Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8b8ad6b1
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b8ad6b1
编写于
9月 25, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix implementations of supporting soft labels.
上级
bb58b63b
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
272 addition
and
102 deletion
+272
-102
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+2
-2
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+12
-12
paddle/operators/math/softmax.cc
paddle/operators/math/softmax.cc
+1
-1
paddle/operators/math/softmax.h
paddle/operators/math/softmax.h
+2
-2
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+1
-1
paddle/operators/softmax_with_cross_entropy_op.cc
paddle/operators/softmax_with_cross_entropy_op.cc
+60
-19
paddle/operators/softmax_with_cross_entropy_op.cu
paddle/operators/softmax_with_cross_entropy_op.cu
+108
-34
paddle/operators/softmax_with_cross_entropy_op.h
paddle/operators/softmax_with_cross_entropy_op.h
+46
-23
python/paddle/v2/framework/tests/test_softmax_with_cross_entropy_op.py
.../v2/framework/tests/test_softmax_with_cross_entropy_op.py
+40
-8
未找到文件。
paddle/operators/cross_entropy_op.cu
浏览文件 @
8b8ad6b1
...
@@ -28,7 +28,7 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
...
@@ -28,7 +28,7 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
D
);
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
D
);
Y
[
i
]
=
-
tolerable_value
(
log
(
X
[
i
*
D
+
label
[
i
]]));
Y
[
i
]
=
-
TolerableValue
<
T
>
()
(
log
(
X
[
i
*
D
+
label
[
i
]]));
}
}
}
}
...
@@ -39,7 +39,7 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
...
@@ -39,7 +39,7 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
sum
=
static_cast
<
T
>
(
0
);
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
D
;
j
++
)
{
for
(
int
j
=
0
;
j
<
D
;
j
++
)
{
sum
+=
label
[
i
*
D
+
j
]
*
tolerable_value
(
log
(
X
[
i
*
D
+
j
]));
sum
+=
label
[
i
*
D
+
j
]
*
TolerableValue
<
T
>
()
(
log
(
X
[
i
*
D
+
j
]));
}
}
Y
[
i
]
=
-
sum
;
Y
[
i
]
=
-
sum
;
}
}
...
...
paddle/operators/cross_entropy_op.h
浏览文件 @
8b8ad6b1
...
@@ -22,17 +22,16 @@ namespace operators {
...
@@ -22,17 +22,16 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
template
<
typename
T
>
HOSTDEVICE
T
tolerable_value
(
const
T
x
)
{
struct
TolerableValue
{
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
const
T
kApproInf
=
1e20
;
if
(
x
==
INFINITY
)
{
return
kApproInf
;
if
(
x
==
INFINITY
)
return
kApproInf
;
}
if
(
x
==
-
INFINITY
)
return
-
kApproInf
;
if
(
x
==
-
INFINITY
)
{
return
-
kApproInf
;
}
return
x
;
return
x
;
}
}
};
template
<
typename
T
>
template
<
typename
T
>
class
CrossEntropyOpKernel
:
public
framework
::
OpKernel
{
class
CrossEntropyOpKernel
:
public
framework
::
OpKernel
{
...
@@ -57,7 +56,8 @@ class CrossEntropyOpKernel : public framework::OpKernel {
...
@@ -57,7 +56,8 @@ class CrossEntropyOpKernel : public framework::OpKernel {
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
T
sum
=
static_cast
<
T
>
(
0
);
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
class_num
;
++
j
)
{
for
(
int
j
=
0
;
j
<
class_num
;
++
j
)
{
sum
+=
label_data
[
index
]
*
tolerable_value
(
std
::
log
(
x_data
[
index
]));
sum
+=
label_data
[
index
]
*
TolerableValue
<
T
>
()(
std
::
log
(
x_data
[
index
]));
y_data
[
i
]
=
-
sum
;
y_data
[
i
]
=
-
sum
;
index
++
;
index
++
;
}
}
...
@@ -66,7 +66,7 @@ class CrossEntropyOpKernel : public framework::OpKernel {
...
@@ -66,7 +66,7 @@ class CrossEntropyOpKernel : public framework::OpKernel {
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
int
index
=
i
*
class_num
+
label_data
[
i
];
y_data
[
i
]
=
-
tolerable_value
(
std
::
log
(
x_data
[
index
]));
y_data
[
i
]
=
-
TolerableValue
<
T
>
()
(
std
::
log
(
x_data
[
index
]));
}
}
}
}
}
}
...
...
paddle/operators/math/softmax.cc
浏览文件 @
8b8ad6b1
...
@@ -18,7 +18,7 @@ namespace paddle {
...
@@ -18,7 +18,7 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
namespace
math
{
namespace
math
{
template
class
SoftmaxFunctor
<
platform
::
C
PUPlace
,
float
>;
template
class
SoftmaxFunctor
<
platform
::
G
PUPlace
,
float
>;
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
paddle/operators/math/softmax.h
浏览文件 @
8b8ad6b1
...
@@ -28,8 +28,8 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
...
@@ -28,8 +28,8 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
SoftmaxFunctor
{
class
SoftmaxFunctor
{
public:
public:
void
operator
()(
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
,
void
operator
()(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
ExecutionContext
&
context
)
{
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
)
{
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
X
);
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
X
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
Y
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
Y
);
...
...
paddle/operators/softmax_op.h
浏览文件 @
8b8ad6b1
...
@@ -35,7 +35,7 @@ class SoftmaxKernel : public framework::OpKernel {
...
@@ -35,7 +35,7 @@ class SoftmaxKernel : public framework::OpKernel {
// allocate memory on device.
// allocate memory on device.
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
X
,
Y
,
context
);
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
,
X
,
Y
);
}
}
};
};
...
...
paddle/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
8b8ad6b1
...
@@ -23,31 +23,31 @@ class SoftmaxWithCrossEntropyOpMaker
...
@@ -23,31 +23,31 @@ class SoftmaxWithCrossEntropyOpMaker
SoftmaxWithCrossEntropyOpMaker
(
framework
::
OpProto
*
proto
,
SoftmaxWithCrossEntropyOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
//(TODO caoying) replace int with boolean
AddAttr
<
bool
>
(
AddAttr
<
int
>
(
"soft_l
abel"
,
"softL
abel"
,
"(int, default 0
), A flag to indicate whether to interpretate "
"(bool, default: false
), A flag to indicate whether to interpretate "
"the given labels as soft labels."
)
"the given labels as soft labels."
)
.
SetDefault
(
0
);
.
SetDefault
(
false
);
AddInput
(
"Logits"
,
AddInput
(
"Logits"
,
"(Tensor, default Tensor<float>), The unscaled log probabilities "
"(Tensor, default
:
Tensor<float>), The unscaled log probabilities "
"which is a 2-D tensor with shape [N x K]. N is the batch_size, "
"which is a 2-D tensor with shape [N x K]. N is the batch_size, "
"and K is the class number."
)
"and K is the class number."
)
.
NotInGradient
();
.
NotInGradient
();
AddInput
(
AddInput
(
"Label"
,
"Label"
,
"(Tensor, default
Tensor<int>), The ground truth which is
"
"(Tensor, default
: Tensor<int>), The ground truth which is a 2-D
"
"
a 1-D or 2-D
tensor. "
"tensor. "
"If soft
_label
is set to 0, Label is a Tensor<int> with shape [N x 1]. "
"If soft
Lable
is set to 0, Label is a Tensor<int> with shape [N x 1]. "
"If soft
_label
is set to 1, Label is a Tensor<float/double> "
"If soft
Lable
is set to 1, Label is a Tensor<float/double> "
"with shape [N x K]."
);
"with shape [N x K]."
);
AddOutput
(
AddOutput
(
"Softmax"
,
"Softmax"
,
"(Tensor, default Tensor<float>), A 2-D tensor with shape [N x K]. "
"(Tensor, default
:
Tensor<float>), A 2-D tensor with shape [N x K]. "
"The outputs value of softmax activation by given the input batch, "
"The outputs value of softmax activation by given the input batch, "
"which will be used in backward calculation."
)
"which will be used in backward calculation."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"Loss"
,
AddOutput
(
"Loss"
,
"(Tensor, default
Tensor<float>), A 1
-D tensor. The cross "
"(Tensor, default
: Tensor<float>), A 2
-D tensor. The cross "
"entropy loss with shape [N x 1]."
);
"entropy loss with shape [N x 1]."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
Cross entropy loss with softmax are used as the output layer extensively. This
...
@@ -83,15 +83,39 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
...
@@ -83,15 +83,39 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Logits"
),
"Input(Logits) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Softmax"
),
"Output(Softmax) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Loss"
),
"Output(Loss) should be not null."
);
const
Tensor
*
logits
=
ctx
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
logits
=
ctx
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
logits
->
dims
().
size
()
==
2UL
,
logits
->
dims
().
size
()
==
2UL
,
"The input of softmax_with_cross_entropy should be a 2-d tensor."
);
"The input of softmax_with_cross_entropy should be a 2-D tensor."
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
()
==
1UL
,
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
()
==
2UL
,
"The label should be a 1-d tensor."
);
"The labels should be a 2-D tensor."
);
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
PADDLE_ENFORCE_EQ
(
logits
->
dims
()[
1
],
labels
->
dims
()[
1
],
"If Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
labels
->
dims
()[
1
],
1
,
"If Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1."
);
}
ctx
.
Output
<
framework
::
Tensor
>
(
"Softmax"
)
->
Resize
(
logits
->
dims
());
ctx
.
Output
<
framework
::
Tensor
>
(
"Loss"
)
->
Resize
({
logits
->
dims
()[
0
],
1
});
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Softmax"
)
->
Resize
(
logits
->
dims
()
);
ctx
.
ShareLoD
(
"Logits"
,
/*->*/
"Softmax"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Loss"
)
->
Resize
({
logits
->
dims
()[
0
],
1
}
);
ctx
.
ShareLoD
(
"Logits"
,
/*->*/
"Loss"
);
}
}
};
};
...
@@ -102,11 +126,28 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
...
@@ -102,11 +126,28 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Loss"
)),
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Loss"
)),
"Input(Loss@Grad) should not be null"
);
"Input(Loss@Grad) should not be null
.
"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Softmax"
),
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Softmax"
),
"Input(Softmax) should be not null."
);
"Input(Softmax) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Lable) should be not null."
);
"Input(Lable) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
framework
::
GradVarName
(
"Logits"
)),
"Output(Logits@Grad) should be not null."
);
const
Tensor
*
softmax
=
ctx
.
Input
<
Tensor
>
(
"Softmax"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
()
==
2UL
,
"The labels should be a 2-D tensor."
);
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
PADDLE_ENFORCE_EQ
(
softmax
->
dims
()[
1
],
labels
->
dims
()[
1
],
"When Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
labels
->
dims
()[
1
],
1
,
"When Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1."
);
}
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Logits"
))
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Logits"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Softmax"
)
->
dims
());
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Softmax"
)
->
dims
());
...
...
paddle/operators/softmax_with_cross_entropy_op.cu
浏览文件 @
8b8ad6b1
...
@@ -24,25 +24,78 @@ namespace operators {
...
@@ -24,25 +24,78 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
template
<
typename
T
>
__global__
void
CrossEntropyKernel
(
T
*
out
,
const
T
*
softmax_out
,
__global__
void
CrossEntropy
(
T
*
out
,
const
T
*
softmax_out
,
const
int
*
labels
,
const
int
*
label
,
const
int
batch_size
,
const
int
batch_size
,
const
int
class_num
)
{
const
int
class_num
)
{
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
batch_size
)
{
if
(
i
<
batch_size
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
class_num
);
PADDLE_ASSERT
(
labels
[
i
]
>=
0
&&
labels
[
i
]
<
class_num
);
out
[
i
]
=
-
tolerable_value
(
std
::
log
(
softmax_out
[
i
*
class_num
+
label
[
i
]]));
out
[
i
]
=
-
TolerableValue
<
T
>
()(
std
::
log
(
softmax_out
[
i
*
class_num
+
labels
[
i
]]));
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
CrossEntropyWithSoftmaxGradKernel
(
T
*
softmax_out
,
__global__
void
CrossEntropyGrad
(
T
*
out_grad
,
const
T
*
in_grad
,
const
int
*
label
,
const
int
*
labels
,
const
int
batch_size
,
const
int
class_num
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
sample_idx
=
tid
/
class_num
;
if
(
tid
<
batch_size
*
class_num
)
out_grad
[
tid
]
*=
in_grad
[
sample_idx
];
__syncthreads
();
if
(
tid
<
batch_size
)
{
PADDLE_ASSERT
(
labels
[
sample_idx
]
>=
0
&&
labels
[
sample_idx
]
<
class_num
);
out_grad
[
tid
*
class_num
+
labels
[
tid
]]
-=
1.
;
}
}
template
<
typename
T
>
__device__
__forceinline__
T
sum_single_warp
(
T
val
)
{
val
+=
__shfl_down
(
val
,
16
);
val
+=
__shfl_down
(
val
,
8
);
val
+=
__shfl_down
(
val
,
4
);
val
+=
__shfl_down
(
val
,
2
);
val
+=
__shfl_down
(
val
,
1
);
return
val
;
}
template
<
typename
T
>
__global__
void
SoftCrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
class_num
)
{
int
tid
=
threadIdx
.
x
;
extern
__shared__
T
d_sum
[];
d_sum
[
tid
]
=
0
;
int
cur_idx
=
tid
;
int
next_idx
=
blockIdx
.
x
*
class_num
+
tid
;
while
(
cur_idx
<
class_num
)
{
d_sum
[
tid
]
+=
TolerableValue
<
T
>
()(
std
::
log
(
X
[
next_idx
]))
*
label
[
next_idx
];
next_idx
+=
blockDim
.
x
;
cur_idx
+=
blockDim
.
x
;
}
__syncthreads
();
for
(
unsigned
int
stride
=
blockDim
.
x
>>
1
;
stride
>=
32
;
stride
>>=
1
)
{
if
(
tid
<
stride
)
d_sum
[
tid
]
+=
d_sum
[
tid
+
stride
];
__syncthreads
();
}
T
val
=
d_sum
[
tid
];
val
=
sum_single_warp
<
T
>
(
val
);
if
(
tid
==
0
)
Y
[
blockIdx
.
x
]
=
-
val
;
}
template
<
typename
T
>
__global__
void
SoftCrossEntropyGradientKernel
(
T
*
logit_grad
,
const
T
*
loss_grad
,
const
T
*
labels
,
const
int
batch_size
,
const
int
batch_size
,
const
int
class_num
)
{
const
int
class_num
)
{
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
i
ds
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
batch_size
)
{
if
(
i
ds
<
batch_size
*
class_num
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
class_num
)
;
int
row_ids
=
ids
/
class_num
;
softmax_out
[
i
*
class_num
+
label
[
i
]]
-=
1.
;
logit_grad
[
ids
]
=
logit_grad
[
ids
]
*
loss_grad
[
row_ids
]
-
labels
[
ids
]
;
}
}
}
}
...
@@ -52,28 +105,37 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel {
...
@@ -52,28 +105,37 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
"This kernel only runs on GPU device."
);
"This kernel only runs on GPU device."
);
T
*
loss_data
=
context
.
Output
<
Tensor
>
(
"Loss"
)
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// Calculate ths softmax outputs.
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
Tensor
*
softmax
=
context
.
Output
<
Tensor
>
(
"Softmax"
);
Tensor
*
softmax
=
context
.
Output
<
Tensor
>
(
"Softmax"
);
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
softmax_out
=
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxFunctor
<
platform
::
GPUPlace
,
T
>
()(
logits
,
softmax
,
context
);
math
::
SoftmaxFunctor
<
platform
::
GPUPlace
,
T
>
()(
context
,
logits
,
softmax
);
T
*
softmax_out
=
softmax
->
data
<
T
>
();
// Calculate the cross entropy loss based on hard labels.
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
Tensor
*
loss
=
context
.
Output
<
Tensor
>
(
"Loss"
);
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
loss_data
=
loss
->
data
<
T
>
();
const
int
batch_size
=
logits
->
dims
()[
0
];
const
int
batch_size
=
logits
->
dims
()[
0
];
const
int
class_num
=
logits
->
dims
()[
1
];
const
int
class_num
=
logits
->
dims
()[
1
];
int
block
=
512
;
int
block
=
512
;
int
grid
=
(
batch_size
+
block
-
1
)
/
block
;
int
grid
=
(
batch_size
+
block
-
1
)
/
block
;
CrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
loss_data
,
softmax_out
,
label_data
,
if
(
context
.
Attr
<
bool
>
(
"softLabel"
))
{
const
T
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
block
=
class_num
>
512
?
512
:
pow
(
2
,
int
(
std
::
log2
(
class_num
)));
SoftCrossEntropyKernel
<
T
><<<
batch_size
,
block
,
block
*
sizeof
(
T
),
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
loss_data
,
softmax_out
,
label_data
,
class_num
);
}
else
{
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
CrossEntropy
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
loss_data
,
softmax_out
,
label_data
,
batch_size
,
class_num
);
batch_size
,
class_num
);
}
}
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -82,7 +144,9 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel {
...
@@ -82,7 +144,9 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
"This kernel only runs on GPU device."
);
"This kernel only runs on GPU device."
);
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
const
T
*
loss_grad_data
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
))
->
data
<
T
>
();
Tensor
*
logit_grad
=
Tensor
*
logit_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
ShareDataWith
<
T
>
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
logit_grad
->
ShareDataWith
<
T
>
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
...
@@ -90,14 +154,24 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel {
...
@@ -90,14 +154,24 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel {
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
class_num
=
logit_grad
->
dims
()[
1
];
const
int
class_num
=
logit_grad
->
dims
()[
1
];
int
block
=
512
;
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
int
grid
=
(
batch_size
*
class_num
+
block
-
1
)
/
block
;
const
int
block
=
512
;
if
(
context
.
Attr
<
bool
>
(
"softLabel"
))
{
const
int
grid
=
(
batch_size
+
block
-
1
)
/
block
;
const
T
*
label_data
=
labels
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
CrossEntropyWithSoftmaxGradKernel
<
T
><<<
grid
,
block
>>>
(
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
logit_grad_data
,
label_data
,
batch_size
,
class_num
);
context
.
device_context
())
.
stream
()
>>>
(
logit_grad_data
,
loss_grad_data
,
label_data
,
batch_size
,
class_num
);
}
else
{
const
int
*
label_data
=
labels
->
data
<
int
>
();
CrossEntropyGrad
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
logit_grad_data
,
loss_grad_data
,
label_data
,
batch_size
,
class_num
);
}
}
}
};
};
...
...
paddle/operators/softmax_with_cross_entropy_op.h
浏览文件 @
8b8ad6b1
...
@@ -32,28 +32,35 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel {
...
@@ -32,28 +32,35 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
context
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
context
.
GetPlace
()),
"This kernel only runs on CPU."
);
"This kernel only runs on CPU."
);
// Calculate ths softmax outputs.
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
softmax
=
context
.
Output
<
Tensor
>
(
"Softmax"
);
Tensor
*
softmax
=
context
.
Output
<
Tensor
>
(
"Softmax"
);
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
*
loss
=
context
.
Output
<
Tensor
>
(
"Loss"
);
math
::
SoftmaxFunctor
<
platform
::
CPUPlace
,
T
>
()(
logits
,
softmax
,
context
);
// Calculate the cross entropy loss based on hard labels.
T
*
softmax_data
=
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
softmax_out
=
softmax
->
data
<
T
>
();
T
*
loss_data
=
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
Tensor
*
loss
=
context
.
Output
<
Tensor
>
(
"Loss"
);
math
::
SoftmaxFunctor
<
platform
::
CPUPlace
,
T
>
()(
context
,
logits
,
softmax
);
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
loss_data
=
loss
->
data
<
T
>
();
const
int
batch_size
=
logits
->
dims
()[
0
];
const
int
batch_size
=
logits
->
dims
()[
0
];
if
(
context
.
Attr
<
bool
>
(
"softLabel"
))
{
//(TODO caoying) the forward implementation can be further optimized.
// Current implementation is exactly cross entropy after softmax.
auto
prob
=
EigenMatrix
<
T
>::
From
(
*
softmax
);
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
*
labels
);
auto
loss_mat
=
EigenMatrix
<
T
>::
From
(
*
loss
);
loss_mat
.
device
(
context
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
-
((
lbl_mat
*
prob
.
log
().
unaryExpr
(
TolerableValue
<
T
>
()))
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
)));
}
else
{
const
int
*
label_data
=
labels
->
data
<
int
>
();
const
int
class_num
=
logits
->
dims
()[
1
];
const
int
class_num
=
logits
->
dims
()[
1
];
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
int
index
=
i
*
class_num
+
label_data
[
i
];
loss_data
[
i
]
=
-
TolerableValue
<
T
>
()(
loss_data
[
i
]
=
-
tolerable_value
(
std
::
log
(
softmax_out
[
index
]));
std
::
log
(
softmax_data
[
i
*
class_num
+
label_data
[
i
]
]));
}
}
}
}
};
};
...
@@ -62,18 +69,34 @@ template <typename T>
...
@@ -62,18 +69,34 @@ template <typename T>
class
SoftmaxWithCrossEntropyGradKernel
:
public
framework
::
OpKernel
{
class
SoftmaxWithCrossEntropyGradKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
logit_grad
=
Tensor
*
logit_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
ShareDataWith
<
T
>
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
logit_grad
->
ShareDataWith
<
T
>
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
T
*
logit_grad_data
=
logit_grad
->
data
<
T
>
();
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
class_num
=
logit_grad
->
dims
()[
1
];
const
int
class_num
=
logit_grad
->
dims
()[
1
];
if
(
context
.
Attr
<
bool
>
(
"softLabel"
))
{
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
auto
logit_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
logit_grad
);
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
*
labels
);
logit_grad_mat
.
device
(
context
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
logit_grad_mat
*
out_grad_mat
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
class_num
))
-
lbl_mat
;
}
else
{
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
*
label_data
=
labels
->
data
<
int
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
T
*
logit_grad_data
=
logit_grad
->
data
<
T
>
();
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
int
index
=
i
*
class_num
+
label_data
[
i
];
logit_grad_data
[
index
]
-=
1.
;
logit_grad_data
[
index
]
=
(
out_grad_data
[
i
]
*
logit_grad_data
[
index
]
-
1.
);
}
}
}
}
}
};
};
...
...
python/paddle/v2/framework/tests/test_softmax_with_cross_entropy_op.py
浏览文件 @
8b8ad6b1
...
@@ -6,22 +6,23 @@ from test_softmax_op import stable_softmax
...
@@ -6,22 +6,23 @@ from test_softmax_op import stable_softmax
class
TestSoftmaxWithCrossEntropyOp
(
OpTest
):
class
TestSoftmaxWithCrossEntropyOp
(
OpTest
):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
"""
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
op_type
=
"softmax_with_cross_entropy"
batch_size
=
3
MAX_BATCH_SIZE
=
23
class_num
=
37
MAX_CLASS_NUM
=
17
batch_size
=
np
.
random
.
randint
(
1
,
MAX_BATCH_SIZE
,
1
)[
0
]
class_num
=
np
.
random
.
randint
(
2
,
MAX_CLASS_NUM
,
1
)[
0
]
logits
=
np
.
random
.
uniform
(
0.1
,
1.0
,
logits
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
[
batch_size
,
class_num
]).
astype
(
"float32"
)
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
logits
)
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
logits
)
labels
=
np
.
random
.
randint
(
0
,
class_num
,
batch_size
,
dtype
=
"int32"
)
labels
=
np
.
random
.
randint
(
0
,
class_num
,
[
batch_size
,
1
]
,
dtype
=
"int32"
)
cross_entropy
=
np
.
asmatrix
(
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
softmax
[
i
][
labels
[
i
]])]
for
i
in
range
(
softmax
.
shape
[
0
])],
[[
-
np
.
log
(
softmax
[
i
][
labels
[
i
][
0
]])]
for
i
in
range
(
softmax
.
shape
[
0
])],
dtype
=
"float32"
)
dtype
=
"float32"
)
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
...
@@ -34,5 +35,36 @@ class TestSoftmaxWithCrossEntropyOp(OpTest):
...
@@ -34,5 +35,36 @@ class TestSoftmaxWithCrossEntropyOp(OpTest):
self
.
check_grad
([
"Logits"
],
"Loss"
,
max_relative_error
=
0.05
)
self
.
check_grad
([
"Logits"
],
"Loss"
,
max_relative_error
=
0.05
)
class
TestSoftmaxWithCrossEntropyOp2
(
OpTest
):
"""
Test softmax with cross entropy operator with soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
batch_size
=
2
class_num
=
17
logits
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
logits
)
labels
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
labels
/=
np
.
sum
(
labels
,
axis
=
1
,
keepdims
=
True
)
cross_entropy
=
(
-
labels
*
np
.
log
(
softmax
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
self
.
outputs
=
{
"Softmax"
:
softmax
,
"Loss"
:
cross_entropy
}
self
.
attrs
=
{
"softLabel"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"Logits"
],
"Loss"
,
max_relative_error
=
0.05
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录