Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8c3decd8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8c3decd8
编写于
10月 27, 2021
作者:
W
wangxinxin08
提交者:
GitHub
10月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dcnv2 trt plugin (#36612)
* add dcnv2 plugin
上级
d6b1beb0
变更
10
展开全部
显示空白变更内容
内联
并排
Showing
10 changed file
with
1204 addition
and
2 deletion
+1204
-2
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/convert/deformable_conv_op.cc
...le/fluid/inference/tensorrt/convert/deformable_conv_op.cc
+111
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+47
-1
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/plugin/deformable_conv_op_plugin.cu
...id/inference/tensorrt/plugin/deformable_conv_op_plugin.cu
+618
-0
paddle/fluid/inference/tensorrt/plugin/deformable_conv_op_plugin.h
...uid/inference/tensorrt/plugin/deformable_conv_op_plugin.h
+148
-0
paddle/fluid/inference/tests/infer_ut/test_ppyolov2_r50vd.cc
paddle/fluid/inference/tests/infer_ut/test_ppyolov2_r50vd.cc
+1
-1
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_deformable_conv.py
...nittests/ir/inference/test_trt_convert_deformable_conv.py
+181
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_deformable_conv.py
.../tests/unittests/ir/inference/test_trt_deformable_conv.py
+95
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
8c3decd8
...
...
@@ -1415,6 +1415,7 @@ USE_TRT_CONVERTER(tile);
USE_TRT_CONVERTER
(
conv3d
);
USE_TRT_CONVERTER
(
conv3d_transpose
);
USE_TRT_CONVERTER
(
mish
);
USE_TRT_CONVERTER
(
deformable_conv
);
USE_TRT_CONVERTER
(
pool3d
)
#endif
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
8c3decd8
...
...
@@ -20,6 +20,7 @@ nv_library(tensorrt_converter
mish_op.cc
nearest_interp_v2_op.cc
pool3d_op.cc
deformable_conv_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry
)
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
...
...
paddle/fluid/inference/tensorrt/convert/deformable_conv_op.cc
0 → 100644
浏览文件 @
8c3decd8
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstdio>
#include <vector>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/deformable_conv_op_plugin.h"
namespace
paddle
{
namespace
framework
{
class
Scope
;
namespace
proto
{
class
OpDesc
;
}
// namespace proto
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
DeformableConvOpConverter
:
public
OpConverter
{
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a deformable conv op to tensorrt plugin"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
std
::
string
input_name
=
op_desc
.
Input
(
"Input"
).
front
();
std
::
string
offset_name
=
op_desc
.
Input
(
"Offset"
).
front
();
std
::
string
mask_name
=
op_desc
.
Input
(
"Mask"
).
front
();
std
::
string
filter_name
=
op_desc
.
Input
(
"Filter"
).
front
();
auto
*
input_tensor
=
engine_
->
GetITensor
(
input_name
);
auto
*
offset_tensor
=
engine_
->
GetITensor
(
offset_name
);
auto
*
mask_tensor
=
engine_
->
GetITensor
(
mask_name
);
auto
*
filter_var
=
scope
.
FindVar
(
filter_name
);
auto
*
filter_tensor
=
filter_var
->
GetMutable
<
framework
::
LoDTensor
>
();
float
*
filter_data
=
engine_
->
GetWeightCPUData
(
filter_name
,
filter_tensor
,
false
);
const
int
c_o
=
filter_tensor
->
dims
()[
0
];
const
int
c_i
=
filter_tensor
->
dims
()[
1
];
const
int
k_h
=
filter_tensor
->
dims
()[
2
];
const
int
k_w
=
filter_tensor
->
dims
()[
3
];
std
::
vector
<
int
>
kernel_dims
=
{
c_o
,
c_i
,
k_h
,
k_w
};
auto
strides
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"strides"
));
auto
paddings
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"paddings"
));
auto
dilations
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"dilations"
));
auto
groups
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"groups"
));
auto
deformable_groups
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"deformable_groups"
));
auto
im2col_step
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"im2col_step"
));
nvinfer1
::
Weights
weights
;
weights
.
count
=
filter_tensor
->
numel
();
if
(
engine_
->
WithFp16
())
{
auto
half_filter_data
=
new
half
[
filter_tensor
->
numel
()];
for
(
int
i
=
0
;
i
<
filter_tensor
->
numel
();
i
++
)
{
half_filter_data
[
i
]
=
static_cast
<
half
>
(
filter_data
[
i
]);
}
weights
.
type
=
nvinfer1
::
DataType
::
kHALF
;
weights
.
values
=
half_filter_data
;
}
else
{
weights
.
type
=
nvinfer1
::
DataType
::
kFLOAT
;
weights
.
values
=
filter_data
;
}
auto
*
deformable_conv_plugin
=
new
plugin
::
DeformableConvPlugin
(
engine_
->
WithFp16
()
?
nvinfer1
::
DataType
::
kHALF
:
nvinfer1
::
DataType
::
kFLOAT
,
weights
,
kernel_dims
,
strides
,
paddings
,
dilations
,
groups
,
deformable_groups
,
im2col_step
);
std
::
vector
<
nvinfer1
::
ITensor
*>
deformable_conv_inputs
;
deformable_conv_inputs
.
push_back
(
input_tensor
);
deformable_conv_inputs
.
push_back
(
offset_tensor
);
deformable_conv_inputs
.
push_back
(
mask_tensor
);
auto
*
deformable_conv_layer
=
engine_
->
network
()
->
addPluginV2
(
deformable_conv_inputs
.
data
(),
deformable_conv_inputs
.
size
(),
*
deformable_conv_plugin
);
std
::
vector
<
std
::
string
>
output_names
;
output_names
.
push_back
(
op_desc
.
Output
(
"Output"
).
front
());
RreplenishLayerAndOutput
(
deformable_conv_layer
,
"deformable_conv"
,
output_names
,
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
deformable_conv
,
DeformableConvOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
8c3decd8
...
...
@@ -143,7 +143,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"conv3d_transpose"
,
"mish"
,
"nearest_interp_v2"
,
"pool3d"
};
"pool3d"
,
"deformable_conv"
};
};
bool
OpTeller
::
Tell
(
const
framework
::
ir
::
Node
*
node
,
bool
use_no_calib_int8
,
...
...
@@ -332,6 +333,51 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
#endif
}
if
(
op_type
==
"deformable_conv"
)
{
if
(
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"Deformable conv trt plugin does not support dynamic shape"
;
return
false
;
}
auto
*
block
=
desc
.
Block
();
auto
input_name
=
desc
.
Input
(
"Input"
)[
0
];
auto
*
input_desc
=
block
->
FindVar
(
input_name
);
const
auto
input_shape
=
input_desc
->
GetShape
();
if
(
input_shape
.
size
()
!=
4
)
{
VLOG
(
3
)
<<
"Input of deformable conv should be 4-D Tensor, but got "
<<
input_shape
.
size
();
return
false
;
}
auto
filter_name
=
desc
.
Input
(
"Filter"
)[
0
];
auto
*
filter_desc
=
block
->
FindVar
(
filter_name
);
const
auto
filter_shape
=
filter_desc
->
GetShape
();
int
groups
=
BOOST_GET_CONST
(
int
,
desc
.
GetAttr
(
"groups"
));
if
(
input_shape
[
1
]
!=
filter_shape
[
1
]
*
groups
)
{
VLOG
(
3
)
<<
"The number of input channels should be equal to filter "
<<
"channels * groups. But got input channels "
<<
input_shape
[
1
]
<<
"filter channels "
<<
filter_shape
[
1
];
return
false
;
}
const
std
::
vector
<
int
>
strides
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"strides"
));
if
(
strides
.
size
()
!=
2
)
{
VLOG
(
3
)
<<
"The size of strides should be 2, but got "
<<
strides
.
size
();
return
false
;
}
const
std
::
vector
<
int
>
paddings
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"paddings"
));
if
(
paddings
.
size
()
!=
2
)
{
VLOG
(
3
)
<<
"The size of paddings shoule be 2, but got "
<<
paddings
.
size
();
return
false
;
}
}
if
(
op_type
==
"matmul"
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
...
...
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
浏览文件 @
8c3decd8
...
...
@@ -11,6 +11,7 @@ nv_library(tensorrt_plugin
gather_nd_op_plugin.cu
mish_op_plugin.cu
pool3d_op_plugin.cu
deformable_conv_op_plugin.cu
DEPS enforce tensorrt_engine prelu tensor bert_encoder_functor
)
nv_test
(
test_split_plugin SRCS test_split_plugin.cc DEPS
...
...
paddle/fluid/inference/tensorrt/plugin/deformable_conv_op_plugin.cu
0 → 100644
浏览文件 @
8c3decd8
此差异已折叠。
点击以展开。
paddle/fluid/inference/tensorrt/plugin/deformable_conv_op_plugin.h
0 → 100644
浏览文件 @
8c3decd8
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstdio>
#include <string>
#include <vector>
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
class
DeformableConvPlugin
:
public
nvinfer1
::
IPluginV2Ext
{
public:
explicit
DeformableConvPlugin
(
const
nvinfer1
::
DataType
data_type
,
const
nvinfer1
::
Weights
&
weights
,
const
std
::
vector
<
int
>&
kernel_dims
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
int
groups
,
const
int
deformable_groups
,
const
int
im2col_step
);
explicit
DeformableConvPlugin
(
const
nvinfer1
::
DataType
data_type
,
const
nvinfer1
::
Weights
&
weights
,
const
std
::
vector
<
int
>&
kernel_dims
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
int
groups
,
const
int
deformable_groups
,
const
int
im2col_step
,
const
std
::
vector
<
int
>&
input_dim
,
const
std
::
vector
<
int
>&
offset_dim
,
const
std
::
vector
<
int
>&
mask_dim
,
const
std
::
vector
<
int
>&
output_dim
);
DeformableConvPlugin
(
const
void
*
data
,
size_t
length
);
~
DeformableConvPlugin
()
override
;
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
;
const
char
*
getPluginVersion
()
const
TRT_NOEXCEPT
override
;
int
getNbOutputs
()
const
TRT_NOEXCEPT
override
;
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nb_input_dims
)
TRT_NOEXCEPT
override
;
bool
supportsFormat
(
nvinfer1
::
DataType
type
,
nvinfer1
::
TensorFormat
format
)
const
TRT_NOEXCEPT
override
;
size_t
getWorkspaceSize
(
int
max_batch_size
)
const
TRT_NOEXCEPT
override
;
#if IS_TRT_VERSION_LT(8000)
int
enqueue
(
int
batch_size
,
const
void
*
const
*
inputs
,
void
**
outputs
,
#else
int
enqueue
(
int
batch_size
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
#endif
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
override
;
int
initialize
()
TRT_NOEXCEPT
override
;
void
terminate
()
TRT_NOEXCEPT
override
;
size_t
getSerializationSize
()
const
TRT_NOEXCEPT
override
;
void
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
override
;
void
destroy
()
TRT_NOEXCEPT
override
;
void
setPluginNamespace
(
const
char
*
lib_namespace
)
TRT_NOEXCEPT
override
;
const
char
*
getPluginNamespace
()
const
TRT_NOEXCEPT
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_type
,
int
nb_inputs
)
const
TRT_NOEXCEPT
override
;
bool
isOutputBroadcastAcrossBatch
(
int
output_index
,
const
bool
*
input_is_broadcast
,
int
nb_inputs
)
const
TRT_NOEXCEPT
override
;
bool
canBroadcastInputAcrossBatch
(
int
input_index
)
const
TRT_NOEXCEPT
override
;
void
attachToContext
(
cudnnContext
*
cudnnContext
,
cublasContext
*
cublasContext
,
nvinfer1
::
IGpuAllocator
*
gpuAllocator
)
TRT_NOEXCEPT
override
;
void
configurePlugin
(
const
nvinfer1
::
Dims
*
input_dims
,
int
nb_inputs
,
const
nvinfer1
::
Dims
*
output_dims
,
int
nb_outputs
,
const
nvinfer1
::
DataType
*
input_types
,
const
nvinfer1
::
DataType
*
output_types
,
const
bool
*
input_is_broadcast
,
const
bool
*
output_is_broadcast
,
nvinfer1
::
PluginFormat
float_format
,
int
max_batct_size
)
TRT_NOEXCEPT
override
;
nvinfer1
::
IPluginV2Ext
*
clone
()
const
TRT_NOEXCEPT
override
;
private:
template
<
typename
T
>
int
enqueue_impl
(
int
batch_size
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
);
nvinfer1
::
Weights
copyToDevice
(
const
void
*
hostData
,
size_t
count
);
void
serializeFromDevice
(
void
**
hostBuffer
,
const
nvinfer1
::
Weights
&
deviceWeights
)
const
;
nvinfer1
::
Weights
deserializeToDevice
(
const
void
**
hostBuffer
,
size_t
count
);
nvinfer1
::
DataType
data_type_
;
nvinfer1
::
Weights
weights_
;
std
::
vector
<
int
>
kernel_dims_
;
std
::
vector
<
int
>
strides_
;
std
::
vector
<
int
>
paddings_
;
std
::
vector
<
int
>
dilations_
;
int
groups_
;
int
deformable_groups_
;
int
im2col_step_
;
std
::
string
namespace_
;
std
::
vector
<
int
>
input_dim_
;
std
::
vector
<
int
>
offset_dim_
;
std
::
vector
<
int
>
mask_dim_
;
std
::
vector
<
int
>
output_dim_
;
cublasHandle_t
cublasHandle_
;
};
class
DeformableConvPluginCreator
:
public
nvinfer1
::
IPluginCreator
{
public:
DeformableConvPluginCreator
();
~
DeformableConvPluginCreator
()
override
=
default
;
void
setPluginNamespace
(
const
char
*
lib_namespace
)
TRT_NOEXCEPT
override
;
const
char
*
getPluginNamespace
()
const
TRT_NOEXCEPT
override
;
const
char
*
getPluginName
()
const
TRT_NOEXCEPT
override
;
const
char
*
getPluginVersion
()
const
TRT_NOEXCEPT
override
;
const
nvinfer1
::
PluginFieldCollection
*
getFieldNames
()
TRT_NOEXCEPT
override
;
nvinfer1
::
IPluginV2Ext
*
createPlugin
(
const
char
*
name
,
const
nvinfer1
::
PluginFieldCollection
*
fc
)
TRT_NOEXCEPT
override
;
nvinfer1
::
IPluginV2Ext
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
TRT_NOEXCEPT
override
;
private:
std
::
string
namespace_
;
nvinfer1
::
PluginFieldCollection
field_collection_
;
};
REGISTER_TRT_PLUGIN_V2
(
DeformableConvPluginCreator
);
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/infer_ut/test_ppyolov2_r50vd.cc
浏览文件 @
8c3decd8
...
...
@@ -73,7 +73,7 @@ TEST(tensorrt_tester_ppyolov2_r50vd, multi_thread2_trt_fp32_bz1) {
FLAGS_modeldir
+
"/model.pdiparams"
);
config
.
EnableUseGpu
(
100
,
0
);
config
.
EnableTensorRtEngine
(
1
<<
2
0
,
2
,
10
,
paddle_infer
::
PrecisionType
::
kFloat32
,
false
,
false
);
1
<<
2
8
,
2
,
10
,
paddle_infer
::
PrecisionType
::
kFloat32
,
false
,
false
);
LOG
(
INFO
)
<<
config
.
Summary
();
// get groudtruth by disbale ir
paddle_infer
::
services
::
PredictorPool
pred_pool_no_ir
(
config_no_ir
,
1
);
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_deformable_conv.py
0 → 100644
浏览文件 @
8c3decd8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
class
TrtConvertDeformableConvTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
weights
=
program_config
.
weights
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
inputs
[
'input_data'
].
shape
[
1
]
!=
weights
[
'filter_data'
].
shape
[
1
]
*
attrs
[
0
][
'groups'
]:
return
False
return
True
def
sample_program_configs
(
self
):
def
compute_output_size
(
input_size
:
List
[
int
],
kernel_sizes
:
List
[
int
],
attrs
:
List
[
Dict
[
str
,
Any
]]):
strides
=
attrs
[
0
][
'strides'
]
paddings
=
attrs
[
0
][
'paddings'
]
dilations
=
attrs
[
0
][
'dilations'
]
output_size
=
[]
for
i
,
k
,
s
,
p
,
d
in
zip
(
input_size
,
kernel_sizes
,
strides
,
paddings
,
dilations
):
k
=
d
*
(
k
-
1
)
+
1
output_size
.
append
((
i
+
2
*
p
-
k
)
//
s
+
1
)
return
output_size
def
generate_input1
(
batch
:
int
,
input_size
:
List
[
int
],
kernel_sizes
:
List
[
int
],
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
batch
,
3
]
+
input_size
).
astype
(
np
.
float32
)
def
generate_offset1
(
batch
:
int
,
input_size
:
List
[
int
],
kernel_sizes
:
List
[
int
],
attrs
:
List
[
Dict
[
str
,
Any
]]):
output_size
=
compute_output_size
(
input_size
,
kernel_sizes
,
attrs
)
return
np
.
random
.
random
([
batch
,
2
*
np
.
prod
(
kernel_sizes
)]
+
output_size
).
astype
(
np
.
float32
)
def
generate_mask1
(
batch
:
int
,
input_size
:
List
[
int
],
kernel_sizes
:
List
[
int
],
attrs
:
List
[
Dict
[
str
,
Any
]]):
output_size
=
compute_output_size
(
input_size
,
kernel_sizes
,
attrs
)
return
np
.
random
.
random
([
batch
,
np
.
prod
(
kernel_sizes
)]
+
output_size
).
astype
(
np
.
float32
)
def
generate_filter1
(
batch
:
int
,
input_size
:
List
[
int
],
kernel_sizes
:
List
[
int
],
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
6
,
3
]
+
kernel_sizes
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
]:
for
input_size
in
[[
32
,
32
]]:
for
kernel_sizes
in
[[
3
,
3
]]:
for
strides
in
[[
1
,
1
],
[
2
,
2
]]:
for
paddings
in
[[
1
,
1
],
[
0
,
2
]]:
for
groups
in
[
1
,
]:
for
dilations
in
[[
1
,
1
],
[
2
,
2
]]:
dics
=
[{
"strides"
:
strides
,
"paddings"
:
paddings
,
"groups"
:
groups
,
"dilations"
:
dilations
,
"deformable_groups"
:
1
,
"im2col_step"
:
1
}]
ops_config
=
[{
"op_type"
:
"deformable_conv"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
],
"Offset"
:
[
"offset_data"
],
"Mask"
:
[
"mask_data"
],
"Filter"
:
[
"filter_data"
]
},
"op_outputs"
:
{
"Output"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"filter_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_filter1
,
batch
,
input_size
,
kernel_sizes
,
dics
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
batch
,
input_size
,
kernel_sizes
,
dics
)),
"offset_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_offset1
,
batch
,
input_size
,
kernel_sizes
,
dics
)),
"mask_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_mask1
,
batch
,
input_size
,
kernel_sizes
,
dics
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
# TODO: This is just the example, need to be fixed.
if
len
(
attrs
[
0
][
'paddings'
])
==
4
:
return
1
,
2
else
:
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
program_config
.
ops
[
0
].
attrs
[
"strides"
])
!=
2
:
return
False
return
True
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"In deformable conv, length of Attr(strides) should be 2."
)
def
test
(
self
):
self
.
trt_param
.
workspace_size
=
1
<<
28
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/inference/test_trt_deformable_conv.py
0 → 100644
浏览文件 @
8c3decd8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
inference_pass_test
import
InferencePassTest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.core
import
PassVersionChecker
from
paddle.fluid.core
import
AnalysisConfig
class
TRTDeformableConvTest
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
self
.
input_size
,
dtype
=
self
.
dtype
)
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
self
.
offset_size
,
dtype
=
self
.
dtype
)
mask
=
fluid
.
data
(
name
=
'mask'
,
shape
=
self
.
mask_size
,
dtype
=
self
.
dtype
)
output
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
mask
,
self
.
num_filters
,
self
.
filter_size
,
stride
=
self
.
stride
,
padding
=
self
.
padding
,
dilation
=
self
.
dilations
,
groups
=
self
.
groups
,
deformable_groups
=
self
.
deformable_groups
,
im2col_step
=
self
.
im2col_step
)
self
.
feeds
=
{
'input'
:
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
),
'offset'
:
np
.
random
.
random
(
self
.
offset_size
).
astype
(
self
.
dtype
),
'mask'
:
np
.
random
.
random
(
self
.
mask_size
).
astype
(
self
.
dtype
)
}
self
.
enable_trt
=
True
dtype
=
AnalysisConfig
.
Precision
.
Float32
if
self
.
dtype
==
'float16'
:
dtype
=
AnalysisConfig
.
Precision
.
Half
self
.
trt_parameters
=
TRTDeformableConvTest
.
TensorRTParam
(
1
<<
30
,
self
.
bs
,
0
,
dtype
,
False
,
False
)
self
.
fetch_list
=
[
output
]
def
set_params
(
self
):
self
.
groups
=
1
self
.
padding
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
self
.
bs
=
2
self
.
input_size
=
[
self
.
bs
,
8
,
4
,
4
]
self
.
num_filters
=
8
self
.
filter_size
=
3
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
*
self
.
filter_size
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
*
self
.
filter_size
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
dtype
=
'float32'
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录