From 8f09109a453f2a7f9141cd65a7de1f137e7b7179 Mon Sep 17 00:00:00 2001 From: gongweibao Date: Fri, 21 Sep 2018 03:26:25 +0000 Subject: [PATCH] fix --- python/paddle/fluid/layers/nn.py | 157 ++++++++---------- python/paddle/fluid/layers/ops.py | 1 - .../paddle/fluid/tests/unittests/op_test.py | 3 + .../fluid/tests/unittests/test_layers.py | 8 + tools/test_generator.py | 118 +++++-------- 5 files changed, 124 insertions(+), 163 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index f896cfa04b..792c743862 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -29,93 +29,25 @@ from .. import unique_name from functools import reduce __all__ = [ - 'fc', - 'embedding', - 'dynamic_lstm', - 'dynamic_lstmp', - 'dynamic_gru', - 'gru_unit', - 'linear_chain_crf', - 'crf_decoding', - 'cos_sim', - 'cross_entropy', - 'square_error_cost', - 'chunk_eval', - 'sequence_conv', - 'conv2d', - 'conv3d', - 'sequence_pool', - 'sequence_softmax', - 'softmax', - 'pool2d', - 'pool3d', - 'batch_norm', - 'beam_search_decode', - 'conv2d_transpose', - 'conv3d_transpose', - 'sequence_expand', - 'sequence_expand_as', - 'sequence_pad', - 'lstm_unit', - 'reduce_sum', - 'reduce_mean', - 'reduce_max', - 'reduce_min', - 'reduce_prod', - 'sequence_first_step', - 'sequence_last_step', - 'dropout', - 'split', - 'ctc_greedy_decoder', - 'edit_distance', - 'l2_normalize', - 'matmul', - 'topk', - 'warpctc', - 'sequence_reshape', - 'transpose', - 'im2sequence', - 'nce', - 'hsigmoid', - 'beam_search', - 'row_conv', - 'multiplex', - 'layer_norm', - 'softmax_with_cross_entropy', - 'smooth_l1', - 'one_hot', - 'autoincreased_step_counter', - 'reshape', - 'squeeze', - 'unsqueeze', - 'lod_reset', - 'lrn', - 'pad', - 'pad_constant_like', - 'label_smooth', - 'roi_pool', - 'dice_loss', - 'image_resize', - 'image_resize_short', - 'resize_bilinear', - 'gather', - 'scatter', - 'sequence_scatter', - 'random_crop', - 'mean_iou', - 'relu', - 'log', - 'crop', - 'rank_loss', - 'prelu', - 'flatten', - 'sequence_mask', - 'stack', - 'pad2d', - 'unstack', - 'sequence_enumerate', - 'expand', - 'sequence_concat', + 'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru', + 'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy', + 'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d', + 'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d', + 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose', + 'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'lstm_unit', + 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod', + 'sequence_first_step', 'sequence_last_step', 'dropout', 'split', + 'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk', + 'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce', + 'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm', + 'softmax_with_cross_entropy', 'smooth_l1', 'one_hot', + 'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze', + 'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool', + 'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear', + 'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu', + 'log', 'crop', 'rank_loss', 'prelu', 'flatten', 'sequence_mask', 'stack', + 'pad2d', 'unstack', 'sequence_enumerate', 'expand', 'sequence_concat', + 'uniform_random_batch_size_like' ] @@ -6234,3 +6166,54 @@ def expand(x, expand_times, name=None): outputs={'Out': out}, attrs={'expand_times': expand_times}) return out + + +from paddle.fluid.framework import convert_np_dtype_to_dtype_ + + +def uniform_random_batch_size_like(input, + shape, + dtype='float32', + input_dim_idx=0, + output_dim_idx=0, + min=-1.0, + max=1.0, + seed=0): + """ + UniformRandomBatchSizeLike operator. + This operator initializes a tensor with the same batch_size as the Input tensor with random values sampled from a uniform distribution. + + + Args: + input (Variable): Tensor whose input_dim_idx'th dimension specifies the batch_size. + shape (tuple|list): the shape of the output. + input_dim_idx (Int): The index of input's batch size dimension. + output_dim_idx (Int): The index of output's batch size dimension. + min (Float): Minimum value of uniform random. + max (Float): Maximum value of uniform random. + seed (Int): Random seed used for generating samples. 0 means use a seed generated by the system. + Note that if seed is not 0, this operator will always generate the same random numbers every time. + dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc + Returns: + output(Variable): Output of this operator. + + """ + + helper = LayerHelper('uniform_random_batch_size_like', **locals()) + out = helper.create_tmp_variable(dtype) + c_dtype = convert_np_dtype_to_dtype_(dtype) + helper.append_op( + type='uniform_random_batch_size_like', + inputs={'Input': input}, + outputs={'Out': out}, + attrs={ + 'shape': shape, + 'input_dim_idx': input_dim_idx, + 'output_dim_idx': output_dim_idx, + 'min': min, + 'max': max, + 'seed': seed, + 'dtype': c_dtype + }) + + return out diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index 129252653d..c706d581ac 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -62,7 +62,6 @@ __all__ = [ 'logical_or', 'logical_xor', 'logical_not', - 'uniform_random_batch_size_like', 'gaussian_random', 'sampling_id', 'gaussian_random_batch_size_like', diff --git a/python/paddle/fluid/tests/unittests/op_test.py b/python/paddle/fluid/tests/unittests/op_test.py index e97643cdde..d42f721a70 100644 --- a/python/paddle/fluid/tests/unittests/op_test.py +++ b/python/paddle/fluid/tests/unittests/op_test.py @@ -252,6 +252,9 @@ class OpTest(unittest.TestCase): block = program.global_block() self._append_ops(block) + from paddle.fluid.transpiler.details import program_to_code + program_to_code(program) + inputs = self._get_inputs(block) outputs = self._get_outputs(block) feed_map = self.feed_var(inputs, place) diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 9a17d3213c..1e49f43899 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -596,6 +596,14 @@ class TestBook(unittest.TestCase): out = layers.expand(x, [1, 2]) print(str(program)) + def test_uniform_random_batch_size_like(self): + program = Program() + with program_guard(program): + input = layers.data( + name="input", shape=[500, 2000], dtype='float32') + out = layers.uniform_random_batch_size_like(input, [-1, 2000]) + self.assertIsNotNone(out) + if __name__ == '__main__': unittest.main() diff --git a/tools/test_generator.py b/tools/test_generator.py index 399dfe78eb..33a4edd2cf 100644 --- a/tools/test_generator.py +++ b/tools/test_generator.py @@ -23,7 +23,7 @@ from paddle.fluid.proto import framework_pb2 from paddle.fluid.framework import OpProtoHolder, Variable from paddle.fluid.layer_helper import LayerHelper -g_filer_attrs = ['op_role', 'op_role_var', 'op_namescope', 'dtype'] +g_filer_attrs = ['op_role', 'op_role_var', 'op_namescope'] def _convert_(name): @@ -46,7 +46,7 @@ def _get_inputs(op_type): op_proto = OpProtoHolder.instance().get_op_proto(op_type) inputs = dict() for ipt in op_proto.inputs: - inputs[ipt.name] = "" + inputs[ipt.name] = ipt.comment return inputs @@ -60,6 +60,34 @@ def _get_outputs(op_type): return outputs +_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$") +_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$") +_two_bang_pattern_ = re.compile(r"!!([^!]+)!!") + + +def escape_math(text): + return _two_bang_pattern_.sub( + r'$$\1$$', + _single_dollar_pattern_.sub(r':math:`\1`', + _two_dollar_pattern_.sub(r"!!\1!!", text))) + + +def get_comment(op_type): + op_proto = OpProtoHolder.instance().get_op_proto(op_type) + + comment_lines = op_proto.comment.split("\n") + comment = "" + for line in comment_lines: + line = line.strip() + if len(line) != 0: + comment += escape_math(line) + comment += " " + elif len(comment) != 0: + comment += "\n " + + return comment + + def _get_attrs(op_type): op_proto = OpProtoHolder.instance().get_op_proto(op_type) return op_proto.attrs @@ -77,14 +105,14 @@ def get_input_comments(op_type, indent=2): ret = "" inputs = _get_inputs(op_type) for t in inputs: - ret += get_indent_space(2) + "input(${%s_type}): ${%s_comment}\n" % ( - _convert_(t), _convert_(t)) + ret += get_indent_space(2) + "%s (Type): %s\n" % (_convert_(t), + inputs[t]) for t in _get_attrs(op_type): if t.name in g_filer_attrs: continue - ret += get_indent_space(2) + "input(${%s_type}): ${%s_comment}\n" % ( - _convert_(t.name), _convert_(t.name)) + ret += get_indent_space(2) + "%s (%s): %s\n" % ( + _convert_(t.name), t.type, _convert_(t.comment)) return ret @@ -122,7 +150,7 @@ def get_inputs(op_type): ret = "inputs={" inputs = _get_inputs(op_type) for t in inputs: - ret += "{}={},".format(t, _convert_(t)) + ret += "'{}': {},".format(t, _convert_(t)) ret = ret.strip(",") ret += "}" @@ -132,39 +160,11 @@ def get_inputs(op_type): return ret -""" -def get_input_dtype(op_type): - dtype = None - for ipt in _get_inputs(): - name = _convert_(ipt.name) - val = kwargs.pop(name, []) - if not isinstance(val, list) and not isinstance(val, tuple): - val = [val] - if len(val) == 0: - val = [args[0]] - args = args[1:] - - for each in val: - if not isinstance(each, Variable): - raise ValueError("input of {0} must be variable".format( - op_type)) - - if dtype is None: - dtype = each.dtype - elif dtype != each.dtype: - raise ValueError( - "operator {0} must input same dtype. {1} vs {2}".format( - op_type, dtype, each.dtype)) - - return dtype -""" - - def get_outputs(op_type): ret = "outputs={" inputs = _get_outputs(op_type) for t in inputs: - ret += "{}={},".format(t, _convert_(t)) + ret += "'{}': {},".format(t, _convert_(t)) ret = ret.strip(",") ret += "}" @@ -174,44 +174,13 @@ def get_outputs(op_type): return ret -""" - attr_names = sorted(op.attr_names) - attrs_str = "" - for i in range(0, len(attr_names)): - name = attr_names[i] - - attr_type = op.desc.attr_type(name) - if attr_type == core.AttrType.BLOCK: - a = "{name} = block[{value}]".format( - name=name, type=attr_type, value=op.block_attr_id(name)) - attrs_str += a - if i != len(attr_names) - 1: - attrs_str += ", " - continue - - if attr_type == core.AttrType.BLOCKS: - a = "{name} = blocks{value}".format( - name=name, type=attr_type, value=op.blocks_attr_ids(name)) - attrs_str += a - if i != len(attr_names) - 1: - attrs_str += ", " - continue - - a = "{name} = {value}".format( - name=name, type=attr_type, value=op.desc.attr(name)) - attrs_str += a - if i != len(attr_names) - 1: - attrs_str += ", " -""" - - def get_attrs(op_type): ret = "attrs={" for t in _get_attrs(op_type): if t.name in g_filer_attrs: continue - ret += "%s=%s," % (t.name, _convert_(t.name)) + ret += "'%s': %s," % (t.name, _convert_(t.name)) ret = ret.strip(",") ret += "}" @@ -220,12 +189,13 @@ def get_attrs(op_type): def get_outvars(op_type, indent=1): + inputs = _get_inputs(op_type) ret = "" for t in _get_outputs(op_type): ret += get_indent_space( indent - ) + "%s = helper.create_tmp_variable(dtype=helper.input_dtype())\n" % ( - _convert_(t)) + ) + "%s = helper.create_tmp_variable(dtype=helper.input_dtype('%s'))\n" % ( + (_convert_(t), list(inputs)[0])) ret = ret.strip('\n') return ret @@ -238,17 +208,15 @@ def get_op_py(op_type): outputs = get_outputs(op_type) attrs = get_attrs(op_type) out_vars = get_outvars(op_type) + comment = get_comment(op_type) code = """ -@templatedoc() def {op_type}({args}): \"\"\" - {op_type} - {comment} - Args: {input_comments} + Returns: {output_comments} \"\"\" @@ -263,7 +231,7 @@ def {op_type}({args}): return out """.format( - comment="${comment}", + comment=comment, input_comments=input_comments.strip('\n'), output_comments=output_comments, args=args, -- GitLab