提交 909bd269 编写于 作者: Q qiaolongfei

add topology test

上级 775f019f
...@@ -26,7 +26,7 @@ def main(): ...@@ -26,7 +26,7 @@ def main():
act=paddle.activation.Softmax()) act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(input=inference, label=label) cost = paddle.layer.classification_cost(input=inference, label=label)
parameters = paddle.parameters.create([cost]) parameters = paddle.parameters.create(cost)
for param_name in parameters.keys(): for param_name in parameters.keys():
array = parameters.get(param_name) array = parameters.get(param_name)
array[:] = numpy.random.uniform(low=-1.0, high=1.0, size=array.shape) array[:] = numpy.random.uniform(low=-1.0, high=1.0, size=array.shape)
......
...@@ -14,9 +14,9 @@ ...@@ -14,9 +14,9 @@
from paddle.trainer.PyDataProvider2 import \ from paddle.trainer.PyDataProvider2 import \
InputType, dense_vector, sparse_binary_vector,\ InputType, dense_vector, sparse_binary_vector,\
sparse_vector, integer_value sparse_vector, integer_value, DataType
__all__ = [ __all__ = [
'InputType', 'dense_vector', 'sparse_binary_vector', 'sparse_vector', 'InputType', 'dense_vector', 'sparse_binary_vector', 'sparse_vector',
'integer_value' 'integer_value', 'DataType'
] ]
add_test(NAME topology_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/topology_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.v2.layer as layer
import paddle.v2.topology as topology
import paddle.v2.data_type as data_type
import paddle.trainer_config_helpers as conf_helps
class TestTopology(unittest.TestCase):
def test_parse(self):
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
label = layer.data(name='label', type=data_type.integer_value(10))
hidden = layer.fc(input=pixel,
size=100,
act=conf_helps.SigmoidActivation())
inference = layer.fc(input=hidden,
size=10,
act=conf_helps.SoftmaxActivation())
maxid = layer.max_id(input=inference)
cost1 = layer.classification_cost(input=inference, label=label)
cost2 = layer.cross_entropy_cost(input=inference, label=label)
print topology.Topology(cost2).proto()
print topology.Topology([cost1]).proto()
print topology.Topology([cost1, cost2]).proto()
print topology.Topology(cost2).proto()
print topology.Topology([inference, maxid]).proto()
def test_data_type(self):
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
label = layer.data(name='label', type=data_type.integer_value(10))
hidden = layer.fc(input=pixel,
size=100,
act=conf_helps.SigmoidActivation())
inference = layer.fc(input=hidden,
size=10,
act=conf_helps.SoftmaxActivation())
cost = layer.classification_cost(input=inference, label=label)
topo = topology.Topology(cost)
type = topo.data_type()
self.assertEqual(len(type), 2)
self.assertEqual(type[0][0], "pixel")
self.assertEqual(type[0][1].type, data_type.DataType.Dense)
self.assertEqual(type[0][1].dim, 784)
self.assertEqual(type[1][0], "label")
self.assertEqual(type[1][1].type, data_type.DataType.Index)
self.assertEqual(type[1][1].dim, 10)
def test_get_layer(self):
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
label = layer.data(name='label', type=data_type.integer_value(10))
hidden = layer.fc(input=pixel,
size=100,
act=conf_helps.SigmoidActivation())
inference = layer.fc(input=hidden,
size=10,
act=conf_helps.SoftmaxActivation())
cost = layer.classification_cost(input=inference, label=label)
topo = topology.Topology(cost)
pixel_layer = topo.get_layer("pixel")
label_layer = topo.get_layer("label")
self.assertEqual(pixel_layer, pixel)
self.assertEqual(label_layer, label)
if __name__ == '__main__':
unittest.main()
...@@ -31,7 +31,8 @@ class Topology(object): ...@@ -31,7 +31,8 @@ class Topology(object):
def __init__(self, layers): def __init__(self, layers):
if not isinstance(layers, collections.Sequence): if not isinstance(layers, collections.Sequence):
raise ValueError("input of Topology should be a list of Layer") __check_layer_type__(layers)
layers = [layers]
for layer in layers: for layer in layers:
if not isinstance(layer, v2_layer.LayerV2): if not isinstance(layer, v2_layer.LayerV2):
raise ValueError('layer should have type paddle.layer.Layer') raise ValueError('layer should have type paddle.layer.Layer')
...@@ -97,6 +98,11 @@ class Topology(object): ...@@ -97,6 +98,11 @@ class Topology(object):
return data_types_lists return data_types_lists
def __check_layer_type__(layer):
if not isinstance(layer, v2_layer.LayerV2):
raise ValueError('layer should have type paddle.layer.Layer')
if __name__ == '__main__': if __name__ == '__main__':
pixel = v2_layer.data(name='pixel', type=data_type.dense_vector(784)) pixel = v2_layer.data(name='pixel', type=data_type.dense_vector(784))
label = v2_layer.data(name='label', type=data_type.integer_value(10)) label = v2_layer.data(name='label', type=data_type.integer_value(10))
...@@ -110,8 +116,8 @@ if __name__ == '__main__': ...@@ -110,8 +116,8 @@ if __name__ == '__main__':
cost1 = v2_layer.classification_cost(input=inference, label=label) cost1 = v2_layer.classification_cost(input=inference, label=label)
cost2 = v2_layer.cross_entropy_cost(input=inference, label=label) cost2 = v2_layer.cross_entropy_cost(input=inference, label=label)
print Topology(cost1).proto()
print Topology(cost2).proto() print Topology(cost2).proto()
print Topology(cost1, cost2).proto() print Topology([cost1]).proto()
print Topology([cost1, cost2]).proto()
print Topology(cost2).proto() print Topology(cost2).proto()
print Topology(inference, maxid).proto() print Topology([inference, maxid]).proto()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册