(map(lambda x: x[0], data)).astype("float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int64") + y_data = np.expand_dims(y_data, axis=1) + + tensor_x = core.LoDTensor() + tensor_x.set(x_data, place) + + tensor_y = core.LoDTensor() + tensor_y.set(y_data, place) + + outs = map(np.array, + exe.run(kwargs['main_program'], + feed={'x': tensor_x, + 'y': tensor_y}, + fetch_list=[avg_loss])) + print outs[0] + if outs[0] < 1.0: + return + self.assertFalse(True) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_optimizer.py b/python/paddle/v2/fluid/tests/test_optimizer.py index 7b4237e7fdf5990019ddd85967036ceb598c33df..2459dfd664300d405edb36c4ca906c1769b5e7d2 100644 --- a/python/paddle/v2/fluid/tests/test_optimizer.py +++ b/python/paddle/v2/fluid/tests/test_optimizer.py @@ -16,14 +16,18 @@ class TestOptimizer(unittest.TestCase): dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) - opts = sgd_optimizer.minimize(mul_out, init_program) + opts = sgd_optimizer.minimize(mean_out, init_program) self.assertEqual(len(opts), 1) sgd_op = opts[0] self.assertEqual(sgd_op.type, "sgd") @@ -44,12 +48,16 @@ class TestOptimizer(unittest.TestCase): "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) global_step = block.create_var( dtype="float32", shape=[1], lod_level=0, name="step") learning_rate = 0.01 sgd_optimizer = optimizer.SGDOptimizer( learning_rate=learning_rate, global_step=global_step) - opts = sgd_optimizer.minimize(mul_out, init_program) + opts = sgd_optimizer.minimize(mean_out, init_program) self.assertEqual(len(opts), 2) sgd_op = opts[0] self.assertEqual(sgd_op.type, "sgd") @@ -90,7 +98,11 @@ class TestMomentumOptimizer(unittest.TestCase): learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2) - params_grads = append_backward_ops(mul_out) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) + params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) opts = momentum_optimizer.create_optimization_pass( @@ -132,10 +144,14 @@ class TestMomentumOptimizer(unittest.TestCase): "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2, use_nesterov=True) - params_grads = append_backward_ops(mul_out) + params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) opts = momentum_optimizer.create_optimization_pass( @@ -186,10 +202,14 @@ class TestAdagradOptimizer(unittest.TestCase): "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adagrad_optimizer = self.MockAdagrad( learning_rate=learning_rate, epsilon=1.0e-6) - params_grads = append_backward_ops(mul_out) + params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0) opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out, @@ -242,10 +262,14 @@ class TestAdamOptimizer(unittest.TestCase): "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adam_optimizer = self.MockAdam( learning_rate=learning_rate, beta1=0.9, beta2=0.999) - params_grads = append_backward_ops(mul_out) + params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adam_optimizer.get_accumulators()), 0) opts = adam_optimizer.create_optimization_pass(params_grads, mul_out, @@ -300,10 +324,14 @@ class TestAdamaxOptimizer(unittest.TestCase): "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adamax_optimizer = self.MockAdamax( learning_rate=learning_rate, beta1=0.9, beta2=0.999) - params_grads = append_backward_ops(mul_out) + params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adamax_optimizer.get_accumulators()), 0) opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out, @@ -355,10 +383,14 @@ class TestDecayedAdagradOptimizer(unittest.TestCase): "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 decayed_adagrad_optimizer = self.MockDecayedAdagrad( learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6) - params_grads = append_backward_ops(mul_out) + params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0) opts = decayed_adagrad_optimizer.create_optimization_pass( diff --git a/python/paddle/v2/fluid/tests/test_pool2d_op.py b/python/paddle/v2/fluid/tests/test_pool2d_op.py index ac3fa6aa87835b3cd6fb9bbf6fe66b1d0c577ca2..5dff6270f455395ce6ca8ae2428236f630467095 100644 --- a/python/paddle/v2/fluid/tests/test_pool2d_op.py +++ b/python/paddle/v2/fluid/tests/test_pool2d_op.py @@ -3,8 +3,7 @@ import numpy as np from op_test import OpTest -def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): - +def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0): N, C, H, W = x.shape if global_pool == 1: ksize = [H, W] @@ -23,8 +22,7 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): return out -def avg_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): - +def avg_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0): N, C, H, W = x.shape if global_pool == 1: ksize = [H, W] @@ -47,6 +45,7 @@ def avg_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): class TestPool2d_Op(OpTest): def setUp(self): self.init_test_case() + self.init_global_pool() self.init_op_type() self.init_pool_type() if self.global_pool: @@ -75,8 +74,6 @@ class TestPool2d_Op(OpTest): self.check_grad(set(['X']), 'Out', max_relative_error=0.07) def init_test_case(self): - self.global_pool = True - self.pool2D_forward_naive = avg_pool2D_forward_naive self.shape = [2, 3, 5, 5] self.ksize = [3, 3] self.strides = [1, 1] @@ -87,12 +84,14 @@ class TestPool2d_Op(OpTest): def init_pool_type(self): self.pool_type = "avg" + self.pool2D_forward_naive = avg_pool2D_forward_naive + + def init_global_pool(self): + self.global_pool = True class TestCase1(TestPool2d_Op): def init_test_case(self): - self.global_pool = False - self.pool2D_forward_naive = avg_pool2D_forward_naive self.shape = [2, 3, 7, 7] self.ksize = [3, 3] self.strides = [1, 1] @@ -103,12 +102,14 @@ class TestCase1(TestPool2d_Op): def init_pool_type(self): self.pool_type = "avg" + self.pool2D_forward_naive = avg_pool2D_forward_naive + + def init_global_pool(self): + self.global_pool = False class TestCase2(TestPool2d_Op): def init_test_case(self): - self.global_pool = False - self.pool2D_forward_naive = avg_pool2D_forward_naive self.shape = [2, 3, 7, 7] self.ksize = [3, 3] self.strides = [1, 1] @@ -119,152 +120,69 @@ class TestCase2(TestPool2d_Op): def init_pool_type(self): self.pool_type = "avg" + self.pool2D_forward_naive = avg_pool2D_forward_naive + def init_global_pool(self): + self.global_pool = False -class TestCase3(TestPool2d_Op): - def init_test_case(self): - self.global_pool = True - self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 5, 5] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] +class TestCase3(TestPool2d_Op): def init_op_type(self): self.op_type = "pool2d" def init_pool_type(self): self.pool_type = "max" - - -class TestCase4(TestPool2d_Op): - def init_test_case(self): - self.global_pool = False self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] + +class TestCase4(TestCase1): def init_op_type(self): self.op_type = "pool2d" def init_pool_type(self): self.pool_type = "max" - - -class TestCase5(TestPool2d_Op): - def init_test_case(self): - self.global_pool = False self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [1, 1] + +class TestCase5(TestCase2): def init_op_type(self): self.op_type = "pool2d" def init_pool_type(self): self.pool_type = "max" + self.pool2D_forward_naive = max_pool2D_forward_naive #--------------------test pool2d_cudnn-------------------- -class TestCaseCudnn1(TestPool2d_Op): - def init_test_case(self): - self.global_pool = True - self.pool2D_forward_naive = avg_pool2D_forward_naive - self.shape = [2, 3, 5, 5] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] - +class TestCudnnCase1(TestPool2d_Op): def init_op_type(self): self.op_type = "pool2d_cudnn" - def init_pool_type(self): - self.pool_type = "avg" - - -class TestCaseCudnn2(TestPool2d_Op): - def init_test_case(self): - self.global_pool = False - self.pool2D_forward_naive = avg_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] +class TestCudnnCase2(TestCase1): def init_op_type(self): self.op_type = "pool2d_cudnn" - def init_pool_type(self): - self.pool_type = "avg" - - -class TestCaseCudnn3(TestPool2d_Op): - def init_test_case(self): - self.global_pool = False - self.pool2D_forward_naive = avg_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [1, 1] +class TestCudnnCase3(TestCase2): def init_op_type(self): self.op_type = "pool2d_cudnn" - def init_pool_type(self): - self.pool_type = "avg" - - -class TestCaseCudnn4(TestPool2d_Op): - def init_test_case(self): - self.global_pool = True - self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 5, 5] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] +class TestCudnnCase4(TestCase3): def init_op_type(self): self.op_type = "pool2d_cudnn" - def init_pool_type(self): - self.pool_type = "max" - - -class TestCaseCudnn5(TestPool2d_Op): - def init_test_case(self): - self.global_pool = False - self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] +class TestCudnnCase5(TestCase4): def init_op_type(self): self.op_type = "pool2d_cudnn" - def init_pool_type(self): - self.pool_type = "max" - - -class TestCaseCudnn6(TestPool2d_Op): - def init_test_case(self): - self.global_pool = False - self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [1, 1] +class TestCudnnCase6(TestCase5): def init_op_type(self): self.op_type = "pool2d_cudnn" - def init_pool_type(self): - self.pool_type = "max" - if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_pool3d_op.py b/python/paddle/v2/fluid/tests/test_pool3d_op.py index 87483ae5e568c01141ff789f37e84069cb8e827d..2ba86665a7d207e61159c02643fa40daca3be080 100644 --- a/python/paddle/v2/fluid/tests/test_pool3d_op.py +++ b/python/paddle/v2/fluid/tests/test_pool3d_op.py @@ -3,8 +3,7 @@ import numpy as np from op_test import OpTest -def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): - +def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0): N, C, D, H, W = x.shape if global_pool == 1: ksize = [D, H, W] @@ -27,8 +26,7 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): return out -def avg_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): - +def avg_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0): N, C, D, H, W = x.shape if global_pool == 1: ksize = [D, H, W] @@ -55,6 +53,10 @@ def avg_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): class TestPool3d_Op(OpTest): def setUp(self): self.init_test_case() + self.init_global_pool() + self.init_op_type() + self.init_pool_type() + if self.global_pool: self.paddings = [0 for _ in range(len(self.paddings))] input = np.random.random(self.shape).astype("float32") @@ -81,74 +83,115 @@ class TestPool3d_Op(OpTest): self.check_grad(set(['X']), 'Out', max_relative_error=0.07) def init_test_case(self): - self.global_pool = True - self.op_type = "pool3d" - self.pool_type = "avg" - self.pool3D_forward_naive = avg_pool3D_forward_naive self.shape = [2, 3, 5, 5, 5] self.ksize = [3, 3, 3] self.strides = [1, 1, 1] self.paddings = [0, 0, 0] + def init_op_type(self): + self.op_type = "pool3d" + + def init_pool_type(self): + self.pool_type = "avg" + self.pool3D_forward_naive = avg_pool3D_forward_naive + + def init_global_pool(self): + self.global_pool = True + class TestCase1(TestPool3d_Op): def init_test_case(self): - self.global_pool = False self.op_type = "pool3d" - self.pool_type = "avg" - self.pool3D_forward_naive = avg_pool3D_forward_naive self.shape = [2, 3, 7, 7, 7] self.ksize = [3, 3, 3] self.strides = [1, 1, 1] self.paddings = [0, 0, 0] - -class TestCase2(TestPool3d_Op): - def init_test_case(self): - self.global_pool = False + def init_op_type(self): self.op_type = "pool3d" + + def init_pool_type(self): self.pool_type = "avg" self.pool3D_forward_naive = avg_pool3D_forward_naive + + def init_global_pool(self): + self.global_pool = False + + +class TestCase2(TestPool3d_Op): + def init_test_case(self): self.shape = [2, 3, 7, 7, 7] self.ksize = [3, 3, 3] self.strides = [1, 1, 1] self.paddings = [1, 1, 1] + def init_op_type(self): + self.op_type = "pool3d" + + def init_pool_type(self): + self.pool_type = "avg" + self.pool3D_forward_naive = avg_pool3D_forward_naive + + def init_global_pool(self): + self.global_pool = False + class TestCase3(TestPool3d_Op): - def init_test_case(self): - self.global_pool = True + def init_op_type(self): self.op_type = "pool3d" + + def init_pool_type(self): self.pool_type = "max" self.pool3D_forward_naive = max_pool3D_forward_naive - self.shape = [2, 3, 5, 5, 5] - self.ksize = [3, 3, 3] - self.strides = [1, 1, 1] - self.paddings = [0, 0, 0] -class TestCase4(TestPool3d_Op): - def init_test_case(self): - self.global_pool = False +class TestCase4(TestCase1): + def init_op_type(self): self.op_type = "pool3d" + + def init_pool_type(self): self.pool_type = "max" self.pool3D_forward_naive = max_pool3D_forward_naive - self.shape = [2, 3, 7, 7, 7] - self.ksize = [3, 3, 3] - self.strides = [1, 1, 1] - self.paddings = [0, 0, 0] -class TestCase5(TestPool3d_Op): - def init_test_case(self): - self.global_pool = False +class TestCase5(TestCase2): + def init_op_type(self): self.op_type = "pool3d" + + def init_pool_type(self): self.pool_type = "max" self.pool3D_forward_naive = max_pool3D_forward_naive - self.shape = [2, 3, 7, 7, 7] - self.ksize = [3, 3, 3] - self.strides = [1, 1, 1] - self.paddings = [1, 1, 1] + + +#--------------------test pool3d_cudnn-------------------- +class TestCudnnCase1(TestPool3d_Op): + def init_op_type(self): + self.op_type = "pool3d_cudnn" + + +class TestCudnnCase2(TestCase1): + def init_op_type(self): + self.op_type = "pool3d_cudnn" + + +class TestCudnnCase3(TestCase2): + def init_op_type(self): + self.op_type = "pool3d_cudnn" + + +class TestCudnnCase4(TestCase3): + def init_op_type(self): + self.op_type = "pool3d_cudnn" + + +class TestCudnnCase5(TestCase4): + def init_op_type(self): + self.op_type = "pool3d_cudnn" + + +class TestCudnnCase6(TestCase5): + def init_op_type(self): + self.op_type = "pool3d_cudnn" if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_pool_max_op.py b/python/paddle/v2/fluid/tests/test_pool_max_op.py index 04843a28ac19e076e097d1aa1034bcf9378aa495..9d2d61c43868701392e90542f3b7fb2c4ea07548 100644 --- a/python/paddle/v2/fluid/tests/test_pool_max_op.py +++ b/python/paddle/v2/fluid/tests/test_pool_max_op.py @@ -3,11 +3,13 @@ import numpy as np from op_test import OpTest -def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0): +def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False): N, C, D, H, W = x.shape - if global_pool == 1: + if global_pool: ksize = [D, H, W] + paddings = [0, 0, 0] + D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1 H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1 W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1 @@ -40,11 +42,13 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0): return out, mask -def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0): +def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False): N, C, H, W = x.shape - if global_pool == 1: + if global_pool: ksize = [H, W] + paddings = [0, 0] + H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1 W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1 out = np.zeros((N, C, H_out, W_out)) @@ -74,13 +78,13 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0): class TestMaxPoolWithIndex_Op(OpTest): def setUp(self): self.init_test_case() - if self.global_pool: - self.paddings = [0 for _ in range(len(self.paddings))] + self.init_global() + input = np.random.random(self.shape).astype("float32") output, mask = self.pool_forward_naive(input, self.ksize, self.strides, self.paddings, self.global_pool) output = output.astype("float32") - mask = mask.astype("float32") + mask = mask.astype("int32") self.attrs = { 'strides': self.strides, @@ -99,41 +103,24 @@ class TestMaxPoolWithIndex_Op(OpTest): # self.check_grad(set(['X']), ['Out'], max_relative_error=0.07) def init_test_case(self): - self.global_pool = True - self.index = "max_pool3d_with_index" - self.op_type = "%s" % self.index + self.op_type = "max_pool3d_with_index" self.pool_forward_naive = max_pool3D_forward_naive self.shape = [2, 3, 5, 5, 5] self.ksize = [3, 3, 3] self.strides = [1, 1, 1] self.paddings = [1, 1, 1] + def init_global(self): + self.global_pool = False + class TestCase1(TestMaxPoolWithIndex_Op): - def init_test_case(self): + def init_global(self): self.global_pool = True - self.op_type = "max_pool3d_with_index" - self.pool_forward_naive = max_pool3D_forward_naive - self.shape = [2, 3, 5, 5, 5] - self.ksize = [3, 3, 3] - self.strides = [1, 1, 1] - self.paddings = [1, 1, 1] class TestCase2(TestMaxPoolWithIndex_Op): def init_test_case(self): - self.global_pool = False - self.op_type = "max_pool3d_with_index" - self.pool_forward_naive = max_pool3D_forward_naive - self.shape = [2, 3, 7, 7, 7] - self.ksize = [3, 3, 3] - self.strides = [1, 1, 1] - self.paddings = [1, 1, 1] - - -class TestCase3(TestMaxPoolWithIndex_Op): - def init_test_case(self): - self.global_pool = False self.op_type = "max_pool3d_with_index" self.pool_forward_naive = max_pool3D_forward_naive self.shape = [2, 3, 7, 7, 7] @@ -141,32 +128,18 @@ class TestCase3(TestMaxPoolWithIndex_Op): self.strides = [2, 2, 2] self.paddings = [0, 0, 0] - -class TestCase4(TestMaxPoolWithIndex_Op): - def init_test_case(self): + def init_global(self): self.global_pool = True - self.op_type = "max_pool3d_with_index" - self.pool_forward_naive = max_pool3D_forward_naive - self.shape = [2, 3, 5, 5, 5] - self.ksize = [3, 3, 3] - self.strides = [1, 1, 1] - self.paddings = [1, 1, 1] -class TestCase5(TestMaxPoolWithIndex_Op): - def init_test_case(self): - self.global_pool = True - self.op_type = "max_pool3d_with_index" - self.pool_forward_naive = max_pool3D_forward_naive - self.shape = [2, 3, 5, 5, 5] - self.ksize = [3, 3, 3] - self.strides = [2, 2, 2] - self.paddings = [0, 0, 0] +class TestCase3(TestCase2): + def init_global(self): + self.global_pool = False -class TestCase6(TestMaxPoolWithIndex_Op): +#----------------max_pool2d_with_index---------------- +class TestCase4(TestMaxPoolWithIndex_Op): def init_test_case(self): - self.global_pool = False self.op_type = "max_pool2d_with_index" self.pool_forward_naive = max_pool2D_forward_naive self.shape = [2, 3, 7, 7] @@ -174,10 +147,17 @@ class TestCase6(TestMaxPoolWithIndex_Op): self.strides = [1, 1] self.paddings = [1, 1] + def init_global(self): + self.global_pool = True + -class TestCase7(TestMaxPoolWithIndex_Op): - def init_test_case(self): +class TestCase5(TestCase4): + def init_global(self): self.global_pool = False + + +class TestCase6(TestMaxPoolWithIndex_Op): + def init_test_case(self): self.op_type = "max_pool2d_with_index" self.pool_forward_naive = max_pool2D_forward_naive self.shape = [2, 3, 7, 7] @@ -185,27 +165,13 @@ class TestCase7(TestMaxPoolWithIndex_Op): self.strides = [2, 2] self.paddings = [0, 0] - -class TestCase8(TestMaxPoolWithIndex_Op): - def init_test_case(self): + def init_global(self): self.global_pool = True - self.op_type = "max_pool2d_with_index" - self.pool_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 5, 5] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [1, 1] -class TestCase9(TestMaxPoolWithIndex_Op): - def init_test_case(self): - self.global_pool = True - self.op_type = "max_pool2d_with_index" - self.pool_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 5, 5] - self.ksize = [3, 3] - self.strides = [2, 2] - self.paddings = [0, 0] +class TestCase7(TestCase6): + def init_global(self): + self.global_pool = False if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_program.py b/python/paddle/v2/fluid/tests/test_program.py index ef2daf6916e14c015a39ae0193948e7ff6531449..e9bcefd21569aaa9225c676ea03b5c8e37d00333 100644 --- a/python/paddle/v2/fluid/tests/test_program.py +++ b/python/paddle/v2/fluid/tests/test_program.py @@ -1,6 +1,5 @@ import unittest -import paddle.v2.fluid.core as core from paddle.v2.fluid.framework import Program from paddle.v2.fluid.framework import g_main_program @@ -98,21 +97,26 @@ class TestProgram(unittest.TestCase): "Y": add_y}, outputs={"Out": add_out}, attrs={"x_num_col_dims": 1}) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": add_out}, outputs={"Out": mean_out}) self.assertEqual(mul_op.idx, 0) self.assertEqual(add_op.idx, 1) - param_to_grad = prog.append_backward(add_out, set()) + param_to_grad = prog.append_backward(mean_out, set()) def grad_name(name): return name + "@GRAD" - for var_name in ("mul.x", "mul.y", "mul.out", "add.y", "add.out"): + for var_name in ("mul.x", "mul.y", "mul.out", "add.y", "add.out", + "mean.out"): self.assertEqual(param_to_grad[var_name][0], grad_name(var_name)) self.assertEqual(param_to_grad[var_name][1], 0) expect_ops = [ - "mul", "elementwise_add", "fill_constant", "elementwise_add_grad", - "mul_grad" + "mul", "elementwise_add", "mean", "fill_constant", "mean_grad", + "elementwise_add_grad", "mul_grad" ] actual_ops = [] for op in block.ops: diff --git a/python/paddle/v2/fluid/tests/test_regularizer.py b/python/paddle/v2/fluid/tests/test_regularizer.py index f5d1eb3b96211bd7c7335dbe116a1d765d7bae50..24baf55e90c98f39bab926e8c85a791eee5ed4a4 100644 --- a/python/paddle/v2/fluid/tests/test_regularizer.py +++ b/python/paddle/v2/fluid/tests/test_regularizer.py @@ -29,7 +29,11 @@ class TestL2DecayRegularizer(unittest.TestCase): "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) - params_grads = append_backward_ops(mul_out) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) + params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) count_ops = len(block.ops) params_grads = optimizer.append_regularization_ops(params_grads) @@ -62,7 +66,11 @@ class TestL1DecayRegularizer(unittest.TestCase): "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) - params_grads = append_backward_ops(mul_out) + mean_out = block.create_var( + dtype="float32", shape=[1], lod_level=0, name="mean.out") + block.append_op( + type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) + params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) count_ops = len(block.ops) params_grads = optimizer.append_regularization_ops(params_grads) diff --git a/python/paddle/v2/fluid/tests/test_sequence_slice_op.py b/python/paddle/v2/fluid/tests/test_sequence_slice_op.py new file mode 100644 index 0000000000000000000000000000000000000000..ccd9a05343b0c4aa05b258959665c0662f271512 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_sequence_slice_op.py @@ -0,0 +1,47 @@ +import unittest +import numpy as np +import sys +from op_test import OpTest + + +class TestSequenceSliceOp(OpTest): + def set_data(self): + self.init_test_case() + # only supprot one level LoD + x = np.random.random(self.x_dim).astype('float32') + lod = self.x_lod + offset = np.array(self.offset).astype("int64") + length = np.array(self.length).astype("int64") + + self.inputs = {'X': (x, lod), 'Offset': offset, 'Length': length} + outs = [] #np.zeros((100, 3, 2)).astype('float32') + out_lod = [[0]] + out_lod_offset = 0 + for i in range(len(offset)): + sub_x = x[lod[0][i] + offset[i, 0]:lod[0][i] + offset[i, 0] + + length[i, 0], :] + out_lod_offset = out_lod_offset + len(sub_x) + outs.append(sub_x) + out_lod[0].append(out_lod_offset) + outs = np.concatenate(outs, axis=0) + self.outputs = {'Out': (outs, out_lod)} + + def init_test_case(self): + self.x_dim = (100, 3, 2) + self.x_lod = [[0, 20, 40, 60, 80, 100]] + self.offset = [[1], [2], [3], [4], [5]] + self.length = [[10], [8], [6], [4], [2]] + + def setUp(self): + self.op_type = "sequence_slice" + self.set_data() + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_variable.py b/python/paddle/v2/fluid/tests/test_variable.py index a3e60a751719666bdca56a3096b688125d09f4b2..c3e1f9ac0a70e7448fd8d1983b1c04d27af9771c 100644 --- a/python/paddle/v2/fluid/tests/test_variable.py +++ b/python/paddle/v2/fluid/tests/test_variable.py @@ -1,5 +1,5 @@ import unittest -from paddle.v2.fluid.framework import Variable, g_main_program, Program +from paddle.v2.fluid.framework import g_main_program, Program, convert_np_dtype_to_dtype_ import paddle.v2.fluid.core as core import numpy as np @@ -7,7 +7,7 @@ import numpy as np class TestVariable(unittest.TestCase): def test_np_dtype_convert(self): DT = core.DataType - convert = Variable._convert_np_dtype_to_dtype_ + convert = convert_np_dtype_to_dtype_ self.assertEqual(DT.FP32, convert(np.float32)) self.assertEqual(DT.FP16, convert("float16")) self.assertEqual(DT.FP64, convert("float64"))