Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8caee2ad
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8caee2ad
编写于
8月 10, 2020
作者:
L
lilong12
提交者:
GitHub
8月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【paddle.fleet】add the support for multi-node training for pipeline (#25907)
* add the support for multi-node training
上级
bf2db646
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
262 addition
and
13 deletion
+262
-13
paddle/fluid/operators/collective/c_comm_init_op.cc
paddle/fluid/operators/collective/c_comm_init_op.cc
+10
-3
python/paddle/fleet/meta_optimizers/pipeline_optimizer.py
python/paddle/fleet/meta_optimizers/pipeline_optimizer.py
+173
-9
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/c_comm_init_op.py
python/paddle/fluid/tests/unittests/c_comm_init_op.py
+68
-0
python/paddle/fluid/tests/unittests/test_c_comm_init_op.sh
python/paddle/fluid/tests/unittests/test_c_comm_init_op.sh
+6
-0
python/paddle/fluid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
...uid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
+3
-1
未找到文件。
paddle/fluid/operators/collective/c_comm_init_op.cc
浏览文件 @
8caee2ad
...
@@ -52,10 +52,12 @@ class CCommInitOp : public framework::OperatorBase {
...
@@ -52,10 +52,12 @@ class CCommInitOp : public framework::OperatorBase {
int
nranks
=
Attr
<
int
>
(
"nranks"
);
int
nranks
=
Attr
<
int
>
(
"nranks"
);
int
rank_id
=
Attr
<
int
>
(
"rank"
);
int
rank_id
=
Attr
<
int
>
(
"rank"
);
int
rid
=
Attr
<
int
>
(
"ring_id"
);
int
rid
=
Attr
<
int
>
(
"ring_id"
);
int
device_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place
).
device
;
if
(
Attr
<
int
>
(
"device_id"
)
>=
0
)
{
device_id
=
Attr
<
int
>
(
"device_id"
);
}
platform
::
NCCLCommContext
::
Instance
().
CreateNCCLComm
(
platform
::
NCCLCommContext
::
Instance
().
CreateNCCLComm
(
nccl_id
,
nranks
,
rank_id
,
nccl_id
,
nranks
,
rank_id
,
device_id
,
rid
);
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place
).
device
,
rid
);
#else
#else
PADDLE_THROW
(
"PaddlePaddle should compile with GPU."
);
PADDLE_THROW
(
"PaddlePaddle should compile with GPU."
);
#endif
#endif
...
@@ -74,6 +76,11 @@ Initialize collective communicatoin context within this trainer
...
@@ -74,6 +76,11 @@ Initialize collective communicatoin context within this trainer
AddAttr
<
int
>
(
"nranks"
,
"(int) The number of ranks of distributed trainers"
);
AddAttr
<
int
>
(
"nranks"
,
"(int) The number of ranks of distributed trainers"
);
AddAttr
<
int
>
(
"rank"
,
AddAttr
<
int
>
(
"rank"
,
"(int) The rank of the trainer in distributed training."
);
"(int) The rank of the trainer in distributed training."
);
AddAttr
<
int
>
(
"device_id"
,
"(int) The deivce_id on which to initialize the communicator."
"Now, you only have to set this attr manually for pipeline "
"training. Otherwise, make it as default."
)
.
SetDefault
(
-
1
);
AddAttr
<
int
>
(
"ring_id"
,
"(int default 0) user specified ring id"
)
AddAttr
<
int
>
(
"ring_id"
,
"(int default 0) user specified ring id"
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
}
}
...
...
python/paddle/fleet/meta_optimizers/pipeline_optimizer.py
浏览文件 @
8caee2ad
...
@@ -11,12 +11,84 @@
...
@@ -11,12 +11,84 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
,
unique_name
from
..base.private_helper_function
import
wait_server_ready
from
paddle.fluid.optimizer
import
PipelineOptimizer
as
PO
from
paddle.fluid.optimizer
import
PipelineOptimizer
as
PO
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_update_op
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
__all__
=
[
"PipelineOptimizer"
]
__all__
=
[
"PipelineOptimizer"
]
class
PipelineHelper
(
CollectiveHelper
):
def
__init__
(
self
,
role_maker
,
nrings
=
1
,
wait_port
=
'6174'
):
super
(
PipelineHelper
,
self
).
__init__
(
role_maker
,
nrings
,
wait_port
)
def
_init_communicator
(
self
,
program
,
current_endpoint
,
endpoints
,
rank
,
ring_id
,
wait_port
):
nranks
=
len
(
endpoints
)
other_endpoints
=
endpoints
[:]
other_endpoints
.
remove
(
current_endpoint
)
if
rank
==
0
and
wait_port
:
wait_server_ready
(
other_endpoints
)
block
=
program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
,
'device_id'
:
OpRole
.
Forward
})
def
_broadcast_params
(
self
):
block
=
self
.
startup_program
.
global_block
()
ring_id
=
0
for
param
in
block
.
iter_parameters
():
if
param
.
is_distributed
:
continue
block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
for
ring_id
in
range
(
self
.
nrings
):
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
class
PipelineOptimizer
(
MetaOptimizerBase
):
class
PipelineOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
def
__init__
(
self
,
optimizer
):
super
(
PipelineOptimizer
,
self
).
__init__
(
optimizer
)
super
(
PipelineOptimizer
,
self
).
__init__
(
optimizer
)
...
@@ -40,15 +112,6 @@ class PipelineOptimizer(MetaOptimizerBase):
...
@@ -40,15 +112,6 @@ class PipelineOptimizer(MetaOptimizerBase):
dist_strategy
.
pipeline
=
False
dist_strategy
.
pipeline
=
False
dist_strategy
.
pipeline_configs
=
{
"micro_batch"
:
1
}
dist_strategy
.
pipeline_configs
=
{
"micro_batch"
:
1
}
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
return
self
.
wrapped_opt
.
backward
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
def
minimize_impl
(
self
,
def
minimize_impl
(
self
,
loss
,
loss
,
startup_program
=
None
,
startup_program
=
None
,
...
@@ -57,4 +120,105 @@ class PipelineOptimizer(MetaOptimizerBase):
...
@@ -57,4 +120,105 @@ class PipelineOptimizer(MetaOptimizerBase):
optimize_ops
,
params_grads
,
prog_list
=
\
optimize_ops
,
params_grads
,
prog_list
=
\
self
.
wrapped_opt
.
minimize
(
loss
,
startup_program
,
self
.
wrapped_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
parameter_list
,
no_grad_set
)
if
self
.
role_maker
.
worker_num
()
==
1
:
return
optimize_ops
,
params_grads
return
optimize_ops
,
params_grads
endpoints
=
self
.
role_maker
.
get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
worker_index
()]
self
.
startup_program
=
startup_program
if
startup_program
is
None
:
self
.
startup_program
=
fluid
.
default_startup_program
()
assert
prog_list
self
.
main_program_list
=
prog_list
self
.
main_program
=
loss
.
block
.
program
nranks
=
len
(
endpoints
)
self
.
nranks
=
nranks
self
.
nrings
=
len
(
self
.
main_program_list
)
self
.
rank
=
self
.
role_maker
.
worker_index
()
self
.
endpoints
=
endpoints
self
.
current_endpoint
=
current_endpoint
pipeline_helper
=
PipelineHelper
(
self
.
role_maker
,
nrings
=
self
.
nrings
)
pipeline_helper
.
update_startup_program
(
self
.
startup_program
)
self
.
_transpile_main_program
()
return
optimize_ops
,
params_grads
def
_transpile_main_program
(
self
):
self
.
_insert_loss_grad_ops
()
for
ring_id
in
range
(
self
.
nrings
):
self
.
_insert_allreduce_ops
(
ring_id
)
def
_insert_loss_grad_ops
(
self
):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block
=
self
.
main_program_list
[
self
.
nrings
-
1
][
'program'
].
global_block
(
)
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_loss_grad_op
(
op
):
loss_grad_var
=
block
.
vars
[
op
.
output_arg_names
[
0
]]
block
.
_insert_op
(
idx
+
1
,
type
=
'scale'
,
inputs
=
{
'X'
:
loss_grad_var
},
outputs
=
{
'Out'
:
loss_grad_var
},
attrs
=
{
'scale'
:
1.0
/
self
.
nranks
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
def
_insert_allreduce_ops
(
self
,
ring_id
):
block
=
self
.
main_program_list
[
ring_id
][
'program'
].
global_block
()
origin_block
=
self
.
main_program
.
global_block
()
grad
=
None
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
OP_ROLE_VAR_KEY
]
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
idx
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param
=
block
.
vars
[
op_role_var
[
i
]]
grad
=
block
.
vars
[
op_role_var
[
i
+
1
]]
origin_param
=
origin_block
.
vars
[
op_role_var
[
i
]]
if
origin_param
.
is_distributed
:
continue
if
offset
==
idx
:
offset
+=
1
block
.
_insert_op
(
offset
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
offset
+=
1
block
.
_insert_op
(
offset
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
grad
is
None
:
return
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
idx
+
ring_id
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
8caee2ad
...
@@ -22,6 +22,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_simple_dist_transpiler)
...
@@ -22,6 +22,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_simple_dist_transpiler)
list
(
APPEND MIXED_DIST_TEST_OPS test_recv_save_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_recv_save_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_transpiler_ops
)
list
(
APPEND MIXED_DIST_TEST_OPS test_transpiler_ops
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch
)
list
(
APPEND MIXED_DIST_TEST_OPS test_c_comm_init_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch_ps
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch_ps
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_geo
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_geo
)
...
@@ -403,6 +404,7 @@ if(WITH_DISTRIBUTE)
...
@@ -403,6 +404,7 @@ if(WITH_DISTRIBUTE)
if
(
WITH_GPU
)
if
(
WITH_GPU
)
# NOTE. test_launch only work in gpu collective mode
# NOTE. test_launch only work in gpu collective mode
bash_test_modules
(
test_launch START_BASH test_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_launch START_BASH test_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_c_comm_init_op START_BASH test_c_comm_init_op.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
py_test_modules
(
test_fleet_checkpoint MODULES test_fleet_checkpoint
)
py_test_modules
(
test_fleet_checkpoint MODULES test_fleet_checkpoint
)
endif
()
endif
()
...
...
python/paddle/fluid/tests/unittests/c_comm_init_op.py
0 → 100644
浏览文件 @
8caee2ad
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
os
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fleet.base.private_helper_function
import
wait_server_ready
class
TestCCommInitOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
).
split
(
','
)
self
.
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
self
.
nranks
=
len
(
self
.
endpoints
)
self
.
rank
=
self
.
endpoints
.
index
(
self
.
current_endpoint
)
self
.
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
))
self
.
place
=
fluid
.
CUDAPlace
(
self
.
gpu_id
)
self
.
exe
=
fluid
.
Executor
(
self
.
place
)
self
.
endpoints
.
remove
(
self
.
current_endpoint
)
self
.
other_endpoints
=
self
.
endpoints
if
self
.
rank
==
0
:
wait_server_ready
(
self
.
other_endpoints
)
def
test_specifying_devices
(
self
):
program
=
fluid
.
Program
()
block
=
program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
fluid
.
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
fluid
.
core
.
VarDesc
.
VarType
.
RAW
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
self
.
rank
,
'endpoint'
:
self
.
current_endpoint
,
'other_endpoints'
:
self
.
other_endpoints
})
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
self
.
nranks
,
'rank'
:
self
.
rank
,
'ring_id'
:
0
,
'device_id'
:
self
.
gpu_id
})
self
.
exe
.
run
(
program
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_c_comm_init_op.sh
0 → 100644
浏览文件 @
8caee2ad
#!/bin/bash
set
-e
# use default values
# FIXME: random fails on Unknown command lines -c (or -m).
launch_py
=
${
PADDLE_BINARY_DIR
}
/python/paddle/distributed/launch.py
CUDA_VISIBLE_DEVICES
=
0,1 python
${
launch_py
}
c_comm_init_op.py
python/paddle/fluid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
浏览文件 @
8caee2ad
...
@@ -19,7 +19,9 @@ import os
...
@@ -19,7 +19,9 @@ import os
class
TestFleetMetaOptimizer
(
unittest
.
TestCase
):
class
TestFleetMetaOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001,127.0.0.1:36002"
def
test_pipeline_optimizer
(
self
):
def
test_pipeline_optimizer
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fleet
as
fleet
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录