未验证 提交 8c0bdde9 编写于 作者: C Chengmo 提交者: GitHub

Add Tdm sampler op in Contrib (#23290)

* add tdm sampler op

* fix compile bug

* fix compile bug

* fix compile bug

* fix compile bug

* test=develop, add tdm sampler unittest

* fix tdm sampler unittest

* fix input var name bug

* update tdm sampler unittest

* fix unittest

* fix unittest

* update tdm sampler unittest

* add tdm exe run unittest

* fix infershape

* test=develop, add doc

* test=develop, fix gcc8 compile bug & unittest bug

* test=develop, fix unittest

* test=develop, fix T one & zero

* test=develop, add unittest check

* test=develop, add doc smaple code & fix dype set

* test=develop, fix dtype

* test=develop, fix compile bug

* test=develop, fix unittest

* test=develop, fix unittest

* test=develop, check py3 unittest

* test=develop,fix unittest

* test=develop, fix py3&py2 unittest diff

* test=develop, fix sample code

* test=develop, fix sample code

* test=develop, fix sample code

* test=develop, fix error message
上级 1753860d
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/tdm_sampler_op.h"
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/sampler.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
class TDMSamplerOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X",
"X(Tensor), Input variable which"
"mapping the leaf node idx of tdm tree,"
"dtype support int32/int64");
AddInput("Travel",
"Travel(Tensor), must has the same dtype with Layer"
"Contains path information of all leaf nodes to root node,"
" dtype support int32/64");
AddInput("Layer",
"Layer(Tensor), must has the same dtype with Travel "
"Indicates which nodes are in each layer");
AddAttr<bool>("output_positive",
"output_positive(bool)"
"Whether positive samples are included in the output")
.SetDefault(true);
AddAttr<std::vector<int>>(
"neg_samples_num_list",
"neg_samples_num_list(python:list[int], C++:vector<int>)"
"The num of negative samples in each layer")
.SetDefault({});
AddAttr<std::vector<int>>("layer_offset_lod",
"offset lod information of Layer")
.SetDefault({});
AddAttr<int>("seed",
"(int) The seed used in sampler. If it is 0, "
"the sampler will generate a seed randomly.")
.SetDefault(0);
AddAttr<int>("dtype",
"(int, default INT32) "
"Output data type.")
.SetDefault(2);
AddOutput("Out",
"Sampling result lodTensor, with shape [batch_size, layer_num, "
"neg_num_of_layer]");
AddOutput("Labels",
"Labels of sampling result, has the same shape with Out."
"pos samples mapping value 1, neg sample mapping value 0")
.AsDispensable();
AddOutput(
"Mask",
"Padding flag of Sampling result, if sampling res comes from padding,"
"it will be 0, else 1, lodTensor, with shape [batch_size, "
"layer_num, neg_num_of_layer]");
AddComment(R"DOC("
**TDM Sampler**
According to the input positive samples at leaf node, do negative sampling layer by layer on the given tree.")DOC");
}
};
class TDMSamplerOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Inputs(Input) of TdmSampler should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasInput("Travel"), true,
platform::errors::InvalidArgument(
"Inputs(Travel) of TdmSampler should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasInput("Layer"), true,
platform::errors::InvalidArgument(
"Inputs(Layer) of TdmSampler should not be null."));
auto neg_samples_num_vec =
ctx->Attrs().Get<std::vector<int>>("neg_samples_num_list");
auto output_positive_flag = ctx->Attrs().Get<bool>("output_positive");
int64_t sample_res_length = 0;
for (auto sample_nums : neg_samples_num_vec) {
sample_res_length += sample_nums + (int64_t)output_positive_flag;
}
auto input_dims = ctx->GetInputDim("X");
auto ddim = framework::make_ddim({-1, sample_res_length});
if (ctx->IsRuntime()) {
auto output_dims = framework::vectorize(input_dims);
auto batch_size = output_dims[0];
ctx->SetOutputDim("Out",
framework::make_ddim({batch_size, sample_res_length}));
ctx->SetOutputDim("Labels",
framework::make_ddim({batch_size, sample_res_length}));
ctx->SetOutputDim("Mask",
framework::make_ddim({batch_size, sample_res_length}));
} else {
ctx->SetOutputDim("Out", ddim);
ctx->SetOutputDim("Labels", ddim);
ctx->SetOutputDim("Mask", ddim);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.device_context());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(
tdm_sampler, ops::TDMSamplerOp, ops::TDMSamplerOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
tdm_sampler, ops::TDMSamplerKernel<paddle::platform::CPUPlace, float>,
ops::TDMSamplerKernel<paddle::platform::CPUPlace, double>,
ops::TDMSamplerKernel<paddle::platform::CPUPlace, int>,
ops::TDMSamplerKernel<paddle::platform::CPUPlace, int64_t>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <cmath>
#include <fstream>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/sampler.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using Sampler = math::Sampler;
using DDim = framework::DDim;
using LoD = framework::LoD;
using LoDTensor = framework::LoDTensor;
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
template <typename T, typename TreeT = int, typename OutT = int>
void TDMSamplerInner(const framework::ExecutionContext &context,
const LoDTensor &input_tensor,
const LoDTensor &travel_lod_tensor,
const LoDTensor &layer_lod_tensor, LoDTensor *out_tensor,
LoDTensor *label_tensor, LoDTensor *mask_tensor) {
auto neg_samples_num_vec =
context.Attr<std::vector<int>>("neg_samples_num_list");
auto layer_offset_lod = context.Attr<std::vector<int>>("layer_offset_lod");
auto output_positive_flag = context.Attr<bool>("output_positive");
// get dimension
int input_ids_num = input_tensor.numel();
VLOG(3) << "TDM: input ids nums: " << input_ids_num;
auto layer_nums = neg_samples_num_vec.size();
VLOG(3) << "TDM: tree layer nums: " << layer_nums;
int sample_res_length = 0;
for (size_t layer_idx = 0; layer_idx < layer_nums; ++layer_idx) {
sample_res_length += (neg_samples_num_vec[layer_idx] +
static_cast<int>(output_positive_flag));
}
VLOG(3) << "TDM: sample res length: " << sample_res_length;
auto travel_dim = travel_lod_tensor.dims();
auto total_sample_nums = input_ids_num * sample_res_length;
// get all data
auto *input_data = input_tensor.data<T>();
auto *travel_data = travel_lod_tensor.data<TreeT>();
auto *layer_data = layer_lod_tensor.data<TreeT>();
OutT zero = 0;
OutT one = 1;
std::vector<OutT> output_vec(total_sample_nums, zero);
std::vector<OutT> label_vec(total_sample_nums, zero);
std::vector<OutT> mask_vec(total_sample_nums, one);
VLOG(3) << "End get input & output data";
// generate uniform sampler
auto seed = context.Attr<int>("seed");
std::vector<Sampler *> sampler_vec{};
for (size_t layer_index = 0; layer_index < layer_nums; layer_index++) {
int layer_node_nums =
layer_offset_lod[layer_index + 1] - layer_offset_lod[layer_index];
Sampler *sampler = new math::UniformSampler(layer_node_nums - 1, seed);
sampler_vec.push_back(sampler);
}
VLOG(3) << "TDM: get sampler ";
for (int i = 0; i < input_ids_num; ++i) {
// find leaf node travel path
T input_id = input_data[i];
PADDLE_ENFORCE_LT(
-1, input_id,
platform::errors::InvalidArgument(
"Variable value (input) of OP(fluid.layers.tdm_sampler) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
travel_dim[0], input_id));
PADDLE_ENFORCE_LT(
input_id, travel_dim[0],
platform::errors::InvalidArgument(
"Variable value (input) of OP(fluid.layers.tdm_sampler) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
travel_dim[0], input_id));
VLOG(3) << "TDM: input id: " << input_id;
int start_offset = static_cast<int>(input_id * layer_nums);
VLOG(3) << "TDM: Start offset(input_id * layer_nums): " << start_offset;
// nce sample, layer by layer
int offset = 0;
for (size_t layer_idx = 0; layer_idx < layer_nums; ++layer_idx) {
int sample_num = neg_samples_num_vec[layer_idx];
VLOG(3) << "TDM: Sample num: " << sample_num;
int node_nums =
layer_offset_lod[layer_idx + 1] - layer_offset_lod[layer_idx];
VLOG(3) << "TDM: layer - " << layer_idx + 1
<< " - has node_nums: " << node_nums;
PADDLE_ENFORCE_LE(
sample_num, node_nums - 1,
platform::errors::InvalidArgument(
"Neg sample nums id of OP(fluid.layers.tdm_sampler) at layer %ld "
"expected <= %ld - 1 (positive included), but got %ld. Please "
"check neg_samples_num_list.",
layer_idx, node_nums, sample_num));
int node_id_min = layer_offset_lod[layer_idx];
int node_id_max = layer_offset_lod[layer_idx + 1];
OutT positive_node_id =
static_cast<OutT>(travel_data[start_offset + layer_idx]);
if (positive_node_id == 0) {
// skip padding
VLOG(3) << "TDM: Skip padding ";
for (int sample_index = 0;
sample_index < sample_num + static_cast<int>(output_positive_flag);
sample_index++) {
output_vec[i * sample_res_length + offset] = 0;
label_vec[i * sample_res_length + offset] = 0;
mask_vec[i * sample_res_length + offset] = 0;
VLOG(3) << "TDM: Res append positive "
<< output_vec[i * sample_res_length + offset]
<< " Label append positive "
<< label_vec[i * sample_res_length + offset]
<< " Mask append value "
<< mask_vec[i * sample_res_length + offset];
offset += 1;
}
continue;
}
PADDLE_ENFORCE_LE(
positive_node_id, node_id_max,
platform::errors::InvalidArgument(
"Positive node id of OP(fluid.layers.tdm_sampler) at layer %ld "
"expected >= %ld and <= %ld, but got %ld. Please check input "
"value.",
layer_idx, node_id_min, node_id_max, positive_node_id));
PADDLE_ENFORCE_LE(
node_id_min, positive_node_id,
platform::errors::InvalidArgument(
"Positive node id of OP(fluid.layers.tdm_sampler) at layer %ld "
"expected >= %ld and <= %ld, but got %ld. Please check input "
"value.",
layer_idx, node_id_min, node_id_max, positive_node_id));
// If output positive, add itself
if (output_positive_flag) {
output_vec[i * sample_res_length + offset] = positive_node_id;
label_vec[i * sample_res_length + offset] = 1;
mask_vec[i * sample_res_length + offset] = 1;
VLOG(3) << "TDM: node id: " << positive_node_id << " Res append "
<< output_vec[i * sample_res_length + offset]
<< " Label append "
<< label_vec[i * sample_res_length + offset] << " Mask append "
<< mask_vec[i * sample_res_length + offset];
offset += 1;
}
std::vector<int> sample_res_vec{};
// Sampling at layer, until samples enough
for (int sample_index = 0; sample_index < sample_num; ++sample_index) {
// Avoid sampling to positive samples
int sample_res = 0;
do {
sample_res = sampler_vec[layer_idx]->Sample();
} while (positive_node_id ==
layer_data[layer_offset_lod[layer_idx] + sample_res] ||
find(sample_res_vec.begin(), sample_res_vec.end(),
sample_res) != sample_res_vec.end());
sample_res_vec.push_back(sample_res);
output_vec[i * sample_res_length + offset] = static_cast<OutT>(
layer_data[layer_offset_lod[layer_idx] + sample_res]);
label_vec[i * sample_res_length + offset] = 0;
mask_vec[i * sample_res_length + offset] = 1;
VLOG(3) << "TDM: node id: " << travel_data[start_offset + layer_idx]
<< " Res append negitive "
<< output_vec[i * sample_res_length + offset]
<< " Label append negitive "
<< label_vec[i * sample_res_length + offset]
<< " Mask append value "
<< mask_vec[i * sample_res_length + offset];
PADDLE_ENFORCE_LE(
layer_data[layer_offset_lod[layer_idx] + sample_res], node_id_max,
platform::errors::InvalidArgument(
"Negative node id of OP(fluid.layers.tdm_sampler) at layer %ld"
"expected >= %ld and <= %ld, but got %ld. Please check input "
"tdm tree structure and tdm travel info.",
layer_idx, node_id_min, node_id_max,
layer_data[layer_offset_lod[layer_idx] + sample_res]));
offset += 1;
} // end layer nce
} // end one input nce
} // end all input nce
auto *output_data = out_tensor->mutable_data<OutT>(context.GetPlace());
auto *label_data = label_tensor->mutable_data<OutT>(context.GetPlace());
auto *mask_data = mask_tensor->mutable_data<OutT>(context.GetPlace());
memcpy(output_data, &output_vec[0], sizeof(OutT) * total_sample_nums);
memcpy(label_data, &label_vec[0], sizeof(OutT) * total_sample_nums);
memcpy(mask_data, &mask_vec[0], sizeof(OutT) * total_sample_nums);
for (size_t layer_index = 0; layer_index < layer_nums; layer_index++) {
delete sampler_vec[layer_index];
}
}
template <typename DeviceContext, typename T>
class TDMSamplerKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *input_var = context.InputVar("X");
auto *travel_var = context.InputVar("Travel");
auto *layer_var = context.InputVar("Layer");
// get all tensor
auto &input_tensor = input_var->Get<framework::LoDTensor>();
auto &travel_lod_tensor = travel_var->Get<framework::LoDTensor>();
auto &layer_lod_tensor = layer_var->Get<framework::LoDTensor>();
const auto &input_type = input_tensor.type();
bool input_type_match = input_type == framework::proto::VarType::INT32 ||
input_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(input_type_match, true,
platform::errors::InvalidArgument(
"Input(X) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
paddle::framework::DataTypeToString(input_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
const auto &travel_type = travel_lod_tensor.type();
bool travel_type_match = travel_type == framework::proto::VarType::INT32 ||
travel_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(
travel_type_match, true,
platform::errors::InvalidArgument(
"Input(Travel) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
paddle::framework::DataTypeToString(travel_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
const auto &layer_type = layer_lod_tensor.type();
bool layer_type_match = layer_type == framework::proto::VarType::INT32 ||
layer_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(layer_type_match, true,
platform::errors::InvalidArgument(
"Input(Layer) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
paddle::framework::DataTypeToString(layer_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
PADDLE_ENFORCE_EQ(
travel_type, layer_type,
platform::errors::InvalidArgument(
"Input(Travel) must holds the same type with "
"Input(Layer), but Travel holds %s, and Layer holds %s",
paddle::framework::DataTypeToString(travel_type),
paddle::framework::DataTypeToString(layer_type)));
auto *out_var = context.OutputVar("Out");
auto *label_var = context.OutputVar("Labels");
auto *mask_var = context.OutputVar("Mask");
auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
auto *label_tensor = label_var->GetMutable<framework::LoDTensor>();
auto *mask_tensor = mask_var->GetMutable<framework::LoDTensor>();
auto output_type = static_cast<framework::proto::VarType::Type>(
context.Attr<int>("dtype"));
if (travel_type == framework::proto::VarType::INT32 &&
output_type == framework::proto::VarType::INT32) {
TDMSamplerInner<T, int, int>(context, input_tensor, travel_lod_tensor,
layer_lod_tensor, out_tensor, label_tensor,
mask_tensor);
} else if (travel_type == framework::proto::VarType::INT64 &&
output_type == framework::proto::VarType::INT32) {
TDMSamplerInner<T, int64_t, int>(context, input_tensor, travel_lod_tensor,
layer_lod_tensor, out_tensor,
label_tensor, mask_tensor);
} else if (travel_type == framework::proto::VarType::INT32 &&
output_type == framework::proto::VarType::INT64) {
TDMSamplerInner<T, int, int64_t>(context, input_tensor, travel_lod_tensor,
layer_lod_tensor, out_tensor,
label_tensor, mask_tensor);
} else if (travel_type == framework::proto::VarType::INT64 &&
output_type == framework::proto::VarType::INT64) {
TDMSamplerInner<T, int64_t, int64_t>(
context, input_tensor, travel_lod_tensor, layer_lod_tensor,
out_tensor, label_tensor, mask_tensor);
}
}
};
} // namespace operators
} // namespace paddle
...@@ -27,13 +27,14 @@ from ... import unique_name ...@@ -27,13 +27,14 @@ from ... import unique_name
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_ from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
from paddle.fluid.layers import slice, reshape
import warnings import warnings
__all__ = [ __all__ = [
'fused_elemwise_activation', 'sequence_topk_avg_pooling', 'var_conv_2d', 'fused_elemwise_activation', 'sequence_topk_avg_pooling', 'var_conv_2d',
'match_matrix_tensor', 'tree_conv', 'fused_embedding_seq_pool', 'match_matrix_tensor', 'tree_conv', 'fused_embedding_seq_pool',
'multiclass_nms2', 'search_pyramid_hash', 'shuffle_batch', 'partial_concat', 'multiclass_nms2', 'search_pyramid_hash', 'shuffle_batch', 'partial_concat',
'partial_sum', 'tdm_child', 'rank_attention' 'partial_sum', 'tdm_child', 'rank_attention', 'tdm_sampler'
] ]
...@@ -1022,6 +1023,215 @@ def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'): ...@@ -1022,6 +1023,215 @@ def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
return (child, leaf_mask) return (child, leaf_mask)
def tdm_sampler(x,
neg_samples_num_list,
layer_node_num_list,
leaf_node_num,
tree_travel_attr=None,
tree_layer_attr=None,
output_positive=True,
output_list=True,
seed=0,
tree_dtype='int32',
dtype='int32'):
"""
**Tdm Sampler**
According to the input positive samples at leaf node(x), do negative sampling layer by layer on the given tree.
.. code-block:: text
Given:
tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path (exclude root node)
layer_list = [[1, 2], [3, 4, 5, 6]] # two layer (exclude root node)
x = [[0], [1], [2], [3]] # Corresponding to leaf node [[3], [4], [5], [6]]
neg_samples_num_list = [0, 0] # negative sample nums = 0
layer_node_num_list = [2, 4]
leaf_node_num = 4
output_list = False
we get:
out = [[1, 3], [1, 4], [2, 5], [2, 6]]
labels = [[1, 1], [1, 1], [1, 1], [1, 1]]
mask = [[1, 1], [1, 1], [1, 1], [1, 1]]
Args:
x (Variable): Variable contained the item_id(corresponding to leaf node) information, dtype support int32/int64.
neg_samples_num_list (list(int)): Number of negative samples per layer.
layer_node_num_list (list(int)): Number of nodes per layer, must has same shape with neg_samples_num_list.
leaf_node_num (int): Number of leaf nodes.
tree_travel_attr (ParamAttr): To specify the tdm-travel parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
has shape (leaf_node_num, len(layer_node_num_list)), dtype support int32/int64.
tree_layer_attr (ParamAttr): To specify the tdm-layer parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
has shape (node_num, 1), dtype support int32/int64.
output_positive (bool): Whether to output positive samples (includ label and mask )at the same time.
output_list (bool): Whether to divide the output into layers and organize it into list format.
seed (int): The number of random seed.
tree_dtype(np.dtype|core.VarDesc.VarType|str): The dtype of tdm-travel and tdm-layer, support int32/int64
dtype(np.dtype|core.VarDesc.VarType|str): The dtype of output(sampling results, labels and masks)
Returns:
tuple: A tuple including sampling results, corresponding labels and masks. if output_positive = True, sampling
result will include both positive and negative samples. If sampling reseult is a positive sample, the label is 1,
and if it is a negative sample, it is 0. If the tree is unbalanced, in order to ensure the consistency of the
sampling result shape, the padding sample's mask = 0, the real sample's mask value = 1.
If output_list = True, the result will organize into list format specified by layer information.
Output variable have same type with tdm-travel and tdm-layer parameter(tree_dtype).
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path, shape(leaf_node_num, layer_num)
layer_list_flat = [[1], [2], [3], [4], [5], [6]] # shape(node_nums, 1)
neg_samples_num_list = [0, 0] # negative sample nums = 0
layer_node_num_list = [2, 4] #two layer (exclude root node)
leaf_node_num = 4
travel_array = np.array(travel_list)
layer_array = np.array(layer_list_flat)
sample, label, mask = fluid.contrib.layers.tdm_sampler(
x,
neg_samples_num_list,
layer_node_num_list,
leaf_node_num,
tree_travel_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
travel_array)),
tree_layer_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
layer_array)),
output_positive=True,
output_list=True,
seed=0,
tree_dtype='int32')
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
xx = np.array([[0],[1]]).reshape((2,1)).astype("int32")
exe.run(feed={"x":xx})
"""
helper = LayerHelper("tdm_sampler", **locals())
check_dtype(tree_dtype, 'tree_dtype', ['int32', 'int64'],
'fluid.contrib.layers.tdm_sampler')
check_dtype(dtype, 'dtype', ['int32', 'int64'],
'fluid.contrib.layers.tdm_sampler')
c_dtype = convert_np_dtype_to_dtype_(dtype)
if len(neg_samples_num_list) != len(layer_node_num_list):
raise ValueError(
"The shape of negative samples list must match the shape of layers. "
"But received len of neg_samples_num_list: {},"
"and len of layer_node_num_list: {}, please check your input.".
format(len(neg_samples_num_list), len(layer_node_num_list)))
assert leaf_node_num is not None, "leaf_node_num should not be None here."
layer_nums = 0
node_nums = 0
tree_layer_offset_lod = [0]
for layer_idx, layer_node_num in enumerate(layer_node_num_list):
layer_nums += 1
node_nums += layer_node_num
tree_layer_offset_lod.append(node_nums)
if neg_samples_num_list[layer_idx] >= layer_node_num_list[layer_idx]:
raise ValueError(
"The number of negative samples must be less than the number of nodes "
"in the layer {}, But received negative nums {}, and num of node at layer {} "
"is {}, please check your input.".format(
layer_idx, neg_samples_num_list[
layer_idx], layer_idx, layer_node_num_list[layer_idx]))
assert leaf_node_num < node_nums, "leaf_node_num must be less than total node nums."
travel_shape = [leaf_node_num, layer_nums]
travel = helper.create_parameter(
attr=tree_travel_attr,
shape=travel_shape,
dtype=tree_dtype,
default_initializer=Constant(0))
layer_shape = [node_nums, 1]
layer = helper.create_parameter(
attr=tree_layer_attr,
shape=layer_shape,
dtype=tree_dtype,
default_initializer=Constant(0))
out = helper.create_variable_for_type_inference(dtype=dtype)
out.stop_gradient = True
labels = helper.create_variable_for_type_inference(dtype=dtype)
labels.stop_gradient = True
mask = helper.create_variable_for_type_inference(dtype=dtype)
mask.stop_gradient = True
helper.append_op(
type='tdm_sampler',
inputs={"X": x,
"Travel": travel,
"Layer": layer},
outputs={'Out': out,
'Labels': labels,
'Mask': mask},
attrs={
'neg_samples_num_list': neg_samples_num_list,
'output_positive': output_positive,
'layer_offset_lod': tree_layer_offset_lod,
'seed': seed,
'dtype': c_dtype
})
if output_list:
output_list = []
labels_list = []
mask_list = []
start_offset = 0
positive_flag = 1
if not output_positive:
positive_flag = 0
for layer_sample_num in neg_samples_num_list:
end_offset = start_offset + \
layer_sample_num + positive_flag
layer_samples = slice(
out, axes=[1], starts=[start_offset], ends=[end_offset])
layer_labels = slice(
labels, axes=[1], starts=[start_offset], ends=[end_offset])
layer_mask = slice(
mask, axes=[1], starts=[start_offset], ends=[end_offset])
layer_samples = reshape(layer_samples,
[-1, layer_sample_num + positive_flag, 1])
layer_samples.stop_gradient = True
layer_labels = reshape(layer_labels,
[-1, layer_sample_num + positive_flag, 1])
layer_labels.stop_gradient = True
layer_mask = reshape(layer_mask,
[-1, layer_sample_num + positive_flag, 1])
layer_mask.stop_gradient = True
output_list.append(layer_samples)
labels_list.append(layer_labels)
mask_list.append(layer_mask)
start_offset = end_offset
out = output_list
labels = labels_list
mask = mask_list
return (out, labels, mask)
def rank_attention(input, def rank_attention(input,
rank_offset, rank_offset,
rank_param_shape, rank_param_shape,
......
# -*-coding:utf-8-*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid.layers as layers
import paddle.fluid as fluid
import random
import six
from sys import version_info
def create_tdm_travel():
tree_travel = [[1, 3, 7, 14], [1, 3, 7, 15], [1, 3, 8, 16], [1, 3, 8, 17],
[1, 4, 9, 18], [1, 4, 9, 19], [1, 4, 10, 20],
[1, 4, 10, 21], [2, 5, 11, 22], [2, 5, 11, 23],
[2, 5, 12, 24], [2, 5, 12, 25], [2, 6, 13, 0]]
return tree_travel
def create_tdm_layer():
tree_layer = [[1, 2], [3, 4, 5, 6], [7, 8, 9, 10, 11, 12, 13],
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]]
return tree_layer
type_dict = {
"int32": int(core.VarDesc.VarType.INT32),
"int64": int(core.VarDesc.VarType.INT64)
}
class TestTDMSamplerOp(OpTest):
def setUp(self):
self.__class__.op_type = "tdm_sampler"
self.config()
self.tree_travel = create_tdm_travel()
self.tree_layer = create_tdm_layer()
output_0 = self.x_shape[0]
output_1 = len(self.neg_samples_num_list) + \
np.sum(self.neg_samples_num_list)
self.output_shape = (output_0, output_1)
self.layer_sample_nums = [1 + i for i in self.neg_samples_num_list]
layer_node_num_list = [len(i) for i in self.tree_layer]
tree_layer_offset_lod = [0]
tree_layer_flat = []
node_nums = 0
for layer_idx, layer_node in enumerate(layer_node_num_list):
tree_layer_flat += self.tree_layer[layer_idx]
node_nums += layer_node
tree_layer_offset_lod.append(node_nums)
travel_np = np.array(self.tree_travel).astype(self.tree_dtype)
layer_np = np.array(tree_layer_flat).astype(self.tree_dtype)
layer_np = layer_np.reshape([-1, 1])
self.x_np = np.random.randint(
low=0, high=13, size=self.x_shape).astype(self.x_type)
out = np.random.random(self.output_shape).astype(self.out_dtype)
label = np.random.random(self.output_shape).astype(self.out_dtype)
mask = np.random.random(self.output_shape).astype(self.out_dtype)
self.attrs = {
'neg_samples_num_list': self.neg_samples_num_list,
'output_positive': True,
'layer_offset_lod': tree_layer_offset_lod,
'seed': 0,
'dtype': type_dict[self.out_dtype]
}
self.inputs = {'X': self.x_np, 'Travel': travel_np, 'Layer': layer_np}
self.outputs = {'Out': out, 'Labels': label, 'Mask': mask}
def config(self):
"""set test shape & type"""
self.neg_samples_num_list = [0, 0, 0, 0]
self.x_shape = (10, 1)
self.x_type = 'int32'
self.tree_dtype = 'int32'
self.out_dtype = 'int32'
def test_check_output(self):
places = self._get_places()
for place in places:
outs, fetch_list = self._calc_output(place)
self.out = [np.array(out) for out in outs]
x_res = self.out[fetch_list.index('Out')]
label_res = self.out[fetch_list.index('Labels')]
mask_res = self.out[fetch_list.index('Mask')]
# check dtype
if self.out_dtype == 'int32':
assert x_res.dtype == np.int32
assert label_res.dtype == np.int32
assert mask_res.dtype == np.int32
elif self.out_dtype == 'int64':
assert x_res.dtype == np.int64
assert label_res.dtype == np.int64
assert mask_res.dtype == np.int64
x_res = x_res.reshape(self.output_shape)
label_res = label_res.reshape(self.output_shape)
mask_res = mask_res.reshape(self.output_shape)
layer_nums = len(self.neg_samples_num_list)
for batch_ids, x_batch in enumerate(x_res):
start_offset = 0
positive_travel = []
for layer_idx in range(layer_nums):
end_offset = start_offset + self.layer_sample_nums[layer_idx]
sampling_res = x_batch[start_offset:end_offset]
sampling_res_list = sampling_res.tolist()
positive_travel.append(sampling_res_list[0])
label_sampling_res = label_res[batch_ids][start_offset:
end_offset]
mask_sampling_res = mask_res[batch_ids][start_offset:end_offset]
# check unique
if sampling_res_list[0] != 0:
assert len(set(sampling_res_list)) == len(
sampling_res_list
), "len(set(sampling_res_list)): {}, len(sampling_res_list): {} , sample_res: {}, label_res:{}, mask_res: {}".format(
len(set(sampling_res_list)),
len(sampling_res_list), sampling_res,
label_sampling_res, mask_sampling_res)
# check legal
layer_node = self.tree_layer[layer_idx]
layer_node.append(0)
for sample in sampling_res_list:
assert (
sample in layer_node
), "sample: {}, layer_node: {} , sample_res: {}, label_res: {}, mask_res:{}".format(
sample, layer_node, sampling_res, label_sampling_res,
mask_sampling_res)
# check label
label_flag = 1
if sampling_res[0] == 0:
label_flag = 0
assert label_sampling_res[0] == label_flag
# check mask
padding_index = np.where(sampling_res == 0)
assert not np.sum(
mask_sampling_res[padding_index]
), "np.sum(mask_sampling_res[padding_index]): {} ".format(
np.sum(mask_sampling_res[padding_index]))
start_offset = end_offset
# check travel legal
assert self.tree_travel[int(self.x_np[
batch_ids])] == positive_travel
class TestCase1(TestTDMSamplerOp):
def config(self):
"""test input int64"""
self.neg_samples_num_list = [0, 0, 0, 0]
self.x_shape = (10, 1)
self.x_type = 'int64'
self.tree_dtype = 'int64'
self.out_dtype = 'int32'
class TestCase2(TestTDMSamplerOp):
def config(self):
"""test dtype int64"""
self.neg_samples_num_list = [0, 0, 0, 0]
self.x_shape = (10, 1)
self.x_type = 'int32'
self.tree_dtype = 'int32'
self.out_dtype = 'int64'
class TestCase3(TestTDMSamplerOp):
def config(self):
"""test all dtype int64"""
self.neg_samples_num_list = [0, 0, 0, 0]
self.x_shape = (10, 1)
self.x_type = 'int64'
self.tree_dtype = 'int64'
self.out_dtype = 'int64'
class TestCase4(TestTDMSamplerOp):
def config(self):
"""test one neg"""
self.neg_samples_num_list = [1, 1, 1, 1]
self.x_shape = (10, 1)
self.x_type = 'int64'
self.tree_dtype = 'int32'
self.out_dtype = 'int64'
class TestCase5(TestTDMSamplerOp):
def config(self):
"""test normal neg"""
self.neg_samples_num_list = [1, 2, 3, 4]
self.x_shape = (10, 1)
self.x_type = 'int64'
self.tree_dtype = 'int32'
self.out_dtype = 'int64'
class TestCase6(TestTDMSamplerOp):
def config(self):
"""test huge batchsize"""
self.neg_samples_num_list = [1, 2, 3, 4]
self.x_shape = (100, 1)
self.x_type = 'int64'
self.tree_dtype = 'int32'
self.out_dtype = 'int64'
class TestCase7(TestTDMSamplerOp):
def config(self):
"""test full neg"""
self.neg_samples_num_list = [1, 3, 6, 11]
self.x_shape = (10, 1)
self.x_type = 'int64'
self.tree_dtype = 'int32'
self.out_dtype = 'int64'
class TestTDMSamplerShape(unittest.TestCase):
def test_shape(self):
x = fluid.layers.data(name='x', shape=[1], dtype='int32', lod_level=1)
tdm_tree_travel = create_tdm_travel()
tdm_tree_layer = create_tdm_layer()
layer_node_num_list = [len(i) for i in tdm_tree_layer]
tree_layer_flat = []
for layer_idx, layer_node in enumerate(layer_node_num_list):
tree_layer_flat += tdm_tree_layer[layer_idx]
travel_array = np.array(tdm_tree_travel).astype('int32')
layer_array = np.array(tree_layer_flat).astype('int32')
neg_samples_num_list = [1, 2, 3, 4]
leaf_node_num = 13
sample, label, mask = fluid.contrib.layers.tdm_sampler(
x,
neg_samples_num_list,
layer_node_num_list,
leaf_node_num,
tree_travel_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
travel_array)),
tree_layer_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
layer_array)),
output_positive=True,
output_list=True,
seed=0,
tree_dtype='int32',
dtype='int32')
place = fluid.CPUPlace()
exe = fluid.Executor(place=place)
exe.run(fluid.default_startup_program())
feed = {
'x': np.array([[0], [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]]).astype('int32')
}
exe.run(feed=feed)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册