Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
87fe52c1
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
87fe52c1
编写于
3月 18, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ModelAverage class to optimizer.py
上级
016d0eb7
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
144 addition
and
5 deletion
+144
-5
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+144
-5
未找到文件。
python/paddle/fluid/optimizer.py
浏览文件 @
87fe52c1
...
@@ -13,7 +13,7 @@
...
@@ -13,7 +13,7 @@
# limitations under the License.
# limitations under the License.
from
collections
import
defaultdict
from
collections
import
defaultdict
from
paddle.fluid.framework
import
Program
import
framework
import
framework
import
layers
import
layers
from
backward
import
append_backward
from
backward
import
append_backward
...
@@ -24,7 +24,10 @@ from layer_helper import LayerHelper
...
@@ -24,7 +24,10 @@ from layer_helper import LayerHelper
from
regularizer
import
append_regularization_ops
from
regularizer
import
append_regularization_ops
from
clip
import
append_gradient_clip_ops
,
error_clip_callback
from
clip
import
append_gradient_clip_ops
,
error_clip_callback
__all__
=
[
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
]
__all__
=
[
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'ModelAverage'
]
class
Optimizer
(
object
):
class
Optimizer
(
object
):
...
@@ -119,7 +122,12 @@ class Optimizer(object):
...
@@ -119,7 +122,12 @@ class Optimizer(object):
"""
"""
pass
pass
def
_add_accumulator
(
self
,
name
,
param
,
dtype
=
None
,
fill_value
=
0.0
):
def
_add_accumulator
(
self
,
name
,
param
,
dtype
=
None
,
fill_value
=
0.0
,
shape
=
None
):
"""Utility function to add an accumulator for a parameter
"""Utility function to add an accumulator for a parameter
Args:
Args:
...
@@ -133,17 +141,19 @@ class Optimizer(object):
...
@@ -133,17 +141,19 @@ class Optimizer(object):
param
.
name
in
self
.
_accumulators
[
name
]):
param
.
name
in
self
.
_accumulators
[
name
]):
raise
Exception
(
"Accumulator {} already exists for parameter {}"
.
raise
Exception
(
"Accumulator {} already exists for parameter {}"
.
format
(
name
,
param
.
name
))
format
(
name
,
param
.
name
))
if
shape
==
None
:
shape
=
param
.
shape
assert
isinstance
(
self
.
helper
,
LayerHelper
)
assert
isinstance
(
self
.
helper
,
LayerHelper
)
var
=
self
.
helper
.
create_global_variable
(
var
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
.
generate
(
name
),
name
=
unique_name
.
generate
(
name
),
persistable
=
True
,
persistable
=
True
,
dtype
=
dtype
or
param
.
dtype
,
dtype
=
dtype
or
param
.
dtype
,
type
=
param
.
type
,
type
=
param
.
type
,
shape
=
param
.
shape
)
shape
=
shape
)
self
.
helper
.
set_variable_initializer
(
self
.
helper
.
set_variable_initializer
(
var
,
initializer
=
Constant
(
value
=
float
(
fill_value
)))
var
,
initializer
=
Constant
(
value
=
float
(
fill_value
)))
self
.
_accumulators
[
name
][
param
.
name
]
=
var
self
.
_accumulators
[
name
][
param
.
name
]
=
var
return
var
def
_get_accumulator
(
self
,
name
,
param
):
def
_get_accumulator
(
self
,
name
,
param
):
"""Utility function to fetch an accumulator for a parameter
"""Utility function to fetch an accumulator for a parameter
...
@@ -592,3 +602,132 @@ Adagrad = AdagradOptimizer
...
@@ -592,3 +602,132 @@ Adagrad = AdagradOptimizer
Adam
=
AdamOptimizer
Adam
=
AdamOptimizer
Adamax
=
AdamaxOptimizer
Adamax
=
AdamaxOptimizer
DecayedAdagrad
=
DecayedAdagradOptimizer
DecayedAdagrad
=
DecayedAdagradOptimizer
class
ModelAverage
(
Optimizer
):
"""Accumulate the average of parameters whtin sliding window. The average
result will be saved in temporary variables which can be applied to
parameter variables of current model by calling 'apply()' method. And the
'restore()' method is used to restored the parameter values of current model.
The size of average window is determined by average_window_rate,
min_average_window, max_average_window and current update times.
Args:
params_grads: A list of parameter-grad variable pairs.
average_window_rate: The rate of average window.
min_average_window: The minimum size of average window.
max_average_window: The maximum size of average window.
Examples:
...
optimizer = fluid.optimizer.Momentum()
_, params_grads = optimizer.minimize(cost)
model_average = fluid.optimizer.ModelAverage(params_grads, 0.15,
min_average_window=10000,
max_average_window=20000)
for pass_id in range(args.pass_num):
for data in train_reader():
exe.run(fluid.default_main_program()...)
model_average.apply()
for data in test_reader():
exe.run(inference_program...)
model_average.restore(exe)
"""
def
__init__
(
self
,
params_grads
,
average_window_rate
,
min_average_window
=
10000
,
max_average_window
=
10000
,
**
kwargs
):
super
(
ModelAverage
,
self
).
__init__
(
0.0
,
**
kwargs
)
self
.
average_window
=
average_window_rate
self
.
min_average_window
=
min_average_window
self
.
max_average_window
=
max_average_window
self
.
params_grads
=
params_grads
for
param
,
_
in
self
.
params_grads
:
self
.
_append_average_accumulate_op
(
param
)
def
_add_average_apply_op
(
self
,
block
,
param_grad
):
param
=
block
.
clone_variable
(
param_grad
[
0
])
grad
=
block
.
clone_variable
(
param_grad
[
1
])
sum_1
=
block
.
clone_variable
(
self
.
_get_accumulator
(
'sum_1'
,
param
))
sum_2
=
block
.
clone_variable
(
self
.
_get_accumulator
(
'sum_2'
,
param
))
sum_3
=
block
.
clone_variable
(
self
.
_get_accumulator
(
'sum_3'
,
param
))
num_accumulates
=
block
.
clone_variable
(
self
.
_get_accumulator
(
'num_accumulates'
,
param
))
old_num_accumulates
=
block
.
clone_variable
(
self
.
_get_accumulator
(
'old_num_accumulates'
,
param
))
num_updates
=
block
.
clone_variable
(
self
.
_get_accumulator
(
'num_updates'
,
param
))
# backup param value to grad
layers
.
assign
(
input
=
param
,
output
=
grad
)
# param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
tmp
=
layers
.
sum
(
x
=
[
num_accumulates
,
old_num_accumulates
])
sum
=
layers
.
sum
(
x
=
[
sum_1
,
sum_2
,
sum_3
])
tmp
=
layers
.
cast
(
x
=
tmp
,
dtype
=
'float32'
)
sum
=
layers
.
cast
(
x
=
sum
,
dtype
=
'float32'
)
layers
.
elementwise_div
(
x
=
sum
,
y
=
tmp
,
out
=
param
)
def
_add_average_restore_op
(
self
,
block
,
param_grad
):
param
=
block
.
clone_variable
(
param_grad
[
0
])
grad
=
block
.
clone_variable
(
param_grad
[
1
])
layers
.
assign
(
input
=
grad
,
output
=
param
)
def
_append_average_accumulate_op
(
self
,
param
):
self
.
helper
=
LayerHelper
(
"average_accumulate"
)
sum_1
=
self
.
_add_accumulator
(
'sum_1'
,
param
)
sum_2
=
self
.
_add_accumulator
(
'sum_2'
,
param
)
sum_3
=
self
.
_add_accumulator
(
'sum_3'
,
param
)
num_accumulates
=
self
.
_add_accumulator
(
'num_accumulates'
,
param
,
dtype
=
'int64'
,
shape
=
[
1
])
old_num_accumulates
=
self
.
_add_accumulator
(
'old_num_accumulates'
,
param
,
dtype
=
'int64'
,
shape
=
[
1
])
num_updates
=
self
.
_add_accumulator
(
'num_updates'
,
param
,
dtype
=
'int64'
,
shape
=
[
1
])
self
.
helper
.
append_op
(
type
=
'average_accumulates'
,
inputs
=
{
"param"
:
param
,
"in_sum_1"
:
sum_1
,
"in_sum_2"
:
sum_2
,
"in_sum_3"
:
sum_3
,
"in_num_accumulates"
:
num_accumulates
,
"in_old_num_accumulates"
:
old_num_accumulates
,
"in_num_updates"
:
num_updates
},
outputs
=
{
"out_sum_1"
:
sum_1
,
"out_sum_2"
:
sum_2
,
"out_sum_3"
:
sum_3
,
"out_num_accumulates"
:
num_accumulates
,
"out_old_num_accumulates"
:
old_num_accumulates
,
"out_num_updates"
:
num_updates
,
},
attrs
=
{
"average_window"
:
self
.
average_window
,
"min_average_window"
:
self
.
min_average_window
,
"max_average_window"
:
self
.
max_average_window
,
})
def
apply
(
self
,
executor
):
"""Apply average values to parameters of current model.
"""
apply_program
=
Program
()
block
=
apply_program
.
global_block
()
with
program_guard
(
main_program
=
apply_program
):
for
param_grad
in
self
.
params_grads
:
self
.
_add_average_apply_op
(
block
,
param_grad
)
executor
.
run
(
apply_program
)
def
restore
(
self
,
executor
):
"""Restore parameter values of current model.
"""
restore_program
=
Program
()
block
=
restore_program
.
global_block
()
with
program_guard
(
main_program
=
restore_program
):
for
param_grad
in
self
.
params_grads
:
self
.
_add_average_restore_op
(
block
,
param_grad
)
executor
.
run
(
restore_program
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录