From 8d9fdd8b1323665a5d9cc567b1dacc9bdfd8f9f2 Mon Sep 17 00:00:00 2001 From: yunyaoXYY <109218879+yunyaoXYY@users.noreply.github.com> Date: Tue, 29 Nov 2022 10:58:23 +0800 Subject: [PATCH] [Clean fluid] Clean maxout, space_to_depth, affine_channel, similarity_focus and add_position_encoding (#48410) * Clean fluid maxout * Clean fluid space_to_depth * Clean fluid affine_channel and related tests * Clean fluid similarity_focus and related tests * Clean fluid add_position_encoding and related tests * Fix code style --- python/paddle/fluid/layers/nn.py | 412 ------------------ .../ipu/test_affine_channel_op_ipu.py | 96 ---- .../inference/test_trt_affine_channel_op.py | 157 ------- .../test_add_position_encoding_op.py | 32 -- .../tests/unittests/test_affine_channel_op.py | 36 -- .../fluid/tests/unittests/test_layers.py | 12 - .../fluid/tests/unittests/test_maxout_op.py | 16 - .../tests/unittests/test_op_name_conflict.py | 67 --- .../unittests/test_similarity_focus_op.py | 32 -- .../xpu/test_affine_channel_op_xpu.py | 36 -- 10 files changed, 896 deletions(-) delete mode 100644 python/paddle/fluid/tests/unittests/ipu/test_affine_channel_op_ipu.py delete mode 100644 python/paddle/fluid/tests/unittests/ir/inference/test_trt_affine_channel_op.py diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 91a5376abb..e760b357e0 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -119,14 +119,9 @@ __all__ = [ 'clip_by_norm', 'mean', 'mul', - 'maxout', - 'space_to_depth', - 'affine_channel', - 'similarity_focus', 'hash', 'grid_sampler', 'log_loss', - 'add_position_encoding', 'bilinear_tensor_product', 'merge_selected_rows', 'get_tensor_from_selected_rows', @@ -7606,343 +7601,6 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None): return out -@deprecated(since="2.0.0", update_to="paddle.nn.functional.maxout") -@templatedoc() -def maxout(x, groups, name=None, axis=1): - """ - ${comment} - - Args: - x(${x_type}): ${x_comment} - groups(int): ${groups_comment} - axis(int, optional): ${axis_comment} - name(str, optional): For detailed information, please refer - to :ref:`api_guide_Name`. Usually name is no need to set and - None by default. - - Returns: - Variable: ${out_comment} - - Raises: - ValueError: If `axis` is not 1, -1 or 3. - ValueError: If the number of input channels can not be divisible by `groups`. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import paddle - paddle.enable_static() - - input = fluid.data( - name='data', - shape=[None, 256, 32, 32], - dtype='float32') - out = fluid.layers.maxout(input, groups=2) - """ - return paddle.nn.functional.maxout(**locals()) - - -def space_to_depth(x, blocksize, name=None): - r""" - - Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width] - - This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \ - theinput LoDtensor where values from the height and width dimensions are moved to the channel \ - dimension. - The attr blocksize indicates the input block size. - - space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \ - according to blocksize to construct output with shape \ - [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]: - - - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location. - - The Y, X coordinates within each block of the input become the high order component of the output channel index - - channel should be divisible by square of blocksize - - height, width should be divsible by blocksize - - This OP is useful for resizing the activations between convolutions \ - (but keeping all data) - - .. code-block:: text - - Given the input x with the shape [1, 1, 4, 4]: - x.data = [[[[1, 2, 5, 6], - [3, 4, 7, 8], - [9, 10, 13, 14], - [11, 12, 15, 16]]]] - blocksize = 2 - - then get the output with the shape [1, 4, 2, 2]: - out.data = [[[[1, 2], [3, 4]], - [[5, 6], [7, 8]], - [[9, 10], [11, 12]], - [[13, 14], [15, 16]]]] - - Args: - x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \ - [batch, channel, height, width] - blocksize (int): The blocksize to select the element on each feature map should be > 2 - name(str, optional): For detailed information, please refer \ - to :ref:`api_guide_Name`. Usually name is no need to set and \ - None by default. - - Returns: - Tensor, The output, which should be 4 dims Tensor or LodTensor, with the shape \ - [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize] - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import numpy as np - import numpy as np - import paddle - - paddle.enable_static() - data = fluid.data( - name='data', shape=[1, 4, 2, 2], dtype='float32') - space_to_depthed = fluid.layers.space_to_depth( - x=data, blocksize=2) - - exe = fluid.Executor(fluid.CPUPlace()) - data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32') - - print(data_np) - #array([[[[ 0., 1.], [ 2., 3.]], - # [[ 4., 5.], [ 6., 7.]], - # [[ 8., 9.], [10., 11.]], - # [[12., 13.], [14., 15.]]]], dtype=float32) - - out_main = exe.run(fluid.default_main_program(), - feed={'data': data_np}, - fetch_list=[space_to_depthed]) - - print(out_main) - #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]], - # [[ 8.]], [[12.]], [[ 9.]], [[13.]], - # [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]], - # [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)] - - """ - - helper = LayerHelper("space_to_depth", **locals()) - - if not (isinstance(blocksize, int)): - raise ValueError("blocksize must be a python Int") - - check_variable_and_dtype( - x, - 'x', - ['float16', 'float32', 'float64', 'int32', 'int64'], - 'space_to_depth', - ) - - out = helper.create_variable_for_type_inference(dtype=x.dtype) - - helper.append_op( - type="space_to_depth", - inputs={"X": x}, - attrs={"blocksize": blocksize}, - outputs={"Out": out}, - ) - return out - - -def affine_channel( - x, scale=None, bias=None, data_layout='NCHW', name=None, act=None -): - """ - - Applies a separate affine transformation to each channel of the input. - Useful for replacing spatial batch norm with its equivalent fixed - transformation. The input also can be 2D tensor and applies a affine - transformation in second dimension. - - Args: - x (Variable): Feature map input can be a 4D tensor with order NCHW - or NHWC. It also can be a 2D tensor and the affine transformation - is applied in the second dimension.The data type is float32 or float64. - scale (Variable): 1D input of shape (C), the c-th element is the scale - factor of the affine transformation for the c-th channel of - the input.The data type is float32 or float64. - bias (Variable): 1D input of shape (C), the c-th element is the bias - of the affine transformation for the c-th channel of the input. - The data type is float32 or float64. - data_layout (str, optional): Specify the data format of the input, and the data format of the output - will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. - The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: - `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore - data_layout. - name (str, default None): The name of this layer. For more information, - please refer to :ref:`api_guide_Name` . - act (str, default None): Activation to be applied to the output of this layer. - - Returns: - Variable: A tensor which has the same shape, data layout and data type with x. - - Examples: - .. code-block:: python - - import numpy as np - import paddle.fluid as fluid - import paddle.fluid as fluid - import paddle - - paddle.enable_static() - use_gpu = False - place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() - exe = fluid.Executor(place) - - data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32') - input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32", - default_initializer=fluid.initializer.Constant(2.0)) - input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32", - default_initializer=fluid.initializer.Constant(0.5)) - out = fluid.layers.affine_channel(data,scale=input_scale, - bias=input_bias) - - exe.run(fluid.default_startup_program()) - test_program = fluid.default_main_program().clone(for_test=True) - - [out_array] = exe.run(test_program, - fetch_list=out, - feed={'data': np.ones([1,1,2,2]).astype('float32')}) - # out_array is [[[[2.5, 2.5], - # [2.5, 2.5]]]] with shape: [1, 1, 2, 2] - - """ - helper = LayerHelper("affine_channel", **locals()) - check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'affine_channel') - check_type(scale, 'scale', (Variable, type(None)), 'affine_channel') - check_type(bias, 'bias', (Variable, type(None)), 'affine_channel') - out = helper.create_variable_for_type_inference(dtype=x.dtype) - - helper.append_op( - type="affine_channel", - inputs={"X": x, 'Scale': scale, 'Bias': bias}, - attrs={"data_layout": data_layout}, - outputs={"Out": out}, - ) - return helper.append_activation(out) - - -def similarity_focus(input, axis, indexes, name=None): - r""" - SimilarityFocus Operator - - Generate a similarity focus mask with the same shape of input using the following method: - - 1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding - to the axis according to the indexes. For example, if axis=1 and indexes=[a], - it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X - is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C). - 2. For each index, find the largest numbers in the tensor T, so that the same - row and same column has at most one number(what it means is that if the - largest number has been found in the i-th row and the j-th column, then - the numbers in the i-th row or j-th column will be skipped. And then the - next largest number will be selected from the remaining numbers. Obviously - there will be min(B, C) numbers), and mark the corresponding position of the - 3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for - each index. - 3. Broadcast the 3-D similarity focus mask to the same shape of input X. - - Refer to `Similarity Focus Layer `_ - - .. code-block:: text - - * Example : - - Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is - the number of channels and the shape of feature map is (A, B): - x.shape = (2, 3, 2, 2) - x.data = [[[[0.8, 0.1], - [0.4, 0.5]], - - [[0.9, 0.7], - [0.9, 0.9]], - - [[0.8, 0.9], - [0.1, 0.2]]], - - - [[[0.2, 0.5], - [0.3, 0.4]], - - [[0.9, 0.7], - [0.8, 0.4]], - - [[0.0, 0.2], - [0.4, 0.7]]]] - - Given axis: 1 (the axis of the channel) - Given indexes: [0] - - then we get a 4-D tensor out with the same shape of input x: - out.shape = (2, 3, 2, 2) - out.data = [[[[1.0, 0.0], - [0.0, 1.0]], - - [[1.0, 0.0], - [0.0, 1.0]], - - [[1.0, 0.0], - [0.0, 1.0]]], - - [[[0.0, 1.0], - [1.0, 0.0]], - - [[0.0, 1.0], - [1.0, 0.0]], - - [[0.0, 1.0], - [1.0, 0.0]]]] - - Args: - input(Variable): The input tensor variable(default float). It should - be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is - float32 or float64. - axis(int): Indicating the dimension to be selected. It can only be - 1, 2 or 3. - indexes(list): Indicating the indexes of the selected dimension. - - Returns: - Variable: A tensor variable with the same shape and same type \ - as the input. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import paddle - paddle.enable_static() - data = fluid.data( - name='data', shape=[-1, 3, 2, 2], dtype='float32') - fluid.layers.similarity_focus(input=data, axis=1, indexes=[0]) - """ - helper = LayerHelper('similarity_focus', **locals()) - # check attrs - check_variable_and_dtype( - input, 'input', ['float32', 'float64'], "similarity_focus" - ) - check_type(axis, 'axis', int, "similarity_focus") - check_type(indexes, 'indexes', list, "similarity_focus") - if axis != 1 and axis != 2 and axis != 3: - raise ValueError("axis must be 1, 2 or 3.") - if len(indexes) == 0: - raise ValueError("indexes can not be empty.") - - out = helper.create_variable_for_type_inference(dtype=input.dtype) - helper.append_op( - type='similarity_focus', - inputs={'X': input}, - outputs={'Out': out}, - attrs={"axis": axis, "indexes": indexes}, - ) - return out - - def hash(input, hash_size, num_hash=1, name=None): """ @@ -8156,76 +7814,6 @@ def log_loss(input, label, epsilon=1e-4, name=None): return paddle.nn.functional.log_loss(input, label, epsilon, name) -def add_position_encoding(input, alpha, beta, name=None): - r""" - - This operator performs weighted sum of input feature at each position - (position in the sequence) and the corresponding position encoding. - - For more details of position encoding, please refer to `Attention Is All You - Need `_ . - - The formula is as follows: - - .. math:: - PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})} \\\\ - PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})} \\\\ - Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i) - - Where: - - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`. - - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos` - - Args: - input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a - Tensor, the shape should be `[N, M, P]`, where `N` stands for - batch size, `M` for sequence length, `P` for the size of feature - dimension. If it is a LoDTensor, the shape should be `[N, P]`, - where `N` stands for the total sequence lengths in this mini-batch, - `P` for the size of feature. The data type should be float32 or float64. - alpha(float): Indicate the weight coefficient for `input` when performing - weighted sum. - beta(float): Indicate the weight coefficient for position encoding when - performing weighted sum. - name(str, optional): For detailed information, please refer - to :ref:`api_guide_Name`. Usually name is no need to set and - None by default. - - Returns: - Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`. - - Examples: - .. code-block:: python - - import paddle - - tensor = paddle.randn([16, 32, 64]) - position_tensor = paddle.fluid.layers.add_position_encoding( - input=tensor, alpha=1.0, beta=1.0) - - """ - if _non_static_mode(): - return _legacy_C_ops.add_position_encoding( - input, "alpha", alpha, "beta", beta - ) - - helper = LayerHelper('add_position_encoding', **locals()) - check_variable_and_dtype( - input, 'input', ['float32', 'float64'], "add_position_encoding" - ) - dtype = helper.input_dtype() - - out = helper.create_variable_for_type_inference(dtype=dtype) - - helper.append_op( - type="add_position_encoding", - inputs={"X": input}, - outputs={"Out": out}, - attrs={"alpha": alpha, "beta": beta}, - ) - return out - - def bilinear_tensor_product( x, y, size, act=None, name=None, param_attr=None, bias_attr=None ): diff --git a/python/paddle/fluid/tests/unittests/ipu/test_affine_channel_op_ipu.py b/python/paddle/fluid/tests/unittests/ipu/test_affine_channel_op_ipu.py deleted file mode 100644 index 75f2391cc2..0000000000 --- a/python/paddle/fluid/tests/unittests/ipu/test_affine_channel_op_ipu.py +++ /dev/null @@ -1,96 +0,0 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import numpy as np - -import paddle -import paddle.static -from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest - - -class TestBase(IPUOpTest): - def setUp(self): - self.set_atol() - self.set_training() - self.set_data_feed() - self.set_feed_attr() - self.set_op_attrs() - - @property - def fp16_enabled(self): - return False - - def set_data_feed(self): - data = np.random.uniform(size=[1, 3, 32, 32]) - self.feed_fp32 = {'data': data.astype(np.float32)} - self.feed_fp16 = {'data': data.astype(np.float16)} - - def set_feed_attr(self): - self.feed_shape = [x.shape for x in self.feed_fp32.values()] - self.feed_list = list(self.feed_fp32.keys()) - - def set_op_attrs(self): - self.attrs = {} - self.attrs['data_layout'] = 'NCHW' - - @IPUOpTest.static_graph - def build_model(self): - data = paddle.static.data( - name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32' - ) - input_scale = paddle.fluid.layers.create_parameter( - shape=[self.feed_shape[0][1]], dtype="float32" - ) - input_bias = paddle.fluid.layers.create_parameter( - shape=[self.feed_shape[0][1]], dtype="float32" - ) - out = paddle.fluid.layers.affine_channel( - data, scale=input_scale, bias=input_bias - ) - self.fetch_list = [out.name] - - def run_model(self, exec_mode): - self.run_op_test(exec_mode) - - def test(self): - for m in IPUOpTest.ExecutionMode: - if not self.skip_mode(m): - self.build_model() - self.run_model(m) - self.check() - - -class TestCase1(TestBase): - def set_data_feed(self): - data = np.random.uniform(size=[2, 4, 64, 64]) - self.feed_fp32 = {'data': data.astype(np.float32)} - self.feed_fp16 = {'data': data.astype(np.float16)} - - -@unittest.skip("Only support NCHW") -class TestNHWC(TestBase): - def set_op_attrs(self): - self.attrs = {} - self.attrs['data_layout'] = 'NHWC' - - def set_data_feed(self): - data = np.random.uniform(size=[2, 64, 64, 3]) - self.feed_fp32 = {'data': data.astype(np.float32)} - self.feed_fp16 = {'data': data.astype(np.float16)} - - -if __name__ == "__main__": - unittest.main() diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_affine_channel_op.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_affine_channel_op.py deleted file mode 100644 index 70b605684b..0000000000 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_affine_channel_op.py +++ /dev/null @@ -1,157 +0,0 @@ -# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import itertools -import unittest - -import numpy as np -from inference_pass_test import InferencePassTest - -import paddle.fluid as fluid -import paddle.fluid.core as core -from paddle.fluid.core import AnalysisConfig, PassVersionChecker - - -class TRTAffineChannelTest(InferencePassTest): - def setUp(self): - self.bs = 2 - self.channel = 8 - self.height = 16 - self.width = 16 - self.data_layout = 'NCHW' - self.precision = AnalysisConfig.Precision.Float32 - self.serialize = False - self.enable_trt = True - - def build(self): - # set min_graph_size to 2, - # because affine channel doesn't support nhwc format - self.trt_parameters = InferencePassTest.TensorRTParam( - 1 << 30, self.bs, 2, self.precision, self.serialize, False - ) - - with fluid.program_guard(self.main_program, self.startup_program): - if self.data_layout == 'NCHW': - shape = [-1, self.channel, self.height, self.width] - else: - shape = [-1, self.height, self.width, self.channel] - - data = fluid.data(name='in', shape=shape, dtype='float32') - # set scale, bias by constant - scale = fluid.layers.create_parameter( - shape=[self.channel], - dtype='float32', - default_initializer=fluid.initializer.Constant(2.0), - ) - bias = fluid.layers.create_parameter( - shape=[self.channel], - dtype='float32', - default_initializer=fluid.initializer.Constant(0.5), - ) - affine_channel_out = fluid.layers.affine_channel( - data, scale=scale, bias=bias, data_layout=self.data_layout - ) - out = fluid.layers.batch_norm(affine_channel_out, is_test=True) - - shape[0] = self.bs - self.feeds = { - 'in': np.random.random(shape).astype('float32'), - } - self.fetch_list = [out] - - def check_output(self): - if core.is_compiled_with_cuda(): - use_gpu = True - atol = 1e-5 - if self.trt_parameters.precision == AnalysisConfig.Precision.Half: - atol = 2e-2 - self.check_output_with_option(use_gpu, atol, flatten=True) - self.assertTrue( - PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') - ) - - def run_test(self): - self.build() - self.check_output() - - def run_test_all(self): - precision_opt = [ - AnalysisConfig.Precision.Float32, - AnalysisConfig.Precision.Half, - ] - serialize_opt = [False, True] - - if self.data_layout == 'NCHW': - min_shape = [ - self.bs, - self.channel, - self.height // 2, - self.width // 2, - ] - max_shape = [self.bs, self.channel, self.height * 2, self.width * 2] - opt_shape = [self.bs, self.channel, self.height, self.width] - - if self.data_layout == 'NHWC': - min_shape = [ - self.bs, - self.height // 2, - self.width // 2, - self.channel, - ] - max_shape = [self.bs, self.height * 2, self.width * 2, self.channel] - opt_shape = [self.bs, self.height, self.width, self.channel] - - dynamic_shape_profile = InferencePassTest.DynamicShapeParam( - {'in': min_shape}, {'in': max_shape}, {'in': opt_shape}, False - ) - dynamic_shape_opt = [None, dynamic_shape_profile] - - for precision, serialize, dynamic_shape in itertools.product( - precision_opt, serialize_opt, dynamic_shape_opt - ): - self.precision = precision - self.serialize = serialize - self.dynamic_shape_params = dynamic_shape - self.run_test() - - def test_base(self): - self.run_test() - - def test_fp16(self): - self.precision = AnalysisConfig.Precision.Half - self.run_test() - - def test_serialize(self): - self.serialize = True - self.run_test() - - def test_dynamic(self): - self.dynamic_shape_params = InferencePassTest.DynamicShapeParam( - {'in': [self.bs, self.channel, self.height // 2, self.width // 2]}, - {'in': [self.bs, self.channel, self.height * 2, self.width * 2]}, - {'in': [self.bs, self.channel, self.height, self.width]}, - False, - ) - self.run_test() - - def test_nchw_all(self): - self.run_test_all() - - def test_nhwc(self): - self.data_layout = 'NHWC' - self.run_test_all() - - -if __name__ == "__main__": - unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py b/python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py index 791c2351d7..c908bfb5a4 100644 --- a/python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py +++ b/python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py @@ -15,9 +15,6 @@ import unittest import numpy as np import math from op_test import OpTest -import paddle.fluid as fluid -import paddle -from paddle.fluid import Program, program_guard def add_position_encoding(input, alpha=1.0, beta=1.0): @@ -151,34 +148,5 @@ class TestAddPositionEncodingLoDTensorOp(OpTest): start += max_length -class TestAddPositionEncodingOpError(unittest.TestCase): - def test_errors(self): - with program_guard(Program(), Program()): - input_data = np.random.random((4, 16, 8)).astype("float32") - - def test_Variable(): - # the input type must be Variable - fluid.layers.add_position_encoding( - input=input_data, alpha=1.0, beta=1.0 - ) - - self.assertRaises(TypeError, test_Variable) - - -class TestAddPositionEncodingOpDygraph(unittest.TestCase): - def test_dygraph(self): - paddle.disable_static() - tensor = np.random.randn(16, 32, 64) - position_tensor = paddle.fluid.layers.add_position_encoding( - input=paddle.to_tensor(tensor), alpha=1.0, beta=1.0 - ).numpy() - paddle.enable_static() - - position_tensor_np = add_position_encoding(tensor, 1.0, 1.0) - np.testing.assert_allclose( - position_tensor, position_tensor_np, rtol=1e-05 - ) - - if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_affine_channel_op.py b/python/paddle/fluid/tests/unittests/test_affine_channel_op.py index f09e5be577..5221fd9d69 100644 --- a/python/paddle/fluid/tests/unittests/test_affine_channel_op.py +++ b/python/paddle/fluid/tests/unittests/test_affine_channel_op.py @@ -18,7 +18,6 @@ Unit testing for affine_channel_op import unittest import numpy as np from op_test import OpTest -import paddle.fluid as fluid def affine_channel(x, scale, bias, layout): @@ -65,41 +64,6 @@ class TestAffineChannelOp(OpTest): self.layout = 'NCHW' -class TestAffineChannelOpError(unittest.TestCase): - def test_errors(self): - with fluid.program_guard(fluid.Program()): - - def test_x_type(): - input_data = np.random.random(2, 1, 2, 2).astype("float32") - fluid.layers.affine_channel(input_data) - - self.assertRaises(TypeError, test_x_type) - - def test_x_dtype(): - x2 = fluid.layers.data( - name='x2', shape=[None, 1, 2, 2], dtype='int32' - ) - fluid.layers.affine_channel(x2) - - self.assertRaises(TypeError, test_x_dtype) - - def test_scale_type(): - x3 = fluid.layers.data( - name='x3', shape=[None, 1, 2, 2], dtype='float32' - ) - fluid.layers.affine_channel(x3, scale=1) - - self.assertRaises(TypeError, test_scale_type) - - def test_bias_type(): - x4 = fluid.layers.data( - name='x4', shape=[None, 1, 2, 2], dtype='float32' - ) - fluid.layers.affine_channel(x4, bias=1) - - self.assertRaises(TypeError, test_bias_type) - - class TestAffineChannelNHWC(TestAffineChannelOp): def init_test_case(self): self.shape = [2, 3, 3, 100] diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 02f946810b..30e5029444 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -3220,18 +3220,6 @@ class TestBook(LayerTest): hid = layers.fc(input=data, size=20) return layers.softmax(hid, axis=1) - def make_space_to_depth(self): - with program_guard( - fluid.default_main_program(), fluid.default_startup_program() - ): - data = self._get_data( - name='data', - shape=[32, 9, 6, 6], - append_batch_size=False, - dtype='float32', - ) - return layers.space_to_depth(data, 3) - def make_get_places(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() diff --git a/python/paddle/fluid/tests/unittests/test_maxout_op.py b/python/paddle/fluid/tests/unittests/test_maxout_op.py index 9334c37f94..2c34333bd3 100644 --- a/python/paddle/fluid/tests/unittests/test_maxout_op.py +++ b/python/paddle/fluid/tests/unittests/test_maxout_op.py @@ -15,7 +15,6 @@ import unittest import numpy as np import paddle -import paddle.fluid as fluid import paddle.fluid.core as core import paddle.nn.functional as F from op_test import OpTest @@ -122,21 +121,6 @@ class TestMaxoutAPI(unittest.TestCase): np.testing.assert_allclose(out3_ref, out3.numpy(), rtol=1e-05) paddle.enable_static() - def test_fluid_api(self): - with fluid.program_guard(fluid.Program()): - x = fluid.data('X', self.x_np.shape, self.x_np.dtype) - out = fluid.layers.maxout(x, groups=self.groups, axis=self.axis) - exe = fluid.Executor(self.place) - res = exe.run(feed={'X': self.x_np}, fetch_list=[out]) - out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis) - np.testing.assert_allclose(out_ref, res[0], rtol=1e-05) - - paddle.disable_static(self.place) - x = paddle.to_tensor(self.x_np) - out = paddle.fluid.layers.maxout(x, groups=self.groups, axis=self.axis) - np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05) - paddle.enable_static() - def test_errors(self): with paddle.static.program_guard(paddle.static.Program()): # The input type must be Variable. diff --git a/python/paddle/fluid/tests/unittests/test_op_name_conflict.py b/python/paddle/fluid/tests/unittests/test_op_name_conflict.py index 10e9b4d302..e255eb7b01 100644 --- a/python/paddle/fluid/tests/unittests/test_op_name_conflict.py +++ b/python/paddle/fluid/tests/unittests/test_op_name_conflict.py @@ -46,73 +46,6 @@ class TestOpNameConflict(unittest.TestCase): self.assertEqual(n_v[0], 8.0) self.assertEqual(p_v[0], 13.0) - def test_layers(self): - main = fluid.Program() - startup = fluid.Program() - with fluid.unique_name.guard(): - with fluid.program_guard(main, startup): - place = ( - fluid.CUDAPlace(0) - if fluid.core.is_compiled_with_cuda() - else fluid.CPUPlace() - ) - exe = fluid.Executor(place) - - data = fluid.data( - name='data', shape=[None, 1, 2, 2], dtype='float32' - ) - tensor = fluid.data( - name='tensor', shape=[None, 32, 64], dtype='float32' - ) - x = fluid.data( - name='x', shape=[None, 1], dtype='float32', lod_level=1 - ) - - input_scale = fluid.layers.create_parameter( - shape=[1], - dtype="float32", - default_initializer=fluid.initializer.Constant(2.0), - ) - input_bias = fluid.layers.create_parameter( - shape=[1], - dtype="float32", - default_initializer=fluid.initializer.Constant(0.5), - ) - out_affine = fluid.layers.affine_channel( - data, scale=input_scale, bias=input_bias - ) - out_similarity = fluid.layers.similarity_focus( - input=data, axis=1, indexes=[0] - ) - position_tensor = fluid.layers.add_position_encoding( - input=tensor, alpha=1.0, beta=1.0 - ) - x_reversed = fluid.layers.sequence_reverse(x) - - exe.run(fluid.default_startup_program()) - test_program = fluid.default_main_program().clone(for_test=True) - - x_d = fluid.create_lod_tensor( - np.array([[1.1], [2.2], [3.3], [4.4]]).astype('float32'), - [[1, 3]], - place, - ) - outs = exe.run( - test_program, - fetch_list=[ - out_affine, - out_similarity, - position_tensor, - x_reversed, - ], - feed={ - data.name: np.ones([1, 1, 2, 2]).astype('float32'), - tensor.name: np.ones([1, 32, 64]).astype('float32'), - x.name: x_d, - }, - return_numpy=False, - ) - if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_similarity_focus_op.py b/python/paddle/fluid/tests/unittests/test_similarity_focus_op.py index 15a050211a..6b92a3253b 100755 --- a/python/paddle/fluid/tests/unittests/test_similarity_focus_op.py +++ b/python/paddle/fluid/tests/unittests/test_similarity_focus_op.py @@ -15,8 +15,6 @@ import unittest import numpy as np from op_test import OpTest -import paddle.fluid as fluid -from paddle.fluid import Program, program_guard class TestSimilarityFocusOp(OpTest): @@ -229,35 +227,5 @@ class TestSimilarityFocusOp_axis3(OpTest): self.check_output() -class TestSimilarityFocusOpError(unittest.TestCase): - def test_errors(self): - with program_guard(Program(), Program()): - data = fluid.data(name='data', shape=[16, 3, 2, 2], dtype='float32') - - def test_input_Variable(): - input = np.random.rand(16, 3, 2, 2).astype("float32") - out = fluid.layers.similarity_focus( - input=input, axis=1, indexes=[0] - ) - - self.assertRaises(TypeError, test_input_Variable) - - def test_axis_Int(): - axis = 1.0 - out = fluid.layers.similarity_focus( - input=data, axis=axis, indexes=[0] - ) - - self.assertRaises(TypeError, test_axis_Int) - - def test_indexes_List(): - indexes = 0 - out = fluid.layers.similarity_focus( - input=data, axis=1, indexes=indexes - ) - - self.assertRaises(TypeError, test_indexes_List) - - if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/xpu/test_affine_channel_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_affine_channel_op_xpu.py index 0718c040bc..fc3c9612ea 100644 --- a/python/paddle/fluid/tests/unittests/xpu/test_affine_channel_op_xpu.py +++ b/python/paddle/fluid/tests/unittests/xpu/test_affine_channel_op_xpu.py @@ -24,7 +24,6 @@ import numpy as np from op_test_xpu import XPUOpTest import paddle import paddle.fluid.core as core -import paddle.fluid as fluid def affine_channel(x, scale, bias, layout): @@ -87,41 +86,6 @@ class TestAffineChannelOp(XPUOpTest): self.layout = 'NCHW' -class TestAffineChannelOpError(unittest.TestCase): - def test_errors(self): - with fluid.program_guard(fluid.Program()): - - def test_x_type(): - input_data = np.random.random(2, 1, 2, 2).astype("float32") - fluid.layers.affine_channel(input_data) - - self.assertRaises(TypeError, test_x_type) - - def test_x_dtype(): - x2 = fluid.layers.data( - name='x2', shape=[None, 1, 2, 2], dtype='int32' - ) - fluid.layers.affine_channel(x2) - - self.assertRaises(TypeError, test_x_dtype) - - def test_scale_type(): - x3 = fluid.layers.data( - name='x3', shape=[None, 1, 2, 2], dtype='float32' - ) - fluid.layers.affine_channel(x3, scale=1) - - self.assertRaises(TypeError, test_scale_type) - - def test_bias_type(): - x4 = fluid.layers.data( - name='x4', shape=[None, 1, 2, 2], dtype='float32' - ) - fluid.layers.affine_channel(x4, bias=1) - - self.assertRaises(TypeError, test_bias_type) - - class TestAffineChannelNHWC(TestAffineChannelOp): def init_test_case(self): self.shape = [2, 3, 3, 100] -- GitLab