Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8b88960d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b88960d
编写于
3月 09, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix doc. test=develop
上级
2ddd23da
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
10 addition
and
8 deletion
+10
-8
paddle/fluid/operators/softmax_op.cc
paddle/fluid/operators/softmax_op.cc
+4
-4
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+6
-4
未找到文件。
paddle/fluid/operators/softmax_op.cc
浏览文件 @
8b88960d
...
@@ -86,7 +86,7 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -86,7 +86,7 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"The input tensor of softmax, "
"The input tensor of softmax, "
"whose
:attr:`axis` dimension
is the input_feature_dimensions."
);
"whose
dimension :attr:`axis`
is the input_feature_dimensions."
);
AddOutput
(
"Out"
,
"The normalized values with the same shape as X."
);
AddOutput
(
"Out"
,
"The normalized values with the same shape as X."
);
AddAttr
<
int
>
(
"axis"
,
AddAttr
<
int
>
(
"axis"
,
"The dimension index of Input(x) to perform softmax,"
"The dimension index of Input(x) to perform softmax,"
...
@@ -116,13 +116,13 @@ Softmax Operator.
...
@@ -116,13 +116,13 @@ Softmax Operator.
The input of the softmax operator is a tensor of any rank. The output tensor
The input of the softmax operator is a tensor of any rank. The output tensor
has the same shape as the input.
has the same shape as the input.
The
:attr:`axis` th dimension
of the input tensor will be permuted to the last.
The
dimension :attr:`axis`
of the input tensor will be permuted to the last.
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the
:attr:`axis` dimension
of the input
second dimension(row length) is as same as the
dimension :attr:`axis`
of the input
tensor, and the first dimension(column length) is the product of all other
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's
:attr:`axis` dimension
) vector of arbitrary real values to a
of the input tensor's
dimension :attr:`axis`
) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
K-dimensional vector of real values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
values of all the other dimensions in the K-dimensional vector input.
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
8b88960d
...
@@ -1824,13 +1824,13 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
...
@@ -1824,13 +1824,13 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
The input of the softmax operator is a tensor of any rank. The output tensor
The input of the softmax operator is a tensor of any rank. The output tensor
has the same shape as the input.
has the same shape as the input.
The
:attr:`axis` th dimension
of the input tensor will be permuted to the last.
The
dimension :attr:`axis`
of the input tensor will be permuted to the last.
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the
:attr:`axis` th dimension
of the input
second dimension(row length) is as same as the
dimension :attr:`axis`
of the input
tensor, and the first dimension(column length) is the product of all other
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's
:attr:`axis` th dimension
) vector of arbitrary real values to a
of the input tensor's
dimension :attr:`axis`
) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
K-dimensional vector of real values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
It computes the exponential of the given dimension and the sum of exponential
...
@@ -1852,7 +1852,9 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
...
@@ -1852,7 +1852,9 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
False by default. Default: False
False by default. Default: False
name (str|None): A name for this layer(optional). If set None, the layer
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
will be named automatically. Default: None.
axis (int): The index of dimension to perform softmax calculation. Default: -1.
axis (int): The index of dimension to perform softmax calculations, it should
be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
input variable. Default: -1.
Returns:
Returns:
Variable: output of softmax
Variable: output of softmax
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录