Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
84c2315a
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
84c2315a
编写于
12月 31, 2020
作者:
L
lilong12
提交者:
GitHub
12月 31, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the paddle.distributed.split api (#29970) (#30041)
* add distributed.split, test=develop
上级
f0e04e1f
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
723 addition
and
3 deletion
+723
-3
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+226
-0
python/paddle/fluid/dygraph/parallel_helper.py
python/paddle/fluid/dygraph/parallel_helper.py
+4
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+15
-0
python/paddle/fluid/tests/unittests/collective_scatter_api.py
...on/paddle/fluid/tests/unittests/collective_scatter_api.py
+2
-2
python/paddle/fluid/tests/unittests/column_parallel_linear_api.py
...addle/fluid/tests/unittests/column_parallel_linear_api.py
+78
-0
python/paddle/fluid/tests/unittests/parallel_embedding_api.py
...on/paddle/fluid/tests/unittests/parallel_embedding_api.py
+76
-0
python/paddle/fluid/tests/unittests/parallel_embedding_api_none_divisible.py
.../tests/unittests/parallel_embedding_api_none_divisible.py
+76
-0
python/paddle/fluid/tests/unittests/row_parallel_linear_api.py
...n/paddle/fluid/tests/unittests/row_parallel_linear_api.py
+79
-0
python/paddle/fluid/tests/unittests/test_collective_api_base.py
.../paddle/fluid/tests/unittests/test_collective_api_base.py
+27
-1
python/paddle/fluid/tests/unittests/test_collective_split_col_linear.py
...fluid/tests/unittests/test_collective_split_col_linear.py
+35
-0
python/paddle/fluid/tests/unittests/test_collective_split_embedding.py
.../fluid/tests/unittests/test_collective_split_embedding.py
+35
-0
python/paddle/fluid/tests/unittests/test_collective_split_embedding_none_divisible.py
...ittests/test_collective_split_embedding_none_divisible.py
+35
-0
python/paddle/fluid/tests/unittests/test_collective_split_row_linear.py
...fluid/tests/unittests/test_collective_split_row_linear.py
+35
-0
未找到文件。
python/paddle/distributed/collective.py
浏览文件 @
84c2315a
...
...
@@ -21,6 +21,7 @@ from ..fluid.layers.tensor import fill_constant
from
..fluid.layers
import
utils
from
..fluid.dygraph.parallel
import
prepare_context
import
paddle
from
.fleet
import
fleet
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
...
...
@@ -31,6 +32,7 @@ __all__ = [
'all_gather'
,
'scatter'
,
'barrier'
,
'split'
,
'ReduceOp'
,
]
...
...
@@ -485,3 +487,227 @@ def barrier(group=0):
inputs
=
{
'X'
:
[
temp
]},
outputs
=
{
'Out'
:
[
temp
]},
attrs
=
{
'ring_id'
:
group
})
def
_parallel_linear
(
x
,
num_rows
,
num_cols
,
axis
,
param_attr
,
bias_attr
,
gather_out
,
inner_rank
,
name
):
"""
Parallel Linear
"""
if
not
name
:
name
=
"fc_by_row_rank_%d"
%
inner_rank
if
axis
==
0
else
"fc_by_col_rank_%d"
%
inner_rank
else
:
name
=
name
+
"_by_row_rank_%d"
%
inner_rank
if
axis
==
0
else
name
+
"_by_col_rank_%d"
%
inner_rank
linear
=
paddle
.
nn
.
Linear
(
num_rows
,
num_cols
,
weight_attr
=
param_attr
,
bias_attr
=
bias_attr
,
name
=
name
)
weight
=
linear
.
weight
weight
.
is_distributed
=
True
linear_out
=
linear
(
x
)
startup_block
=
paddle
.
static
.
default_startup_program
().
global_block
()
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
startup_block
.
vars
[
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
weight
.
name
].
is_distributed
=
True
if
gather_out
:
if
axis
==
0
:
paddle
.
distributed
.
all_reduce
(
linear_out
,
group
=
0
)
else
:
output
=
[]
paddle
.
distributed
.
all_gather
(
output
,
linear_out
,
group
=
0
)
linear_out
=
paddle
.
concat
(
output
,
axis
=
len
(
linear_out
.
shape
)
-
1
)
return
linear_out
def
_parallel_embedding
(
x
,
per_part_embeddings
,
origin_size
,
param_attr
,
inner_rank
,
num_partitions
,
name
):
"""
Parallel Embedding
"""
if
not
name
:
name
=
"emb_rank_%d"
%
inner_rank
else
:
name
=
name
+
"_rank_%d"
%
inner_rank
origin_num_embeddings
=
origin_size
[
0
]
embedding
=
paddle
.
nn
.
Embedding
(
per_part_embeddings
,
origin_size
[
1
],
padding_idx
=
per_part_embeddings
-
1
,
sparse
=
False
,
weight_attr
=
param_attr
,
name
=
name
)
origin_input_shape
=
x
.
shape
if
len
(
origin_input_shape
)
==
2
:
x
=
paddle
.
unsqueeze
(
x
,
axis
=-
1
)
else
:
assert
origin_input_shape
[
-
1
]
==
1
,
(
"The last dimension size of x must be 1."
)
x_shard
=
paddle
.
shard_index
(
x
,
origin_num_embeddings
,
num_partitions
,
inner_rank
,
per_part_embeddings
-
1
)
if
len
(
origin_input_shape
)
==
2
:
x_shard
=
paddle
.
squeeze
(
x_shard
,
axis
=-
1
)
embedding
.
weight
.
is_distributed
=
True
emb_out
=
embedding
(
x_shard
)
startup_block
=
paddle
.
static
.
default_startup_program
().
global_block
()
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
startup_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
paddle
.
distributed
.
all_reduce
(
emb_out
,
group
=
0
)
return
emb_out
def
split
(
x
,
size
,
operation
,
axis
=
0
,
num_partitions
=
1
,
gather_out
=
True
,
weight_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
"""
Split the weight of the specified operation into multiple devices
and do the computation in parallel.
Now the following three cases are supported.
Case 1: Parallel Embedding
The weight of the embedding operation is a NxM matrix with N rows and M columns.
With parallel embedding, the weight is split into num_partitions partitions, each
of which is a matrix with (N/num_partitions + 1) rows and M column where the last
row as the padding idx.
Suppose we split the NxM weight into two partitons on device_0 and device_1
respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
keep unchanged and all other values are changed to N/2 which is the padding index and
are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
devices are sum-reduced.
Case 2: Row Parallel Linear
The weight of the linear operation is a NxM matrix with N rows and M columns.
With row parallel linear, the weight is split into num_partitions partitions, each
of which is a matrix with N/num_partitions rows and M column.
Case 3: Column Parallel Linear
The weight of the linear operation is a NxM matrix with N rows and M columns.
With column parallel linear, the weight is split into num_paratitions partitions, each
of which is a matrix with N rows and M/num_partitions column.
Args:
x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
on each partitions will be gathered after computation. Default: True.
weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
weights(Parameter) of the specified operation. Default: None.
bias_attr (ParamAttr, Optional): The parameter attribute for the bias
of the specified operation. Default: None.
name (str, Optional): The default value is None. Normally there is no need for user to set this
property. Default: None. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor.
Examples:
.. code-block:: python
import paddle
from paddle.distributed import init_parallel_env
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
data = paddle.randint(0, 8, shape=[10,4])
emb_out = padle.distributed.split(
data,
(8, 8),
operation="embedding",
num_partitions=2)
"""
assert
isinstance
(
size
,
(
list
,
tuple
)),
(
"The type of size for "
"paddle.distributed.split must be list or tuple."
)
assert
len
(
size
)
==
2
,
(
"Number of elements in size of "
"paddle.distributed.split must be two."
)
assert
isinstance
(
operation
,
str
),
(
"The type of operation for "
"paddle.distributed.split must be str."
)
supported_operations
=
[
'linear'
,
'embedding'
,
]
assert
operation
in
supported_operations
,
(
"The operation for "
"paddle.distributed.split must be one of {}."
.
format
(
supported_operations
))
if
in_dygraph_mode
():
rank
=
paddle
.
distributed
.
get_rank
()
nranks
=
paddle
.
distributed
.
get_world_size
()
else
:
assert
fleet
.
_role_maker
,
(
"To use paddle.distributed.split, "
"you must call fleet.init() firstly."
)
rank
=
fleet
.
worker_index
()
nranks
=
fleet
.
worker_num
()
# rank within a model parallel group
inner_rank
=
rank
%
num_partitions
if
operation
==
"embedding"
:
assert
axis
==
0
,
(
"We only support to split the weight of embedding "
"along the first axis now."
)
per_part_size
=
(
size
[
0
]
+
num_partitions
-
1
)
//
num_partitions
last_part_size
=
size
[
0
]
-
per_part_size
*
(
num_partitions
-
1
)
if
inner_rank
==
num_partitions
-
1
:
per_part_size
=
last_part_size
per_part_size
+=
1
# make the last row as the padding index
emb_out
=
_parallel_embedding
(
x
,
per_part_size
,
size
,
weight_attr
,
inner_rank
,
num_partitions
,
name
)
return
emb_out
else
:
if
axis
==
0
:
assert
size
[
0
]
%
num_partitions
==
0
,
(
"Number of rows of the weight for linear ({}) must be"
" divisible by num_partitions ({})"
.
format
(
size
[
0
],
num_partitions
))
per_part_size
=
size
[
0
]
//
num_partitions
linear_size
=
(
per_part_size
,
size
[
1
])
assert
x
.
shape
[
-
1
]
==
per_part_size
,
(
"The width ({}) of the input "
"x must be equal to the height ({}) of the weight. Maybe you "
"should split the input x using paddle.split."
.
format
(
x
.
shape
[
-
1
],
per_part_size
))
elif
axis
==
1
:
assert
size
[
1
]
%
num_partitions
==
0
,
(
"Number of column of the weight for linear ({}) must be"
" divisible by num_partitions ({})"
.
format
(
size
[
1
],
num_partitions
))
per_part_size
=
size
[
1
]
//
num_partitions
linear_size
=
(
size
[
0
],
per_part_size
)
else
:
raise
ValueError
(
"The value of axis must be 0 or 1, but the value "
"given is {}."
.
format
(
axis
))
linear_out
=
_parallel_linear
(
x
,
linear_size
[
0
],
linear_size
[
1
],
axis
,
weight_attr
,
bias_attr
,
gather_out
,
inner_rank
,
name
=
name
)
return
linear_out
python/paddle/fluid/dygraph/parallel_helper.py
浏览文件 @
84c2315a
...
...
@@ -44,5 +44,9 @@ def _init_parallel_ctx():
def
_broadcast_parameters
(
parameters
):
for
param
in
parameters
:
# In model parallel, some parameters are split into multiple devices,
# so we could not broadcast these parameters.
if
param
.
is_distributed
:
continue
if
isinstance
(
param
,
Parameter
)
and
param
.
trainable
:
collective
.
_broadcast
(
param
,
0
,
sync_mode
=
True
)
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
84c2315a
...
...
@@ -73,6 +73,10 @@ if(NOT WITH_GPU OR WIN32)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_sendrecv
)
LIST
(
REMOVE_ITEM TEST_OPS test_reducescatter
)
LIST
(
REMOVE_ITEM TEST_OPS test_reducescatter_api
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_split_embedding
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_split_embedding_none_divisible
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_split_row_linear
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_split_col_linear
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_reduce_api
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_scatter_api
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_barrier_api
)
...
...
@@ -824,6 +828,17 @@ if(WITH_GPU AND NOT WIN32)
set_tests_properties
(
test_collective_barrier_api PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_scatter PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_sendrecv PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_split_embedding
test_collective_split_embedding_none_divisible
test_collective_split_row_linear
test_collective_split_col_linear
test_collective_scatter_api
test_collective_barrier_api
test_collective_reduce_api
test_collective_allreduce_api
test_collective_broadcast_api
test_collective_allgather_api
PROPERTIES LABELS
"RUN_TYPE=DIST"
)
endif
()
if
(
WITH_GPU
)
set_tests_properties
(
test_imperative_auto_mixed_precision PROPERTIES TIMEOUT 120
)
...
...
python/paddle/fluid/tests/unittests/collective_scatter_api.py
浏览文件 @
84c2315a
...
...
@@ -47,10 +47,10 @@ class TestCollectiveScatterAPI(TestCollectiveAPIRunnerBase):
tindata
=
layers
.
data
(
name
=
"tindata"
,
shape
=
[
10
,
1000
],
dtype
=
'float
64
'
,
dtype
=
'float
32
'
,
append_batch_size
=
False
)
toutdata
=
layers
.
fill_constant
(
shape
=
[
5
,
1000
],
dtype
=
'float
64
'
,
value
=
1.0
)
shape
=
[
5
,
1000
],
dtype
=
'float
32
'
,
value
=
1.0
)
tensor_list
=
None
if
rank
==
1
:
tensor_list
=
paddle
.
split
(
tindata
,
2
,
axis
=
0
)
...
...
python/paddle/fluid/tests/unittests/column_parallel_linear_api.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestColumnParallelLinearAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
1000
,
16
)
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
paddle
.
distributed
.
broadcast
(
data
,
src
=
0
)
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[:,
0
:
8
]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[:,
8
:
16
]),
)
linear_out
=
paddle
.
distributed
.
split
(
data
,
size
=
(
1000
,
16
),
operation
=
'linear'
,
axis
=
1
,
num_partitions
=
2
,
weight_attr
=
param_attr
,
bias_attr
=
False
,
)
return
[
linear_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestColumnParallelLinearAPI
,
"column_parallel_linear"
)
python/paddle/fluid/tests/unittests/parallel_embedding_api.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestParallelEmbeddingAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
10
,
8
)
paddle
.
seed
(
2020
)
data_in
=
paddle
.
randint
(
0
,
8
,
shape
=
(
10
,
4
))
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
0
:
5
,
:]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
5
:
10
,
:]),
)
emb_out
=
paddle
.
distributed
.
split
(
data_in
,
(
8
,
8
),
operation
=
"embedding"
,
num_partitions
=
2
,
weight_attr
=
param_attr
)
return
[
data_in
,
emb_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestParallelEmbeddingAPI
,
"parallel_embedding"
)
python/paddle/fluid/tests/unittests/parallel_embedding_api_none_divisible.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestParallelEmbeddingAPINoneDivisible
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
9
,
8
)
paddle
.
seed
(
2020
)
data_in
=
paddle
.
randint
(
0
,
7
,
shape
=
(
10
,
4
))
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
0
:
5
,
:]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
5
:
9
,
:]),
)
emb_out
=
paddle
.
distributed
.
split
(
data_in
,
(
7
,
8
),
operation
=
"embedding"
,
num_partitions
=
2
,
weight_attr
=
param_attr
)
return
[
data_in
,
emb_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestParallelEmbeddingAPINoneDivisible
,
"parallel_embedding"
)
python/paddle/fluid/tests/unittests/row_parallel_linear_api.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestRowParallelLinearAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
1000
,
16
)
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
paddle
.
distributed
.
broadcast
(
data
,
src
=
0
)
data
=
paddle
.
split
(
data
,
2
,
axis
=
1
)[
rank
]
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
0
:
500
,
:]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
500
:
1000
,
:]),
)
linear_out
=
paddle
.
distributed
.
split
(
data
,
size
=
(
1000
,
8
),
operation
=
'linear'
,
axis
=
0
,
num_partitions
=
2
,
weight_attr
=
param_attr
,
bias_attr
=
False
,
)
return
[
linear_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestRowParallelLinearAPI
,
"row_parallel_linear"
)
python/paddle/fluid/tests/unittests/test_collective_api_base.py
浏览文件 @
84c2315a
...
...
@@ -55,7 +55,7 @@ class TestCollectiveAPIRunnerBase(object):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
np
.
random
.
seed
(
os
.
getpid
())
indata
=
np
.
random
.
random
((
10
,
1000
))
indata
=
np
.
random
.
random
((
10
,
1000
))
.
astype
(
"float32"
)
fetch_list
=
[]
for
elem
in
result
:
fetch_list
.
append
(
elem
.
name
)
...
...
@@ -221,5 +221,31 @@ class TestDistBase(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
tr1_out
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"parallel_embedding"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
need_result
=
np
.
random
.
rand
(
10
,
8
)
for
i
in
range
(
result_data
.
shape
[
0
]):
for
j
in
range
(
result_data
.
shape
[
1
]):
data
=
result_data
[
i
][
j
]
if
data
>=
4
:
data
+=
1
assert
np
.
allclose
(
tr0_out
[
1
][
i
][
j
],
need_result
[
data
],
atol
=
1e-08
)
elif
col_type
==
"row_parallel_linear"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
weight
=
np
.
random
.
rand
(
1000
,
16
)
need_result
=
np
.
matmul
(
input1
,
weight
)
self
.
assertTrue
(
np
.
allclose
(
result_data
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"column_parallel_linear"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
weight
=
np
.
random
.
rand
(
1000
,
16
)
need_result
=
np
.
matmul
(
input1
,
weight
)
self
.
assertTrue
(
np
.
allclose
(
result_data
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
else
:
pass
python/paddle/fluid/tests/unittests/test_collective_split_col_linear.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
paddle
.
enable_static
()
class
TestColParallelLinearAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_col_parallel_linear
(
self
):
self
.
check_with_place
(
"column_parallel_linear_api.py"
,
"column_parallel_linear"
,
"nccl"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_collective_split_embedding.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
paddle
.
enable_static
()
class
TestParallelEmbeddingAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_parallel_embedding
(
self
):
self
.
check_with_place
(
"parallel_embedding_api.py"
,
"parallel_embedding"
,
"nccl"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_collective_split_embedding_none_divisible.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
paddle
.
enable_static
()
class
TestParallelEmbeddingNoneDivisibleAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_parallel_embedding_none_divisible
(
self
):
self
.
check_with_place
(
"parallel_embedding_api_none_divisible.py"
,
"parallel_embedding"
,
"nccl"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_collective_split_row_linear.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
paddle
.
enable_static
()
class
TestRowParallelLinearAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_row_parallel_linear
(
self
):
self
.
check_with_place
(
"row_parallel_linear_api.py"
,
"row_parallel_linear"
,
"nccl"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录