Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8add11a0
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8add11a0
编写于
9月 08, 2022
作者:
L
Leo Guo
提交者:
GitHub
9月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Migrate roi_align and roi_align_grad to phi. test=kunlun (#45858)
上级
e56a2853
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
263 addition
and
278 deletion
+263
-278
paddle/fluid/operators/roi_align_op_xpu.cc
paddle/fluid/operators/roi_align_op_xpu.cc
+0
-278
paddle/phi/kernels/xpu/roi_align_grad_kernel.cc
paddle/phi/kernels/xpu/roi_align_grad_kernel.cc
+114
-0
paddle/phi/kernels/xpu/roi_align_kernel.cc
paddle/phi/kernels/xpu/roi_align_kernel.cc
+149
-0
未找到文件。
paddle/fluid/operators/roi_align_op_xpu.cc
已删除
100644 → 0
浏览文件 @
e56a2853
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
XPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
aligned
=
ctx
.
Attr
<
bool
>
(
"aligned"
);
const
auto
&
in_dims
=
in
->
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
if
(
rois_num
==
0
)
return
;
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
auto
cplace
=
platform
::
CPUPlace
();
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
cplace
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
xplace
=
ctx
.
GetPlace
();
int
rois_batch_size
=
0
;
int
*
cpu_lod
=
nullptr
;
if
(
ctx
.
HasInput
(
"RoisNum"
))
{
auto
*
rois_num_t
=
ctx
.
Input
<
Tensor
>
(
"RoisNum"
);
rois_batch_size
=
rois_num_t
->
numel
();
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
platform
::
errors
::
InvalidArgument
(
"The rois_batch_size and imgs "
"batch_size must be the same. But received rois_batch_size = %d, "
"batch_size = %d"
,
rois_batch_size
,
batch_size
));
std
::
vector
<
int
>
rois_num_list
(
rois_batch_size
);
memory
::
Copy
(
cplace
,
rois_num_list
.
data
(),
xplace
,
rois_num_t
->
data
<
int
>
(),
sizeof
(
int
)
*
rois_batch_size
);
cpu_lod
=
new
int
[
rois_batch_size
+
1
];
cpu_lod
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
rois_batch_size
;
i
++
)
{
cpu_lod
[
i
+
1
]
=
cpu_lod
[
i
]
+
rois_num_list
[
i
];
}
}
else
{
auto
lod
=
rois
->
lod
();
PADDLE_ENFORCE_EQ
(
lod
.
empty
(),
false
,
platform
::
errors
::
InvalidArgument
(
"Input(ROIs) in ROIAlignOp does "
"not contain LoD information."
));
auto
rois_lod
=
lod
.
back
();
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
platform
::
errors
::
InvalidArgument
(
"The batch size of rois and batch size "
"of images must be the same. But received rois batch size = %d, "
"and images batch size = %d"
,
rois_batch_size
,
batch_size
));
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
platform
::
errors
::
InvalidArgument
(
"The actual number of rois and the number of rois "
"provided from Input(RoIsLoD) in RoIAlign must be the same."
" But received actual number of rois is %d, and the number "
"of rois from RoIsLoD is %d"
,
rois_num
,
rois_num_with_lod
));
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
cpu_lod
=
new
int
[
rois_batch_size
+
1
];
for
(
int
i
=
0
;
i
<
rois_batch_size
+
1
;
i
++
)
{
cpu_lod
[
i
]
=
rois_lod
[
i
];
}
}
int
*
roi_id_data
=
nullptr
;
int
r
=
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
roi_id_data
),
(
rois_batch_size
+
1
)
*
sizeof
(
int
));
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"no enough memory in xpu"
));
memory
::
Copy
(
xplace
,
roi_id_data
,
cplace
,
cpu_lod
,
(
rois_batch_size
+
1
)
*
sizeof
(
int
));
delete
[]
cpu_lod
;
r
=
xpu
::
roi_align
<
T
,
int
>
(
dev_ctx
.
x_context
(),
in
->
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
rois
->
data
<
T
>
(),
roi_id_data
,
batch_size
,
channels
,
height
,
width
,
out
->
dims
()[
0
],
pooled_height
,
pooled_width
,
spatial_scale
,
sampling_ratio
,
true
,
aligned
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The roi_align XPU OP return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
if
(
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
xpu_free
(
roi_id_data
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
XPUROIAlignGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
aligned
=
ctx
.
Attr
<
bool
>
(
"aligned"
);
int
rois_num
=
rois
->
dims
()[
0
];
int
channels
=
in
->
dims
()[
1
];
int
height
=
in
->
dims
()[
2
];
int
width
=
in
->
dims
()[
3
];
if
(
!
in_grad
)
{
return
;
}
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
auto
cplace
=
platform
::
CPUPlace
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
xplace
=
ctx
.
GetPlace
();
int
rois_batch_size
=
0
;
int
*
cpu_lod
=
nullptr
;
if
(
ctx
.
HasInput
(
"RoisNum"
))
{
auto
*
rois_num_t
=
ctx
.
Input
<
Tensor
>
(
"RoisNum"
);
rois_batch_size
=
rois_num_t
->
numel
();
std
::
vector
<
int
>
rois_num_list
(
rois_batch_size
);
memory
::
Copy
(
cplace
,
rois_num_list
.
data
(),
xplace
,
rois_num_t
->
data
<
int
>
(),
sizeof
(
int
)
*
rois_batch_size
);
cpu_lod
=
new
int
[
rois_batch_size
+
1
];
cpu_lod
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
rois_batch_size
;
i
++
)
{
cpu_lod
[
i
+
1
]
=
cpu_lod
[
i
]
+
rois_num_list
[
i
];
}
}
else
{
auto
rois_lod
=
rois
->
lod
().
back
();
rois_batch_size
=
rois_lod
.
size
()
-
1
;
cpu_lod
=
new
int
[
rois_batch_size
+
1
];
for
(
int
i
=
0
;
i
<
rois_batch_size
+
1
;
i
++
)
{
cpu_lod
[
i
]
=
rois_lod
[
i
];
}
}
int
*
roi_id_data
=
nullptr
;
int
r
=
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
roi_id_data
),
(
rois_batch_size
+
1
)
*
sizeof
(
int
));
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"no enough memory in xpu"
));
memory
::
Copy
(
xplace
,
roi_id_data
,
cplace
,
cpu_lod
,
(
rois_batch_size
+
1
)
*
sizeof
(
int
));
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
output_grad_size
=
out_grad
->
numel
();
delete
[]
cpu_lod
;
if
(
output_grad_size
>
0
)
{
r
=
xpu
::
roi_align_grad
<
T
,
int
>
(
dev_ctx
.
x_context
(),
out_grad
->
data
<
T
>
(),
in_grad
->
data
<
T
>
(),
rois
->
data
<
T
>
(),
roi_id_data
,
in
->
dims
()[
0
],
channels
,
height
,
width
,
out_grad
->
dims
()[
0
],
pooled_height
,
pooled_width
,
spatial_scale
,
sampling_ratio
,
true
,
aligned
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The roi_align_grad XPU OP return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
if
(
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
xpu_free
(
roi_id_data
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
roi_align
,
ops
::
XPUROIAlignOpKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
roi_align_grad
,
ops
::
XPUROIAlignGradOpKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/phi/kernels/xpu/roi_align_grad_kernel.cc
0 → 100644
浏览文件 @
8add11a0
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/roi_align_kernel.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
RoiAlignGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
boxes
,
const
paddle
::
optional
<
DenseTensor
>&
boxes_num
,
const
DenseTensor
&
out_grad
,
int
pooled_height
,
int
pooled_width
,
float
spatial_scale
,
int
sampling_ratio
,
bool
aligned
,
DenseTensor
*
dx
)
{
int
rois_num
=
boxes
.
dims
()[
0
];
int
channels
=
x
.
dims
()[
1
];
int
height
=
x
.
dims
()[
2
];
int
width
=
x
.
dims
()[
3
];
if
(
!
dx
)
{
return
;
}
DenseTensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
auto
cplace
=
phi
::
CPUPlace
();
auto
xplace
=
dev_ctx
.
GetPlace
();
int
rois_batch_size
=
0
;
int
*
cpu_lod
=
nullptr
;
if
(
boxes_num
)
{
rois_batch_size
=
boxes_num
->
numel
();
std
::
vector
<
int
>
rois_num_list
(
rois_batch_size
);
paddle
::
memory
::
Copy
(
cplace
,
rois_num_list
.
data
(),
xplace
,
boxes_num
->
data
<
int
>
(),
sizeof
(
int
)
*
rois_batch_size
);
cpu_lod
=
new
int
[
rois_batch_size
+
1
];
cpu_lod
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
rois_batch_size
;
i
++
)
{
cpu_lod
[
i
+
1
]
=
cpu_lod
[
i
]
+
rois_num_list
[
i
];
}
}
else
{
auto
rois_lod
=
boxes
.
lod
().
back
();
rois_batch_size
=
rois_lod
.
size
()
-
1
;
cpu_lod
=
new
int
[
rois_batch_size
+
1
];
for
(
int
i
=
0
;
i
<
rois_batch_size
+
1
;
i
++
)
{
cpu_lod
[
i
]
=
rois_lod
[
i
];
}
}
int
*
roi_id_data
=
nullptr
;
int
r
=
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
roi_id_data
),
(
rois_batch_size
+
1
)
*
sizeof
(
int
));
PADDLE_ENFORCE_XPU_SUCCESS
(
r
);
paddle
::
memory
::
Copy
(
xplace
,
roi_id_data
,
cplace
,
cpu_lod
,
(
rois_batch_size
+
1
)
*
sizeof
(
int
));
dev_ctx
.
template
Alloc
<
T
>(
dx
);
int
output_grad_size
=
out_grad
.
numel
();
delete
[]
cpu_lod
;
if
(
output_grad_size
>
0
)
{
r
=
xpu
::
roi_align_grad
<
T
,
int
>
(
dev_ctx
.
x_context
(),
out_grad
.
data
<
T
>
(),
dx
->
data
<
T
>
(),
boxes
.
data
<
T
>
(),
roi_id_data
,
x
.
dims
()[
0
],
channels
,
height
,
width
,
out_grad
.
dims
()[
0
],
pooled_height
,
pooled_width
,
spatial_scale
,
sampling_ratio
,
true
,
aligned
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"roi_align_grad"
);
}
if
(
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
xpu_free
(
roi_id_data
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
roi_align_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
RoiAlignGradKernel
,
float
)
{}
paddle/phi/kernels/xpu/roi_align_kernel.cc
0 → 100644
浏览文件 @
8add11a0
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/roi_align_kernel.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
RoiAlignKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
boxes
,
const
paddle
::
optional
<
DenseTensor
>&
boxes_num
,
int
pooled_height
,
int
pooled_width
,
float
spatial_scale
,
int
sampling_ratio
,
bool
aligned
,
DenseTensor
*
out
)
{
const
auto
&
in_dims
=
x
.
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
boxes
.
dims
()[
0
];
if
(
rois_num
==
0
)
return
;
DenseTensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
auto
cplace
=
phi
::
CPUPlace
();
int
*
roi_batch_id_data
=
dev_ctx
.
template
HostAlloc
<
int
>(
&
roi_batch_id_list
);
auto
xplace
=
dev_ctx
.
GetPlace
();
int
rois_batch_size
=
0
;
int
*
cpu_lod
=
nullptr
;
if
(
boxes_num
)
{
rois_batch_size
=
boxes_num
->
numel
();
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
errors
::
InvalidArgument
(
"The rois_batch_size and imgs "
"batch_size must be the same. But received rois_batch_size = %d, "
"batch_size = %d"
,
rois_batch_size
,
batch_size
));
std
::
vector
<
int
>
rois_num_list
(
rois_batch_size
);
paddle
::
memory
::
Copy
(
cplace
,
rois_num_list
.
data
(),
xplace
,
boxes_num
->
data
<
int
>
(),
sizeof
(
int
)
*
rois_batch_size
);
cpu_lod
=
new
int
[
rois_batch_size
+
1
];
cpu_lod
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
rois_batch_size
;
i
++
)
{
cpu_lod
[
i
+
1
]
=
cpu_lod
[
i
]
+
rois_num_list
[
i
];
}
}
else
{
auto
lod
=
boxes
.
lod
();
PADDLE_ENFORCE_EQ
(
lod
.
empty
(),
false
,
errors
::
InvalidArgument
(
"Input(ROIs) in ROIAlignOp does "
"not contain LoD information."
));
auto
rois_lod
=
lod
.
back
();
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
errors
::
InvalidArgument
(
"The batch size of rois and batch size "
"of images must be the same. But received rois batch size = %d, "
"and images batch size = %d"
,
rois_batch_size
,
batch_size
));
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
errors
::
InvalidArgument
(
"The actual number of rois and the number of rois "
"provided from Input(RoIsLoD) in RoIAlign must be the same."
" But received actual number of rois is %d, and the number "
"of rois from RoIsLoD is %d"
,
rois_num
,
rois_num_with_lod
));
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
cpu_lod
=
new
int
[
rois_batch_size
+
1
];
for
(
int
i
=
0
;
i
<
rois_batch_size
+
1
;
i
++
)
{
cpu_lod
[
i
]
=
rois_lod
[
i
];
}
}
int
*
roi_id_data
=
nullptr
;
int
r
=
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
roi_id_data
),
(
rois_batch_size
+
1
)
*
sizeof
(
int
));
PADDLE_ENFORCE_XPU_SUCCESS
(
r
);
paddle
::
memory
::
Copy
(
xplace
,
roi_id_data
,
cplace
,
cpu_lod
,
(
rois_batch_size
+
1
)
*
sizeof
(
int
));
delete
[]
cpu_lod
;
r
=
xpu
::
roi_align
<
T
,
int
>
(
dev_ctx
.
x_context
(),
x
.
data
<
T
>
(),
dev_ctx
.
template
Alloc
<
T
>(
out
),
boxes
.
data
<
T
>
(),
roi_id_data
,
batch_size
,
channels
,
height
,
width
,
out
->
dims
()[
0
],
pooled_height
,
pooled_width
,
spatial_scale
,
sampling_ratio
,
true
,
aligned
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"roi_align_grad"
);
if
(
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
xpu_free
(
roi_id_data
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
roi_align
,
XPU
,
ALL_LAYOUT
,
phi
::
RoiAlignKernel
,
float
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录