Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8492d3bb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8492d3bb
编写于
3月 02, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
3月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
The backward code of Sparse Conv3d (#40054)
Sparse Conv3d backward code
上级
28795771
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
337 addition
and
8 deletion
+337
-8
paddle/phi/kernels/sparse/convolution_grad_kernel.h
paddle/phi/kernels/sparse/convolution_grad_kernel.h
+66
-0
paddle/phi/kernels/sparse/cpu/convolution.h
paddle/phi/kernels/sparse/cpu/convolution.h
+1
-0
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
+166
-0
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
+104
-8
未找到文件。
paddle/phi/kernels/sparse/convolution_grad_kernel.h
0 → 100644
浏览文件 @
8492d3bb
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
Conv3dGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
,
DenseTensor
*
x_grad
,
DenseTensor
*
kernel_grad
);
template
<
typename
T
,
typename
Context
>
std
::
vector
<
DenseTensor
>
Conv3dGrad
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
)
{
DenseTensor
x_grad
=
phi
::
Empty
<
T
,
Context
>
(
dev_ctx
);
DenseTensor
kernel_grad
=
phi
::
Empty
<
T
,
Context
>
(
dev_ctx
);
Conv3dGradKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
rulebook
,
kernel
,
out_grad
,
paddings
,
dilations
,
strides
,
groups
,
&
x_grad
,
&
kernel_grad
);
std
::
vector
<
DenseTensor
>
out
(
2
);
out
[
0
]
=
x_grad
;
out
[
1
]
=
kernel_grad
;
return
out
;
}
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/cpu/convolution.h
浏览文件 @
8492d3bb
...
...
@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
namespace
phi
{
namespace
sparse
{
...
...
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
0 → 100644
浏览文件 @
8492d3bb
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/sparse/cpu/convolution.h"
namespace
phi
{
namespace
sparse
{
// rulebook:
//[
// [kernel_index],
// [in_i],
// [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
template
<
typename
T
,
typename
Context
>
void
Conv3dGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
,
DenseTensor
*
x_grad
,
DenseTensor
*
kernel_grad
)
{
const
auto
&
kernel_dims
=
kernel
.
dims
();
const
int
kernel_size
=
kernel_dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dims
[
2
];
const
int
in_channels
=
kernel_dims
[
3
];
const
int
out_channels
=
kernel_dims
[
4
];
const
int
*
rulebook_ptr
=
rulebook
.
data
<
int
>
();
const
int
rulebook_len
=
rulebook
.
dims
()[
1
];
DenseTensorMeta
in_features_meta
(
x
.
dtype
(),
{
rulebook_len
,
in_channels
},
DataLayout
::
NCHW
);
DenseTensorMeta
d_x_features_meta
(
x
.
dtype
(),
{
rulebook_len
,
in_channels
},
DataLayout
::
NCHW
);
DenseTensorMeta
out_grad_features_meta
(
x
.
dtype
(),
{
rulebook_len
,
out_channels
},
DataLayout
::
NCHW
);
phi
::
DenseTensor
in_features
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
in_features_meta
));
phi
::
DenseTensor
d_x_features
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
d_x_features_meta
));
phi
::
DenseTensor
out_grad_features
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
out_grad_features_meta
));
dev_ctx
.
Alloc
(
&
in_features
,
in_features
.
dtype
(),
sizeof
(
T
)
*
in_features
.
numel
());
T
*
in_features_ptr
=
in_features
.
data
<
T
>
();
dev_ctx
.
Alloc
(
&
d_x_features
,
d_x_features
.
dtype
(),
sizeof
(
T
)
*
d_x_features
.
numel
());
T
*
d_x_features_ptr
=
d_x_features
.
data
<
T
>
();
dev_ctx
.
Alloc
(
&
out_grad_features
,
out_grad_features
.
dtype
(),
sizeof
(
T
)
*
out_grad_features
.
numel
());
T
*
out_grad_features_ptr
=
out_grad_features
.
data
<
T
>
();
kernel_grad
->
Resize
(
kernel_dims
);
dev_ctx
.
Alloc
(
kernel_grad
,
kernel_grad
->
dtype
(),
kernel_grad
->
numel
()
*
sizeof
(
T
));
T
*
d_kernel_ptr
=
kernel_grad
->
data
<
T
>
();
Gather
<
T
>
(
x
.
non_zero_elements
().
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
,
rulebook_len
,
in_channels
,
in_features_ptr
);
Gather
<
T
>
(
out_grad
.
non_zero_elements
().
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
rulebook_len
,
out_channels
,
out_grad_features_ptr
);
auto
blas
=
phi
::
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
std
::
vector
<
int
>
offsets
(
kernel_size
+
1
),
counter
(
kernel_size
,
0
);
for
(
int
i
=
0
;
i
<
rulebook_len
;
i
++
)
{
counter
[
rulebook_ptr
[
i
]]
+=
1
;
}
int
offset
=
0
;
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
offsets
[
i
]
=
offset
;
offset
+=
counter
[
i
];
}
offsets
[
kernel_size
]
=
offset
;
const
T
*
kernel_ptr
=
kernel
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
if
(
counter
[
i
]
<=
0
)
{
continue
;
}
const
int
M
=
counter
[
i
];
const
int
K
=
in_channels
;
const
int
N
=
out_channels
;
T
*
tmp_in_ptr
=
in_features_ptr
+
offsets
[
i
]
*
in_channels
;
T
*
tmp_out_grad_ptr
=
out_grad_features_ptr
+
offsets
[
i
]
*
out_channels
;
const
T
*
tmp_kernel_ptr
=
kernel_ptr
+
i
*
in_channels
*
out_channels
;
T
*
tmp_d_x_ptr
=
d_x_features_ptr
+
offsets
[
i
]
*
out_channels
;
T
*
tmp_d_kernel_ptr
=
d_kernel_ptr
+
i
*
in_channels
*
out_channels
;
// call gemm: d_kernel = transpose(x) * out_grad
// (in_channels, n) * (n, out_channels)
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
tmp_in_ptr
,
tmp_out_grad_ptr
,
static_cast
<
T
>
(
0
),
tmp_d_kernel_ptr
);
// call gemm: d_x = out_grad * transpose(kernel)
// (n, out_channels) * (out_channels, in_channels)
blas
.
GEMM
(
CblasNoTrans
,
CblasTrans
,
M
,
K
,
N
,
static_cast
<
T
>
(
1
),
tmp_out_grad_ptr
,
tmp_kernel_ptr
,
static_cast
<
T
>
(
0
),
tmp_d_x_ptr
);
}
// 4. scatter
x_grad
->
Resize
(
x
.
non_zero_elements
().
dims
());
dev_ctx
.
Alloc
(
x_grad
,
x_grad
->
dtype
(),
sizeof
(
T
)
*
x_grad
->
numel
());
T
*
x_grad_values_ptr
=
x_grad
->
data
<
T
>
();
memset
(
x_grad_values_ptr
,
0
,
sizeof
(
T
)
*
x_grad
->
numel
());
Scatter
<
T
>
(
d_x_features_ptr
,
rulebook
.
data
<
int
>
()
+
rulebook_len
,
rulebook_len
,
in_channels
,
x_grad_values_ptr
);
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sparse_conv_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
Conv3dGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
kernel
->
InputAt
(
3
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
浏览文件 @
8492d3bb
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/phi/common/place.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
...
...
@@ -59,7 +60,10 @@ void TestConv3dBase(const std::vector<int>& indices,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
dilations
,
const
float
diff
=
1e-3
)
{
const
float
diff
=
1e-3
,
const
bool
backward
=
false
,
const
std
::
vector
<
T
>
features_grad
=
{},
const
std
::
vector
<
T
>
kernel_grad
=
{})
{
phi
::
CPUContext
dev_ctx_cpu
;
dev_ctx_cpu
.
SetAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
...
...
@@ -122,11 +126,30 @@ void TestConv3dBase(const std::vector<int>& indices,
correct_out_indices
.
size
()
*
sizeof
(
int
));
ASSERT_EQ
(
cmp_indices
,
0
);
for
(
uint64_t
i
=
0
;
i
<
correct_out_features
.
size
();
i
++
)
{
float
tmp
=
std
::
fabs
(
static_cast
<
float
>
(
correct_out_features
[
i
]
-
out
.
non_zero_elements
().
data
<
T
>
()[
i
]));
auto
f_verify
=
[
&
](
const
T
*
real_data
,
const
std
::
vector
<
T
>&
correct_data
)
{
for
(
uint64_t
i
=
0
;
i
<
correct_data
.
size
();
i
++
)
{
float
tmp
=
std
::
fabs
(
static_cast
<
float
>
(
correct_data
[
i
]
-
real_data
[
i
]));
ASSERT_LT
(
tmp
,
diff
);
}
};
f_verify
(
out
.
non_zero_elements
().
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
std
::
vector
<
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_cpu
,
x_tensor
,
rulebook
,
kernel_tensor
,
out
,
paddings
,
dilations
,
strides
,
1
);
f_verify
(
grads
[
0
].
data
<
T
>
(),
features_grad
);
f_verify
(
grads
[
1
].
data
<
T
>
(),
kernel_grad
);
}
}
}
...
...
@@ -141,7 +164,11 @@ void TestConv3d(const std::vector<int>& indices,
const
int
non_zero_num
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
dilations
)
{
const
std
::
vector
<
int
>&
dilations
,
const
float
diff
=
1e-3
,
const
bool
backward
=
false
,
const
std
::
vector
<
float
>
features_grad
=
{},
const
std
::
vector
<
float
>
kernel_grad
=
{})
{
// test float
TestConv3dBase
<
float
>
(
indices
,
features
,
...
...
@@ -154,7 +181,11 @@ void TestConv3d(const std::vector<int>& indices,
non_zero_num
,
paddings
,
strides
,
dilations
);
dilations
,
diff
,
backward
,
features_grad
,
kernel_grad
);
// test double
TestConv3dBase
<
double
>
(
indices
,
cast
<
float
,
double
>
(
features
),
...
...
@@ -167,7 +198,11 @@ void TestConv3d(const std::vector<int>& indices,
non_zero_num
,
paddings
,
strides
,
dilations
);
dilations
,
diff
,
backward
,
cast
<
float
,
double
>
(
features_grad
),
cast
<
float
,
double
>
(
kernel_grad
));
}
TEST
(
DEV_API
,
sparse_conv3d
)
{
...
...
@@ -467,5 +502,66 @@ TEST(DEV_API, sparse_conv2d) {
dilations
);
}
TEST
(
DEV_API
,
sparse_conv3d_backward
)
{
const
int
in_channels
=
1
;
const
int
out_channels
=
1
;
DDim
x_dims
=
{
1
,
4
,
4
,
4
,
in_channels
};
DDim
kernel_dims
=
{
3
,
3
,
3
,
in_channels
,
out_channels
};
DDim
out_dims
=
{
1
,
2
,
2
,
2
,
out_channels
};
std
::
vector
<
int
>
paddings
=
{
0
,
0
,
0
};
std
::
vector
<
int
>
strides
=
{
1
,
1
,
1
};
std
::
vector
<
int
>
dilations
=
{
1
,
1
,
1
};
const
int
non_zero_num
=
2
;
std
::
vector
<
int
>
indices_flatten
=
{
0
,
0
,
0
,
2
,
3
,
2
,
3
,
2
};
std
::
vector
<
float
>
features
=
{
-
0.28833008
,
0.0287323
};
// 3*3*3=27
std
::
vector
<
float
>
kernel
=
{
0.64306641
,
0.45043945
,
0.47216797
,
0.22924805
,
0.97509766
,
0.86181641
,
0.57861328
,
0.91796875
,
0.87255859
,
0.16589355
,
0.44555664
,
0.01889038
,
0.46459961
,
0.44726562
,
0.19909668
,
0.89697266
,
0.37158203
,
0.00513077
,
0.69628906
,
0.26904297
,
0.74707031
,
0.54003906
,
0.5390625
,
0.07958984
,
0.47338867
,
0.90966797
,
0.17126465
};
std
::
vector
<
int
>
out_indices_flatten
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
1
,
0
,
0
,
1
,
1
,
0
,
0
,
1
,
1
,
0
,
1
,
0
,
1
,
0
,
1
,
0
,
1
};
std
::
vector
<
float
>
out_features
=
{
4.9200e-03
,
2.6140e-02
,
2.2900e-03
,
-
2.3596e-01
,
1.5000e-04
,
1.0670e-02
,
5.7200e-03
,
1.2850e-02
};
std
::
vector
<
float
>
features_grad
=
{
-
0.20593
,
-
0.09149
};
std
::
vector
<
float
>
kernel_grad
=
{
0.000e+00
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
6.805e-02
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
3.700e-04
,
1.600e-04
,
0.000e+00
,
3.100e-04
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
0.000e+00
,
-
6.780e-03
,
7.000e-05
,
0.000e+00
,
7.500e-04
,
1.400e-04
};
TestConv3d
(
indices_flatten
,
features
,
x_dims
,
kernel
,
kernel_dims
,
out_indices_flatten
,
out_features
,
out_dims
,
non_zero_num
,
paddings
,
strides
,
dilations
,
1e-3
,
true
,
features_grad
,
kernel_grad
);
}
}
// namespace tests
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录