Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
84e813e3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
84e813e3
编写于
7月 07, 2021
作者:
T
taixiurong
提交者:
GitHub
7月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[xpu] add dropout & amp ops in xpu place (#33891)
上级
d128c286
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
793 addition
and
90 deletion
+793
-90
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+1
-1
paddle/fluid/operators/amp/check_finite_and_unscale_op_xpu.cc
...le/fluid/operators/amp/check_finite_and_unscale_op_xpu.cc
+170
-0
paddle/fluid/operators/amp/update_loss_scaling_op_xpu.cc
paddle/fluid/operators/amp/update_loss_scaling_op_xpu.cc
+166
-0
paddle/fluid/operators/dropout_op_xpu.cc
paddle/fluid/operators/dropout_op_xpu.cc
+88
-87
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
+20
-0
python/paddle/fluid/tests/unittests/xpu/test_amp_check_finite_and_scale_op_xpu.py
...s/unittests/xpu/test_amp_check_finite_and_scale_op_xpu.py
+99
-0
python/paddle/fluid/tests/unittests/xpu/test_dropout_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_dropout_op_xpu.py
+4
-2
python/paddle/fluid/tests/unittests/xpu/test_update_loss_scaling_op_xpu.py
...id/tests/unittests/xpu/test_update_loss_scaling_op_xpu.py
+245
-0
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
84e813e3
...
...
@@ -35,7 +35,7 @@ ELSE ()
ENDIF
()
SET
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20210
625
"
)
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20210
701
"
)
SET
(
XPU_XRE_URL
"
${
XPU_BASE_URL
}
/
${
XPU_XRE_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
SET
(
XPU_XDNN_URL
"
${
XPU_BASE_URL
}
/
${
XPU_XDNN_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
SET
(
XPU_XCCL_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20210623/
${
XPU_XCCL_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
...
...
paddle/fluid/operators/amp/check_finite_and_unscale_op_xpu.cc
0 → 100644
浏览文件 @
84e813e3
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/amp/check_finite_and_unscale_op.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
CheckFiniteAndUnscaleXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
MPDType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
using
XPUTyp
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
const
auto
xs
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
const
auto
*
scale
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Scale"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
auto
*
found_inf
=
ctx
.
Output
<
framework
::
Tensor
>
(
"FoundInfinite"
);
const
MPDType
*
scale_data
=
scale
->
data
<
MPDType
>
();
bool
*
found_inf_data
=
found_inf
->
mutable_data
<
bool
>
(
dev_ctx
.
GetPlace
());
// cpy to cpu
bool
cpu_found_inf_data
=
false
;
MPDType
cpu_scale_data
;
if
(
platform
::
is_xpu_place
(
scale
->
place
()))
{
xpu_memcpy
(
&
cpu_scale_data
,
scale_data
,
sizeof
(
MPDType
),
XPUMemcpyKind
::
XPU_DEVICE_TO_HOST
);
}
else
{
cpu_scale_data
=
(
*
scale_data
);
}
MPDType
inverse_scale
=
1.0
/
cpu_scale_data
;
for
(
size_t
i
=
0
;
i
<
xs
.
size
();
++
i
)
{
const
auto
*
x
=
xs
[
i
];
auto
*
out
=
outs
[
i
];
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
framework
::
Tensor
is_finite
=
ctx
.
AllocateTmpTensor
<
bool
,
platform
::
XPUDeviceContext
>
(
x
->
dims
(),
dev_ctx
);
framework
::
Tensor
is_nan
=
ctx
.
AllocateTmpTensor
<
bool
,
platform
::
XPUDeviceContext
>
(
x
->
dims
(),
dev_ctx
);
framework
::
Tensor
is_finite_and_nan
=
ctx
.
AllocateTmpTensor
<
bool
,
platform
::
XPUDeviceContext
>
(
x
->
dims
(),
dev_ctx
);
if
(
cpu_found_inf_data
==
false
)
{
int
r
=
xpu
::
isfinite
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x
->
data
<
T
>
()),
is_finite
.
data
<
bool
>
(),
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(isfinite) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
logical_not
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
bool
*>
(
is_finite
.
data
<
bool
>
()),
is_finite
.
data
<
bool
>
(),
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(logical_not) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
isnan
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x
->
data
<
T
>
()),
is_nan
.
data
<
bool
>
(),
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(isnan) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
logical_or
(
dev_ctx
.
x_context
(),
is_finite
.
data
<
bool
>
(),
is_nan
.
data
<
bool
>
(),
is_finite
.
data
<
bool
>
(),
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(logical_or) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
any
(
dev_ctx
.
x_context
(),
is_finite
.
data
<
bool
>
(),
found_inf_data
,
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(any) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
memory
::
Copy
(
platform
::
CPUPlace
(),
&
cpu_found_inf_data
,
BOOST_GET_CONST
(
platform
::
XPUPlace
,
dev_ctx
.
GetPlace
()),
found_inf_data
,
sizeof
(
bool
));
}
if
(
cpu_found_inf_data
)
{
inverse_scale
=
0.0
;
}
auto
dev_env
=
XPUEnv
::
getenv
(
"XPUSIM_DEVICE_MODEL"
);
if
(
std
::
is_same
<
T
,
paddle
::
platform
::
float16
>::
value
&&
(
dev_env
==
nullptr
||
std
::
strcmp
(
dev_env
,
"KUNLUN1"
)))
{
framework
::
Tensor
float_x
;
framework
::
Tensor
float_out
;
float_x
.
mutable_data
<
MPDType
>
(
dev_ctx
.
GetPlace
(),
x
->
numel
()
*
sizeof
(
MPDType
));
float_out
.
mutable_data
<
MPDType
>
(
dev_ctx
.
GetPlace
(),
out
->
numel
()
*
sizeof
(
MPDType
));
int
r
=
xpu
::
cast_v2
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
float16
*>
(
x
->
data
<
T
>
()),
float_x
.
data
<
MPDType
>
(),
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(cast_v2) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
float_x
.
data
<
MPDType
>
(),
float_out
.
data
<
MPDType
>
(),
x
->
numel
(),
false
,
inverse_scale
,
0.0
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(scale) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
cast_v2
(
dev_ctx
.
x_context
(),
float_out
.
data
<
MPDType
>
(),
reinterpret_cast
<
float16
*>
(
out
->
data
<
T
>
()),
out
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(cast_v2) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
if
(
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
}
else
{
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x
->
data
<
T
>
()),
reinterpret_cast
<
XPUTyp
*>
(
out
->
data
<
T
>
()),
x
->
numel
(),
false
,
inverse_scale
,
0.0
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(scale) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
dev_ctx
.
GetPlace
()),
found_inf_data
,
platform
::
CPUPlace
(),
&
cpu_found_inf_data
,
sizeof
(
bool
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_XPU_KERNEL
(
check_finite_and_unscale
,
ops
::
CheckFiniteAndUnscaleXPUKernel
<
float
>
,
ops
::
CheckFiniteAndUnscaleXPUKernel
<
plat
::
float16
>
);
#endif
paddle/fluid/operators/amp/update_loss_scaling_op_xpu.cc
0 → 100644
浏览文件 @
84e813e3
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/amp/update_loss_scaling_op.h"
#include <cstring>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
UpdateLossScalingXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
MPDType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
using
XPUTyp
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
const
auto
xs
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
const
auto
*
found_inf
=
ctx
.
Input
<
Tensor
>
(
"FoundInfinite"
);
PADDLE_ENFORCE_EQ
(
found_inf
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"FoundInfinite must has only one element."
));
const
bool
*
found_inf_data
=
found_inf
->
data
<
bool
>
();
bool
cpu_found_inf_data
=
false
;
if
(
platform
::
is_xpu_place
(
found_inf
->
place
()))
{
xpu_memcpy
(
&
cpu_found_inf_data
,
found_inf_data
,
sizeof
(
bool
),
XPUMemcpyKind
::
XPU_DEVICE_TO_HOST
);
}
else
{
cpu_found_inf_data
=
(
*
found_inf_data
);
}
for
(
size_t
i
=
0
;
i
<
xs
.
size
();
++
i
)
{
auto
*
out
=
outs
[
i
];
T
*
out_data
=
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
int
num
=
out
->
numel
();
if
(
cpu_found_inf_data
)
{
VLOG
(
1
)
<<
"-- UpdateLossScaling: Find infinite grads. --"
;
int
r
=
0
;
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
XPUTyp
*>
(
out_data
),
num
,
XPUTyp
(
0.0
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(constant) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
const
bool
stop_update
=
ctx
.
Attr
<
bool
>
(
"stop_update"
);
if
(
stop_update
)
{
return
;
}
const
auto
*
pre_loss_scaling
=
ctx
.
Input
<
Tensor
>
(
"PrevLossScaling"
);
const
auto
*
good_in
=
ctx
.
Input
<
Tensor
>
(
"InGoodSteps"
);
const
auto
*
bad_in
=
ctx
.
Input
<
Tensor
>
(
"InBadSteps"
);
auto
*
updated_loss_scaling
=
ctx
.
Output
<
Tensor
>
(
"LossScaling"
);
auto
*
good_out
=
ctx
.
Output
<
Tensor
>
(
"OutGoodSteps"
);
auto
*
bad_out
=
ctx
.
Output
<
Tensor
>
(
"OutBadSteps"
);
const
MPDType
*
pre_loss_scaling_data
=
pre_loss_scaling
->
data
<
MPDType
>
();
const
int
*
good_in_data
=
good_in
->
data
<
int
>
();
const
int
*
bad_in_data
=
bad_in
->
data
<
int
>
();
MPDType
*
updated_loss_scaling_data
=
updated_loss_scaling
->
mutable_data
<
MPDType
>
(
dev_ctx
.
GetPlace
());
int
*
good_out_data
=
good_out
->
mutable_data
<
int
>
(
dev_ctx
.
GetPlace
());
int
*
bad_out_data
=
bad_out
->
mutable_data
<
int
>
(
dev_ctx
.
GetPlace
());
const
int
incr_every_n_steps
=
ctx
.
Attr
<
int
>
(
"incr_every_n_steps"
);
const
int
decr_every_n_nan_or_inf
=
ctx
.
Attr
<
int
>
(
"decr_every_n_nan_or_inf"
);
const
float
incr_ratio
=
ctx
.
Attr
<
float
>
(
"incr_ratio"
);
const
float
decr_ratio
=
ctx
.
Attr
<
float
>
(
"decr_ratio"
);
int
cpu_bad_in_data
;
int
cpu_good_in_data
;
MPDType
cpu_pre_loss_scaling_data
;
if
(
platform
::
is_xpu_place
(
bad_in
->
place
()))
{
xpu_memcpy
(
&
cpu_bad_in_data
,
bad_in_data
,
sizeof
(
int
),
XPUMemcpyKind
::
XPU_DEVICE_TO_HOST
);
}
else
{
cpu_bad_in_data
=
(
*
bad_in_data
);
}
if
(
platform
::
is_xpu_place
(
good_in
->
place
()))
{
xpu_memcpy
(
&
cpu_good_in_data
,
good_in_data
,
sizeof
(
int
),
XPUMemcpyKind
::
XPU_DEVICE_TO_HOST
);
}
else
{
cpu_good_in_data
=
(
*
good_in_data
);
}
if
(
platform
::
is_xpu_place
(
pre_loss_scaling
->
place
()))
{
xpu_memcpy
(
&
cpu_pre_loss_scaling_data
,
pre_loss_scaling_data
,
sizeof
(
MPDType
),
XPUMemcpyKind
::
XPU_DEVICE_TO_HOST
);
}
else
{
cpu_pre_loss_scaling_data
=
(
*
pre_loss_scaling_data
);
}
int
cpu_good_out_data
=
0
;
int
cpu_bad_out_data
=
0
;
MPDType
cpu_updated_loss_scaling_data
;
if
(
cpu_found_inf_data
)
{
cpu_good_out_data
=
0
;
cpu_bad_out_data
=
cpu_bad_in_data
+
1
;
if
(
cpu_bad_out_data
==
decr_every_n_nan_or_inf
)
{
MPDType
new_loss_scaling
=
cpu_pre_loss_scaling_data
*
decr_ratio
;
cpu_updated_loss_scaling_data
=
(
new_loss_scaling
<
static_cast
<
MPDType
>
(
1
))
?
(
static_cast
<
MPDType
>
(
1
))
:
(
new_loss_scaling
);
cpu_bad_out_data
=
0
;
}
}
else
{
cpu_bad_out_data
=
0
;
cpu_good_out_data
=
cpu_good_in_data
+
1
;
if
(
cpu_good_out_data
==
incr_every_n_steps
)
{
MPDType
new_loss_scaling
=
cpu_pre_loss_scaling_data
*
incr_ratio
;
cpu_updated_loss_scaling_data
=
(
std
::
isfinite
(
new_loss_scaling
))
?
new_loss_scaling
:
cpu_pre_loss_scaling_data
;
cpu_good_out_data
=
0
;
}
}
// copy to host
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
dev_ctx
.
GetPlace
()),
bad_out_data
,
platform
::
CPUPlace
(),
&
cpu_bad_out_data
,
sizeof
(
int
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
dev_ctx
.
GetPlace
()),
good_out_data
,
platform
::
CPUPlace
(),
&
cpu_good_out_data
,
sizeof
(
int
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
dev_ctx
.
GetPlace
()),
updated_loss_scaling_data
,
platform
::
CPUPlace
(),
&
cpu_updated_loss_scaling_data
,
sizeof
(
MPDType
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_XPU_KERNEL
(
update_loss_scaling
,
ops
::
UpdateLossScalingXPUKernel
<
float
>
,
ops
::
UpdateLossScalingXPUKernel
<
plat
::
float16
>
);
#endif
paddle/fluid/operators/dropout_op_xpu.cc
浏览文件 @
84e813e3
...
...
@@ -16,11 +16,11 @@ namespace paddle {
namespace
operators
{
#ifdef PADDLE_WITH_XPU
static
std
::
map
<
int
,
float
*>
mask_data_tables
;
static
const
int
max_data_size
=
32
*
1024
*
1024
;
static
std
::
mutex
s_mask_data_table_lock
;
template
<
typename
DeviceContext
,
typename
T
>
class
DropoutXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUTyp
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
...
...
@@ -30,93 +30,70 @@ class DropoutXPUKernel : public framework::OpKernel<T> {
float
dropout_prob
=
context
.
Attr
<
float
>
(
"dropout_prob"
);
auto
dropout_implementation
=
context
.
Attr
<
std
::
string
>
(
"dropout_implementation"
);
float
*
mask_data_table
=
nullptr
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
PADDLE_ENFORCE_EQ
(
!
context
.
HasInput
(
"Seed"
),
true
,
platform
::
errors
::
InvalidArgument
(
(
"Input(Seed) not supported on XPU"
)));
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
int
dev_id
=
BOOST_GET_CONST
(
platform
::
XPUPlace
,
context
.
GetPlace
()).
GetDeviceId
();
int
prop
=
static_cast
<
int
>
(
dropout_prob
*
100
);
int
is_upscale
=
(
dropout_implementation
==
"upscale_in_train"
);
/* mask_data_tables key contains 3 part:
* | 31-16 | 15-8 | 7-0 |
* | dev_id | prob | is_upscale |
*/
int
index
=
(
dev_id
<<
16
)
+
(
prop
<<
8
)
+
is_upscale
;
std
::
lock_guard
<
std
::
mutex
>
lock
(
s_mask_data_table_lock
);
if
(
mask_data_tables
.
find
(
index
)
==
mask_data_tables
.
end
())
{
float
*
mask_data_host
=
new
float
[
max_data_size
];
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
std
::
random_device
rnd
;
std
::
minstd_rand
engine
;
int
seed
=
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
rnd
();
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
float
>
dist
(
0
,
1
);
for
(
size_t
i
=
0
;
i
<
max_data_size
;
++
i
)
{
if
(
dist
(
engine
)
<
dropout_prob
)
{
mask_data_host
[
i
]
=
0.0
f
;
// int seed = (context.Attr<bool>("fix_seed")) ?
// int(context.Attr<int>("seed")) : (rnd());
int
seed
=
0
;
if
(
context
.
Attr
<
bool
>
(
"fix_seed"
)
==
true
)
{
seed
=
static_cast
<
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
}
else
{
if
(
is_upscale
)
{
mask_data_host
[
i
]
=
1.0
f
/
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
}
else
{
mask_data_host
[
i
]
=
1.0
;
}
}
}
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
mask_data_table
),
max_data_size
*
sizeof
(
float
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"
\n\n
Out of memory error on XPU, Cannot"
"allocate %s memory on XPU.
\n\n
Please "
"check whether there is any other process "
"using XPU.
\n
"
,
string
::
HumanReadableSize
(
max_data_size
*
sizeof
(
void
*
))));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
context
.
GetPlace
()),
mask_data_table
,
platform
::
CPUPlace
(),
mask_data_host
,
max_data_size
*
sizeof
(
float
));
mask_data_tables
[
index
]
=
mask_data_table
;
free
(
mask_data_host
);
}
else
{
mask_data_table
=
mask_data_tables
[
index
];
}
seed
=
rnd
();
}
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
// Train
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
size_t
size
=
framework
::
product
(
mask
->
dims
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
dropout
(
dev_ctx
.
x_context
(),
mask_data_table
,
x_data
,
mask_data
,
y_data
,
max_data_size
,
size
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU dropout return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed."
,
r
));
}
else
{
// Infer
float
scale
=
0.0
f
;
if
(
dropout_implementation
==
"upscale_in_train"
)
{
scale
=
1.0
f
;
}
else
{
scale
=
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
// Special case when dropout_prob is 1.0
if
(
dropout_prob
==
1.0
f
)
{
int
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
XPUTyp
*>
(
y_data
),
y
->
numel
(),
XPUTyp
(
0
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(constant) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
XPUTyp
*>
(
mask_data
),
mask
->
numel
(),
XPUTyp
(
0
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(constant) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
return
;
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
x
->
numel
(),
scale
,
0.0
f
,
0
,
x_data
,
y_data
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU dropout return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed."
,
r
));
int
r
=
xpu
::
dropout
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x
->
data
<
T
>
()),
reinterpret_cast
<
XPUTyp
*>
(
y
->
data
<
T
>
()),
reinterpret_cast
<
XPUTyp
*>
(
mask_data
),
seed
,
mask
->
numel
(),
is_upscale
,
dropout_prob
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(dropout) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
float
scale
=
(
is_upscale
)
?
(
1.0
)
:
(
static_cast
<
float
>
(
1.0
f
-
dropout_prob
));
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x_data
),
reinterpret_cast
<
XPUTyp
*>
(
y_data
),
x
->
numel
(),
false
,
scale
,
0.0
f
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(scale) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
DropoutGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUTyp
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
!
context
.
Attr
<
bool
>
(
"is_test"
),
true
,
...
...
@@ -127,23 +104,47 @@ class DropoutGradXPUKernel : public framework::OpKernel<T> {
auto
*
mask
=
context
.
Input
<
Tensor
>
(
"Mask"
);
grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
elementwise_mul
(
dev_ctx
.
x_context
(),
grad_y
->
data
<
T
>
(),
mask
->
data
<
T
>
(),
grad_x
->
data
<
T
>
(),
grad_y
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU dropout return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed."
,
r
));
auto
&
dropout_implementation
=
context
.
Attr
<
std
::
string
>
(
"dropout_implementation"
);
float
dropout_prob
=
context
.
Attr
<
float
>
(
"dropout_prob"
);
const
T
*
mask_data
=
mask
->
data
<
T
>
();
framework
::
Tensor
mask_new
;
if
(
dropout_implementation
==
"upscale_in_train"
)
{
mask_new
=
context
.
AllocateTmpTensor
<
T
,
platform
::
XPUDeviceContext
>
(
mask
->
dims
(),
dev_ctx
);
float
scale
=
(
dropout_prob
==
1.0
f
)
?
(
1.0
f
)
:
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
mask
->
data
<
T
>
()),
reinterpret_cast
<
XPUTyp
*>
(
mask_new
.
data
<
T
>
()),
mask
->
numel
(),
false
,
scale
,
0.0
f
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(scale) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
mask_data
=
mask_new
.
data
<
T
>
();
}
int
r
=
xpu
::
mul
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
grad_y
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUTyp
*>
(
mask_data
),
reinterpret_cast
<
XPUTyp
*>
(
grad_x
->
data
<
T
>
()),
grad_y
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(mul) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_XPU_KERNEL
(
dropout
,
ops
::
DropoutXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
dropout
,
ops
::
DropoutXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
DropoutXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
plat
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
dropout_grad
,
ops
::
DropoutGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
DropoutGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
DropoutGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
plat
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
浏览文件 @
84e813e3
...
...
@@ -122,33 +122,50 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
axis
));
std
::
vector
<
int
>
x_dims_vec
(
max_dim
,
1
);
std
::
vector
<
int
>
y_dims_vec
(
max_dim
,
1
);
int
x_len
=
1
;
int
y_len
=
1
;
if
(
x_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
x_dims_vec
[
i
]
=
x_dims
[
i
];
x_len
*=
x_dims_vec
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
x_dims_vec
[
i
+
axis
]
=
x_dims
[
i
];
x_len
*=
x_dims_vec
[
i
];
}
}
if
(
y_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
y_dims_vec
[
i
]
=
y_dims
[
i
];
y_len
*=
y_dims_vec
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
y_dims_vec
[
i
+
axis
]
=
y_dims
[
i
];
y_len
*=
y_dims_vec
[
i
];
}
}
const
T
*
dz_data
=
dz
->
data
<
T
>
();
framework
::
Tensor
dx_local_tensor
;
framework
::
Tensor
dy_local_tensor
;
bool
need_wait
=
false
;
T
*
dx_data
=
nullptr
;
T
*
dy_data
=
nullptr
;
if
(
dx
)
{
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
else
{
dx_data
=
dx_local_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
x_len
*
sizeof
(
T
));
need_wait
=
true
;
}
if
(
dy
)
{
dy_data
=
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
else
{
dy_data
=
dy_local_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
y_len
*
sizeof
(
T
));
need_wait
=
true
;
}
auto
&
dev_ctx
=
...
...
@@ -161,6 +178,9 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
platform
::
errors
::
External
(
"XPU kernel Elementwise occur error in XPUElementwise error code "
,
ret
,
XPUAPIErrorMsg
[
ret
]));
if
(
need_wait
&&
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
}
};
...
...
python/paddle/fluid/tests/unittests/xpu/test_amp_check_finite_and_scale_op_xpu.py
0 → 100644
浏览文件 @
84e813e3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
import
unittest
import
numpy
as
np
from
op_test_xpu
import
XPUOpTest
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
class
TestCheckFiniteAndUnscaleOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"check_finite_and_unscale"
self
.
init_dtype
()
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
scale
=
np
.
random
.
random
((
1
)).
astype
(
self
.
dtype
)
# self.attrs = {'stop_gradient': True}
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'Scale'
:
scale
}
self
.
outputs
=
{
'FoundInfinite'
:
np
.
array
([
0
]),
'Out'
:
[(
'out0'
,
x
/
scale
)],
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
# class TestCheckFiniteAndUnscaleOpWithNan(XPUOpTest):
# def setUp(self):
# self.op_type = "check_finite_and_unscale"
# self.init_dtype()
# x = np.random.random((1024, 1024)).astype(self.dtype)
# x[128][128] = np.nan
# print("x shape = ", x.shape)
# print(x)
# scale = np.random.random((1)).astype(self.dtype)
# self.inputs = {'X': [('x0', x)], 'Scale': scale}
# self.outputs = {
# 'FoundInfinite': np.array([1]),
# 'Out': [('out0', x)],
# }
# def init_dtype(self):
# self.dtype = np.float32
# def test_check_output(self):
# # When input contains nan, do not check the output,
# # since the output may be nondeterministic and will be discarded.
# if paddle.is_compiled_with_xpu():
# place = paddle.XPUPlace(0)
# self.check_output_with_place(place, no_check_set=['Out'])
# class TestCheckFiniteAndUnscaleOpWithInf(XPUOpTest):
# def setUp(self):
# self.op_type = "check_finite_and_unscale"
# self.init_dtype()
# x = np.random.random((1024, 1024)).astype(self.dtype)
# x[128][128] = np.inf
# scale = np.random.random((1)).astype(self.dtype)
# self.inputs = {'X': [('x0', x)], 'Scale': scale}
# self.outputs = {
# 'FoundInfinite': np.array([1]),
# 'Out': [('out0', x)],
# }
# def init_dtype(self):
# self.dtype = np.float32
# def test_check_output(self):
# # When input contains inf, do not check the output,
# # since the output may be nondeterministic and will be discarded.
# if paddle.is_compiled_with_xpu():
# place = paddle.XPUPlace(0)
# self.check_output_with_place(place, no_check_set=['Out'])
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_dropout_op_xpu.py
浏览文件 @
84e813e3
...
...
@@ -22,9 +22,11 @@ from op_test import OpTest, skip_check_grad_ci
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
class
TestDropoutOp
(
OpTest
):
class
TestDropoutOp
(
XPU
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
...
...
@@ -47,7 +49,7 @@ class TestDropoutOp(OpTest):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
class
TestDropoutOpInput1d
(
OpTest
):
class
TestDropoutOpInput1d
(
XPU
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2000
,
)).
astype
(
"float32"
)}
...
...
python/paddle/fluid/tests/unittests/xpu/test_update_loss_scaling_op_xpu.py
0 → 100644
浏览文件 @
84e813e3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
import
numpy
as
np
from
op_test
import
OpTest
from
op_test_xpu
import
XPUOpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.contrib.mixed_precision.amp_nn
as
amp_nn
paddle
.
enable_static
()
class
TestUpdateLossScalingOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"update_loss_scaling"
self
.
init
()
found_inf
=
np
.
array
([
False
],
dtype
=
np
.
bool
)
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'FoundInfinite'
:
found_inf
,
'PrevLossScaling'
:
self
.
prev_loss_scaling
,
'InGoodSteps'
:
self
.
num_good_steps
,
'InBadSteps'
:
self
.
num_bad_steps
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
x
)],
'LossScaling'
:
self
.
prev_loss_scaling
*
self
.
incr_ratio
,
'OutGoodSteps'
:
self
.
zero_steps
,
'OutBadSteps'
:
self
.
zero_steps
}
def
init
(
self
):
self
.
incr_ratio
=
2.0
self
.
decr_ratio
=
0.8
self
.
dtype
=
np
.
float32
self
.
prev_loss_scaling
=
np
.
array
([
2048
]).
astype
(
self
.
dtype
)
self
.
num_good_steps
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
self
.
num_bad_steps
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
self
.
zero_steps
=
np
.
array
([
0
],
dtype
=
np
.
int32
)
self
.
attrs
=
{
'incr_every_n_steps'
:
1000
,
'decr_every_n_nan_or_inf'
:
2
,
'incr_ratio'
:
self
.
incr_ratio
,
'decr_ratio'
:
self
.
decr_ratio
,
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
no_check_set
=
[
'Out'
])
class
TestUpdateLossScalingOpBad
(
TestUpdateLossScalingOp
):
def
setUp
(
self
):
self
.
op_type
=
"update_loss_scaling"
self
.
init
()
found_inf
=
np
.
array
([
True
],
dtype
=
np
.
bool
)
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
i
=
np
.
random
.
randint
(
0
,
1024
,
1
)
j
=
np
.
random
.
randint
(
0
,
1024
,
1
)
x
[
i
[
0
]][
j
[
0
]]
=
np
.
inf
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'FoundInfinite'
:
found_inf
,
'PrevLossScaling'
:
self
.
prev_loss_scaling
,
'InGoodSteps'
:
self
.
num_good_steps
,
'InBadSteps'
:
self
.
num_bad_steps
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
np
.
zeros_like
(
x
))],
'LossScaling'
:
self
.
prev_loss_scaling
*
self
.
decr_ratio
,
'OutGoodSteps'
:
self
.
zero_steps
,
'OutBadSteps'
:
self
.
zero_steps
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
#self.check_output()
class
TestUpdateLossScalingLayer
(
unittest
.
TestCase
):
def
loss_scaling_check
(
self
,
scope
=
fluid
.
Scope
()):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
1024
,
1024
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
512
,
128
],
dtype
=
'float32'
)
x
=
[
a
,
b
]
found_inf
=
fluid
.
data
(
name
=
"found_inf"
,
shape
=
[
1
],
dtype
=
'bool'
)
prev_loss_scaling
=
fluid
.
data
(
name
=
"prev_loss_scaling"
,
shape
=
[
1
],
dtype
=
'float32'
)
num_good_steps
=
fluid
.
data
(
name
=
"num_good_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
num_bad_steps
=
fluid
.
data
(
name
=
"num_bad_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
a_v
=
np
.
random
.
random
([
1024
,
1024
]).
astype
(
'float32'
)
b_v
=
np
.
random
.
random
([
512
,
128
]).
astype
(
'float32'
)
found_inf_v
=
np
.
array
([
False
]).
astype
(
'bool'
)
prev_loss_scaling_v
=
np
.
array
([
2048
]).
astype
(
'float32'
)
num_good_steps_v
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
num_bad_steps_v
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
incr_every_n_steps
=
1000
decr_every_n_nan_or_inf
=
2
incr_ratio
=
2
decr_ratio
=
0.8
result
=
amp_nn
.
update_loss_scaling
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
name
=
"update_loss_scaling"
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
fluid
.
default_startup_program
())
result_v
=
exe
.
run
(
feed
=
{
'a'
:
a_v
,
'b'
:
b_v
,
'found_inf'
:
found_inf_v
,
'prev_loss_scaling'
:
prev_loss_scaling_v
,
'num_good_steps'
:
num_good_steps_v
,
'num_bad_steps'
:
num_bad_steps_v
},
fetch_list
=
[
result
,
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
])
assert
np
.
array_equal
(
result_v
[
0
],
a_v
)
assert
np
.
array_equal
(
result_v
[
1
],
b_v
)
assert
np
.
array_equal
(
result_v
[
0
],
result_v
[
2
])
assert
np
.
array_equal
(
result_v
[
1
],
result_v
[
3
])
assert
np
.
array_equal
(
result_v
[
4
],
found_inf_v
)
assert
np
.
array_equal
(
result_v
[
5
],
prev_loss_scaling_v
*
incr_ratio
)
assert
np
.
array_equal
(
result_v
[
6
],
np
.
zeros_like
(
num_good_steps_v
))
assert
np
.
array_equal
(
result_v
[
7
],
np
.
zeros_like
(
num_bad_steps_v
))
def
loss_scaling_check_inf
(
self
,
use_cuda
=
True
,
scope
=
fluid
.
Scope
()):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
1024
,
1024
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
512
,
128
],
dtype
=
'float32'
)
x
=
[
a
,
b
]
found_inf
=
fluid
.
data
(
name
=
"found_inf"
,
shape
=
[
1
],
dtype
=
'bool'
)
prev_loss_scaling
=
fluid
.
data
(
name
=
"prev_loss_scaling"
,
shape
=
[
1
],
dtype
=
'float32'
)
num_good_steps
=
fluid
.
data
(
name
=
"num_good_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
num_bad_steps
=
fluid
.
data
(
name
=
"num_bad_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
a_v
=
np
.
random
.
random
([
1024
,
1024
]).
astype
(
'float32'
)
b_v
=
np
.
random
.
random
([
512
,
128
]).
astype
(
'float32'
)
i
=
np
.
random
.
randint
(
0
,
1024
,
1
)
j
=
np
.
random
.
randint
(
0
,
1024
,
1
)
a_v
[
i
[
0
]][
j
[
0
]]
=
np
.
inf
found_inf_v
=
np
.
array
([
True
]).
astype
(
'bool'
)
prev_loss_scaling_v
=
np
.
array
([
2048
]).
astype
(
'float32'
)
num_good_steps_v
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
num_bad_steps_v
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
incr_every_n_steps
=
1000
decr_every_n_nan_or_inf
=
2
incr_ratio
=
2
decr_ratio
=
0.8
result
=
amp_nn
.
update_loss_scaling
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
name
=
"update_loss_scaling"
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
fluid
.
default_startup_program
())
result_v
=
exe
.
run
(
feed
=
{
'a'
:
a_v
,
'b'
:
b_v
,
'found_inf'
:
found_inf_v
,
'prev_loss_scaling'
:
prev_loss_scaling_v
,
'num_good_steps'
:
num_good_steps_v
,
'num_bad_steps'
:
num_bad_steps_v
},
fetch_list
=
[
result
,
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
])
assert
np
.
array_equal
(
result_v
[
0
],
np
.
zeros_like
(
a_v
))
assert
np
.
array_equal
(
result_v
[
1
],
np
.
zeros_like
(
b_v
))
assert
np
.
array_equal
(
result_v
[
2
],
np
.
zeros_like
(
a_v
))
assert
np
.
array_equal
(
result_v
[
3
],
np
.
zeros_like
(
b_v
))
assert
np
.
array_equal
(
result_v
[
4
],
found_inf_v
)
assert
np
.
array_equal
(
result_v
[
5
],
prev_loss_scaling_v
*
decr_ratio
)
assert
np
.
array_equal
(
result_v
[
6
],
np
.
zeros_like
(
num_good_steps_v
))
assert
np
.
array_equal
(
result_v
[
7
],
np
.
zeros_like
(
num_bad_steps_v
))
def
test_loss_scaling
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check
()
def
test_loss_scaling_inf
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check_inf
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录