Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8dd3d4b6
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8dd3d4b6
编写于
9月 27, 2020
作者:
W
WangXi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fleet meta combine amp dgc recompute, test=develop
上级
516d84b2
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
256 addition
and
70 deletion
+256
-70
python/paddle/distributed/fleet/meta_optimizers/amp_optimizer.py
...paddle/distributed/fleet/meta_optimizers/amp_optimizer.py
+39
-16
python/paddle/distributed/fleet/meta_optimizers/dgc_optimizer.py
...paddle/distributed/fleet/meta_optimizers/dgc_optimizer.py
+7
-0
python/paddle/distributed/fleet/meta_optimizers/recompute_optimizer.py
.../distributed/fleet/meta_optimizers/recompute_optimizer.py
+21
-4
python/paddle/fluid/contrib/mixed_precision/decorator.py
python/paddle/fluid/contrib/mixed_precision/decorator.py
+60
-40
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+5
-10
python/paddle/fluid/tests/unittests/test_fleet_combine_meta_optimizer.py
...luid/tests/unittests/test_fleet_combine_meta_optimizer.py
+122
-0
python/paddle/fluid/tests/unittests/test_fleet_dgc_meta_optimizer.py
...le/fluid/tests/unittests/test_fleet_dgc_meta_optimizer.py
+2
-0
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/amp_optimizer.py
浏览文件 @
8dd3d4b6
...
...
@@ -19,7 +19,7 @@ class AMPOptimizer(MetaOptimizerBase):
def
__init__
(
self
,
optimizer
):
super
(
AMPOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
self
.
amp
_opt
=
None
self
.
wrapped
_opt
=
None
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[
"LarsOptimizer"
,
...
...
@@ -37,6 +37,24 @@ class AMPOptimizer(MetaOptimizerBase):
super
(
AMPOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
def
_init_wrapped_opt
(
self
):
if
self
.
wrapped_opt
is
not
None
:
return
config
=
self
.
user_defined_strategy
.
amp_configs
custom_white_list
=
set
(
config
[
'custom_white_list'
])
custom_black_list
=
set
(
config
[
'custom_black_list'
])
custom_black_varnames
=
set
(
config
[
'custom_black_varnames'
])
self
.
amp_lists
=
mixed_precision
.
AutoMixedPrecisionLists
(
custom_white_list
,
custom_black_list
,
custom_black_varnames
)
self
.
wrapped_opt
=
mixed_precision
.
decorate
(
self
.
inner_opt
,
amp_lists
,
config
[
'init_loss_scaling'
],
config
[
'incr_every_n_steps'
],
config
[
'decr_every_n_nan_or_inf'
],
config
[
'incr_ratio'
],
config
[
'decr_ratio'
],
config
[
'use_dynamic_loss_scaling'
])
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
return
False
...
...
@@ -60,26 +78,31 @@ class AMPOptimizer(MetaOptimizerBase):
"use_dynamic_loss_scaling"
:
True
}
def
minimize_impl
(
self
,
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
if
self
.
amp_opt
is
None
:
config
=
self
.
user_defined_strategy
.
amp_configs
custom_white_list
=
set
(
config
[
'custom_white_list'
])
custom_black_list
=
set
(
config
[
'custom_black_list'
])
custom_black_varnames
=
set
(
config
[
'custom_black_varnames'
])
amp_lists
=
mixed_precision
.
AutoMixedPrecisionLists
(
custom_white_list
,
custom_black_list
,
custom_black_varnames
)
no_grad_set
=
None
,
callbacks
=
None
):
# maybe inner_opt of other meta optimizer
self
.
_init_wrapped_opt
()
return
self
.
wrapped_opt
.
backward
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
self
.
amp_opt
=
mixed_precision
.
decorate
(
self
.
inner_opt
,
amp_lists
,
config
[
'init_loss_scaling'
],
config
[
'incr_every_n_steps'
],
config
[
'decr_every_n_nan_or_inf'
],
config
[
'incr_ratio'
],
config
[
'decr_ratio'
],
config
[
'use_dynamic_loss_scaling'
])
def
apply_gradients
(
self
,
params_grads
):
return
self
.
wrapped_opt
.
apply_gradients
(
params_grads
=
params_grads
)
def
apply_optimize
(
self
,
loss
,
startup_program
,
params_grads
):
return
self
.
wrapped_opt
.
apply_optimize
(
loss
,
startup_program
=
startup_program
,
params_grads
=
params_grads
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
self
.
_init_wrapped_opt
()
optimize_ops
,
params_grads
=
\
self
.
amp
_opt
.
minimize
(
loss
,
startup_program
,
self
.
wrapped
_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
return
optimize_ops
,
params_grads
python/paddle/distributed/fleet/meta_optimizers/dgc_optimizer.py
浏览文件 @
8dd3d4b6
...
...
@@ -85,6 +85,13 @@ class DGCOptimizer(MetaOptimizerBase):
return
self
.
dgc_opt
.
backward
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
def
apply_gradients
(
self
,
params_grads
):
return
self
.
dgc_opt
.
apply_gradients
(
params_grads
=
params_grads
)
def
apply_optimize
(
self
,
loss
,
startup_program
,
params_grads
):
return
self
.
dgc_opt
.
apply_optimize
(
loss
,
startup_program
=
startup_program
,
params_grads
=
params_grads
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
...
...
python/paddle/distributed/fleet/meta_optimizers/recompute_optimizer.py
浏览文件 @
8dd3d4b6
...
...
@@ -18,15 +18,15 @@ from .meta_optimizer_base import MetaOptimizerBase
class
RecomputeOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
RecomputeOptimizer
,
self
).
__init__
(
optimizer
)
#self.inner_opt = RO(optimizer)
self
.
inner_opt
=
optimizer
self
.
wrapped_opt
=
RO
(
optimizer
)
self
.
wrapped_opt
=
None
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[
"LarsOptimizer"
,
"LambOptimizer"
,
"GradientMergeOptimizer"
,
"GraphExecutionOptimizer"
,
"DGCOptimizer"
,
]
self
.
meta_optimizers_black_list
=
[]
...
...
@@ -34,8 +34,15 @@ class RecomputeOptimizer(MetaOptimizerBase):
user_defined_strategy
):
super
(
RecomputeOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
self
.
wrapped_opt
.
_set_checkpoints
(
list
(
user_defined_strategy
.
recompute_configs
[
"checkpoints"
]))
def
_init_wrapped_opt
(
self
):
if
self
.
wrapped_opt
is
not
None
:
return
configs
=
self
.
user_defined_strategy
.
recompute_configs
self
.
wrapped_opt
=
RO
(
self
.
inner_opt
)
self
.
wrapped_opt
.
_set_checkpoints
(
list
(
configs
[
"checkpoints"
]))
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
...
...
@@ -62,14 +69,24 @@ class RecomputeOptimizer(MetaOptimizerBase):
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
# maybe inner_opt of other meta optimizer
self
.
_init_wrapped_opt
()
return
self
.
wrapped_opt
.
backward
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
def
apply_gradients
(
self
,
params_grads
):
return
self
.
wrapped_opt
.
apply_gradients
(
params_grads
=
params_grads
)
def
apply_optimize
(
self
,
loss
,
startup_program
,
params_grads
):
return
self
.
wrapped_opt
.
apply_optimize
(
loss
,
startup_program
=
startup_program
,
params_grads
=
params_grads
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
self
.
_init_wrapped_opt
()
optimize_ops
,
params_grads
=
\
self
.
wrapped_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
...
...
python/paddle/fluid/contrib/mixed_precision/decorator.py
浏览文件 @
8dd3d4b6
...
...
@@ -16,6 +16,7 @@ from ... import default_main_program
from
...
import
default_startup_program
from
...
import
layers
from
...
import
unique_name
from
...
import
program_guard
from
.
import
fp16_utils
from
.fp16_utils
import
rewrite_program
from
.fp16_utils
import
update_role_var_grad
...
...
@@ -58,21 +59,40 @@ class OptimizerWithMixedPrecision(object):
self
.
_optimizer
=
optimizer
self
.
_amp_lists
=
amp_lists
self
.
_param_grads
=
None
self
.
_train_program
=
default_main_program
()
self
.
_startup_prog
=
default_startup_program
()
self
.
_train_program
=
None
self
.
_scaled_loss
=
None
self
.
_loss_scaling
=
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
"loss_scaling"
),
shape
=
[
1
],
value
=
init_loss_scaling
,
dtype
=
'float32'
,
persistable
=
True
)
self
.
_loss_scaling
=
None
self
.
_init_loss_scaling
=
init_loss_scaling
self
.
_use_dynamic_loss_scaling
=
use_dynamic_loss_scaling
if
self
.
_use_dynamic_loss_scaling
:
self
.
_incr_every_n_steps
=
incr_every_n_steps
self
.
_decr_every_n_nan_or_inf
=
decr_every_n_nan_or_inf
self
.
_incr_ratio
=
incr_ratio
self
.
_decr_ratio
=
decr_ratio
self
.
_num_good_steps
=
None
self
.
_num_bad_steps
=
None
def
get_loss_scaling
(
self
):
"""Return the real-time loss scaling factor.
"""
return
self
.
_loss_scaling
def
get_scaled_loss
(
self
):
"""Return the scaled loss.
It's useful when you feed customed loss into executor.
"""
return
self
.
_scaled_loss
def
_init_amp_var
(
self
):
self
.
_loss_scaling
=
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
"loss_scaling"
),
shape
=
[
1
],
value
=
self
.
_init_loss_scaling
,
dtype
=
'float32'
,
persistable
=
True
)
if
self
.
_use_dynamic_loss_scaling
:
self
.
_num_good_steps
=
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
"num_good_steps"
),
shape
=
[
1
],
...
...
@@ -88,27 +108,15 @@ class OptimizerWithMixedPrecision(object):
# Ensure the data type of learning rate vars is float32 (same as the
# master parameter dtype)
if
isinstance
(
optimizer
.
_learning_rate
,
float
):
optimizer
.
_learning_rate_map
[
default_main_program
()]
=
\
if
isinstance
(
self
.
_
optimizer
.
_learning_rate
,
float
):
self
.
_
optimizer
.
_learning_rate_map
[
default_main_program
()]
=
\
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
"learning_rate"
),
shape
=
[
1
],
value
=
float
(
optimizer
.
_learning_rate
),
value
=
float
(
self
.
_
optimizer
.
_learning_rate
),
dtype
=
'float32'
,
persistable
=
True
)
def
get_loss_scaling
(
self
):
"""Return the real-time loss scaling factor.
"""
return
self
.
_loss_scaling
def
get_scaled_loss
(
self
):
"""Return the scaled loss.
It's useful when you feed customed loss into executor.
"""
return
self
.
_scaled_loss
def
backward
(
self
,
loss
,
startup_program
=
None
,
...
...
@@ -131,16 +139,21 @@ class OptimizerWithMixedPrecision(object):
A list of (param, grad), which is a tuple of a parameter and its
gradient respectively, and the scaled loss.
"""
rewrite_program
(
self
.
_train_program
,
self
.
_amp_lists
)
train_program
=
loss
.
block
.
program
self
.
_train_program
=
train_program
with
program_guard
(
train_program
,
startup_program
):
self
.
_init_amp_var
()
rewrite_program
(
train_program
,
self
.
_amp_lists
)
self
.
_scaled_loss
=
loss
*
self
.
_loss_scaling
self
.
_
params_grads
=
self
.
_optimizer
.
backward
(
params_grads
=
self
.
_optimizer
.
backward
(
self
.
_scaled_loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
# Change the op_role_var attr for some ops, so that gradients
# transferred across GPUs can be FP16.
update_role_var_grad
(
self
.
_train_program
,
self
.
_params_grads
)
return
self
.
_params_grads
update_role_var_grad
(
train_program
,
params_grads
)
return
params_grads
def
apply_gradients
(
self
,
params_grads
):
"""
...
...
@@ -182,6 +195,12 @@ class OptimizerWithMixedPrecision(object):
return
optimize_ops
def
apply_optimize
(
self
,
loss
,
startup_program
,
param_grads
):
program
=
loss
.
block
.
program
with
program_guard
(
program
,
startup_program
):
optimize_ops
=
self
.
apply_gradients
(
param_grads
)
return
optimize_ops
def
minimize
(
self
,
loss
,
startup_program
=
None
,
...
...
@@ -207,7 +226,8 @@ class OptimizerWithMixedPrecision(object):
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
optimize_ops
=
self
.
apply_gradients
(
scaled_params_grads
)
optimize_ops
=
self
.
apply_optimize
(
loss
,
startup_program
,
scaled_params_grads
)
return
optimize_ops
,
scaled_params_grads
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
8dd3d4b6
...
...
@@ -730,9 +730,6 @@ class Optimizer(object):
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
]})
return
new_param_grads
,
(
table_param
,
table_grad
),
sgd_op
def
_append_dgc_ops
(
self
,
param_and_grad
):
pass
def
backward
(
self
,
loss
,
startup_program
=
None
,
...
...
@@ -794,9 +791,6 @@ class Optimizer(object):
with
program_guard
(
program
,
startup_program
):
params_grads
=
append_backward
(
loss
,
parameter_list
,
act_no_grad_set
,
callbacks
)
# Note: since we can't use all_reduce_op now,
# dgc_op should be the last op of one grad.
self
.
_append_dgc_ops
(
params_grads
)
return
params_grads
def
apply_gradients
(
self
,
params_grads
):
...
...
@@ -1561,6 +1555,11 @@ class DGCMomentumOptimizer(Optimizer):
@
imperative_base
.
no_grad
def
apply_gradients
(
self
,
params_grads
):
# Note: since we can't use all_reduce_op now,
# dgc_op should be the last op of one grad.
# Maybe need a grad allreduce pass.
self
.
_append_dgc_ops
(
params_grads
)
params_grads
=
sorted
(
params_grads
,
key
=
lambda
x
:
x
[
0
].
name
)
params_grads
,
table_param_and_grad
,
table_optimize_op
=
\
self
.
_process_distribute_lookuptable
(
params_grads
)
...
...
@@ -4776,10 +4775,6 @@ class RecomputeOptimizer(Optimizer):
params_grads
=
append_backward
(
loss
,
parameter_list
,
no_grad_set
,
checkpoints
=
checkpoint_vars
)
# Note: since we can't use all_reduce_op now,
# dgc_op should be the last op of one grad.
if
hasattr
(
self
.
_optimizer
,
"_append_dgc_ops"
):
self
.
_optimizer
.
_append_dgc_ops
(
params_grads
)
return
params_grads
def
apply_optimize
(
self
,
loss
,
startup_program
,
params_grads
):
...
...
python/paddle/fluid/tests/unittests/test_fleet_combine_meta_optimizer.py
0 → 100755
浏览文件 @
8dd3d4b6
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
from
paddle
import
fluid
import
os
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
paddle
.
enable_static
()
class
TestFleetCombineOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001,127.0.0.1:36002"
def
net
(
self
,
main_prog
,
startup_prog
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
256
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
dgc
=
True
strategy
.
dgc_configs
=
{
"rampup_begin_step"
:
128
,
"rampup_step"
:
100
,
"sparsity"
:
[
0.996
,
0.999
]
}
return
avg_cost
,
strategy
def
optimizer
(
self
,
loss
,
strategy
,
train_prog
,
startup_prog
):
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
optimizer
=
paddle
.
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.01
,
momentum
=
0.9
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
loss
)
def
set_strategy
(
self
,
strategy
,
name
):
if
name
==
'amp'
:
strategy
.
amp
=
True
elif
name
==
'dgc'
:
strategy
.
dgc
=
True
elif
name
==
'recompute'
:
strategy
.
recompute
=
True
strategy
.
recompute_configs
=
{
"checkpoints"
:
[
"fc_0.tmp_2"
,
"fc_1.tmp_2"
]
}
def
test_dgc_recompute_optimizer
(
self
):
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'dgc'
)
self
.
set_strategy
(
strategy
,
'recompute'
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
outs
=
[
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
]
self
.
assertIn
(
'dgc'
,
ops
)
self
.
assertIn
(
'dgc_momentum'
,
ops
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
def
test_amp_recompute_optimizer
(
self
):
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'amp'
)
self
.
set_strategy
(
strategy
,
'recompute'
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
outs
=
[
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
]
print
(
train_prog
)
self
.
assertIn
(
'cast'
,
ops
)
self
.
assertIn
(
'check_finite_and_unscale'
,
ops
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_dgc_meta_optimizer.py
浏览文件 @
8dd3d4b6
...
...
@@ -19,6 +19,8 @@ import os
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
paddle
.
enable_static
()
class
TestFleetDGCOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录