未验证 提交 890f626b 编写于 作者: T tangwei12 提交者: GitHub

Optimize/fleet save (#32817)

* fix cpp lint
* fix save/load with unexpected value
* fix save and user interface
上级 e1a4c83c
...@@ -13,9 +13,9 @@ ...@@ -13,9 +13,9 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/distributed/table/common_sparse_table.h" #include "paddle/fluid/distributed/table/common_sparse_table.h"
#include <sstream> #include <sstream>
#include "boost/lexical_cast.hpp"
#include "glog/logging.h" #include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
...@@ -25,7 +25,8 @@ class ValueBlock; ...@@ -25,7 +25,8 @@ class ValueBlock;
} // namespace distributed } // namespace distributed
} // namespace paddle } // namespace paddle
#define PSERVER_SAVE_SUFFIX "_txt" #define PSERVER_SAVE_SUFFIX ".shard"
using boost::lexical_cast;
namespace paddle { namespace paddle {
namespace distributed { namespace distributed {
...@@ -100,7 +101,7 @@ struct Meta { ...@@ -100,7 +101,7 @@ struct Meta {
}; };
void ProcessALine(const std::vector<std::string>& columns, const Meta& meta, void ProcessALine(const std::vector<std::string>& columns, const Meta& meta,
std::vector<std::vector<float>>* values) { const int64_t id, std::vector<std::vector<float>>* values) {
auto colunmn_size = columns.size(); auto colunmn_size = columns.size();
auto load_values = auto load_values =
paddle::string::split_string<std::string>(columns[colunmn_size - 1], ","); paddle::string::split_string<std::string>(columns[colunmn_size - 1], ",");
...@@ -116,8 +117,18 @@ void ProcessALine(const std::vector<std::string>& columns, const Meta& meta, ...@@ -116,8 +117,18 @@ void ProcessALine(const std::vector<std::string>& columns, const Meta& meta,
"The data format in txt does not meet the field " "The data format in txt does not meet the field "
"requirements defined in meta")); "requirements defined in meta"));
std::transform(start, end, std::back_inserter(val), std::transform(start, end, std::back_inserter(val), [id](std::string va) {
[](std::string va) { return std::stof(va); }); float v = 0.0;
try {
v = lexical_cast<float>(va);
} catch (boost::bad_lexical_cast& e) {
VLOG(0) << "id: " << id << " get unexpected value: " << va
<< " and be reset to: 0.0";
}
return v;
});
values->push_back(val); values->push_back(val);
offset += meta.dims[x]; offset += meta.dims[x];
} }
...@@ -126,25 +137,29 @@ void ProcessALine(const std::vector<std::string>& columns, const Meta& meta, ...@@ -126,25 +137,29 @@ void ProcessALine(const std::vector<std::string>& columns, const Meta& meta,
int64_t SaveToText(std::ostream* os, std::shared_ptr<ValueBlock> block, int64_t SaveToText(std::ostream* os, std::shared_ptr<ValueBlock> block,
const int mode) { const int mode) {
int64_t save_num = 0; int64_t save_num = 0;
for (auto& table : block->values_) { for (auto& table : block->values_) {
for (auto& value : table) { for (auto& value : table) {
if (mode == SaveMode::delta && !value.second->need_save_) { if (mode == SaveMode::delta && !value.second->need_save_) {
continue; continue;
} }
save_num += 1;
auto* vs = value.second->data_.data(); ++save_num;
std::stringstream ss; std::stringstream ss;
auto* vs = value.second->data_.data();
auto id = value.first; auto id = value.first;
ss << id << "\t" << value.second->count_ << "\t" ss << id << "\t" << value.second->count_ << "\t"
<< value.second->unseen_days_ << "\t" << value.second->is_entry_ << value.second->unseen_days_ << "\t" << value.second->is_entry_
<< "\t"; << "\t";
for (int i = 0; i < block->value_length_; i++) { for (int i = 0; i < block->value_length_ - 1; i++) {
ss << vs[i]; ss << std::to_string(vs[i]) << ",";
ss << ",";
} }
ss << std::to_string(vs[block->value_length_ - 1]);
ss << "\n"; ss << "\n";
os->write(ss.str().c_str(), sizeof(char) * ss.str().size()); os->write(ss.str().c_str(), sizeof(char) * ss.str().size());
...@@ -170,7 +185,7 @@ int64_t LoadFromText(const std::string& valuepath, const std::string& metapath, ...@@ -170,7 +185,7 @@ int64_t LoadFromText(const std::string& valuepath, const std::string& metapath,
while (std::getline(file, line)) { while (std::getline(file, line)) {
auto values = paddle::string::split_string<std::string>(line, "\t"); auto values = paddle::string::split_string<std::string>(line, "\t");
auto id = std::stoull(values[0]); auto id = lexical_cast<int64_t>(values[0]);
if (id % pserver_num != pserver_id) { if (id % pserver_num != pserver_id) {
VLOG(3) << "will not load " << values[0] << " from " << valuepath VLOG(3) << "will not load " << values[0] << " from " << valuepath
...@@ -182,15 +197,17 @@ int64_t LoadFromText(const std::string& valuepath, const std::string& metapath, ...@@ -182,15 +197,17 @@ int64_t LoadFromText(const std::string& valuepath, const std::string& metapath,
auto block = blocks->at(shard_id); auto block = blocks->at(shard_id);
std::vector<std::vector<float>> kvalues; std::vector<std::vector<float>> kvalues;
ProcessALine(values, meta, &kvalues); ProcessALine(values, meta, id, &kvalues);
block->Init(id, false); block->Init(id, false);
VALUE* value_instant = block->GetValue(id); VALUE* value_instant = block->GetValue(id);
if (values.size() == 5) { if (values.size() == 5) {
value_instant->count_ = std::stoi(values[1]); value_instant->count_ = lexical_cast<int>(values[1]);
value_instant->unseen_days_ = std::stoi(values[2]); value_instant->unseen_days_ = lexical_cast<int>(values[2]);
value_instant->is_entry_ = static_cast<bool>(std::stoi(values[3])); value_instant->is_entry_ =
static_cast<bool>(lexical_cast<int>(values[3]));
} }
std::vector<float*> block_values = block->Get(id, meta.names, meta.dims); std::vector<float*> block_values = block->Get(id, meta.names, meta.dims);
...@@ -475,7 +492,7 @@ int32_t CommonSparseTable::pull_sparse_ptr(char** pull_values, ...@@ -475,7 +492,7 @@ int32_t CommonSparseTable::pull_sparse_ptr(char** pull_values,
auto* value = block->InitGet(id); auto* value = block->InitGet(id);
// std::copy_n(value + param_offset_, param_dim_, // std::copy_n(value + param_offset_, param_dim_,
// pull_values + param_dim_ * offset); // pull_values + param_dim_ * offset);
pull_values[offset] = (char*)value; pull_values[offset] = reinterpret_cast<char*>(value);
} }
return 0; return 0;
......
...@@ -580,6 +580,49 @@ class Fleet(object): ...@@ -580,6 +580,49 @@ class Fleet(object):
""" """
self._runtime_handle._stop_worker() self._runtime_handle._stop_worker()
def save(self, dirname, feed=[], fetch=[], **configs):
inference = True
if not feed and not fetch:
inference = False
place = paddle.CPUPlace()
executor = paddle.static.Executor(place)
if inference:
feeded_var_names = []
fetch_var_names = []
for var in feed:
if isinstance(var, str):
feeded_var_names.append(var)
elif isinstance(var, paddle.static.Variable):
feeded_var_names.append(var.name)
else:
raise ValueError("feed must be [str|Variable]")
for var in fetch:
if isinstance(var, str):
fetch_var_names.append(var)
elif isinstance(var, paddle.static.Variable):
fetch_var_names.append(var.name)
else:
raise ValueError("feed must be [str|Variable]")
fetch_vars = [
paddle.static.default_main_program().global_block().var(name)
for name in fetch_var_names
]
self._runtime_handle._save_inference_model(
executor, dirname, feeded_var_names, fetch_vars, None, True, 0)
else:
increment_mode = 0
if "mode" in configs:
increment_mode = int(configs["mode"])
self._runtime_handle._save_persistables(
executor, dirname, main_program=None, mode=increment_mode)
def save_inference_model(self, def save_inference_model(self,
executor, executor,
dirname, dirname,
...@@ -607,6 +650,9 @@ class Fleet(object): ...@@ -607,6 +650,9 @@ class Fleet(object):
fleet.init_server() fleet.init_server()
""" """
# warnings.warn(
# "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
# )
self._runtime_handle._save_inference_model( self._runtime_handle._save_inference_model(
executor, dirname, feeded_var_names, target_vars, main_program, executor, dirname, feeded_var_names, target_vars, main_program,
...@@ -653,6 +699,9 @@ class Fleet(object): ...@@ -653,6 +699,9 @@ class Fleet(object):
fleet.save_persistables(exe, "dirname", paddle.static.default_main_program()) fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
""" """
# warnings.warn(
# "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
# )
self._runtime_handle._save_persistables(executor, dirname, main_program, self._runtime_handle._save_persistables(executor, dirname, main_program,
mode) mode)
......
...@@ -32,7 +32,7 @@ def conv_indent(indent): ...@@ -32,7 +32,7 @@ def conv_indent(indent):
return "".join([" "] * indent) return "".join([" "] * indent)
PSERVER_SAVE_SUFFIX = "_txt" PSERVER_SAVE_SUFFIX = ".shard"
class Accessor: class Accessor:
...@@ -916,7 +916,7 @@ class TheOnePSRuntime(RuntimeBase): ...@@ -916,7 +916,7 @@ class TheOnePSRuntime(RuntimeBase):
self.compiled_strategy.origin_main_program, True) self.compiled_strategy.origin_main_program, True)
values = [] values = []
for id, names in context.items(): for id, names in context.items():
if names not in distributed_varnames: if names[0] not in distributed_varnames:
# only save sparse param to local # only save sparse param to local
self._worker.recv_and_save_model(id, dirname) self._worker.recv_and_save_model(id, dirname)
# save sparse & distributed param on server # save sparse & distributed param on server
...@@ -953,11 +953,11 @@ class TheOnePSRuntime(RuntimeBase): ...@@ -953,11 +953,11 @@ class TheOnePSRuntime(RuntimeBase):
TheOnePSRuntime.__exclude_vars(saved_varnames), TheOnePSRuntime.__exclude_vars(saved_varnames),
main_program.list_vars())) main_program.list_vars()))
fluid.io.save_vars( import paddle
executor, for var in remaining_vars:
main_program=main_program, tensor = var.get_value()
dirname=dirname, paddle.save(
vars=remaining_vars) tensor, os.path.join(dirname, var.name), use_binary_format=True)
def _ps_inference_save_persistables(self, def _ps_inference_save_persistables(self,
executor, executor,
...@@ -978,20 +978,19 @@ class TheOnePSRuntime(RuntimeBase): ...@@ -978,20 +978,19 @@ class TheOnePSRuntime(RuntimeBase):
if isinstance(executor, ParallelExecutor): if isinstance(executor, ParallelExecutor):
raise TypeError( raise TypeError(
"in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed" "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
) )
if not isinstance(executor, Executor): if not isinstance(executor, Executor):
raise TypeError( raise TypeError(
"in fleet.save_persistables() function, executor must be as Executor type" "in fleet.save() function, executor must be as Executor type")
)
if main_program is None: if main_program is None:
main_program = self.compiled_strategy.get_origin_ps_main_program() main_program = self.compiled_strategy.get_origin_ps_main_program()
if isinstance(main_program, CompiledProgram): if isinstance(main_program, CompiledProgram):
raise TypeError( raise TypeError(
"in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed" "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
) )
# Todo(MrChengmo): Save optimizer status # Todo(MrChengmo): Save optimizer status
...@@ -1013,36 +1012,35 @@ class TheOnePSRuntime(RuntimeBase): ...@@ -1013,36 +1012,35 @@ class TheOnePSRuntime(RuntimeBase):
if isinstance(executor, ParallelExecutor): if isinstance(executor, ParallelExecutor):
raise TypeError( raise TypeError(
"in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed" "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
) )
if not isinstance(executor, Executor): if not isinstance(executor, Executor):
raise TypeError( raise TypeError(
"in fleet.save_inference_model() function, executor must be as Executor type" "in fleet.save() function, executor must be as Executor type")
)
if main_program is not None: import paddle
if isinstance(main_program, CompiledProgram): program = self.origin_main_program if main_program is None else main_program
if isinstance(program, CompiledProgram):
raise TypeError( raise TypeError(
"in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed" "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
) )
fluid.io.save_inference_model(dirname, feeded_var_names,
target_vars, executor, main_program,
None, None, export_for_deployment)
else:
fluid.io.save_inference_model(dirname, feeded_var_names,
target_vars, executor,
self.origin_main_program, None, None,
export_for_deployment, True)
model_basename = "__model__"
model_filename = os.path.join(dirname, model_basename)
with open(model_filename, "rb") as f: feed_vars = [
program_desc_str = f.read() program.global_block().var(name) for name in feeded_var_names
]
infer_program = paddle.static.normalize_program(program, feed_vars,
target_vars)
infer_program._copy_dist_param_info_from(program)
model_basename = "__model__"
model_basename = os.path.join(dirname, model_basename)
paddle.save(infer_program, model_basename)
program = Program.parse_from_string(program_desc_str) self._ps_inference_save_persistables(executor, dirname, infer_program,
program._copy_dist_param_info_from(fluid.default_main_program())
self._ps_inference_save_persistables(executor, dirname, program,
mode) mode)
def _save_inference_model(self, *args, **kwargs): def _save_inference_model(self, *args, **kwargs):
......
...@@ -14,6 +14,8 @@ ...@@ -14,6 +14,8 @@
import unittest import unittest
import paddle import paddle
paddle.enable_static()
import os import os
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -21,7 +23,6 @@ import paddle.fluid as fluid ...@@ -21,7 +23,6 @@ import paddle.fluid as fluid
class TestFleetBase(unittest.TestCase): class TestFleetBase(unittest.TestCase):
def setUp(self): def setUp(self):
os.environ["POD_IP"] = "127.0.0.1" os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
os.environ["PADDLE_TRAINERS_NUM"] = "2" os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \ os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
"127.0.0.1:36001,127.0.0.2:36001" "127.0.0.1:36001,127.0.0.2:36001"
...@@ -30,9 +31,8 @@ class TestFleetBase(unittest.TestCase): ...@@ -30,9 +31,8 @@ class TestFleetBase(unittest.TestCase):
import paddle import paddle
import paddle.distributed.fleet as fleet import paddle.distributed.fleet as fleet
os.environ["TRAINING_ROLE"] = "PSERVER" os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["POD_IP"] = "127.0.0.1" os.environ["PADDLE_TRAINER_ID"] = "1"
os.environ["PADDLE_PORT"] = "36001"
input_x = paddle.fluid.layers.data( input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32') name="x", shape=[32], dtype='float32')
...@@ -47,24 +47,26 @@ class TestFleetBase(unittest.TestCase): ...@@ -47,24 +47,26 @@ class TestFleetBase(unittest.TestCase):
role = fleet.PaddleCloudRoleMaker(is_collective=False) role = fleet.PaddleCloudRoleMaker(is_collective=False)
fleet.init(role) fleet.init(role)
strategy = paddle.distributed.fleet.DistributedStrategy() strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = False strategy.a_sync = False
strategy.a_sync_configs = {"launch_barrier": False}
optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost) optimizer.minimize(avg_cost)
place = fluid.CPUPlace() place = fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(paddle.static.default_startup_program())
pe = fluid.ParallelExecutor(use_cuda=False, loss_name=avg_cost.name) pe = fluid.ParallelExecutor(use_cuda=False, loss_name=avg_cost.name)
compiled_prog = fluid.compiler.CompiledProgram( compiled_prog = fluid.compiler.CompiledProgram(
fluid.default_main_program()) fluid.default_main_program())
self.assertRaises(
Exception, fleet.fleet.save(dirname="/tmp", feed=['x', 'y'], fetch=[avg_cost])
fleet.save_inference_model, fleet.fleet.save(
dirname='/tmp/', dirname="/tmp", feed=[input_x, input_y], fetch=[avg_cost])
feeded_var_names=['x', 'y'], fleet.fleet.save(dirname="/tmp")
target_vars=[avg_cost],
executor=pe)
self.assertRaises( self.assertRaises(
Exception, Exception,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册