diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index da835b33051c310064a906612ae7f9362f95c7d5..da8941c351571a8ff43974321490065079c2c0b4 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -93,11 +93,11 @@ paddle.fluid.layers.edit_distance ArgSpec(args=['input', 'label', 'normalized', paddle.fluid.layers.l2_normalize ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)) paddle.fluid.layers.matmul ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)) paddle.fluid.layers.topk ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)) -paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_times'], varargs=None, keywords=None, defaults=(0, False)) +paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, False, False)) paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None)) -paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None)) +paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0)) paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None)) paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None)) diff --git a/paddle/fluid/inference/analysis/passes/ir_analysis_compose_pass.cc b/paddle/fluid/inference/analysis/passes/ir_analysis_compose_pass.cc index 233bfd6a42b7f123813d4ef5cecf353f7e88d208..38e9b1c5e7c19c89f94ce55324507b02da0c5160 100644 --- a/paddle/fluid/inference/analysis/passes/ir_analysis_compose_pass.cc +++ b/paddle/fluid/inference/analysis/passes/ir_analysis_compose_pass.cc @@ -45,7 +45,7 @@ void IrAnalysisComposePass::InitTensorRTAttrs(Argument *argument) { std::unordered_set teller_set( {"mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid", "depthwise_conv2d", "batch_norm", "concat", "tanh", "pad", - "elementwise_add", "dropout", "split"}); + "elementwise_add", "dropout", "split", "prelu", "conv2d_transpose"}); if (!node->IsOp()) return false; if (teller_set.count(node->Op()->Type())) { diff --git a/paddle/fluid/inference/api/analysis_predictor.cc b/paddle/fluid/inference/api/analysis_predictor.cc index 76d205b737aeb456f242037f2b375d9c537b39f3..d19505877bbc1110fcf5787fffc1436d242a7cdc 100644 --- a/paddle/fluid/inference/api/analysis_predictor.cc +++ b/paddle/fluid/inference/api/analysis_predictor.cc @@ -549,4 +549,6 @@ USE_TRT_CONVERTER(concat); USE_TRT_CONVERTER(dropout); USE_TRT_CONVERTER(pad); USE_TRT_CONVERTER(split); +USE_TRT_CONVERTER(prelu); +USE_TRT_CONVERTER(conv2d_transpose); #endif diff --git a/paddle/fluid/inference/tensorrt/convert/CMakeLists.txt b/paddle/fluid/inference/tensorrt/convert/CMakeLists.txt index ed4c398cee518af3211cab4e982082c46ebb36c2..aa4126392bf1f4b16a123403b68f506d6f76b5a2 100644 --- a/paddle/fluid/inference/tensorrt/convert/CMakeLists.txt +++ b/paddle/fluid/inference/tensorrt/convert/CMakeLists.txt @@ -2,7 +2,7 @@ nv_library(tensorrt_converter SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc -pad_op.cc split_op.cc +pad_op.cc split_op.cc prelu_op.cc DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry) nv_test(test_op_converter SRCS test_op_converter.cc DEPS @@ -16,7 +16,7 @@ nv_test(test_trt_fc_op SRCS test_fc_op.cc fc_op.cc nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc DEPS ${FLUID_CORE_MODULES} tensorrt_engine activation_op SERIAL) nv_test(test_trt_conv_op SRCS test_conv2d_op.cc conv2d_op.cc - DEPS ${FLUID_CORE_MODULES} tensorrt_engine conv_op SERIAL) + DEPS ${FLUID_CORE_MODULES} tensorrt_engine conv_op conv_transpose_op SERIAL) nv_test(test_trt_pool2d_op SRCS test_pool2d_op.cc pool2d_op.cc DEPS ${FLUID_CORE_MODULES} tensorrt_engine pool_op SERIAL) nv_test(test_trt_elementwise_op SRCS test_elementwise_op.cc elementwise_op.cc @@ -33,4 +33,7 @@ nv_test(test_trt_pad_op SRCS test_pad_op.cc pad_op.cc DEPS ${FLUID_CORE_MODULES} tensorrt_engine pad_op SERIAL) nv_test(test_trt_split_op SRCS test_split_op.cc split_op.cc DEPS ${FLUID_CORE_MODULES} tensorrt_engine tensorrt_plugin -split_op concat_op SERIAL) + split_op concat_op SERIAL) +nv_test(test_trt_prelu_op SRCS test_prelu_op.cc prelu_op.cc + DEPS ${FLUID_CORE_MODULES} tensorrt_engine tensorrt_plugin + prelu_op SERIAL) diff --git a/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc b/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc index 43950b8c048b4e1b8974956948caa639812b2f78..7900f56c9ce17ffc7c62c85a42c62ba326dea16e 100644 --- a/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc @@ -18,92 +18,139 @@ namespace paddle { namespace inference { namespace tensorrt { -bool to_skip_merging_optimize(TensorRTEngine* engine_, +bool to_skip_merging_optimize(TensorRTEngine* engine, const std::vector& filters, const std::vector& strides, const std::vector& paddings, std::string input_name) { - if (engine_->itensor_quote_num[input_name] > 0) { + if (engine->itensor_quote_num[input_name] > 0) { return true; } if (filters[0] == 1 && filters[1] == 1 && strides[0] == 1 && strides[1] == 1 && paddings[0] == 0 && paddings[1] == 0) - engine_->itensor_quote_num[input_name] += 1; + engine->itensor_quote_num[input_name] += 1; return false; } +template +void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op, + const framework::Scope& scope, bool test_mode, + RegistFunc fadd_layer, SetDilationFunc fset_dilation, + const std::string& name) { + VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias"; + + framework::OpDesc op_desc(op, nullptr); + PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1); + PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1); // Y is a weight + PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1); + + PADDLE_ENFORCE(engine != nullptr); + auto* X = engine->GetITensor(op_desc.Input("Input").front()); + + // Declare weights + auto* Y_v = scope.FindVar(op_desc.Input("Filter").front()); + PADDLE_ENFORCE_NOT_NULL(Y_v); + auto* Y_t = Y_v->GetMutable(); + + platform::CPUPlace cpu_place; + std::unique_ptr weight_tensor( + new framework::LoDTensor()); + weight_tensor->Resize(Y_t->dims()); + TensorCopySync((*Y_t), cpu_place, weight_tensor.get()); + + auto* weight_data = weight_tensor->mutable_data(platform::CPUPlace()); + + PADDLE_ENFORCE_EQ(weight_tensor->dims().size(), 4UL); + const int n_output = weight_tensor->dims()[0]; + const int n_input = weight_tensor->dims()[1]; + const int filter_h = weight_tensor->dims()[2]; + const int filter_w = weight_tensor->dims()[3]; + const int groups = boost::get(op_desc.GetAttr("groups")); + const std::vector dilations = + boost::get>(op_desc.GetAttr("dilations")); + const std::vector strides = + boost::get>(op_desc.GetAttr("strides")); + const std::vector paddings = + boost::get>(op_desc.GetAttr("paddings")); + + nvinfer1::DimsHW nv_ksize(filter_h, filter_w); + nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]); + nvinfer1::DimsHW nv_strides(strides[0], strides[1]); + nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]); + + TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT, + static_cast(weight_data), + static_cast(weight_tensor->numel())}; + + TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0}; + auto* layer = fadd_layer(const_cast(X), n_output, n_input, + nv_ksize, weight, bias); + PADDLE_ENFORCE(layer != nullptr); + layer->setStride(nv_strides); + layer->setPadding(nv_paddings); + layer->setNbGroups(groups); + // set dilations + fset_dilation(layer, nv_dilations); + + auto output_name = op_desc.Output("Output").front(); + layer->setName((name + " (Output: " + output_name + ")").c_str()); + engine->weight_map[op_desc.Input("Filter").front()] = + std::move(weight_tensor); + layer->getOutput(0)->setName(output_name.c_str()); + engine->SetITensor(output_name, layer->getOutput(0)); + + if (test_mode || + to_skip_merging_optimize(engine, {filter_h, filter_w}, strides, paddings, + op_desc.Input("Input").front())) { + engine->DeclareOutput(output_name); + } +} + class Conv2dOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { - VLOG(3) << "convert a fluid conv2d op to tensorrt conv layer without bias"; - - framework::OpDesc op_desc(op, nullptr); - PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1); - PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1); // Y is a weight - PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1); - - auto* X = engine_->GetITensor(op_desc.Input("Input").front()); - - // Declare weights - auto* Y_v = scope.FindVar(op_desc.Input("Filter").front()); - PADDLE_ENFORCE_NOT_NULL(Y_v); - auto* Y_t = Y_v->GetMutable(); - - platform::CPUPlace cpu_place; - std::unique_ptr weight_tensor( - new framework::LoDTensor()); - weight_tensor->Resize(Y_t->dims()); - TensorCopySync((*Y_t), cpu_place, weight_tensor.get()); - - auto* weight_data = - weight_tensor->mutable_data(platform::CPUPlace()); - - PADDLE_ENFORCE_EQ(weight_tensor->dims().size(), 4UL); - const int n_output = weight_tensor->dims()[0]; - const int filter_h = weight_tensor->dims()[2]; - const int filter_w = weight_tensor->dims()[3]; - - const int groups = boost::get(op_desc.GetAttr("groups")); - const std::vector dilations = - boost::get>(op_desc.GetAttr("dilations")); - const std::vector strides = - boost::get>(op_desc.GetAttr("strides")); - const std::vector paddings = - boost::get>(op_desc.GetAttr("paddings")); - - nvinfer1::DimsHW nv_ksize(filter_h, filter_w); - nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]); - nvinfer1::DimsHW nv_strides(strides[0], strides[1]); - nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]); - - TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT, - static_cast(weight_data), - weight_tensor->memory_size() / sizeof(float)}; - - TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0}; - auto* layer = TRT_ENGINE_ADD_LAYER( - engine_, Convolution, *const_cast(X), n_output, - nv_ksize, weight.get(), bias.get()); - PADDLE_ENFORCE(layer != nullptr); - layer->setStride(nv_strides); - layer->setPadding(nv_paddings); - layer->setDilation(nv_dilations); - layer->setNbGroups(groups); - - auto output_name = op_desc.Output("Output").front(); - layer->setName(("conv2d (Output: " + output_name + ")").c_str()); - engine_->weight_map[op_desc.Input("Filter").front()] = - std::move(weight_tensor); - layer->getOutput(0)->setName(output_name.c_str()); - engine_->SetITensor(output_name, layer->getOutput(0)); - - if (test_mode || - to_skip_merging_optimize(engine_, {filter_h, filter_w}, strides, - paddings, op_desc.Input("Input").front())) { - engine_->DeclareOutput(output_name); - } + ConvertConv2d( + engine_, op, scope, test_mode, + [&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */ + int n_input, /* Conv input maps */ + nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight, + TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* { + auto* layer = + TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output, + ksize, weight.get(), bias.get()); + return layer; + }, + [](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) { + layer->setDilation(dilations); + }, + "conv2d"); + } +}; + +class Deconv2dOpConverter : public OpConverter { + public: + void operator()(const framework::proto::OpDesc& op, + const framework::Scope& scope, bool test_mode) override { + ConvertConv2d( + engine_, op, scope, test_mode, + [&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */ + int n_input, /* Deconv output maps */ + nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight, + TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* { + auto* layer = + TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_input, + ksize, weight.get(), bias.get()); + return layer; + }, + [](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) { + PADDLE_ENFORCE( + dilations.d[0] == 1 && dilations.d[1] == 1, + "Dilations must be (1, 1) for tensorRT, but given (%d, %d)", + dilations.d[0], dilations.d[1]); + }, + "conv2d_transpose"); } }; @@ -112,3 +159,4 @@ class Conv2dOpConverter : public OpConverter { } // namespace paddle REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter); +REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter); diff --git a/paddle/fluid/inference/tensorrt/convert/elementwise_op.cc b/paddle/fluid/inference/tensorrt/convert/elementwise_op.cc index 671bcd8aa9a9fff34644a056499961cf6ab81287..1af091fabd2aea03a85b2d19fd556b18cdd65e3b 100644 --- a/paddle/fluid/inference/tensorrt/convert/elementwise_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/elementwise_op.cc @@ -34,7 +34,8 @@ class ElementwiseWeightOpConverter : public OpConverter { auto* X = engine_->GetITensor(op_desc.Input("X").front()); nvinfer1::Dims dims_x = X->getDimensions(); - PADDLE_ENFORCE(dims_x.nbDims >= 3); + PADDLE_ENFORCE(dims_x.nbDims >= 3, "x dims experts 3, but %d is given.", + dims_x.nbDims); auto* Y_v = scope.FindVar(op_desc.Input("Y").front()); PADDLE_ENFORCE_NOT_NULL(Y_v); diff --git a/paddle/fluid/inference/tensorrt/convert/prelu_op.cc b/paddle/fluid/inference/tensorrt/convert/prelu_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..337885e6baa578d1f733e40f09f0586eba393333 --- /dev/null +++ b/paddle/fluid/inference/tensorrt/convert/prelu_op.cc @@ -0,0 +1,80 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" +#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h" + +namespace paddle { +namespace inference { +namespace tensorrt { + +/* + * PRelu converter from fluid to tensorRT. + */ +class PReluOpConverter : public OpConverter { + public: + void operator()(const framework::proto::OpDesc& op, + const framework::Scope& scope, bool test_mode) override { + VLOG(4) << "convert fluid prelu op to tensorrt prelu layer"; + + framework::OpDesc op_desc(op, nullptr); + // Declare inputs + int input_num = op_desc.Input("X").size(); + PADDLE_ENFORCE(input_num == 1); + auto* input = engine_->GetITensor(op_desc.Input("X")[0]); + // Get output + size_t output_num = op_desc.Output("Out").size(); + PADDLE_ENFORCE(output_num == 1); + // Get attrs + std::string mode = boost::get(op_desc.GetAttr("mode")); + // + auto* alpha_var = scope.FindVar(op_desc.Input("Alpha")[0]); + PADDLE_ENFORCE_NOT_NULL(alpha_var); + auto* alpha_tensor = alpha_var->GetMutable(); + + platform::CUDAPlace place; + std::unique_ptr alpha_tensor_device( + new framework::LoDTensor()); + alpha_tensor_device->Resize(alpha_tensor->dims()); + TensorCopySync(*alpha_tensor, place, alpha_tensor_device.get()); + float* alpha_data = alpha_tensor_device->mutable_data(place); + + // Transform alpha to TensorRTEngine::Weight + TensorRTEngine::Weight alpha_rt(nvinfer1::DataType::kFLOAT, + static_cast(alpha_data), + alpha_tensor_device->numel()); + PReluPlugin* plugin = new PReluPlugin(alpha_rt, mode); + nvinfer1::IPluginLayer* layer = + engine_->AddPlugin(&input, input_num, plugin); + // keep alpha tensor to avoid release it's memory + engine_->weight_map[op_desc.Input("Alpha")[0]] = + std::move(alpha_tensor_device); + + std::string layer_name = "prelu (Output: "; + auto output_name = op_desc.Output("Out")[0]; + layer->getOutput(0)->setName(output_name.c_str()); + engine_->SetITensor(output_name, layer->getOutput(0)); + layer_name += output_name; + if (test_mode) { + engine_->DeclareOutput(output_name); + } + layer->setName((layer_name + ")").c_str()); + } +}; + +} // namespace tensorrt +} // namespace inference +} // namespace paddle + +REGISTER_TRT_OP_CONVERTER(prelu, PReluOpConverter); diff --git a/paddle/fluid/inference/tensorrt/convert/split_op.cc b/paddle/fluid/inference/tensorrt/convert/split_op.cc index 12179cccc76f8b0f595f41c135290dc0f3b50ad7..159854ab593fbbfa1e08a9ca148f1b3a636d668c 100644 --- a/paddle/fluid/inference/tensorrt/convert/split_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/split_op.cc @@ -26,7 +26,7 @@ class SplitOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { - VLOG(40) << "convert a fluid split op to tensorrt split layer"; + VLOG(4) << "convert a fluid split op to tensorrt split layer"; framework::OpDesc op_desc(op, nullptr); // Declare inputs diff --git a/paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc b/paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc index f8711c6b60d74639529624c25429bc245de46479..95916746d6fcb528d26a8f8bb39980b55c4f3704 100644 --- a/paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc @@ -16,6 +16,9 @@ limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/convert/ut_helper.h" +USE_OP(conv2d); +USE_OP(conv2d_transpose); + namespace paddle { namespace inference { namespace tensorrt { @@ -51,7 +54,37 @@ TEST(conv2d_op, test) { validator.Execute(3); } +TEST(conv2d_transpose_op, test) { + std::unordered_set parameters({"deconv2d-Y"}); + framework::Scope scope; + TRTConvertValidation validator(5, parameters, scope, 1 << 15); + + validator.DeclInputVar("deconv2d-X", nvinfer1::Dims3(3, 5, 5)); + validator.DeclParamVar("deconv2d-Y", nvinfer1::Dims4(3, 2, 3, 3)); + validator.DeclOutputVar("deconv2d-Out", nvinfer1::Dims3(2, 5, 5)); + + // Prepare Op description + framework::OpDesc desc; + desc.SetType("conv2d_transpose"); + desc.SetInput("Input", {"deconv2d-X"}); + desc.SetInput("Filter", {"deconv2d-Y"}); + desc.SetOutput("Output", {"deconv2d-Out"}); + + const std::vector strides({1, 1}); + const std::vector paddings({1, 1}); + const std::vector dilations({1, 1}); + const int groups = 1; + + desc.SetAttr("strides", strides); + desc.SetAttr("paddings", paddings); + desc.SetAttr("dilations", dilations); + desc.SetAttr("groups", groups); + + validator.SetOp(*desc.Proto()); + + validator.Execute(3); +} + } // namespace tensorrt } // namespace inference } // namespace paddle -USE_OP(conv2d); diff --git a/paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc b/paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..453f222f1f1e3f3b9ee8fa7bd49f4cab2286e7ea --- /dev/null +++ b/paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc @@ -0,0 +1,94 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" +#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h" + +namespace paddle { +namespace inference { +namespace tensorrt { + +TEST(prelu_op, test_channel_wise) { + std::unordered_set parameters({"prelu_alpha"}); + framework::Scope scope; + TRTConvertValidation validator(10, parameters, scope, 1000); + validator.DeclInputVar("prelu_input", nvinfer1::DimsCHW(3, 2, 2)); + validator.DeclParamVar("prelu_alpha", nvinfer1::Dims3(3, 1, 1)); + validator.DeclOutputVar("prelu_out", nvinfer1::DimsCHW(3, 2, 2)); + + // Prepare Op description + framework::OpDesc desc; + desc.SetType("prelu"); + desc.SetInput("X", {"prelu_input"}); + desc.SetInput("Alpha", {"prelu_alpha"}); + desc.SetOutput("Out", {"prelu_out"}); + + desc.SetAttr("mode", std::string("channel")); + + validator.SetOp(*desc.Proto()); + + validator.Execute(1); +} + +TEST(prelu_op, test_element_wise) { + std::unordered_set parameters({"prelu_alpha"}); + framework::Scope scope; + TRTConvertValidation validator(10, parameters, scope, 1000); + validator.DeclInputVar("prelu_input", nvinfer1::DimsCHW(3, 2, 2)); + validator.DeclParamVar("prelu_alpha", nvinfer1::Dims4(10, 3, 2, 2)); + validator.DeclOutputVar("prelu_out", nvinfer1::DimsCHW(3, 2, 2)); + + // Prepare Op description + framework::OpDesc desc; + desc.SetType("prelu"); + desc.SetInput("X", {"prelu_input"}); + desc.SetInput("Alpha", {"prelu_alpha"}); + desc.SetOutput("Out", {"prelu_out"}); + + desc.SetAttr("mode", std::string("element")); + + validator.SetOp(*desc.Proto()); + + validator.Execute(1); +} + +TEST(prelu_op, test_scalar) { + std::unordered_set parameters({"prelu_alpha"}); + framework::Scope scope; + TRTConvertValidation validator(10, parameters, scope, 1000); + validator.DeclInputVar("prelu_input", nvinfer1::DimsCHW(3, 2, 2)); + validator.DeclParamVar("prelu_alpha", nvinfer1::Dims3(1, 1, 1)); + validator.DeclOutputVar("prelu_out", nvinfer1::DimsCHW(3, 2, 2)); + + // Prepare Op description + framework::OpDesc desc; + desc.SetType("prelu"); + desc.SetInput("X", {"prelu_input"}); + desc.SetInput("Alpha", {"prelu_alpha"}); + desc.SetOutput("Out", {"prelu_out"}); + + desc.SetAttr("mode", std::string("all")); + + validator.SetOp(*desc.Proto()); + + validator.Execute(1); +} + +} // namespace tensorrt +} // namespace inference +} // namespace paddle + +// USE_OP(prelu); +USE_CPU_ONLY_OP(prelu); diff --git a/paddle/fluid/inference/tensorrt/engine.cc b/paddle/fluid/inference/tensorrt/engine.cc index fdd8b56b0ce5c9b5cb6395bcb437aae5ae27829b..208bd12b83aa19f01de9bcf4ada630c87defad5d 100644 --- a/paddle/fluid/inference/tensorrt/engine.cc +++ b/paddle/fluid/inference/tensorrt/engine.cc @@ -200,7 +200,8 @@ void TensorRTEngine::GetOutputInCPU(const std::string &name, void *dst, Buffer &TensorRTEngine::buffer(const std::string &name) { PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first."); auto it = buffer_sizes_.find(name); - PADDLE_ENFORCE(it != buffer_sizes_.end()); + PADDLE_ENFORCE(it != buffer_sizes_.end(), "tried to access buffer named %s", + name); auto slot_offset = infer_engine_->getBindingIndex(name.c_str()); return buffers_[slot_offset]; } diff --git a/paddle/fluid/inference/tensorrt/engine.h b/paddle/fluid/inference/tensorrt/engine.h index 335acdf653e55cc7f3ceccdba88992851c8e0310..99420f19ba17d0bebf6dde3800d57c912256dc6b 100644 --- a/paddle/fluid/inference/tensorrt/engine.h +++ b/paddle/fluid/inference/tensorrt/engine.h @@ -40,6 +40,7 @@ class TensorRTEngine : public EngineBase { // Weight is model parameter. class Weight { public: + Weight() = default; Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) { w_.type = dtype; w_.values = value; diff --git a/paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt b/paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt index 71b7a551619a43e5300ad3205418d1174c7019ff..6611e2e4b35ee51e58cb6b7b088ad160acb659ad 100644 --- a/paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt +++ b/paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt @@ -1 +1 @@ -nv_library(tensorrt_plugin SRCS trt_plugin.cc split_op_plugin.cu DEPS enforce) +nv_library(tensorrt_plugin SRCS trt_plugin.cc split_op_plugin.cu prelu_op_plugin.cu DEPS enforce) diff --git a/paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu b/paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu new file mode 100644 index 0000000000000000000000000000000000000000..0f1ca112955afeecbf82b26324b77aa8def2ad9f --- /dev/null +++ b/paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu @@ -0,0 +1,131 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include "glog/logging.h" +#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h" + +namespace paddle { +namespace inference { +namespace tensorrt { + +static const int CUDA_NUM_THREADS = 1024; +static const int CUDA_MAX_NUM_BLOCKS = 65535; +inline static int GET_NUM_BLOCKS(const int N) { + return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS; +} + +__global__ void PReluChannelWiseKernel(const float *input, const float *alpha, + float *output, int channel, + size_t spatial_size) { + size_t offset = blockIdx.x * spatial_size; + const float *in = input + offset; + float *out = output + offset; + float scale = alpha[blockIdx.x % channel]; + + for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) { + float x = in[i]; + out[i] = (x > 0) ? x : scale * x; + } +} + +__global__ void PReluElementWiseKernel(const float *input, const float *alpha, + float *output, size_t spatial_size) { + size_t offset = blockIdx.x * spatial_size; + const float *in = input + offset; + const float *scale = alpha + offset; + float *out = output + offset; + + for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) { + float x = in[i]; + out[i] = (x > 0) ? x : scale[i] * x; + } +} + +__global__ void PReluScalarKernel(const float *input, const float *alpha, + float *output, size_t spatial_size) { + size_t offset = blockIdx.x * spatial_size; + const float *in = input + offset; + float scale = *alpha; + float *out = output + offset; + + for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) { + float x = in[i]; + out[i] = (x > 0) ? x : scale * x; + } +} + +static inline void PReluChannelWise(cudaStream_t stream, const float *input, + const float *alpha, float *output, + int batch_size, + const nvinfer1::Dims &dims) { + size_t unroll = batch_size * dims.d[0]; + size_t spatial_size = dims.d[1] * dims.d[2]; + CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS); + PReluChannelWiseKernel<<>>( + input, alpha, output, dims.d[0], spatial_size); +} + +static inline void PReluElementWise(cudaStream_t stream, const float *input, + const float *alpha, float *output, + int batch_size, + const nvinfer1::Dims &dims) { + size_t unroll = batch_size * dims.d[0]; + size_t spatial_size = dims.d[1] * dims.d[2]; + CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS); + PReluElementWiseKernel<<>>( + input, alpha, output, spatial_size); +} + +static inline void PReluScalar(cudaStream_t stream, const float *input, + const float *alpha, float *output, + int batch_size, const nvinfer1::Dims &dims) { + size_t unroll = batch_size * dims.d[0]; + size_t spatial_size = dims.d[1] * dims.d[2]; + CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS); + PReluScalarKernel<<>>( + input, alpha, output, spatial_size); +} + +nvinfer1::Dims PReluPlugin::getOutputDimensions(int index, + const nvinfer1::Dims *inputDims, + int nbInputs) { + assert(nbInputs == 1); + assert(index < this->getNbOutputs()); + nvinfer1::Dims const &input_dims = inputDims[0]; + nvinfer1::Dims output_dims = input_dims; + return output_dims; +} + +int PReluPlugin::enqueue(int batchSize, const void *const *inputs, + void **outputs, void *workspace, cudaStream_t stream) { + // input dims is CHW. + const auto &input_dims = this->getInputDims(0); + const float *input = reinterpret_cast(inputs[0]); + const float *alpha = reinterpret_cast(alpha_.get().values); + float *output = reinterpret_cast(outputs)[0]; + if (mode_ == "channel") { + PReluChannelWise(stream, input, alpha, output, batchSize, input_dims); + } else if (mode_ == "element") { + PReluElementWise(stream, input, alpha, output, batchSize, input_dims); + } else { + PReluScalar(stream, input, alpha, output, batchSize, input_dims); + } + return cudaGetLastError() != cudaSuccess; +} + +} // namespace tensorrt +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h b/paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h new file mode 100644 index 0000000000000000000000000000000000000000..aa0f865c89be2dc20d3a30314ec02fd0b425b2fe --- /dev/null +++ b/paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h @@ -0,0 +1,68 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include "paddle/fluid/inference/tensorrt/engine.h" +#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h" + +namespace paddle { +namespace inference { +namespace tensorrt { + +class PReluPlugin : public PluginTensorRT { + TensorRTEngine::Weight alpha_; + std::string mode_; + + protected: + size_t getSerializationSize() override { + // return getBaseSerializationSize(alpha_) + SerializedSize(mode_); + return 0; + } + + // TRT will call this func when we need to serialize the configuration of + // tensorrt. + // It should not be called by users. + void serialize(void *buffer) override { + // serializeBase(buffer); + // SerializeValue(&buffer, alpha_); + // SerializeValue(&buffer, mode_); + } + + public: + PReluPlugin(TensorRTEngine::Weight const &alpha, std::string const &mode) + : alpha_(alpha), mode_(mode) {} + + // It was used for tensorrt deserialization. + // It should not be called by users. + PReluPlugin(void const *serialData, size_t serialLength) { + // deserializeBase(serialData, serialLength); + // DeserializeValue(&serialData, &serialLength, &alpha_); + // DeserializeValue(&serialData, &serialLength, &mode_); + } + + PReluPlugin *clone() const override { return new PReluPlugin(alpha_, mode_); } + + const char *getPluginType() const override { return "prelu"; } + int getNbOutputs() const override { return 1; } + nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims *inputs, + int nbInputDims) override; + int enqueue(int batchSize, const void *const *inputs, void **outputs, + void *workspace, cudaStream_t stream) override; +}; + +} // namespace tensorrt +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/operators/CMakeLists.txt b/paddle/fluid/operators/CMakeLists.txt index edd062e1752a4bad9a2a9a2a25556e2293dcaac7..a9853d00ab1b73d232751d38e029627314902fe5 100644 --- a/paddle/fluid/operators/CMakeLists.txt +++ b/paddle/fluid/operators/CMakeLists.txt @@ -300,7 +300,6 @@ if (NOT WIN32) op_library(gru_op DEPS sequence2batch gru_compute) endif(NOT WIN32) op_library(recurrent_op DEPS executor) -op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale) op_library(cos_sim_op DEPS cos_sim_functor) op_library(parallel_do_op DEPS executor) op_library(unsqueeze_op DEPS reshape_op) @@ -309,6 +308,7 @@ op_library(flatten_op DEPS reshape_op) op_library(sequence_pad_op DEPS sequence_padding) op_library(unstack_op DEPS stack_op) op_library(fake_quantize_op DEPS memory) +op_library(nce_op DEPS sampler) if (NOT WIN32) op_library(crf_decoding_op DEPS jit_kernel) op_library(fusion_lstm_op DEPS jit_kernel) @@ -331,6 +331,14 @@ op_library(load_combine_op DEPS lod_tensor) op_library(concat_op DEPS concat_and_split) op_library(tensor_array_to_tensor_op DEPS concat_op) +set(DEPS_OPS ${DEPS_OPS} warpctc_op) +if (WITH_GPU) + if (${CUDNN_MAJOR_VERSION} VERSION_LESS 7) + op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale SRCS warpctc_op.cc warpctc_op.cu.cc) + endif() +endif() +op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale) + list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) foreach(src ${GENERAL_OPS}) diff --git a/paddle/fluid/operators/expand_op.cc b/paddle/fluid/operators/expand_op.cc index 5ad0ec251328cc1ba580026bb47bf05316e7dc77..40f7c1c54c861abebc84428f55e2769ac8969f0f 100644 --- a/paddle/fluid/operators/expand_op.cc +++ b/paddle/fluid/operators/expand_op.cc @@ -47,6 +47,11 @@ class ExpandOp : public framework::OperatorWithKernel { out_shape[i] = x_dims[i] * expand_times[i]; } + // set the first dim to -1 in compile time + if (!ctx->IsRuntime()) { + out_shape[0] = x_dims[0]; + } + ctx->SetOutputDim("Out", framework::make_ddim(out_shape)); if (out_shape[0] == x_dims[0]) { ctx->ShareLoD("X", "Out"); @@ -109,7 +114,16 @@ class ExpandGradOp : public framework::OperatorWithKernel { ctx->Attrs().Get>("expand_times"); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); - for (size_t i = 0; i < expand_times.size(); ++i) { + size_t start_pos = 0u; + if (!ctx->IsRuntime()) { + PADDLE_ENFORCE_EQ( + x_dims[0], out_dims[0], + "The first dimension size of Input(Out@GRAD) should be " + "equal to the crroresponding dimension size of Input(X)"); + start_pos = 1u; + } + + for (size_t i = start_pos; i < expand_times.size(); ++i) { PADDLE_ENFORCE_EQ(x_dims[i] * expand_times[i], out_dims[i], "Each dimension size of Input(Out@GRAD) should be " "equal to multiplication of crroresponding dimension " diff --git a/paddle/fluid/operators/math/CMakeLists.txt b/paddle/fluid/operators/math/CMakeLists.txt index cc3cc9787a3926eea2f9a1620eead9823a7d77c5..4cd014cbadb888a2afe118785336e673e2b5eafb 100644 --- a/paddle/fluid/operators/math/CMakeLists.txt +++ b/paddle/fluid/operators/math/CMakeLists.txt @@ -41,6 +41,7 @@ math_library(cross_entropy) math_library(cos_sim_functor) math_library(depthwise_conv) math_library(im2col) +math_library(sampler) if (NOT WIN32) # windows do not support avx functions yet. math_library(gru_compute DEPS activation_functions math_function) diff --git a/paddle/fluid/operators/math/sampler.cc b/paddle/fluid/operators/math/sampler.cc index 3066dc0ba284611af89c4927f45089a570ab88bc..690d6f6baafb33d50c8f2d3606d903634d622d16 100644 --- a/paddle/fluid/operators/math/sampler.cc +++ b/paddle/fluid/operators/math/sampler.cc @@ -1,4 +1,4 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. @@ -13,52 +13,46 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/sampler.h" +#include +#include +#include +#include namespace paddle { -namespace random { +namespace operators { +namespace math { Sampler::~Sampler() {} -UniformSampler::UniformSampler(int64 range) - : Sampler(range), inv_range_(1.0 / range) { - random_engine_ = std::make_shared(seed_); +UniformSampler::UniformSampler(int64_t range, unsigned int seed) + : Sampler(range, seed), inv_range_(1.0 / (range + 1)) { + random_engine_ = std::make_shared(seed_); dist_ = std::make_shared>(0, range); } -UniformSampler::UniformSampler(int64 range, unsigned int seed) - : Sampler(range, seed), inv_range_(1.0 / range) { - random_engine_ = std::make_shared(seed_); - dist_ = std::make_shared>(0, range); -} - -int64 UniformSampler::Sample() const { return (*dist_)(*random_engine_); } +int64_t UniformSampler::Sample() const { return (*dist_)(*random_engine_); } -float UniformSampler::Probability(int64 value) const { return inv_range_; } +float UniformSampler::Probability(int64_t value) const { return inv_range_; } -LogUniformSampler::LogUniformSampler(int64 range) - : Sampler(range), log_range_(log(range + 1)) { - random_engine_ = std::make_shared(seed_); - dist_ = std::make_shared>(0, 1); -} - -LogUniformSampler::LogUniformSampler(int64 range, unsigned int seed) +LogUniformSampler::LogUniformSampler(int64_t range, unsigned int seed) : Sampler(range, seed), log_range_(log(range + 1)) { - random_engine_ = std::make_shared(seed_); + random_engine_ = std::make_shared(seed_); dist_ = std::make_shared>(0, 1); } -int64 LogUniformSampler::Sample() const { + +int64_t LogUniformSampler::Sample() const { // Got Log Uniform distribution from uniform distribution by // inverse_transform_sampling method // More details: // https://wanghaoshuang.github.io/2017/11/Log-uniform-distribution-sampler/ - const int64 value = - static_cast(exp((*dist_)(*random_engine_) * log_range_)) - 1; + const int64_t value = + static_cast(exp((*dist_)(*random_engine_) * log_range_)) - 1; // Mathematically, value should be <= range_, but might not be due to some // floating point roundoff, so we mod by range_. return value % range_; } -float LogUniformSampler::Probability(int64 value) const { +float LogUniformSampler::Probability(int64_t value) const { // Given f(x) = 1/[(x+1) * log_range_] // The value's probability is integral of f(x) from value to (value + 1) // More details: @@ -66,5 +60,76 @@ float LogUniformSampler::Probability(int64 value) const { return (log((value + 2.0) / (value + 1.0))) / log_range_; } -} // namespace random +CustomSampler::CustomSampler(int64_t range, const float* probabilities, + unsigned int seed) + : Sampler(range, seed) { + random_engine_ = std::make_shared(seed_); + real_dist_ = std::make_shared>(0, 1); + int_dist_ = std::make_shared>(0, range); + alias_probs_ = std::make_shared>(range + 1); + alias_ = std::make_shared>(range + 1); + probs_ = std::make_shared>(range + 1); + + std::queue> bigs; + std::queue> littles; + for (int64_t i = 0; i <= range; ++i) { + (*probs_)[i] = probabilities[i]; + float normal_prob = probabilities[i] * (range + 1); + if (normal_prob - 1.0 > 1e-4) { + bigs.emplace(i, normal_prob); + } else if (1.0 - normal_prob > 1e-4) { + littles.emplace(i, normal_prob); + } else { + (*alias_probs_)[i] = normal_prob; + (*alias_)[i] = -1; + } + } + + while ((!littles.empty()) && (!bigs.empty())) { + auto big = bigs.front(); + auto little = littles.front(); + bigs.pop(); + littles.pop(); + (*alias_probs_)[little.first] = little.second; + (*alias_)[little.first] = big.first; + auto big_left = big.second - (1 - little.second); + if (big_left - 1.0 > 1e-4) { + bigs.emplace(big.first, big_left); + } else if (1.0 - big_left > 1e-4) { + littles.emplace(big.first, big_left); + } else { + (*alias_probs_)[big.first] = big_left; + (*alias_)[big.first] = -1; + } + } + + if (!littles.empty()) { // littles.second is close to 1.0 + auto little = littles.front(); + (*alias_probs_)[little.first] = 1.0; + (*alias_)[little.first] = -1; + } + + if (!bigs.empty()) { // bigs.second is close to 1.0 + auto big = bigs.front(); + (*alias_probs_)[big.first] = 1.0; + (*alias_)[big.first] = -1; + } +} + +int64_t CustomSampler::Sample() const { + auto index = (*int_dist_)(*random_engine_); + auto p = (*real_dist_)(*random_engine_); + if (p > (*alias_probs_)[index]) { + return (*alias_)[index]; + } else { + return index; + } +} + +float CustomSampler::Probability(int64_t value) const { + return (*probs_)[value]; +} + +} // namespace math +} // namespace operators } // namespace paddle diff --git a/paddle/fluid/operators/math/sampler.h b/paddle/fluid/operators/math/sampler.h index b82691f269c5d0f267ca98c78646efe9b26f0b34..836cdad51f17e93f811ba14695bbe1a65156c588 100644 --- a/paddle/fluid/operators/math/sampler.h +++ b/paddle/fluid/operators/math/sampler.h @@ -16,6 +16,8 @@ limitations under the License. */ #include #include #include +#include + namespace paddle { namespace operators { namespace math { @@ -27,14 +29,14 @@ namespace math { */ class Sampler { public: - explicit Sampler(int64_t range) : range_(range) { - PADDLE_ENFORCE_GT(range, 0); - std::random_device r; - seed_ = r(); - } - explicit Sampler(int64_t range, unsigned int seed) - : range_(range), seed_(seed) { - PADDLE_ENFORCE_GT(range, 0); + explicit Sampler(int64_t range, unsigned int seed = 0UL) : range_(range) { + // PADDLE_ENFORCE_GT(range, 0, "Range should be greater than 0."); + if (seed == 0) { + std::random_device r; + seed_ = r(); + } else { + seed_ = seed; + } } virtual ~Sampler(); // Sample a single value @@ -42,7 +44,7 @@ class Sampler { // The probability that a single call to Sample() returns the given value. virtual float Probability(int64_t value) const = 0; - int64 range() { return range_; } + int64_t range() { return range_; } protected: const int64_t range_; @@ -56,13 +58,11 @@ class Sampler { */ class UniformSampler : public Sampler { public: - explicit UniformSampler(int64_t range); - - explicit UniformSampler(int64_t range, unsigned int seed); + explicit UniformSampler(int64_t range, unsigned int seed = 0UL); ~UniformSampler() override {} - int64 Sample() const override; + int64_t Sample() const override; float Probability(int64_t value) const override; @@ -79,13 +79,11 @@ class UniformSampler : public Sampler { */ class LogUniformSampler : public Sampler { public: - explicit LogUniformSampler(int64_t range); - - explicit LogUniformSampler(int64_t range, unsigned int seed); + explicit LogUniformSampler(int64_t range, unsigned int seed = 0UL); ~LogUniformSampler() override {} - int64 Sample() const override; + int64_t Sample() const override; float Probability(int64_t value) const override; @@ -95,6 +93,29 @@ class LogUniformSampler : public Sampler { std::shared_ptr> dist_; }; +/** + * Sample integers from [0, range) from custom distribution. + */ +class CustomSampler : public Sampler { + public: + explicit CustomSampler(int64_t range, const float* probabilities, + unsigned int seed = 0UL); + + ~CustomSampler() override {} + + int64_t Sample() const override; + + float Probability(int64_t value) const override; + + private: + std::shared_ptr> alias_probs_; + std::shared_ptr> alias_; + std::shared_ptr> probs_; + std::shared_ptr random_engine_; + std::shared_ptr> real_dist_; + std::shared_ptr> int_dist_; +}; + } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/fluid/operators/nce_op.cc b/paddle/fluid/operators/nce_op.cc index 877c9a0528441a7d5b1306c3f8f8be1a5aea577a..9b0d45ae5b9d104c8b7bb1529a9baaaf3d6a736d 100644 --- a/paddle/fluid/operators/nce_op.cc +++ b/paddle/fluid/operators/nce_op.cc @@ -35,6 +35,7 @@ class NCEOp : public framework::OperatorWithKernel { auto x_dims = ctx->GetInputDim("Input"); auto label_dims = ctx->GetInputDim("Label"); + auto w_dims = ctx->GetInputDim("Weight"); PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]); int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1; if (ctx->HasInput("Bias")) { @@ -98,6 +99,13 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker { "each sample. And it is a dispensable input. The default value of " "sample is 1.") .AsDispensable(); + + AddInput( + "CustomDistribution", + "(Tensor) It is used in 'CostumDist' sampler. " + "It is a tensor with shape [num_total_classes]." + "The i-th element is the probsbility of the i-th class being sampled.") + .AsDispensable(); AddOutput("Cost", "(Tensor) A tensor of shape [batch_size, 1]. Cost of samples."); AddOutput("SampleLogits", @@ -121,6 +129,17 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker { AddAttr("num_neg_samples", "The number of negative classes. The default value is 10.") .SetDefault(10); + + AddAttr("sampler", + "(int) Which sampler to be used to sample negative class." + "0: Uniform; 1: LogUniform; 2: CostumDist.") + .SetDefault(0); + + AddAttr("seed", + "(int) The seed used in sampler. If it is 0, " + "the sampler will generate a seed randomly.") + .SetDefault(0); + AddAttr>("custom_neg_classes", "This attribute only be used in unitest. Classes " "in this list wiil be used as negative classes " diff --git a/paddle/fluid/operators/nce_op.h b/paddle/fluid/operators/nce_op.h index 2c4c97f28bc0b511d6eaa8f79a3a4efc9be8a5da..e9af8ad4ce8501f464202039d99c36984d7feba9 100644 --- a/paddle/fluid/operators/nce_op.h +++ b/paddle/fluid/operators/nce_op.h @@ -19,29 +19,28 @@ limitations under the License. */ #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/math/sampler.h" #include "unsupported/Eigen/CXX11/Tensor" namespace paddle { namespace operators { using Tensor = framework::Tensor; +using Sampler = math::Sampler; template using EigenMatrix = framework::EigenMatrix; template -void PrepareSamples(const framework::ExecutionContext& context) { +void PrepareSamples(const framework::ExecutionContext& context, + Sampler* sampler) { auto label = context.Input("Label"); const int64_t* label_data = label->data(); auto label_dims = label->dims(); - int num_total_classes = context.Attr("num_total_classes"); + // int num_total_classes = context.Attr("num_total_classes"); // for unitest std::vector custom_neg_classes = context.Attr>("custom_neg_classes"); - // random machine - std::random_device rd; - std::mt19937 rng(rd()); - std::uniform_int_distribution rand(0, num_total_classes - 1); auto sample_labels = context.Output("SampleLabels"); auto sample_labels_dims = sample_labels->dims(); @@ -62,7 +61,7 @@ void PrepareSamples(const framework::ExecutionContext& context) { } else { for (; j < sample_labels_dims[1]; ++j) { // TODO(wanghaoshuang): support more distribution sampling - sample_labels_data[index++] = rand(rng); + sample_labels_data[index++] = sampler->Sample(); } } } @@ -72,7 +71,33 @@ template class NCEKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - PrepareSamples(context); + int sampler_type = context.Attr("sampler"); + int seed = context.Attr("seed"); + int num_total_classes = context.Attr("num_total_classes"); + int num_neg_samples = context.Attr("num_neg_samples"); + + Sampler* sampler; + switch (sampler_type) { + case 0: { + sampler = new math::UniformSampler(num_total_classes - 1, seed); + break; + } + case 1: { + sampler = new math::LogUniformSampler(num_total_classes - 1, seed); + break; + } + case 2: { + auto custom_dist = context.Input("CustomDistribution"); + const float* custom_dist_data = custom_dist->data(); + PADDLE_ENFORCE_EQ(custom_dist->numel(), num_total_classes); + sampler = new math::CustomSampler(num_total_classes - 1, + custom_dist_data, seed); + break; + } + default: { PADDLE_THROW("Unsupported SamplerType."); } + } + + PrepareSamples(context, sampler); auto sample_labels = context.Output("SampleLabels"); const int64_t* sample_labels_data = sample_labels->data(); auto sample_out = context.Output("SampleLogits"); @@ -85,13 +110,12 @@ class NCEKernel : public framework::OpKernel { } auto out = context.Output("Cost"); T* out_data = out->mutable_data(context.GetPlace()); - int num_neg_samples = context.Attr("num_neg_samples"); - int num_total_classes = context.Attr("num_total_classes"); int64_t num_true_class = 1; if (label != nullptr) { num_true_class = label->dims()[1]; } - T b = 1. / num_total_classes * num_neg_samples; + int64_t sampled_labels_num = sample_labels->dims()[1]; + // T b = 1. / num_total_classes * num_neg_samples; // forward bias auto bias = context.Input("Bias"); if (bias != nullptr) { @@ -117,22 +141,17 @@ class NCEKernel : public framework::OpKernel { } // forward cost for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) { - int64_t j = 0; out_data[i] = 0; T w = sample_weight == nullptr ? 1. : sample_weight_data[i]; - // for true classes - for (; j < num_true_class; ++j) { - T o = sample_out_data[i * sample_out->dims()[1] + j]; - T cost = -log(o / (o + b)); - out_data[i] += w * cost; - } - // for sampled neg classes - for (; j < sample_labels->dims()[1]; ++j) { - T o = sample_out_data[i * sample_out->dims()[1] + j]; - T cost = -log(b / (o + b)); + for (int64_t j = 0; j < sampled_labels_num; ++j) { + int64_t target = sample_labels_data[i * sampled_labels_num + j]; + T o = sample_out_data[i * sampled_labels_num + j]; + float b = sampler->Probability(target) * num_neg_samples; + T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b)); out_data[i] += w * cost; } } + delete sampler; } }; @@ -158,20 +177,45 @@ class NCEGradKernel : public framework::OpKernel { if (label != nullptr) { num_true_class = label->dims()[1]; } - T b = 1. / num_total_classes * num_neg_samples; + + int sampler_type = context.Attr("sampler"); + int seed = context.Attr("seed"); + Sampler* sampler; + switch (sampler_type) { + case 0: { + sampler = new math::UniformSampler(num_total_classes - 1, seed); + break; + } + case 1: { + sampler = new math::LogUniformSampler(num_total_classes - 1, seed); + break; + } + case 2: { + auto custom_dist = context.Input("CustomDistribution"); + const float* custom_dist_data = custom_dist->data(); + PADDLE_ENFORCE_EQ(custom_dist->numel(), num_total_classes); + sampler = new math::CustomSampler(num_total_classes - 1, + custom_dist_data, seed); + break; + } + default: { PADDLE_THROW("Unsupported SamplerType."); } + } + + // T b = 1. / num_total_classes * num_neg_samples; Tensor sample_grad; // tmp tensor T* sample_grad_data = sample_grad.mutable_data(sample_labels->dims(), context.GetPlace()); // backward cost for (int64_t i = 0; i < sample_labels->numel(); ++i) { + int64_t label_idx = i % sample_labels->dims()[1]; + int64_t sample_idx = i / sample_labels->dims()[1]; + float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples; T o = sample_out_data[i]; - T w = sample_weight == nullptr - ? 1 - : sample_weight_data[i / sample_labels->dims()[1]]; - sample_grad_data[i] = (i % sample_labels->dims()[1]) < num_true_class + T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx]; + sample_grad_data[i] = label_idx < num_true_class ? w * (b / (o + b)) * (o - 1) : w * (o * (1 - o) / (o + b)); - sample_grad_data[i] *= d_out_data[i / sample_labels->dims()[1]]; + sample_grad_data[i] *= d_out_data[sample_idx]; } // get d_bias auto d_bias = context.Output(framework::GradVarName("Bias")); @@ -207,6 +251,7 @@ class NCEGradKernel : public framework::OpKernel { w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i]; } } + delete sampler; } }; } // namespace operators diff --git a/paddle/fluid/operators/warpctc_cudnn_op.cu.cc b/paddle/fluid/operators/warpctc_cudnn_op.cu.cc new file mode 100644 index 0000000000000000000000000000000000000000..a764d59410c90535dbda0b3f11e89ae9bf578c04 --- /dev/null +++ b/paddle/fluid/operators/warpctc_cudnn_op.cu.cc @@ -0,0 +1,195 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/mixed_vector.h" +#include "paddle/fluid/operators/math/softmax.h" +#include "paddle/fluid/operators/warpctc_op.h" +#include "paddle/fluid/platform/cudnn_helper.h" + +namespace paddle { +namespace operators { + +#if CUDNN_VERSION >= 7001 +using ScopedTensorDescriptor = platform::ScopedTensorDescriptor; +using ScopedCTCLossDescriptor = platform::ScopedCTCLossDescriptor; +using DataLayout = platform::DataLayout; + +template +class CudnnCTCKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + // =====================Copied code from warpctc=========================== + auto* logits = ctx.Input("Logits"); + auto* label = ctx.Input("Label"); + auto* warpctc_grad = ctx.Output("WarpCTCGrad"); + auto* loss = ctx.Output("Loss"); + + const size_t level = 0; + + auto logits_lod = framework::ToAbsOffset(logits->lod()); + auto logits_dims = logits->dims(); + PADDLE_ENFORCE_EQ(logits_dims[0], + static_cast(logits_lod[level].back()), + "The first dimension of Input(Logits) should be equal to " + "the sum of all sequences' lengths."); + + auto label_lod = framework::ToAbsOffset(label->lod()); + auto label_dims = label->dims(); + PADDLE_ENFORCE_EQ( + label_dims[0], label->numel(), + "The width of each timestep in Input(Label) should be 1."); + + const size_t num_sequences = logits_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(num_sequences, label_lod[level].size() - 1, + "The number of sequences of Input(Logits) should be " + "equal to that of Input(Label)."); + PADDLE_ENFORCE_LE(num_sequences, 256, + "The labelLengths must less than 256 for cudnn call."); + + const size_t sequence_width = logits->numel() / logits_dims[0]; + auto loss_dims = + framework::make_ddim({static_cast(num_sequences), 1}); + + // NOTE: cudnn takes softmax input, calculate softmax first, then do padding + auto& dev_ctx = ctx.template device_context(); + LoDTensor softmax_logits; + softmax_logits.mutable_data(logits->dims(), ctx.GetPlace()); + softmax_logits.set_lod(logits_lod); + int rank = logits->dims().size(); + Tensor in_2d = framework::ReshapeToMatrix(*logits, rank - 1); + Tensor out_2d = framework::ReshapeToMatrix(softmax_logits, rank - 1); + math::SoftmaxFunctor()(dev_ctx, &in_2d, &out_2d); + + // ctc needs sequences data stored in transposed padding format + // logits and grad using padding data of layout 'TNC' + // T: max_sequence_length + // N: batch_size (num_sequences) + // C: width + LoDTensor warpctc_logits; + const size_t max_sequence_length = + math::MaximumSequenceLength(logits_lod[level]); + auto warpctc_logits_dims = + framework::make_ddim({static_cast(max_sequence_length), + static_cast(num_sequences), + static_cast(sequence_width)}); + warpctc_logits.mutable_data(warpctc_logits_dims, ctx.GetPlace()); + + LoDTensor cpu_pad_value; + T* pad_value_data = + cpu_pad_value.mutable_data({1}, platform::CPUPlace()); + *pad_value_data = static_cast(0); + LoDTensor pad_value; + if (platform::is_cpu_place(ctx.GetPlace())) { + pad_value = cpu_pad_value; + } else { + TensorCopySync(cpu_pad_value, ctx.GetPlace(), &pad_value); + } + + math::PaddingLoDTensorFunctor()( + ctx.template device_context(), softmax_logits, + &warpctc_logits, pad_value, -1, 0, false /* norm_by_times */, + math::kLengthBatchWidth); + const T* warpctc_logits_data = warpctc_logits.data(); + + std::vector warpctc_label_lengths(num_sequences); + std::vector warpctc_logits_lengths(num_sequences); + + for (size_t i = 0; i < num_sequences; ++i) { + warpctc_label_lengths[i] = label_lod[level][i + 1] - label_lod[level][i]; + warpctc_logits_lengths[i] = + logits_lod[level][i + 1] - logits_lod[level][i]; + } + + T* warpctc_grad_data = + warpctc_grad->mutable_data(warpctc_logits.dims(), ctx.GetPlace()); + + math::SetConstant()( + ctx.template device_context(), warpctc_grad, + static_cast(0)); + + Tensor warpctc_label; + TensorCopySync(*label, platform::CPUPlace(), &warpctc_label); + const int* warpctc_label_data = warpctc_label.data(); + // ======================================================================== + + ScopedTensorDescriptor logits_desc; + ScopedTensorDescriptor grad_desc; + ScopedCTCLossDescriptor ctcloss_desc; + // layout here doesn't have effect. + DataLayout layout = DataLayout::kNCHW; + + auto cu_logits_desc = logits_desc.descriptor( + layout, framework::vectorize2int(warpctc_logits.dims())); + auto cu_grad_desc = grad_desc.descriptor( + layout, framework::vectorize2int(warpctc_grad->dims())); + auto cu_ctcloss_desc = ctcloss_desc.descriptor(); + + auto handle = dev_ctx.cudnn_handle(); + size_t workspace_size; + + CUDNN_ENFORCE(platform::dynload::cudnnGetCTCLossWorkspaceSize( + handle, cu_logits_desc, cu_grad_desc, warpctc_label_data, + warpctc_label_lengths.data(), warpctc_logits_lengths.data(), + CUDNN_CTC_LOSS_ALGO_DETERMINISTIC, cu_ctcloss_desc, &workspace_size)); + + T* loss_data = loss->mutable_data(loss_dims, ctx.GetPlace()); + + auto workspace_handle = dev_ctx.cudnn_workspace_handle(); + auto cudnn_func = [&](void* cudnn_workspace) { + CUDNN_ENFORCE(platform::dynload::cudnnCTCLoss( + handle, cu_logits_desc, warpctc_logits_data, warpctc_label_data, + warpctc_label_lengths.data(), warpctc_logits_lengths.data(), + loss_data, cu_grad_desc, warpctc_grad_data, + CUDNN_CTC_LOSS_ALGO_DETERMINISTIC, cu_ctcloss_desc, cudnn_workspace, + workspace_size)); + }; + workspace_handle.RunFunc(cudnn_func, workspace_size); + } +}; + +template +class CudnnCTCGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* warpctc_grad = ctx.Input("WarpCTCGrad"); + auto* logits_grad = ctx.Output(framework::GradVarName("Logits")); + const Tensor* loss_grad = ctx.Input(framework::GradVarName("Loss")); + + logits_grad->mutable_data(ctx.GetPlace()); + bool norm_by_times = ctx.Attr("norm_by_times"); + math::UnpaddingLoDTensorFunctor()( + ctx.template device_context(), *warpctc_grad, + logits_grad, -1, 0, norm_by_times, math::kLengthBatchWidth); + + const T* loss_grad_data = loss_grad->data(); + math::ScaleLoDTensorFunctor()( + ctx.template device_context(), loss_grad_data, + logits_grad); + } +}; + +#endif +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +namespace plat = paddle::platform; +#if CUDNN_VERSION >= 7001 +REGISTER_OP_KERNEL( + warpctc, CUDNN, plat::CUDAPlace, + ops::CudnnCTCKernel); +REGISTER_OP_KERNEL( + warpctc_grad, CUDNN, plat::CUDAPlace, + ops::CudnnCTCGradKernel); +#endif diff --git a/paddle/fluid/operators/warpctc_op.cc b/paddle/fluid/operators/warpctc_op.cc index e06c8c962f45a4e91b7efed7431571f0fc6870a3..6a257cebf523bfeb1951b709480140e733126f6a 100644 --- a/paddle/fluid/operators/warpctc_op.cc +++ b/paddle/fluid/operators/warpctc_op.cc @@ -14,6 +14,10 @@ limitations under the License. */ #include "paddle/fluid/operators/warpctc_op.h" +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/platform/cudnn_helper.h" +#endif + namespace paddle { namespace operators { @@ -45,9 +49,16 @@ class WarpCTCOp : public framework::OperatorWithKernel { protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { + framework::LibraryType library_{framework::LibraryType::kPlain}; +#ifdef PADDLE_WITH_CUDA + if (platform::CanCUDNNBeUsed(ctx)) { + library_ = framework::LibraryType::kCUDNN; + } +#endif + framework::DataLayout layout_ = framework::DataLayout::kAnyLayout; return framework::OpKernelType( framework::ToDataType(ctx.Input("Logits")->type()), - ctx.device_context()); + ctx.device_context(), layout_, library_); } }; @@ -86,6 +97,10 @@ class WarpCTCOpMaker : public framework::OpProtoAndCheckerMaker { "normalize the gradients by the number of time-step, " "which is also the sequence's length.") .SetDefault(false); + AddAttr("use_cudnn", + "(bool, default: false), whether to " + "use cudnn kernel.") + .SetDefault(false); AddComment(R"DOC( An operator integrating the open-source [warp-ctc](https://github.com/baidu-research/warp-ctc) library, which is used in diff --git a/paddle/fluid/platform/cudnn_helper.h b/paddle/fluid/platform/cudnn_helper.h index 07bb02be1962f758e50cab1f27de43e89f3953c3..f174a7bc4867634df01367cc0091b0ec55849985 100644 --- a/paddle/fluid/platform/cudnn_helper.h +++ b/paddle/fluid/platform/cudnn_helper.h @@ -380,5 +380,28 @@ inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) { return use_cudnn; } +#if CUDNN_VERSION >= 7001 +class ScopedCTCLossDescriptor { + public: + ScopedCTCLossDescriptor() { + PADDLE_ENFORCE(dynload::cudnnCreateCTCLossDescriptor(&desc_)); + } + ~ScopedCTCLossDescriptor() { + PADDLE_ENFORCE(dynload::cudnnDestroyCTCLossDescriptor(desc_)); + } + + template + inline cudnnCTCLossDescriptor_t descriptor() { + PADDLE_ENFORCE( + dynload::cudnnSetCTCLossDescriptor(desc_, CudnnDataType::type)); + return desc_; + } + + private: + cudnnCTCLossDescriptor_t desc_; + DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor); +}; +#endif + } // namespace platform } // namespace paddle diff --git a/paddle/fluid/platform/dynload/cudnn.h b/paddle/fluid/platform/dynload/cudnn.h index c26143d2f2780f3042f66b99808c6b85866f9dc4..db2e28bc911a05a077c786c57c4f0e4c34bd61f7 100644 --- a/paddle/fluid/platform/dynload/cudnn.h +++ b/paddle/fluid/platform/dynload/cudnn.h @@ -154,7 +154,13 @@ CUDNN_DNN_ROUTINE_EACH_R5(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP) #if CUDNN_VERSION >= 7001 #define CUDNN_DNN_ROUTINE_EACH_R7(__macro) \ __macro(cudnnSetConvolutionGroupCount); \ - __macro(cudnnSetConvolutionMathType); + __macro(cudnnSetConvolutionMathType); \ + __macro(cudnnCreateCTCLossDescriptor); \ + __macro(cudnnDestroyCTCLossDescriptor); \ + __macro(cudnnGetCTCLossDescriptor); \ + __macro(cudnnSetCTCLossDescriptor); \ + __macro(cudnnGetCTCLossWorkspaceSize); \ + __macro(cudnnCTCLoss); CUDNN_DNN_ROUTINE_EACH_R7(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP) #endif diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index 8e18a6e784bab98bb8b5a89ec1b0399479ab5769..3f47053961bcc41b82f1b6776e9365166e78ddbf 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -404,8 +404,8 @@ def open_recordio_file(filename, startup_var.desc.set_dtypes(dtypes) startup_var.persistable = True - main_prog_var = _copy_reader_var_( - default_main_program().current_block(), startup_var) + main_prog_var = _copy_reader_var_(default_main_program().current_block(), + startup_var) if pass_num > 1: main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 4bf475946da88d0543629dcd674fc28b91cf348b..9465d9756477e204d0e24dbb124f3a60d7c3fe4f 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -4193,7 +4193,7 @@ def ctc_greedy_decoder(input, blank, name=None): return ctc_out -def warpctc(input, label, blank=0, norm_by_times=False): +def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False): """ An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc) @@ -4218,6 +4218,7 @@ def warpctc(input, label, blank=0, norm_by_times=False): by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if warpctc layer was follewed by a mean_op. + use_cudnn (bool, default false): Whether to use cudnn. Returns: Variable: The Connectionist Temporal Classification (CTC) loss, @@ -4241,8 +4242,11 @@ def warpctc(input, label, blank=0, norm_by_times=False): 'Label': [label]}, outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]}, - attrs={'blank': blank, - 'norm_by_times': norm_by_times}) + attrs={ + 'blank': blank, + 'norm_by_times': norm_by_times, + 'use_cudnn': use_cudnn + }) return loss_out @@ -4315,7 +4319,10 @@ def nce(input, param_attr=None, bias_attr=None, num_neg_samples=None, - name=None): + name=None, + sampler="uniform", + custom_dist=None, + seed=0): """ ${comment} @@ -4338,6 +4345,14 @@ def nce(input, num_neg_samples (int): ${num_neg_samples_comment} name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None. + sampler (str): The sampler used to sample class from negtive classes. + It can be 'uniform', 'log_uniform' or 'custom_dist'. + default: 'uniform'. + custom_dist (Variable): A tensor with shape [num_total_classes]. + It is used when sampler is set to 'custom_dist'. + custom_dist[i] is the probsbility of i-th class to be sampled. + default: None. + seed (int): The seed used in sampler. default: 0. Returns: Variable: The output nce loss. @@ -4367,6 +4382,16 @@ def nce(input, loss = layers.nce(input=embs, label=words[label_word], num_total_classes=dict_size, param_attr='nce.w', bias_attr='nce.b') + + #or use custom distribution + dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32")) + loss = layers.nce(input=embs, label=words[label_word], + num_total_classes=5, param_attr='nce.w', + bias_attr='nce.b', + num_neg_samples=3, + sampler="custom_dist", + custom_dist=dist) + """ helper = LayerHelper('nce', **locals()) assert isinstance(input, Variable) @@ -4401,9 +4426,31 @@ def nce(input, else: num_neg_samples = int(num_neg_samples) + inputs = { + 'Input': input, + 'Label': label, + 'Weight': w, + 'Bias': b, + 'SampleWeight': sample_weight if sample_weight is not None else [] + } + + if sampler == "uniform": + sampler = 0 + elif sampler == "log_uniform": + sampler = 1 + elif sampler == "custom_dist": + assert custom_dist is not None + assert isinstance(custom_dist, Variable) + inputs['CustomDistribution'] = custom_dist + sampler = 2 + else: + raise Exception("Unsupported sampler type.") + attrs = { 'num_total_classes': int(num_total_classes), - 'num_neg_samples': num_neg_samples + 'num_neg_samples': num_neg_samples, + 'seed': seed, + 'sampler': sampler } helper.append_op( diff --git a/python/paddle/fluid/tests/unittests/test_infer_shape.py b/python/paddle/fluid/tests/unittests/test_infer_shape.py index fdff22cacc28731a91ff4fd17407bd9edbdd9d8b..9d5e064e6adabe09094350db2976f83d835520eb 100644 --- a/python/paddle/fluid/tests/unittests/test_infer_shape.py +++ b/python/paddle/fluid/tests/unittests/test_infer_shape.py @@ -83,6 +83,34 @@ class TestInferShape(unittest.TestCase): mul_op_desc.infer_shape(block) self.assertEqual(out.shape(), [x_shape[0], y_shape[1]]) + def test_expand_op(self): + prog = core.ProgramDesc() + self.assertIsNotNone(prog) + block = prog.block(0) + self.assertIsNotNone(block) + + shape = [-1, 20] + expand_times = [3, 1] + + # prepare input/output + x1 = block.var(six.b("x")) + x1.set_type(core.VarDesc.VarType.LOD_TENSOR) + x1.set_shape(shape) + + out = block.var(six.b("out")) + out.set_type(core.VarDesc.VarType.LOD_TENSOR) + + # prepare the operator + sum_op_desc = block.append_op() + sum_op_desc.set_type("expand") + sum_op_desc.set_input("X", ["x"]) + sum_op_desc.set_output("Out", ["out"]) + sum_op_desc._set_attr('expand_times', expand_times) + + sum_op_desc.check_attrs() + sum_op_desc.infer_shape(block) + self.assertEqual(out.shape(), shape) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_nce.py b/python/paddle/fluid/tests/unittests/test_nce.py index 0745bd274f73715b6fdec236819b8d89827e1346..c01fdd5dddc139bdefc07b91e9816d62febd7f20 100644 --- a/python/paddle/fluid/tests/unittests/test_nce.py +++ b/python/paddle/fluid/tests/unittests/test_nce.py @@ -68,7 +68,9 @@ class TestNCE(OpTest): self.attrs = { 'num_total_classes': num_classes, 'num_neg_samples': num_neg_samples, - 'custom_neg_classes': list(range(num_neg_samples)) + 'custom_neg_classes': list(range(num_neg_samples)), + 'seed': 0, + 'sampler': 0 } self.inputs = { 'Input': input, diff --git a/python/paddle/fluid/tests/unittests/test_warpctc_op.py b/python/paddle/fluid/tests/unittests/test_warpctc_op.py index 5e3aa13546d0c4fdcde4a3d6378d5a1748327814..ec0592baa22b6215035d2b9ad80e00081eb59126 100644 --- a/python/paddle/fluid/tests/unittests/test_warpctc_op.py +++ b/python/paddle/fluid/tests/unittests/test_warpctc_op.py @@ -183,6 +183,7 @@ class TestWarpCTCOp(OpTest): self.labels_lod = [[3, 1, 4, 4]] self.blank = self.num_classes - 1 self.norm_by_times = False + self.use_cudnn = False def setUp(self): self.op_type = "warpctc" @@ -215,7 +216,11 @@ class TestWarpCTCOp(OpTest): "Label": (labels, self.labels_lod) } self.outputs = {"Loss": loss} - self.attrs = {"blank": self.blank, "norm_by_times": self.norm_by_times} + self.attrs = { + "blank": self.blank, + "norm_by_times": self.norm_by_times, + "use_cudnn": self.use_cudnn + } def test_check_output(self): self.check_output() @@ -233,6 +238,22 @@ class TestWarpCTCOpCase1(TestWarpCTCOp): self.labels_lod = [[3, 1, 4, 4]] self.blank = 0 self.norm_by_times = False + self.use_cudnn = False + + +class TestCudnnCTCOp(TestWarpCTCOp): + def config(self): + self.batch_size = 4 + self.num_classes = 8 + self.logits_lod = [[4, 1, 3, 3]] + self.labels_lod = [[3, 1, 4, 4]] + self.blank = 0 + self.norm_by_times = False + self.use_cudnn = True + + def test_check_grad(self): + self.outputs['WarpCTCGrad'] = self.gradient + self.check_grad(["Logits"], "Loss", max_relative_error=0.01) if __name__ == "__main__":