提交 860bf192 编写于 作者: C chengduoZH

Add maxPoolIdx

上级 790379f1
......@@ -192,11 +192,10 @@ extern void hl_maxpool3D_forward(const int frameCnt,
const int paddingH,
const int paddingW,
real* tgtData,
real* maxPoolIdxData,
const int tgtStride);
extern void hl_maxpool3D_backward(const int frameCnt,
const real* inputData,
const real* outData,
const real* outGrad,
const int channels,
const int depth,
......@@ -217,6 +216,7 @@ extern void hl_maxpool3D_backward(const int frameCnt,
real scaleA,
real scaleB,
real* targetGrad,
real* maxPoolIdxData,
const int outStride);
extern void hl_avgpool3D_forward(const int frameCnt,
......
......@@ -106,11 +106,10 @@ inline void hl_maxpool3D_forward(const int frameCnt,
const int paddingH,
const int paddingW,
real* tgtData,
real* maxPoolIdxData,
const int tgtStride) {}
inline void hl_maxpool3D_backward(const int frameCnt,
const real* inputData,
const real* outData,
const real* outGrad,
const int channels,
const int depth,
......@@ -131,6 +130,7 @@ inline void hl_maxpool3D_backward(const int frameCnt,
real scaleA,
real scaleB,
real* targetGrad,
real* maxPoolIdxData,
const int outStride) {}
inline void hl_avgpool3D_forward(const int frameCnt,
......
......@@ -366,10 +366,11 @@ __global__ void KeMaxPool3DForward(const int nthreads,
const int strideD,
const int strideH,
const int strideW,
const int offsetD,
const int offsetH,
const int offsetW,
const int padD,
const int padH,
const int padW,
real* tgtData,
real* maxPoolIdxData,
const int tgtStride) {
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads);
index += blockDim.x * gridDim.x) {
......@@ -378,9 +379,9 @@ __global__ void KeMaxPool3DForward(const int nthreads,
int pd = (index / pooledW / pooledH) % pooledD;
int c = (index / pooledW / pooledH / pooledD) % channels;
int frameNum = index / pooledW / pooledH / pooledD / channels;
int dstart = pd * strideD - offsetD;
int hstart = ph * strideH - offsetH;
int wstart = pw * strideW - offsetW;
int dstart = pd * strideD - padD;
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
int dend = min(dstart + ksizeD, depth);
int hend = min(hstart + ksizeH, height);
int wend = min(wstart + ksizeW, width);
......@@ -388,18 +389,22 @@ __global__ void KeMaxPool3DForward(const int nthreads,
hstart = max(hstart, 0);
wstart = max(wstart, 0);
real maxval = -FLT_MAX;
int maxIdx = -1;
inputData += (frameNum * channels + c) * depth * height * width;
for (int d = dstart; d < dend; ++d) {
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (maxval < inputData[(d * height + h) * width + w])
if (maxval < inputData[(d * height + h) * width + w]) {
maxval = inputData[(d * height + h) * width + w];
maxIdx = (d * height + h) * width + w;
}
}
}
}
int tgtIndex =
index % (pooledW * pooledH * pooledD * channels) + frameNum * tgtStride;
tgtData[tgtIndex] = maxval;
maxPoolIdxData[tgtIndex] = maxIdx;
}
}
......@@ -418,10 +423,11 @@ void hl_maxpool3D_forward(const int frameCnt,
const int strideD,
const int strideH,
const int strideW,
const int paddingD,
const int paddingH,
const int paddingW,
const int padD,
const int padH,
const int padW,
real* tgtData,
real* maxPoolIdxData,
const int tgtStride) {
int num_kernels = pooledD * pooledH * pooledW * channels * frameCnt;
int blocks = (num_kernels + 1024 - 1) / 1024;
......@@ -443,17 +449,16 @@ void hl_maxpool3D_forward(const int frameCnt,
strideD,
strideH,
strideW,
paddingD,
paddingH,
paddingW,
padD,
padH,
padW,
tgtData,
maxPoolIdxData,
tgtStride);
CHECK_SYNC("hl_maxpool3D_forward failed");
}
__global__ void KeMaxPool3DBackward(const int nthreads,
const real* inputData,
const real* outData,
const real* outGrad,
const int channels,
const int depth,
......@@ -474,33 +479,35 @@ __global__ void KeMaxPool3DBackward(const int nthreads,
real scaleA,
real scaleB,
real* targetGrad,
real* maxPoolIdxData,
const int outStride) {
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads);
index += blockDim.x * gridDim.x) {
// find out the local index
// find out the local offset
int offsetW = index % width + padW;
int offsetH = (index / width) % height + padH;
int offsetD = (index / width / height) % depth + padD;
int offsetW = index % width;
int offsetH = (index / width) % height;
int offsetD = (index / width / height) % depth;
int offsetC = (index / width / height / depth) % channels;
int frameNum = index / width / height / depth / channels;
int pdstart = (offsetD < sizeZ) ? 0 : (offsetD - sizeZ) / strideD + 1;
int phstart = (offsetH < sizeY) ? 0 : (offsetH - sizeY) / strideH + 1;
int pwstart = (offsetW < sizeX) ? 0 : (offsetW - sizeX) / strideW + 1;
int pdend = min(offsetD / strideD + 1, pooledD);
int phend = min(offsetH / strideH + 1, pooledH);
int pwend = min(offsetW / strideW + 1, pooledW);
int pdstart =
(offsetD + padD < sizeZ) ? 0 : (offsetD + padD - sizeZ) / strideD + 1;
int phstart =
(offsetH + padH < sizeY) ? 0 : (offsetH + padH - sizeY) / strideH + 1;
int pwstart =
(offsetW + padW < sizeX) ? 0 : (offsetW + padW - sizeX) / strideW + 1;
int pdend = min((offsetD + padD) / strideD + 1, pooledD);
int phend = min((offsetH + padH) / strideH + 1, pooledH);
int pwend = min((offsetW + padW) / strideW + 1, pooledW);
real gradient = 0;
real input = inputData[index];
outData += ((frameNum * channels + offsetC) * pooledD * pooledH * pooledW);
outGrad += ((frameNum * channels + offsetC) * pooledD * pooledH * pooledW);
maxPoolIdxData +=
((frameNum * channels + offsetC) * pooledD * pooledH * pooledW);
for (int pd = pdstart; pd < pdend; ++pd) {
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
if (input == outData[(pd * pooledH + ph) * pooledW + pw])
if (((offsetD * height + offsetH) * width + offsetW) ==
maxPoolIdxData[(pd * pooledH + ph) * pooledW + pw])
gradient += outGrad[(pd * pooledH + ph) * pooledW + pw];
}
}
......@@ -510,8 +517,6 @@ __global__ void KeMaxPool3DBackward(const int nthreads,
}
void hl_maxpool3D_backward(const int frameCnt,
const real* inputData,
const real* outData,
const real* outGrad,
const int channels,
const int depth,
......@@ -532,13 +537,12 @@ void hl_maxpool3D_backward(const int frameCnt,
real scaleA,
real scaleB,
real* targetGrad,
real* maxPoolIdxData,
const int outStride) {
int num_kernels = depth * height * width * channels * frameCnt;
int blocks = (num_kernels + 1024 - 1) / 1024;
KeMaxPool3DBackward<<<blocks, 1024, 0, STREAM_DEFAULT>>>(num_kernels,
inputData,
outData,
outGrad,
channels,
depth,
......@@ -559,6 +563,7 @@ void hl_maxpool3D_backward(const int frameCnt,
scaleA,
scaleB,
targetGrad,
maxPoolIdxData,
outStride);
CHECK_SYNC("hl_maxpool3D_backward");
}
......
......@@ -72,9 +72,10 @@ size_t Pool3DLayer::getSize() {
void Pool3DLayer::forward(PassType passType) {
Layer::forward(passType);
const MatrixPtr& inMat = inputLayers_[0]->getOutputValue();
int batchSize = inMat->getHeight();
int outWidth = getSize();
size_t batchSize = inMat->getHeight();
size_t outWidth = getSize();
resetOutput(batchSize, outWidth);
Matrix::resizeOrCreate(maxPoolIdx_, batchSize, outWidth, false, useGpu_);
const MatrixPtr outMat = getOutputValue();
if (poolType_ == "avg") {
......@@ -97,6 +98,7 @@ void Pool3DLayer::forward(PassType passType) {
paddingW_);
} else if (poolType_ == "max") {
outMat->maxPool3DForward(*inMat,
*maxPoolIdx_,
channels_,
imgSizeD_,
imgSizeH_,
......@@ -149,9 +151,8 @@ void Pool3DLayer::backward(const UpdateCallback& callback) {
1.0,
1.0);
} else if (poolType_ == "max") {
inGradMat->maxPool3DBackward(*inMat,
*outGradMat,
*outMat,
inGradMat->maxPool3DBackward(*outGradMat,
*maxPoolIdx_,
imgSizeD_,
imgSizeH_,
imgSizeW_,
......
......@@ -1191,6 +1191,7 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad,
}
void GpuMatrix::maxPool3DForward(Matrix& inputMat,
Matrix& maxPoolIdx,
size_t channels,
size_t imgSizeD,
size_t imgSizeH,
......@@ -1210,6 +1211,7 @@ void GpuMatrix::maxPool3DForward(Matrix& inputMat,
CHECK(inputMat.useGpu_) << "Matrix type are not correct";
real* inputData = inputMat.getData();
real* maxPoolIdxData = maxPoolIdx.getData();
size_t num = inputMat.getHeight();
size_t width = imgSizeW;
size_t height = imgSizeH;
......@@ -1237,12 +1239,12 @@ void GpuMatrix::maxPool3DForward(Matrix& inputMat,
paddingH,
paddingW,
getData(),
maxPoolIdxData,
getStride());
}
void GpuMatrix::maxPool3DBackward(Matrix& inputMat,
Matrix& outGrad,
Matrix& outV,
void GpuMatrix::maxPool3DBackward(Matrix& outGrad,
Matrix& maxPoolIdx,
size_t imgSizeD,
size_t imgSizeH,
size_t imgSizeW,
......@@ -1260,26 +1262,21 @@ void GpuMatrix::maxPool3DBackward(Matrix& inputMat,
size_t paddingW,
real scaleTargets,
real scaleOutput) {
CHECK(inputMat.useGpu_ && outGrad.useGpu_ && outV.useGpu_)
<< "Matrix type are not equal";
CHECK(outGrad.useGpu_ && maxPoolIdx.useGpu_) << "Matrix type are not equal";
real* inputData = inputMat.getData();
real* outData = outV.getData();
real* outDiff = outGrad.getData();
size_t frameNum = inputMat.getHeight();
size_t channels = outV.getWidth() / outputD / outputH / outputW;
real* maxPoolIdxData = maxPoolIdx.getData();
size_t frameNum = getHeight();
size_t channels = outGrad.getWidth() / outputD / outputH / outputW;
size_t width = imgSizeW;
size_t height = imgSizeH;
size_t depth = imgSizeD;
CHECK(depth * height * width * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight());
CHECK(depth * height * width * channels == getWidth());
CHECK(width_ == depth * width * height * channels);
CHECK(outGrad.getHeight() == outV.getHeight() &&
outGrad.getWidth() == outV.getWidth());
CHECK(outGrad.getHeight() == maxPoolIdx.getHeight() &&
outGrad.getWidth() == maxPoolIdx.getWidth());
hl_maxpool3D_backward(frameNum,
inputData,
outData,
outDiff,
channels,
depth,
......@@ -1300,6 +1297,7 @@ void GpuMatrix::maxPool3DBackward(Matrix& inputMat,
scaleTargets,
scaleOutput,
getData(),
maxPoolIdxData,
outGrad.getStride());
}
......@@ -2148,6 +2146,7 @@ void CpuMatrix::avgPoolBackward(Matrix& input,
}
void CpuMatrix::maxPool3DForward(Matrix& inputMat,
Matrix& maxPoolIdx,
size_t channels,
size_t imgSizeD,
size_t imgSizeH,
......@@ -2166,6 +2165,7 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
size_t paddingW) {
real* inputData = inputMat.getData();
real* outData = getData();
real* maxPoolIdxData = maxPoolIdx.getData();
size_t num = inputMat.getHeight();
size_t inWidth = imgSizeW;
size_t inHeight = imgSizeH;
......@@ -2179,6 +2179,7 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
for (size_t i = 0; i < height_; i++) {
for (size_t j = 0; j < width_; j++) {
outData[(i)*outStride + j] = -(real)FLT_MAX;
maxPoolIdxData[(i)*outStride + j] = -1;
}
}
......@@ -2186,6 +2187,7 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
for (size_t n = 0; n < num; ++n) { // frame by frame
if (!isContiguous()) {
outData = getData() + n * outStride;
maxPoolIdxData = maxPoolIdx.getData() + n * outStride;
}
for (size_t c = 0; c < channels; ++c) { // channel by channel
for (size_t pd = 0; pd < outputD; ++pd) {
......@@ -2200,6 +2202,7 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
dstart = std::max(dstart, 0);
hstart = std::max(hstart, 0);
wstart = std::max(wstart, 0);
int maxIdx = -1;
real maxOutData = outData[(pd * outputH + ph) * outputW + pw];
for (int d = dstart; d < dend; ++d) {
for (int h = hstart; h < hend; ++h) {
......@@ -2207,24 +2210,26 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
if (maxOutData <
inputData[(d * inHeight + h) * inWidth + w]) {
maxOutData = inputData[(d * inHeight + h) * inWidth + w];
maxIdx = (d * inHeight + h) * inWidth + w;
}
}
}
}
outData[(pd * outputH + ph) * outputW + pw] = maxOutData;
maxPoolIdxData[(pd * outputH + ph) * outputW + pw] = maxIdx;
}
}
}
// compute offset
inputData += inDepth * inHeight * inWidth;
outData += outputD * outputH * outputW;
maxPoolIdxData += outputD * outputH * outputW;
}
}
}
void CpuMatrix::maxPool3DBackward(Matrix& image,
Matrix& outGrad,
Matrix& outV,
void CpuMatrix::maxPool3DBackward(Matrix& outGrad,
Matrix& maxPoolIdx,
size_t imgSizeD,
size_t imgSizeH,
size_t imgSizeW,
......@@ -2242,59 +2247,38 @@ void CpuMatrix::maxPool3DBackward(Matrix& image,
size_t paddingW,
real scaleTargets,
real scaleOutput) {
size_t num = image.getHeight();
size_t num = getHeight();
size_t channels = size_t(width_ / imgSizeD / imgSizeH / imgSizeW);
CHECK(image.getWidth() == imgSizeD * imgSizeH * imgSizeW * channels);
CHECK(image.getHeight() == height_ && image.getWidth() == width_);
CHECK(outV.getHeight() == outGrad.getHeight() &&
outV.getWidth() == outGrad.getWidth());
CHECK(maxPoolIdx.getHeight() == outGrad.getHeight() &&
maxPoolIdx.getWidth() == outGrad.getWidth());
real* tgtGrad = getData();
real* inData = image.getData();
real* otData = outV.getData();
real* otGrad = outGrad.getData();
real* maxPoolIdxData = maxPoolIdx.getData();
size_t outStride = outV.getStride();
size_t outStride = outGrad.getStride();
;
for (size_t n = 0; n < num; ++n) {
if (!outV.isContiguous()) {
otData = outV.getData() + n * outStride;
if (!outGrad.isContiguous()) {
otGrad = outGrad.getData() + n * outStride;
maxPoolIdxData = maxPoolIdx.getData() + n * outStride;
}
for (size_t c = 0; c < channels; ++c) {
for (size_t pd = 0; pd < outputD; ++pd) {
for (size_t ph = 0; ph < outputH; ++ph) {
for (size_t pw = 0; pw < outputW; ++pw) {
int dstart = pd * strideD - paddingD;
int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
int dend = std::min(dstart + sizeZ, imgSizeD);
int hend = std::min(hstart + sizeY, imgSizeH);
int wend = std::min(wstart + sizeX, imgSizeW);
dstart = std::max(dstart, 0);
hstart = std::max(hstart, 0);
wstart = std::max(wstart, 0);
for (int d = dstart; d < dend; ++d) {
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
tgtGrad[(d * imgSizeH + h) * imgSizeW + w] =
scaleTargets *
tgtGrad[(d * imgSizeH + h) * imgSizeW + w] +
scaleOutput * otGrad[(pd * outputH + ph) * outputW + pw] *
(inData[(d * imgSizeH + h) * imgSizeW + w] ==
otData[(pd * outputH + ph) * outputW + pw]);
}
}
}
const size_t index = (pd * outputH + ph) * outputW + pw;
const size_t tgtIdx = static_cast<size_t>(maxPoolIdxData[index]);
tgtGrad[tgtIdx] =
scaleTargets * tgtGrad[tgtIdx] + scaleOutput * otGrad[index];
}
}
}
// offset
inData += imgSizeD * imgSizeH * imgSizeW;
tgtGrad += imgSizeD * imgSizeH * imgSizeW;
otData += outputD * outputH * outputW;
otGrad += outputD * outputH * outputW;
maxPoolIdxData += outputD * outputH * outputW;
}
}
}
......
......@@ -933,6 +933,7 @@ public:
* in the sizeX of value
*/
virtual void maxPool3DForward(Matrix& inputMat,
Matrix& maxPoolIdx,
size_t channels,
size_t imgSizeD,
size_t imgSizeH,
......@@ -952,9 +953,8 @@ public:
LOG(FATAL) << "Not implemeted";
}
virtual void maxPool3DBackward(Matrix& image,
Matrix& outGrad,
Matrix& outV,
virtual void maxPool3DBackward(Matrix& outGrad,
Matrix& maxPoolIdx,
size_t imgSizeD,
size_t imgSizeH,
size_t imgSizeW,
......@@ -1436,6 +1436,7 @@ public:
size_t paddingW);
void maxPool3DForward(Matrix& inputMat,
Matrix& maxPoolIdx,
size_t channels,
size_t imgSizeD,
size_t imgSizeH,
......@@ -1453,9 +1454,8 @@ public:
size_t paddingH,
size_t paddingW);
void maxPool3DBackward(Matrix& image,
Matrix& outGrad,
Matrix& outV,
void maxPool3DBackward(Matrix& outGrad,
Matrix& maxPoolIdx,
size_t imgSizeD,
size_t imgSizeH,
size_t imgSizeW,
......@@ -1671,6 +1671,7 @@ public:
size_t paddingW);
void maxPool3DForward(Matrix& inputMat,
Matrix& maxPoolIdx,
size_t channels,
size_t imgSizeD,
size_t imgSizeH,
......@@ -1688,9 +1689,8 @@ public:
size_t paddingH,
size_t paddingW);
void maxPool3DBackward(Matrix& image,
Matrix& outGrad,
Matrix& outV,
void maxPool3DBackward(Matrix& outGrad,
Matrix& maxPoolIdx,
size_t imgSizeD,
size_t imgSizeH,
size_t imgSizeW,
......
......@@ -1204,202 +1204,398 @@ TEST(Matrix, warpCTC) {
}
}
void testMatrixPool3D(int depth, int height, int width) {
int channel = 3;
int filterX = 3, filterY = 4, filterZ = 5;
int strideX = 2, strideY = 2, strideZ = 2;
int padX = 1, padY = 1, padZ = 1;
MatrixPtr cpuImage =
std::make_shared<CpuMatrix>(1, channel * depth * height * width);
MatrixPtr gpuImage =
std::make_shared<GpuMatrix>(1, channel * depth * height * width);
int outD = outputSize(depth, filterZ, padZ, strideZ, true);
int outH = outputSize(height, filterY, padZ, strideY, true);
int outW = outputSize(width, filterX, padZ, strideX, true);
int colBufWidth = outD * outH * outW;
MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(1, channel * colBufWidth);
MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(1, channel * colBufWidth);
cpuImage->randomizeUniform();
gpuImage->copyFrom(*cpuImage);
cpuOutput->maxPool3DForward(*cpuImage,
channel,
depth,
height,
width,
outD,
outH,
outW,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX);
gpuOutput->maxPool3DForward(*gpuImage,
channel,
depth,
height,
width,
outD,
outH,
outW,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX);
TensorCheckErr(*cpuOutput, *gpuOutput);
void testMaxPool3DFwdBwd(int numSamples,
int channels,
int imgSizeD,
int imgSizeH,
int imgSizeW,
int ksizeD,
int ksizeH,
int ksizeW,
int strideD,
int strideH,
int strideW,
int padD,
int padH,
int padW) {
int outD = outputSize(imgSizeD, ksizeD, padD, strideD, true);
int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true);
int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true);
int inWidth = channels * imgSizeD * imgSizeH * imgSizeW;
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);
cpuImage->randomizeUniform();
gpuImage->copyFrom(*cpuImage);
cpuOutput->avgPool3DForward(*cpuImage,
channel,
depth,
height,
width,
outD,
outH,
outW,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX);
gpuOutput->avgPool3DForward(*gpuImage,
channel,
depth,
height,
width,
outD,
outH,
outW,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX);
TensorCheckErr(*cpuOutput, *gpuOutput);
cpuImage->randomizeUniform();
gpuImage->copyFrom(*cpuImage);
cpuOutput->randomizeUniform();
gpuOutput->copyFrom(*cpuOutput);
cpuImage->avgPool3DBackward(*cpuOutput,
depth,
height,
width,
outD,
outH,
outW,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX,
1.0,
1.0);
gpuImage->avgPool3DBackward(*gpuOutput,
depth,
height,
width,
outD,
outH,
outW,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX,
1.0,
1.0);
TensorCheckErr(*cpuImage, *gpuImage);
cpuImage->randomizeUniform();
gpuImage->copyFrom(*cpuImage);
cpuOutput->randomizeUniform();
gpuOutput->copyFrom(*cpuOutput);
cpuImage->maxPool3DBackward(*cpuImage,
*cpuOutput,
*cpuOutput,
depth,
height,
width,
int outWidth = channels * outD * outH * outW;
MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);
MatrixPtr maxIdx = CpuMatrix::create(numSamples, outWidth, false, false);
MatrixPtr maxIdxGpu = GpuMatrix::create(numSamples, outWidth, false, true);
input->randomizeUniform();
target->randomizeUniform();
inputGpu->copyFrom(*input);
targetGpu->copyFrom(*target);
target->maxPool3DForward(*input,
*maxIdx,
channels,
imgSizeD,
imgSizeH,
imgSizeW,
outD,
outH,
outW,
ksizeD,
ksizeH,
ksizeW,
strideD,
strideH,
strideW,
padD,
padH,
padW);
targetGpu->maxPool3DForward(*inputGpu,
*maxIdxGpu,
channels,
imgSizeD,
imgSizeH,
imgSizeW,
outD,
outH,
outW,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX,
1.0,
1.0);
gpuImage->maxPool3DBackward(*gpuImage,
*gpuOutput,
*gpuOutput,
depth,
height,
width,
ksizeD,
ksizeH,
ksizeW,
strideD,
strideH,
strideW,
padD,
padH,
padW);
MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
targetCheck->copyFrom(*targetGpu);
checkMatrixEqual(target, targetCheck);
MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
MatrixPtr targetGpuGrad =
GpuMatrix::create(numSamples, outWidth, false, true);
inputGrad->randomizeUniform();
targetGrad->randomizeUniform();
inputGpuGrad->copyFrom(*inputGrad);
targetGpuGrad->copyFrom(*targetGrad);
inputGrad->maxPool3DBackward(*targetGrad,
*maxIdx,
imgSizeD,
imgSizeH,
imgSizeW,
outD,
outH,
outW,
ksizeD,
ksizeH,
ksizeW,
strideD,
strideH,
strideW,
padD,
padH,
padW,
1.0,
1.0);
inputGpuGrad->maxPool3DBackward(*targetGpuGrad,
*maxIdxGpu,
imgSizeD,
imgSizeH,
imgSizeW,
outD,
outH,
outW,
ksizeD,
ksizeH,
ksizeW,
strideD,
strideH,
strideW,
padD,
padH,
padW,
1.0,
1.0);
MatrixPtr targetBwdCheck =
CpuMatrix::create(numSamples, inWidth, false, false);
targetBwdCheck->copyFrom(*inputGpuGrad);
checkMatrixEqual(inputGrad, targetBwdCheck);
}
void testAvgPool3DFwdBwd(int numSamples,
int channels,
int imgSizeD,
int imgSizeH,
int imgSizeW,
int ksizeD,
int ksizeH,
int ksizeW,
int strideD,
int strideH,
int strideW,
int padD,
int padH,
int padW) {
int outD = outputSize(imgSizeD, ksizeD, padD, strideD, true);
int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true);
int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true);
int inWidth = imgSizeD * imgSizeH * imgSizeW * channels;
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);
int outWidth = channels * outD * outH * outW;
MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);
input->randomizeUniform();
target->randomizeUniform();
inputGpu->copyFrom(*input);
targetGpu->copyFrom(*target);
target->avgPool3DForward(*input,
channels,
imgSizeD,
imgSizeH,
imgSizeW,
outD,
outH,
outW,
ksizeD,
ksizeH,
ksizeW,
strideD,
strideH,
strideW,
padD,
padH,
padW);
targetGpu->avgPool3DForward(*inputGpu,
channels,
imgSizeD,
imgSizeH,
imgSizeW,
outD,
outH,
outW,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX,
1.0,
1.0);
TensorCheckErr(*cpuImage, *gpuImage);
ksizeD,
ksizeH,
ksizeW,
strideD,
strideH,
strideW,
padD,
padH,
padW);
TensorCheckErr(*target, *targetGpu);
MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
MatrixPtr targetGpuGrad =
GpuMatrix::create(numSamples, outWidth, false, true);
inputGrad->randomizeUniform();
targetGrad->randomizeUniform();
inputGpuGrad->copyFrom(*inputGrad);
targetGpuGrad->copyFrom(*targetGrad);
inputGrad->avgPool3DBackward(*targetGrad,
imgSizeD,
imgSizeH,
imgSizeW,
outD,
outH,
outW,
ksizeD,
ksizeH,
ksizeW,
strideD,
strideH,
strideW,
padD,
padH,
padW,
1.0,
1.0);
inputGpuGrad->avgPool3DBackward(*targetGpuGrad,
imgSizeD,
imgSizeH,
imgSizeW,
outD,
outH,
outW,
ksizeD,
ksizeH,
ksizeW,
strideD,
strideH,
strideW,
padD,
padH,
padW,
1.0,
1.0);
TensorCheckErr(*inputGrad, *inputGpuGrad);
}
TEST(Matrix, Pool3D) {
for (auto depth : {9, 16, 64}) {
for (auto height : {9, 11, 128}) {
for (auto width : {9, 32, 128}) {
VLOG(3) << "depth=" << depth << " height=" << height
<< " width=" << width;
testMatrixPool3D(depth, height, width);
// TODO(yi): I noticed many such blindly combinatorial tests in this
// file. They are no help to locate defects at all.
TEST(Matrix, Pool3DFwdBwd) {
for (auto numSamples : {1, 3}) {
for (auto channels : {3}) {
for (auto imgSizeD : {9, 16}) {
for (auto imgSizeH : {9, 32}) {
for (auto imgSizeW : {9, 32}) {
for (auto sizeX : {3}) {
for (auto sizeY : {3}) {
for (auto sizeZ : {3}) {
for (auto sD : {2}) {
for (auto sH : {2}) {
for (auto sW : {2}) {
for (auto pD : {0, (sizeZ - 1) / 2}) {
for (auto pH : {0, (sizeY - 1) / 2}) {
for (auto pW : {0, (sizeX - 1) / 2}) {
VLOG(3) << " numSamples=" << numSamples
<< " channels=" << channels
<< " imgSizeD=" << imgSizeD
<< " imgSizeH=" << imgSizeH
<< " imgSizeW=" << imgSizeW
<< " sizeX=" << sizeX
<< " sizeY=" << sizeY
<< " sizeZ=" << sizeZ << " strideD=" << sD
<< " strideH=" << sH << " strideW=" << sW
<< " padingD=" << pD << " padingH=" << pH
<< " padingW=" << pW;
testMaxPool3DFwdBwd(numSamples,
channels,
imgSizeD,
imgSizeH,
imgSizeW,
sizeX,
sizeY,
sizeZ,
sD,
sH,
sW,
pD,
pH,
pW);
testAvgPool3DFwdBwd(numSamples,
channels,
imgSizeD,
imgSizeH,
imgSizeW,
sizeX,
sizeY,
sizeZ,
sD,
sH,
sW,
pD,
pH,
pW);
}
}
}
}
}
}
}
}
}
}
}
}
}
}
//
// for (auto numSamples : {1, 3}) {
// for (auto channels : {1, 3}) {
// for (auto imgSizeD : {9,16}) {
// for (auto imgSizeH : {9, 32}) {
// for (auto imgSizeW : {9, 32}) {
// for (auto sizeX : {2, 3}) {
// for (auto sizeY : {2, 3}) {
// for (auto sizeZ : {2,3}){
// for (auto sD : {1, 2}) {
// for (auto sH : {1, 2}) {
// for (auto sW : {1, 2}) {
// for (auto pD : {0, (sizeZ - 1) / 2}){
// for (auto pH : {0, (sizeY - 1) / 2}) {
// for (auto pW : {0, (sizeX - 1) / 2}) {
// VLOG(3) << " numSamples=" << numSamples
// << " channels=" << channels
// << " imgSizeD=" << imgSizeD
// << " imgSizeH=" << imgSizeH
// << " imgSizeW=" << imgSizeW
// << " sizeX=" << sizeX
// << " sizeY=" << sizeY
// << " sizeZ=" << sizeZ
// << " strideD=" << sD
// << " strideH=" << sH
// << " strideW=" << sW
// << " padingD=" << pD
// << " padingH=" << pH
// << " padingW=" << pW;
//
// testMaxPool3DFwdBwd(numSamples,
// channels,
// imgSizeD,
// imgSizeH,
// imgSizeW,
// sizeX,
// sizeY,
// sizeZ,
// sD,
// sH,
// sW,
// pD,
// pH,
// pW);
// testAvgPool3DFwdBwd(numSamples,
// channels,
// imgSizeD,
// imgSizeH,
// imgSizeW,
// sizeX,
// sizeY,
// sizeZ,
// sD,
// sH,
// sW,
// pD,
// pH,
// pW);
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
}
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册