未验证 提交 861fef52 编写于 作者: W wanghuancoder 提交者: GitHub

delete legacy dygraph code in python/paddle/tensor (#49286)

* delete _in_legacy_dygraph
上级 ea741aff
......@@ -255,8 +255,7 @@ def _test_eager_guard(place=None):
try:
yield
finally:
if not already_fallback:
_enable_legacy_dygraph()
pass
global_ipu_index = -1
......
......@@ -28,7 +28,9 @@ class TestUniqueOp(OpTest):
self.init_config()
def test_check_output(self):
paddle.enable_static()
self.check_output()
paddle.disable_static()
def init_config(self):
self.inputs = {
......@@ -72,6 +74,8 @@ class TestRandom(TestUniqueOp):
class TestUniqueRaiseError(unittest.TestCase):
def test_errors(self):
paddle.enable_static()
def test_type():
paddle.unique([10])
......@@ -82,6 +86,7 @@ class TestUniqueRaiseError(unittest.TestCase):
paddle.unique(data)
self.assertRaises(TypeError, test_dtype)
paddle.disable_static()
@unittest.skipIf(
......@@ -100,8 +105,10 @@ class TestOneGPU(TestUniqueOp):
def test_check_output(self):
if core.is_compiled_with_cuda():
paddle.enable_static()
place = core.CUDAPlace(0)
self.check_output_with_place(place, atol=1e-5)
paddle.disable_static()
@unittest.skipIf(
......@@ -125,8 +132,10 @@ class TestRandomGPU(TestUniqueOp):
def test_check_output(self):
if core.is_compiled_with_cuda():
paddle.enable_static()
place = core.CUDAPlace(0)
self.check_output_with_place(place, atol=1e-5)
paddle.disable_static()
class TestSortedUniqueOp(TestUniqueOp):
......@@ -209,16 +218,13 @@ class TestUniqueOpAxis1(TestUniqueOp):
class TestUniqueAPI(unittest.TestCase):
def test_dygraph_api_out(self):
paddle.disable_static()
x_data = x_data = np.random.randint(0, 10, (120))
x = paddle.to_tensor(x_data)
out = paddle.unique(x)
expected_out = np.unique(x_data)
self.assertTrue((out.numpy() == expected_out).all(), True)
paddle.enable_static()
def test_dygraph_api_attr(self):
paddle.disable_static()
x_data = np.random.random((3, 5, 5)).astype("float32")
x = paddle.to_tensor(x_data)
out, index, inverse, counts = paddle.unique(
......@@ -239,10 +245,8 @@ class TestUniqueAPI(unittest.TestCase):
self.assertTrue((index.numpy() == np_index).all(), True)
self.assertTrue((inverse.numpy() == np_inverse).all(), True)
self.assertTrue((counts.numpy() == np_counts).all(), True)
paddle.enable_static()
def test_dygraph_attr_dtype(self):
paddle.disable_static()
x_data = x_data = np.random.randint(0, 10, (120))
x = paddle.to_tensor(x_data)
out, indices, inverse, counts = paddle.unique(
......@@ -259,9 +263,9 @@ class TestUniqueAPI(unittest.TestCase):
self.assertTrue((indices.numpy() == np_indices).all(), True)
self.assertTrue((inverse.numpy() == np_inverse).all(), True)
self.assertTrue((counts.numpy() == np_counts).all(), True)
paddle.enable_static()
def test_static_graph(self):
paddle.enable_static()
with paddle.static.program_guard(
paddle.static.Program(), paddle.static.Program()
):
......@@ -281,6 +285,7 @@ class TestUniqueAPI(unittest.TestCase):
np.testing.assert_allclose(result[0], np_unique, rtol=1e-05)
np.testing.assert_allclose(result[1], np_inverse, rtol=1e-05)
np.testing.assert_allclose(result[2], np_counts, rtol=1e-05)
paddle.disable_static()
class TestUniqueError(unittest.TestCase):
......@@ -295,6 +300,7 @@ class TestUniqueError(unittest.TestCase):
self.assertRaises(TypeError, test_x_dtype)
def test_attr(self):
paddle.enable_static()
x = paddle.fluid.data(name='x', shape=[10, 10], dtype='float64')
def test_return_index():
......@@ -319,6 +325,7 @@ class TestUniqueError(unittest.TestCase):
result = paddle.unique(x, dtype='float64')
self.assertRaises(TypeError, test_axis)
paddle.disable_static()
if __name__ == "__main__":
......
......@@ -15,7 +15,7 @@
# Define functions about array.
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..framework import LayerHelper, _non_static_mode, core
from ..framework import LayerHelper, core, in_dygraph_mode
from ..static import Variable
__all__ = []
......@@ -45,12 +45,12 @@ def array_length(array):
arr_len = paddle.tensor.array_length(arr)
print(arr_len) # 1
"""
if _non_static_mode():
if in_dygraph_mode():
assert isinstance(
array, list
), "The 'array' in array_write must be a list in dygraph mode"
return len(array)
else:
if (
not isinstance(array, Variable)
or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
......@@ -63,7 +63,9 @@ def array_length(array):
tmp = helper.create_variable_for_type_inference(dtype='int64')
tmp.stop_gradient = True
helper.append_op(
type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}
type='lod_array_length',
inputs={'X': [array]},
outputs={'Out': [tmp]},
)
return tmp
......@@ -107,7 +109,7 @@ def array_read(array, i):
item = paddle.tensor.array_read(arr, i)
print(item) # [[5., 5., 5.]]
"""
if _non_static_mode():
if in_dygraph_mode():
assert isinstance(
array, list
), "The 'array' in array_read must be list in dygraph mode"
......@@ -119,7 +121,7 @@ def array_read(array, i):
], "The shape of index 'i' should be [1] in dygraph mode"
i = i.numpy().item(0)
return array[i]
else:
check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
helper = LayerHelper('array_read', **locals())
if (
......@@ -167,7 +169,7 @@ def array_write(x, i, array=None):
item = paddle.tensor.array_read(arr, i)
print(item) # [[5., 5., 5.]]
"""
if _non_static_mode():
if in_dygraph_mode():
assert isinstance(
x, Variable
), "The input data 'x' in array_write must be Variable in dygraph mode"
......@@ -191,7 +193,7 @@ def array_write(x, i, array=None):
else:
array.append(x)
return array
else:
check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
check_type(x, 'x', (Variable), 'array_write')
helper = LayerHelper('array_write', **locals())
......@@ -265,9 +267,9 @@ def create_array(dtype, initialized_list=None):
)
)
if _non_static_mode():
if in_dygraph_mode():
return array
else:
helper = LayerHelper("array", **locals())
tensor_array = helper.create_variable(
name="{0}.out".format(helper.name),
......
......@@ -17,10 +17,10 @@
import numpy as np
import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle import _C_ops
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
from ..fluid.framework import in_dygraph_mode
from ..framework import LayerHelper, core
from ..static import Variable
from .creation import _complex_to_real_dtype, assign
......@@ -107,11 +107,7 @@ def shape(input):
out = _C_ops.shape(input)
out.stop_gradient = True
return out
if _in_legacy_dygraph():
out = _legacy_C_ops.shape(input)
out.stop_gradient = True
return out
else:
check_variable_and_dtype(
input,
'input',
......@@ -289,9 +285,7 @@ def real(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.real(x)
if _in_legacy_dygraph():
return _legacy_C_ops.real(x)
else:
check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'real')
helper = LayerHelper('real', **locals())
out = helper.create_variable_for_type_inference(
......@@ -336,9 +330,7 @@ def imag(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.imag(x)
if _in_legacy_dygraph():
return _legacy_C_ops.imag(x)
else:
check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'imag')
helper = LayerHelper('imag', **locals())
out = helper.create_variable_for_type_inference(
......
......@@ -33,7 +33,6 @@ from ..fluid.data_feeder import (
from ..fluid.framework import (
Variable,
_in_eager_without_dygraph_check,
_in_legacy_dygraph,
device_guard,
)
from ..fluid.initializer import Constant, Initializer
......@@ -43,7 +42,6 @@ from ..framework import (
LayerHelper,
_current_expected_place,
_get_paddle_place,
_non_static_mode,
convert_np_dtype_to_dtype_,
core,
in_dygraph_mode,
......@@ -324,11 +322,7 @@ def linspace(start, stop, num, dtype=None, name=None):
dtype,
_current_expected_place(),
)
if _in_legacy_dygraph():
return _legacy_C_ops.linspace(
tensor_start, tensor_stop, tensor_num, 'dtype', dtype
)
else:
helper = LayerHelper("linspace", **locals())
start_dtype = convert_dtype(tensor_start.dtype)
......@@ -376,7 +370,11 @@ def linspace(start, stop, num, dtype=None, name=None):
helper.append_op(
type='linspace',
inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
inputs={
'Start': tensor_start,
'Stop': tensor_stop,
'Num': tensor_num,
},
attrs={'dtype': dtype},
outputs={'Out': [out]},
)
......@@ -446,11 +444,11 @@ def logspace(start, stop, num, base=10.0, dtype=None, name=None):
if not isinstance(base, Variable):
with device_guard("cpu"):
tensor_base = fill_constant([1], dtype, base)
if _non_static_mode():
if in_dygraph_mode():
return _legacy_C_ops.logspace(
tensor_start, tensor_stop, tensor_num, tensor_base, 'dtype', dtype
)
else:
helper = LayerHelper("logspace", **locals())
start_dtype = convert_dtype(tensor_start.dtype)
......@@ -746,7 +744,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
if place is None:
place = _current_expected_place()
if _non_static_mode():
if paddle.fluid.framework._non_static_mode():
return _to_tensor_non_static(data, dtype, place, stop_gradient)
# call assign for static graph
......@@ -785,32 +783,41 @@ def full_like(x, fill_value, dtype=None, name=None):
# [[2. 2. 2.]
# [2. 2. 2.]]
"""
if dtype is None:
dtype = x.dtype
else:
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
return _C_ops.full_like(x, fill_value, dtype, x.place)
if _in_legacy_dygraph():
return _legacy_C_ops.fill_any_like(
x, 'value', fill_value, 'dtype', dtype
)
else:
helper = LayerHelper("full_like", **locals())
check_variable_and_dtype(
x,
'x',
['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
[
'bool',
'float16',
'float32',
'float64',
'int16',
'int32',
'int64',
],
'full_like',
)
check_dtype(
dtype,
'dtype',
['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
[
'bool',
'float16',
'float32',
'float64',
'int16',
'int32',
'int64',
],
'full_like/zeros_like/ones_like',
)
out = helper.create_variable_for_type_inference(dtype=dtype)
......@@ -1011,7 +1018,7 @@ def eye(num_rows, num_columns=None, dtype=None, name=None):
"""
def _check_attr(attr, message):
if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
if isinstance(attr, ((Variable, core.eager.Tensor))):
assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
elif not isinstance(attr, int) or attr < 0:
raise TypeError("{} should be a non-negative int.".format(message))
......@@ -1027,16 +1034,10 @@ def eye(num_rows, num_columns=None, dtype=None, name=None):
else:
num_columns = num_rows
if _non_static_mode():
if in_dygraph_mode():
out = _C_ops.eye(
num_rows, num_columns, dtype, _current_expected_place()
)
elif _in_legacy_dygraph():
out = _legacy_C_ops.eye(
'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
)
else:
helper = LayerHelper("eye", **locals())
check_dtype(
......@@ -1211,14 +1212,12 @@ def arange(start=0, end=None, step=1, dtype=None, name=None):
if in_dygraph_mode():
return _C_ops.arange(start, end, step, dtype, _current_expected_place())
if _in_legacy_dygraph():
out = _legacy_C_ops.range(start, end, step)
out.stop_gradient = True
return out
else:
check_dtype(
dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'range/arange'
dtype,
'dtype',
['float32', 'float64', 'int32', 'int64'],
'range/arange',
)
helper = LayerHelper('range', **locals())
out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
......@@ -1328,11 +1327,7 @@ def tril(x, diagonal=0, name=None):
"""
if in_dygraph_mode():
return _C_ops.tril(x, diagonal, True)
if _in_legacy_dygraph():
op = getattr(_legacy_C_ops, 'tril_triu')
return op(x, 'diagonal', diagonal, "lower", True)
else:
return _tril_triu_op(LayerHelper('tril', **locals()))
......@@ -1394,11 +1389,7 @@ def triu(x, diagonal=0, name=None):
"""
if in_dygraph_mode():
return _C_ops.triu(x, diagonal, False)
if _in_legacy_dygraph():
op = getattr(_legacy_C_ops, 'tril_triu')
return op(x, 'diagonal', diagonal, "lower", False)
else:
return _tril_triu_op(LayerHelper('triu', **locals()))
......@@ -1437,18 +1428,16 @@ def meshgrid(*args, **kwargs):
if len(args) == 1 and isinstance(args[0], (list, tuple)):
args = args[0]
if _in_legacy_dygraph():
num = len(args)
out = _legacy_C_ops.meshgrid(list(args), num)
return out
if in_dygraph_mode():
return _C_ops.meshgrid(list(args))
else:
name = kwargs.get("name", None)
helper = LayerHelper('meshgrid', **locals())
if not isinstance(args, (list, tuple)):
raise TypeError("The type of input args in meshgrid should be list.")
raise TypeError(
"The type of input args in meshgrid should be list."
)
for id, input_ in enumerate(args):
check_dtype(
......@@ -1555,27 +1544,14 @@ def diagflat(x, offset=0, name=None):
# [0, 0, 3, 0, 0],
# [0, 0, 0, 4, 0]])
"""
padding_value = 0
if in_dygraph_mode():
if len(x.shape) <= 1:
return _C_ops.diag(x, offset, padding_value)
return _C_ops.diag(x, offset, 0)
else:
y = _C_ops.flatten(x, 0, -1)
return _C_ops.diag(y, offset, padding_value)
if _in_legacy_dygraph():
if len(x.shape) == 1:
return _legacy_C_ops.diag_v2(
x, "offset", offset, "padding_value", padding_value
)
return _C_ops.diag(y, offset, 0)
else:
y, _ = _legacy_C_ops.flatten_contiguous_range(
x, "start_axis", 0, "stop_axis", -1
)
return _legacy_C_ops.diag_v2(
y, "offset", offset, "padding_value", padding_value
)
padding_value = 0
check_type(x, 'x', (Variable), 'diagflat')
check_dtype(
x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diagflat'
......@@ -1690,11 +1666,6 @@ def diag(x, offset=0, padding_value=0, name=None):
"""
if in_dygraph_mode():
return _C_ops.diag(x, offset, padding_value)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.diag_v2(
x, "offset", offset, "padding_value", padding_value
)
else:
check_type(x, 'x', (Variable), 'diag_v2')
check_dtype(
......@@ -1782,15 +1753,7 @@ def empty(shape, dtype=None, name=None):
)
out.stop_gradient = True
return out
if _in_legacy_dygraph():
shape = utils.convert_shape_to_list(shape)
out = _legacy_C_ops.empty(
'shape', shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
)
out.stop_gradient = True
return out
else:
helper = LayerHelper("empty", **locals())
inputs = {}
......@@ -1863,14 +1826,7 @@ def empty_like(x, dtype=None, name=None):
)
out.stop_gradient = True
return out
if _in_legacy_dygraph():
out = _legacy_C_ops.empty(
'shape', x.shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
)
out.stop_gradient = True
return out
else:
helper = LayerHelper("empty_like", **locals())
check_variable_and_dtype(
x,
......@@ -1958,10 +1914,6 @@ def assign(x, output=None):
output = _C_ops.assign(input)
else:
_C_ops.assign_out_(input, output)
elif _in_legacy_dygraph():
if output is None:
output = core.VarBase()
_legacy_C_ops.assign(input, output)
else:
check_dtype(
input.dtype,
......@@ -2060,18 +2012,6 @@ def assign(x, output=None):
values,
_current_expected_place(),
)
elif _in_legacy_dygraph():
if output is None:
output = core.VarBase()
_legacy_C_ops.assign_value(
output,
'shape',
list(input.shape),
'dtype',
dtype,
value_name,
values,
)
else:
if output is None:
output = helper.create_variable_for_type_inference(
......@@ -2087,9 +2027,6 @@ def assign(x, output=None):
},
)
if is_inplace and _in_legacy_dygraph():
output._bump_inplace_version()
return output
......@@ -2227,12 +2164,13 @@ def complex(real, imag, name=None):
"""
if in_dygraph_mode():
return _C_ops.complex(real, imag)
if paddle.in_dynamic_mode():
return paddle._legacy_C_ops.complex(real, imag)
check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')
else:
check_variable_and_dtype(
real, 'real', ['float32', 'float64'], 'complex'
)
check_variable_and_dtype(
imag, 'imag', ['float32', 'float64'], 'complex'
)
op_type = "complex"
helper = LayerHelper(op_type, **locals())
......@@ -2242,7 +2180,9 @@ def complex(real, imag, name=None):
)
outputs = {"Out": out}
attrs = {}
helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
helper.append_op(
type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
)
return out
......@@ -2291,6 +2231,17 @@ def tril_indices(row, col, offset=0, dtype='int64'):
# [[ 1, 2, 2, 3, 3, 3],
# [ 0, 0, 1, 0, 1, 2]]
"""
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
if col is None:
col = row
out = _C_ops.tril_indices(
row, col, offset, dtype, _current_expected_place()
)
return out
else:
if not isinstance(row, int) or row < 0:
raise TypeError("row should be a non-negative int")
......@@ -2303,22 +2254,6 @@ def tril_indices(row, col, offset=0, dtype='int64'):
if not isinstance(offset, int):
raise TypeError("offset should be a int")
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
out = _C_ops.tril_indices(
row, col, offset, dtype, _current_expected_place()
)
return out
if _in_legacy_dygraph():
out = _legacy_C_ops.tril_indices(
'rows', row, 'cols', col, 'offset', offset, "dtype", dtype
)
return out
else:
helper = LayerHelper("tril_indices", **locals())
out = helper.create_variable_for_type_inference(dtype=dtype)
......@@ -2375,6 +2310,17 @@ def triu_indices(row, col=None, offset=0, dtype='int64'):
# [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
# [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
"""
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
if col is None:
col = row
out = _C_ops.triu_indices(
row, col, offset, dtype, _current_expected_place()
)
return out
else:
if not isinstance(row, int) or row < 0:
raise TypeError("row should be a non-negative int")
......@@ -2387,22 +2333,6 @@ def triu_indices(row, col=None, offset=0, dtype='int64'):
if not isinstance(offset, int):
raise TypeError("offset should be a int")
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
out = _C_ops.triu_indices(
row, col, offset, dtype, _current_expected_place()
)
return out
if _in_legacy_dygraph():
out = _legacy_C_ops.triu_indices(
'row', row, 'col', col, 'offset', offset, "dtype", dtype
)
return out
else:
helper = LayerHelper("triu_indices", **locals())
out = helper.create_variable_for_type_inference(dtype=dtype)
......
......@@ -20,10 +20,10 @@ import string
import numpy as np
import opt_einsum
from paddle import _C_ops, _legacy_C_ops
from paddle import _C_ops
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
from ..fluid.framework import in_dygraph_mode
from ..fluid.layer_helper import LayerHelper
from .linalg import matmul, transpose
from .manipulation import reshape, squeeze, unsqueeze
......@@ -829,18 +829,15 @@ def gen_einsum_op(equation, *operands):
"""
EinsumOp Python Interface:
"""
assert len(operands) <= 2, "Only support two operands in EinsumOp."
if in_dygraph_mode():
return _C_ops.einsum(operands, equation)[0]
if _in_legacy_dygraph():
# dygraph
return _legacy_C_ops.einsum(
operands, len(operands), len(operands), 'equation', equation
)[0]
else:
assert len(operands) <= 2, "Only support two operands in EinsumOp."
for inp in operands:
check_variable_and_dtype(inp, 'dtype', ['float32', 'float64'], 'einsum')
check_variable_and_dtype(
inp, 'dtype', ['float32', 'float64'], 'einsum'
)
check_type(equation, 'equation', str, 'einsum')
helper = LayerHelper('einsum', **locals())
out = helper.create_variable_for_type_inference(dtype=operands[0].dtype)
......
......@@ -24,7 +24,6 @@ from ..fluid.proto import framework_pb2
from ..framework import (
LayerHelper,
OpProtoHolder,
_non_static_mode,
convert_np_dtype_to_dtype_,
core,
in_dygraph_mode,
......@@ -274,15 +273,16 @@ def generate_activation_fn(op_type):
op_proto = OpProtoHolder.instance().get_op_proto(op_type)
def func(x, name=None):
if in_dygraph_mode() and hasattr(_C_ops, op_type):
if in_dygraph_mode():
if hasattr(_C_ops, op_type):
op = getattr(_C_ops, op_type)
return op(x)
else:
# TODO(dev): Because some ops' yaml has not been migrated.
# Replace it with _in_legacy_dygraph while all yaml work is done.
if _non_static_mode():
# Replace it with _C_ops while all yaml work is done.
op = getattr(_legacy_C_ops, op_type)
return op(x)
else:
if op_type not in ["abs", "exp", "square"]:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], op_type
......@@ -307,7 +307,9 @@ def generate_activation_fn(op_type):
helper = LayerHelper(op_type, **locals())
output = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": output})
helper.append_op(
type=op_type, inputs={"X": x}, outputs={"Out": output}
)
return output
func.__name__ = op_type
......@@ -332,12 +334,14 @@ def generate_inplace_fn(inplace_op_type):
origin_op_type = inplace_op_type[:-1]
def func(x, name=None):
if in_dygraph_mode() and hasattr(_C_ops, inplace_op_type):
if in_dygraph_mode():
if hasattr(_C_ops, inplace_op_type):
op = getattr(_C_ops, inplace_op_type)
return op(x)
if _non_static_mode():
else:
op = getattr(_legacy_C_ops, inplace_op_type)
return op(x)
else:
warnings.warn(
"In static mode, {}() is the same as {}() and does not perform inplace operation.".format(
inplace_op_type, origin_op_type
......
此差异已折叠。
......@@ -26,10 +26,9 @@ if _in_eager_mode_:
else:
from ..framework import VarBase as Tensor
from paddle import _C_ops, _legacy_C_ops
from paddle import _C_ops
from paddle.tensor.creation import full
from ..fluid.framework import _in_legacy_dygraph
from ..framework import LayerHelper, in_dygraph_mode
__all__ = []
......@@ -42,12 +41,7 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
return op(x, y)
else:
return op(x)
elif _in_legacy_dygraph():
op = getattr(_legacy_C_ops, op_name)
if binary_op:
return op(x, y)
else:
return op(x)
check_variable_and_dtype(
x,
"x",
......@@ -58,7 +52,15 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
check_variable_and_dtype(
y,
"y",
["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
[
"bool",
"int8",
"int16",
"int32",
"int64",
"float32",
"float64",
],
op_name,
)
if out is not None:
......@@ -80,7 +82,9 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
)
else:
helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})
helper.append_op(
type=op_name, inputs={"X": x}, outputs={"Out": out}
)
return out
......@@ -288,9 +292,7 @@ def is_empty(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.is_empty(x)
if _in_legacy_dygraph():
return _legacy_C_ops.is_empty(x)
else:
check_variable_and_dtype(
x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
)
......@@ -336,14 +338,13 @@ def equal_all(x, y, name=None):
"""
if in_dygraph_mode():
return _C_ops.equal_all(x, y)
if paddle.in_dynamic_mode():
return _legacy_C_ops.equal_all(x, y)
else:
helper = LayerHelper("equal_all", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
helper.append_op(
type='equal_all', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}
type='equal_all',
inputs={'X': [x], 'Y': [y]},
outputs={'Out': [out]},
)
return out
......@@ -393,10 +394,7 @@ def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
if in_dygraph_mode():
return _C_ops.allclose(x, y, rtol, atol, equal_nan)
if _in_legacy_dygraph():
return _legacy_C_ops.allclose(
x, y, 'rtol', str(rtol), 'atol', str(atol), 'equal_nan', equal_nan
)
else:
check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
check_type(rtol, 'rtol', float, 'allclose')
......@@ -456,9 +454,6 @@ def equal(x, y, name=None):
if in_dygraph_mode():
return _C_ops.equal(x, y)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.equal(x, y)
else:
check_variable_and_dtype(
x,
......@@ -512,9 +507,6 @@ def greater_equal(x, y, name=None):
"""
if in_dygraph_mode():
return _C_ops.greater_equal(x, y)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.greater_equal(x, y)
else:
check_variable_and_dtype(
x,
......@@ -568,9 +560,6 @@ def greater_than(x, y, name=None):
"""
if in_dygraph_mode():
return _C_ops.greater_than(x, y)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.greater_than(x, y)
else:
check_variable_and_dtype(
x,
......@@ -625,9 +614,6 @@ def less_equal(x, y, name=None):
"""
if in_dygraph_mode():
return _C_ops.less_equal(x, y)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.less_equal(x, y)
else:
check_variable_and_dtype(
x,
......@@ -682,9 +668,6 @@ def less_than(x, y, name=None):
"""
if in_dygraph_mode():
return _C_ops.less_than(x, y)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.less_than(x, y)
else:
check_variable_and_dtype(
x,
......@@ -739,9 +722,6 @@ def not_equal(x, y, name=None):
"""
if in_dygraph_mode():
return _C_ops.not_equal(x, y)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.not_equal(x, y)
else:
check_variable_and_dtype(
x,
......@@ -802,15 +782,12 @@ def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
return op(x, y)
else:
return op(x)
elif _in_legacy_dygraph():
op = getattr(_legacy_C_ops, op_name)
if binary_op:
return op(x, y)
else:
return op(x)
check_variable_and_dtype(
x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name
x,
"x",
["bool", "uint8", "int8", "int16", "int32", "int64"],
op_name,
)
if y is not None:
check_variable_and_dtype(
......@@ -834,7 +811,9 @@ def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
)
else:
helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})
helper.append_op(
type=op_name, inputs={"X": x}, outputs={"Out": out}
)
return out
......@@ -998,11 +977,7 @@ def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
if in_dygraph_mode():
return _C_ops.isclose(x, y, rtol, atol, equal_nan)
if _in_legacy_dygraph():
return _legacy_C_ops.isclose(
x, y, 'rtol', str(rtol), 'atol', str(atol), 'equal_nan', equal_nan
)
else:
check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
check_type(rtol, 'rtol', float, 'isclose')
......
此差异已折叠。
......@@ -12,9 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .. import _C_ops, _legacy_C_ops
from .. import _C_ops
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
from ..fluid.framework import in_dygraph_mode
from ..framework import LayerHelper
from .layer_function_generator import (
add_sample_code,
......@@ -218,10 +218,10 @@ def acos(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.acos(x)
if _in_legacy_dygraph():
return _legacy_C_ops.acos(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'acos')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'acos'
)
helper = LayerHelper('acos', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='acos', inputs={"X": x}, outputs={"Out": out})
......@@ -255,10 +255,10 @@ def acosh(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.acosh(x)
if _in_legacy_dygraph():
return _legacy_C_ops.acosh(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'acosh')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'acosh'
)
helper = LayerHelper('acosh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='acosh', inputs={"X": x}, outputs={"Out": out})
......@@ -292,10 +292,10 @@ def asin(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.asin(x)
if _in_legacy_dygraph():
return _legacy_C_ops.asin(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'asin')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'asin'
)
helper = LayerHelper('asin', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='asin', inputs={"X": x}, outputs={"Out": out})
......@@ -329,10 +329,10 @@ def asinh(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.asinh(x)
if _in_legacy_dygraph():
return _legacy_C_ops.asinh(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'asinh')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'asinh'
)
helper = LayerHelper('asinh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='asinh', inputs={"X": x}, outputs={"Out": out})
......@@ -366,10 +366,10 @@ def atan(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.atan(x)
if _in_legacy_dygraph():
return _legacy_C_ops.atan(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'atan')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'atan'
)
helper = LayerHelper('atan', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='atan', inputs={"X": x}, outputs={"Out": out})
......@@ -403,10 +403,10 @@ def atanh(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.atanh(x)
if _in_legacy_dygraph():
return _legacy_C_ops.atanh(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'atanh')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'atanh'
)
helper = LayerHelper('atanh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='atanh', inputs={"X": x}, outputs={"Out": out})
......@@ -441,10 +441,10 @@ def ceil(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.ceil(x)
if _in_legacy_dygraph():
return _legacy_C_ops.ceil(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'ceil')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'ceil'
)
helper = LayerHelper('ceil', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='ceil', inputs={"X": x}, outputs={"Out": out})
......@@ -480,10 +480,10 @@ def cos(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.cos(x)
if _in_legacy_dygraph():
return _legacy_C_ops.cos(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'cos')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'cos'
)
helper = LayerHelper('cos', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='cos', inputs={"X": x}, outputs={"Out": out})
......@@ -519,10 +519,10 @@ def cosh(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.cosh(x)
if _in_legacy_dygraph():
return _legacy_C_ops.cosh(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'cosh')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'cosh'
)
helper = LayerHelper('cosh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='cosh', inputs={"X": x}, outputs={"Out": out})
......@@ -557,9 +557,7 @@ def exp(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.exp(x)
if _in_legacy_dygraph():
return _legacy_C_ops.exp(x)
else:
check_variable_and_dtype(
x,
'x',
......@@ -608,10 +606,10 @@ def expm1(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.expm1(x)
if _in_legacy_dygraph():
return _legacy_C_ops.expm1(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'expm1')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'expm1'
)
helper = LayerHelper('expm1', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='expm1', inputs={"X": x}, outputs={"Out": out})
......@@ -646,10 +644,10 @@ def floor(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.floor(x)
if _in_legacy_dygraph():
return _legacy_C_ops.floor(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'floor')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'floor'
)
helper = LayerHelper('floor', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='floor', inputs={"X": x}, outputs={"Out": out})
......@@ -684,15 +682,15 @@ def reciprocal(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.reciprocal(x)
if _in_legacy_dygraph():
return _legacy_C_ops.reciprocal(x)
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'reciprocal'
)
helper = LayerHelper('reciprocal', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='reciprocal', inputs={"X": x}, outputs={"Out": out})
helper.append_op(
type='reciprocal', inputs={"X": x}, outputs={"Out": out}
)
return out
......@@ -731,10 +729,10 @@ def round(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.round(x)
if _in_legacy_dygraph():
return _legacy_C_ops.round(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'round')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'round'
)
helper = LayerHelper('round', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='round', inputs={"X": x}, outputs={"Out": out})
......@@ -770,10 +768,10 @@ def rsqrt(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.rsqrt(x)
if _in_legacy_dygraph():
return _legacy_C_ops.rsqrt(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'rsqrt')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'rsqrt'
)
helper = LayerHelper('rsqrt', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='rsqrt', inputs={"X": x}, outputs={"Out": out})
......@@ -808,9 +806,7 @@ def sigmoid(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.sigmoid(x)
if _in_legacy_dygraph():
return _legacy_C_ops.sigmoid(x)
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'sigmoid'
)
......@@ -847,10 +843,10 @@ def sin(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.sin(x)
if _in_legacy_dygraph():
return _legacy_C_ops.sin(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sin')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'sin'
)
helper = LayerHelper('sin', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='sin', inputs={"X": x}, outputs={"Out": out})
......@@ -884,10 +880,10 @@ def sinh(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.sinh(x)
if _in_legacy_dygraph():
return _legacy_C_ops.sinh(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sinh')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'sinh'
)
helper = LayerHelper('sinh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='sinh', inputs={"X": x}, outputs={"Out": out})
......@@ -920,10 +916,10 @@ def sqrt(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.sqrt(x)
if _in_legacy_dygraph():
return _legacy_C_ops.sqrt(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sqrt')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'sqrt'
)
helper = LayerHelper('sqrt', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='sqrt', inputs={"X": x}, outputs={"Out": out})
......@@ -956,9 +952,7 @@ def square(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.square(x)
if _in_legacy_dygraph():
return _legacy_C_ops.square(x)
else:
check_variable_and_dtype(
x,
'x',
......@@ -1008,10 +1002,10 @@ def tan(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.tan(x)
if _in_legacy_dygraph():
return _legacy_C_ops.tan(x)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tan')
else:
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'tan'
)
helper = LayerHelper('tan', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='tan', inputs={"X": x}, outputs={"Out": out})
......
......@@ -16,11 +16,7 @@
import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid.framework import (
_current_expected_place,
_in_legacy_dygraph,
in_dygraph_mode,
)
from paddle.fluid.framework import _current_expected_place, in_dygraph_mode
from paddle.static import Variable
from ..fluid.data_feeder import (
......@@ -80,10 +76,7 @@ def bernoulli(x, name=None):
if in_dygraph_mode():
return _C_ops.bernoulli(x)
if _in_legacy_dygraph():
return _legacy_C_ops.bernoulli(x)
else:
check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")
helper = LayerHelper("randint", **locals())
......@@ -129,10 +122,7 @@ def poisson(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.poisson(x)
if paddle.in_dynamic_mode():
return _legacy_C_ops.poisson(x)
else:
check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")
helper = LayerHelper("poisson", **locals())
......@@ -197,12 +187,7 @@ def multinomial(x, num_samples=1, replacement=False, name=None):
if in_dygraph_mode():
return _C_ops.multinomial(x, num_samples, replacement)
if _in_legacy_dygraph():
return _legacy_C_ops.multinomial(
x, 'num_samples', num_samples, 'replacement', replacement
)
else:
check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")
helper = LayerHelper("multinomial", **locals())
......@@ -356,22 +341,7 @@ def gaussian(shape, mean=0.0, std=1.0, seed=0, dtype=None, name=None):
return _C_ops.gaussian(
shape, float(mean), float(std), seed, dtype, place
)
if _in_legacy_dygraph():
shape = utils.convert_shape_to_list(shape)
return _legacy_C_ops.gaussian_random(
'shape',
shape,
'mean',
float(mean),
'std',
float(std),
'seed',
seed,
'dtype',
dtype,
)
else:
check_shape(shape, op_type_for_check)
check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)
......@@ -390,7 +360,10 @@ def gaussian(shape, mean=0.0, std=1.0, seed=0, dtype=None, name=None):
helper = LayerHelper('gaussian', **locals())
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
type='gaussian_random',
inputs=inputs,
outputs={'Out': out},
attrs=attrs,
)
out.stop_gradient = True
return out
......@@ -550,7 +523,7 @@ def normal(mean=0.0, std=1.0, shape=None, name=None):
# [1.00780561 3.78457445 5.81058198] # random
"""
if not paddle.in_dynamic_mode():
if not in_dygraph_mode():
check_type(mean, 'mean', (int, float, Variable), 'normal')
check_type(std, 'std', (int, float, Variable), 'normal')
if isinstance(mean, Variable):
......@@ -588,7 +561,7 @@ def normal(mean=0.0, std=1.0, shape=None, name=None):
return gaussian(shape=shape, mean=mean, std=std, name=name)
out = out * std + mean
if not paddle.in_dynamic_mode():
if not in_dygraph_mode():
out.stop_grediant = True
return out
......@@ -680,22 +653,7 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
seed,
_current_expected_place(),
)
if _in_legacy_dygraph():
shape = utils.convert_shape_to_list(shape)
return _legacy_C_ops.uniform_random(
'shape',
shape,
'min',
float(min),
'max',
float(max),
'seed',
seed,
'dtype',
dtype,
)
else:
check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
check_type(min, 'min', (float, int, Variable), 'uniform/rand')
......@@ -710,7 +668,10 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
helper = LayerHelper("uniform", **locals())
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
type="uniform_random",
inputs=inputs,
attrs=attrs,
outputs={"Out": out},
)
out.stop_gradient = True
return out
......@@ -751,12 +712,7 @@ def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
# [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
# [ 0.433519, 0.39483607, -0.8660099, 0.83664286]] # random
"""
if in_dygraph_mode():
return _C_ops.uniform_inplace_(x, min, max, seed, 0, 0, 1.0)
else:
return _legacy_C_ops.uniform_random_inplace_(
x, 'min', min, 'max', max, 'seed', seed
)
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
......@@ -841,12 +797,7 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
shape = utils.convert_shape_to_list(shape)
place = _current_expected_place()
return _C_ops.randint(low, high, shape, dtype, place)
if _in_legacy_dygraph():
shape = utils.convert_shape_to_list(shape)
return _legacy_C_ops.randint(
'shape', shape, 'low', low, 'high', high, 'seed', 0, 'dtype', dtype
)
else:
check_shape(shape, 'randint')
check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
if low >= high:
......@@ -1015,7 +966,7 @@ def randint_like(x, low=0, high=None, dtype=None, name=None):
"high = {1}".format(low, high)
)
if paddle.in_dynamic_mode():
if in_dygraph_mode():
shape = utils.convert_shape_to_list(shape)
out = _legacy_C_ops.randint(
'shape',
......@@ -1031,7 +982,7 @@ def randint_like(x, low=0, high=None, dtype=None, name=None):
)
out = paddle.cast(out, dtype)
return out
else:
check_shape(shape, 'randint_like')
check_dtype(
dtype,
......@@ -1095,11 +1046,11 @@ def randperm(n, dtype="int64", name=None):
if in_dygraph_mode():
return _C_ops.randperm(n, dtype, _current_expected_place())
if _in_legacy_dygraph():
return _legacy_C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
else:
if n < 1:
raise ValueError("The input n should be greater than 0 in randperm op.")
raise ValueError(
"The input n should be greater than 0 in randperm op."
)
check_dtype(
dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'], 'randperm'
)
......@@ -1199,9 +1150,7 @@ def exponential_(x, lam=1.0, name=None):
"""
if in_dygraph_mode():
return _C_ops.exponential_(x, lam)
elif paddle.in_dynamic_mode():
return _legacy_C_ops.exponential_(x, "lambda", lam)
else:
check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")
helper = LayerHelper("exponential", **locals())
......
......@@ -17,14 +17,12 @@
import numpy as np
import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle import _C_ops
from paddle.common_ops_import import VarDesc, Variable
from ..fluid.data_feeder import check_dtype, check_variable_and_dtype
from ..fluid.framework import _in_legacy_dygraph
from ..framework import (
LayerHelper,
_non_static_mode,
convert_np_dtype_to_dtype_,
core,
in_dygraph_mode,
......@@ -99,12 +97,7 @@ def argsort(x, axis=-1, descending=False, name=None):
if in_dygraph_mode():
_, ids = _C_ops.argsort(x, axis, descending)
return ids
if _in_legacy_dygraph():
_, ids = _legacy_C_ops.argsort(
x, 'axis', axis, 'descending', descending
)
return ids
else:
check_variable_and_dtype(
x,
'x',
......@@ -187,20 +180,7 @@ def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
if in_dygraph_mode():
return _C_ops.argmax(x, axis, keepdim, flatten, var_dtype)
if _in_legacy_dygraph():
out = _legacy_C_ops.arg_max(
x,
'axis',
axis,
'dtype',
var_dtype,
'keepdims',
keepdim,
'flatten',
flatten,
)
return out
else:
helper = LayerHelper("argmax", **locals())
check_variable_and_dtype(
x,
......@@ -281,20 +261,7 @@ def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
if in_dygraph_mode():
return _C_ops.argmin(x, axis, keepdim, flatten, var_dtype)
if _in_legacy_dygraph():
out = _legacy_C_ops.arg_min(
x,
'axis',
axis,
'dtype',
var_dtype,
'keepdims',
keepdim,
'flatten',
flatten,
)
return out
else:
helper = LayerHelper("argmin", **locals())
check_variable_and_dtype(
x,
......@@ -354,10 +321,7 @@ def index_select(x, index, axis=0, name=None):
if in_dygraph_mode():
return _C_ops.index_select(x, index, axis)
if _in_legacy_dygraph():
return _legacy_C_ops.index_select(x, index, 'dim', axis)
else:
helper = LayerHelper("index_select", **locals())
check_variable_and_dtype(
x,
......@@ -366,7 +330,10 @@ def index_select(x, index, axis=0, name=None):
'paddle.tensor.search.index_select',
)
check_variable_and_dtype(
index, 'index', ['int32', 'int64'], 'paddle.tensor.search.index_select'
index,
'index',
['int32', 'int64'],
'paddle.tensor.search.index_select',
)
out = helper.create_variable_for_type_inference(x.dtype)
......@@ -438,8 +405,6 @@ def nonzero(x, as_tuple=False):
if in_dygraph_mode():
outs = _C_ops.nonzero(x)
elif paddle.in_dynamic_mode():
outs = _legacy_C_ops.where_index(x)
else:
helper = LayerHelper("where_index", **locals())
......@@ -522,12 +487,7 @@ def sort(x, axis=-1, descending=False, name=None):
if in_dygraph_mode():
outs, _ = _C_ops.argsort(x, axis, descending)
return outs
if _in_legacy_dygraph():
outs, _ = _legacy_C_ops.argsort(
x, 'axis', axis, 'descending', descending
)
return outs
else:
helper = LayerHelper("sort", **locals())
out = helper.create_variable_for_type_inference(
dtype=x.dtype, stop_gradient=False
......@@ -577,9 +537,7 @@ def mode(x, axis=-1, keepdim=False, name=None):
"""
if in_dygraph_mode():
return _C_ops.mode(x, axis, keepdim)
if _in_legacy_dygraph():
return _legacy_C_ops.mode(x, "axis", axis, "keepdim", keepdim)
else:
helper = LayerHelper("mode", **locals())
inputs = {"X": [x]}
attrs = {}
......@@ -687,11 +645,6 @@ def where(condition, x=None, y=None, name=None):
if in_dygraph_mode():
return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.where(
broadcast_condition, broadcast_x, broadcast_y
)
else:
helper = LayerHelper("where", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -784,9 +737,6 @@ def index_sample(x, index):
"""
if in_dygraph_mode():
return _C_ops.index_sample(x, index)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.index_sample(x, index)
else:
helper = LayerHelper("index_sample", **locals())
check_variable_and_dtype(
......@@ -843,9 +793,7 @@ def masked_select(x, mask, name=None):
if in_dygraph_mode():
return _C_ops.masked_select(x, mask)
if _in_legacy_dygraph():
return _legacy_C_ops.masked_select(x, mask)
else:
helper = LayerHelper("masked_select", **locals())
check_variable_and_dtype(
x,
......@@ -858,7 +806,9 @@ def masked_select(x, mask, name=None):
)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='masked_select', inputs={'X': x, 'Mask': mask}, outputs={'Y': out}
type='masked_select',
inputs={'X': x, 'Mask': mask},
outputs={'Y': out},
)
return out
......@@ -916,26 +866,7 @@ def topk(x, k, axis=None, largest=True, sorted=True, name=None):
axis = -1
out, indices = _C_ops.topk(x, k, axis, largest, sorted)
return out, indices
if _non_static_mode():
if axis is None:
out, indices = _legacy_C_ops.top_k_v2(
x, 'k', int(k), 'largest', largest, 'sorted', sorted
)
else:
out, indices = _legacy_C_ops.top_k_v2(
x,
'k',
int(k),
'axis',
axis,
'largest',
largest,
'sorted',
sorted,
)
return out, indices
helper = LayerHelper("top_k_v2", **locals())
inputs = {"X": [x]}
attrs = {}
......@@ -1065,12 +996,7 @@ def searchsorted(
"""
if in_dygraph_mode():
return _C_ops.searchsorted(sorted_sequence, values, out_int32, right)
if _in_legacy_dygraph():
return _legacy_C_ops.searchsorted(
sorted_sequence, values, "out_int32", out_int32, "right", right
)
else:
check_variable_and_dtype(
sorted_sequence,
'SortedSequence',
......@@ -1135,16 +1061,10 @@ def kthvalue(x, k, axis=None, keepdim=False, name=None):
# [[0, 2],
# [1, 2]]))
"""
if _non_static_mode():
if in_dygraph_mode():
if axis is not None:
if _in_legacy_dygraph():
return _legacy_C_ops.kthvalue(
x, 'k', k, "axis", axis, "keepdim", keepdim
)
return _C_ops.kthvalue(x, k, axis, keepdim)
else:
if _in_legacy_dygraph():
return _legacy_C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)
return _C_ops.kthvalue(x, k, -1, keepdim)
helper = LayerHelper("kthvalue", **locals())
......
......@@ -16,7 +16,7 @@
import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
from paddle.fluid.framework import in_dygraph_mode
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..framework import LayerHelper, core
......@@ -81,13 +81,8 @@ def mean(x, axis=None, keepdim=False, name=None):
"""
if in_dygraph_mode():
return _C_ops.mean(x, axis, keepdim)
else:
reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
if _in_legacy_dygraph():
return _legacy_C_ops.reduce_mean(
x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all
)
check_variable_and_dtype(
x,
'x/input',
......@@ -111,7 +106,10 @@ def mean(x, axis=None, keepdim=False, name=None):
attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
out = helper.create_variable_for_type_inference(x.dtype)
helper.append_op(
type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
type='reduce_mean',
inputs={'X': x},
outputs={'Out': out},
attrs=attrs,
)
return out
......@@ -146,7 +144,7 @@ def var(x, axis=None, unbiased=True, keepdim=False, name=None):
out2 = paddle.var(x, axis=1)
# [1. 4.33333333]
"""
if not paddle.in_dynamic_mode():
if not in_dygraph_mode():
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')
u = mean(x, axis, True, name)
......@@ -211,7 +209,7 @@ def std(x, axis=None, unbiased=True, keepdim=False, name=None):
# [1. 2.081666]
"""
if not paddle.in_dynamic_mode():
if not in_dygraph_mode():
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')
out = var(**locals())
......@@ -243,9 +241,7 @@ def numel(x, name=None):
"""
if in_dygraph_mode():
return _C_ops.numel(x)
elif _in_legacy_dygraph():
return _legacy_C_ops.size(x)
else:
if not isinstance(x, Variable):
raise TypeError("x must be a Tensor in numel")
helper = LayerHelper('numel', **locals())
......@@ -331,14 +327,17 @@ def nanmedian(x, axis=None, keepdim=True, name=None):
if len(axis) != len(set(axis)):
raise ValueError("Axis has duplicated elements.")
if _in_legacy_dygraph():
if in_dygraph_mode():
median_index, out = _legacy_C_ops.nanmedian(
x, 'axis', axis, 'keepdim', keepdim
)
return out
else:
check_variable_and_dtype(
x, 'X', ['int32', 'int64', 'float16', 'float32', 'float64'], 'nanmedian'
x,
'X',
['int32', 'int64', 'float16', 'float32', 'float64'],
'nanmedian',
)
helper = LayerHelper('nanmedian', **locals())
......@@ -534,7 +533,7 @@ def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False):
for q_num in q:
if q_num < 0 or q_num > 1:
raise ValueError("q should be in range [0, 1]")
if paddle.in_dynamic_mode():
if in_dygraph_mode():
q_num = paddle.to_tensor(q_num, dtype='float64')
if ignore_nan:
indices.append(q_num * (valid_counts - 1))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册