Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8482f1ae
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8482f1ae
编写于
8月 01, 2022
作者:
X
Xiaoxu Chen
提交者:
GitHub
8月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate reduce_amin,reduce_amax kernel to phi (#44698)
上级
3a301780
变更
24
显示空白变更内容
内联
并排
Showing
24 changed file
with
953 addition
and
228 deletion
+953
-228
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
+22
-14
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
+22
-14
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
+0
-115
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+0
-81
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+18
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+20
-0
paddle/phi/kernels/cpu/reduce_amax_grad_kernel.cc
paddle/phi/kernels/cpu/reduce_amax_grad_kernel.cc
+44
-0
paddle/phi/kernels/cpu/reduce_amax_kernel.cc
paddle/phi/kernels/cpu/reduce_amax_kernel.cc
+45
-0
paddle/phi/kernels/cpu/reduce_amin_grad_kernel.cc
paddle/phi/kernels/cpu/reduce_amin_grad_kernel.cc
+44
-0
paddle/phi/kernels/cpu/reduce_amin_kernel.cc
paddle/phi/kernels/cpu/reduce_amin_kernel.cc
+45
-0
paddle/phi/kernels/funcs/reduce_functor.h
paddle/phi/kernels/funcs/reduce_functor.h
+118
-0
paddle/phi/kernels/gpu/reduce_amax_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_amax_grad_kernel.cu
+43
-0
paddle/phi/kernels/gpu/reduce_amin_amax_common.h
paddle/phi/kernels/gpu/reduce_amin_amax_common.h
+103
-0
paddle/phi/kernels/gpu/reduce_amin_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_amin_grad_kernel.cu
+44
-0
paddle/phi/kernels/kps/reduce_amax_kernel.cu
paddle/phi/kernels/kps/reduce_amax_kernel.cu
+46
-0
paddle/phi/kernels/kps/reduce_amin_kernel.cu
paddle/phi/kernels/kps/reduce_amin_kernel.cu
+46
-0
paddle/phi/kernels/reduce_amax_grad_kernel.h
paddle/phi/kernels/reduce_amax_grad_kernel.h
+32
-0
paddle/phi/kernels/reduce_amax_kernel.cc
paddle/phi/kernels/reduce_amax_kernel.cc
+44
-0
paddle/phi/kernels/reduce_amax_kernel.h
paddle/phi/kernels/reduce_amax_kernel.h
+36
-0
paddle/phi/kernels/reduce_amin_grad_kernel.h
paddle/phi/kernels/reduce_amin_grad_kernel.h
+32
-0
paddle/phi/kernels/reduce_amin_kernel.cc
paddle/phi/kernels/reduce_amin_kernel.cc
+44
-0
paddle/phi/kernels/reduce_amin_kernel.h
paddle/phi/kernels/reduce_amin_kernel.h
+36
-0
paddle/phi/ops/compat/reduce_sig.cc
paddle/phi/ops/compat/reduce_sig.cc
+58
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+11
-4
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
浏览文件 @
8482f1ae
...
@@ -11,20 +11,28 @@
...
@@ -11,20 +11,28 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace
ops
=
paddle
::
operators
;
class
ReduceAMaxOpMaker
:
public
ops
::
ReduceOpMaker
{
protected:
virtual
std
::
string
GetName
()
const
{
return
"reduce_amax"
;
}
virtual
std
::
string
GetOpType
()
const
{
return
"Reduce reduce_amax"
;
}
};
DECLARE_INFER_SHAPE_FUNCTOR
(
reduce_amax
,
ReduceAMaxInferShapeFunctor
,
PD_INFER_META
(
phi
::
ReduceInferMetaBase
));
REGISTER_REDUCE_OP
(
reduce_amax
);
REGISTER_OPERATOR
(
REGISTER_OP_CPU_KERNEL
(
reduce_amax
,
reduce_amax
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
float
,
ops
::
MaxFunctor
>
,
ops
::
ReduceOp
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
double
,
ops
::
MaxFunctor
>
,
ReduceAMaxOpMaker
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
int
,
ops
::
MaxFunctor
>
,
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
framework
::
OpDesc
,
true
>
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
int64_t
,
ops
::
MaxFunctor
>
);
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
imperative
::
OpBase
,
true
>
,
REGISTER_OP_CPU_KERNEL
(
ReduceAMaxInferShapeFunctor
);
reduce_amax_grad
,
REGISTER_OPERATOR
(
reduce_amax_grad
,
ops
::
ReduceGradOp
)
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
float
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
double
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
int
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
int64_t
,
ops
::
AMaxOrAMinGradFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
浏览文件 @
8482f1ae
...
@@ -11,20 +11,28 @@
...
@@ -11,20 +11,28 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace
ops
=
paddle
::
operators
;
class
ReduceAMinOpMaker
:
public
ops
::
ReduceOpMaker
{
protected:
virtual
std
::
string
GetName
()
const
{
return
"reduce_amin"
;
}
virtual
std
::
string
GetOpType
()
const
{
return
"Reduce reduce_amin"
;
}
};
DECLARE_INFER_SHAPE_FUNCTOR
(
reduce_amin
,
ReduceAMinInferShapeFunctor
,
PD_INFER_META
(
phi
::
ReduceInferMetaBase
));
REGISTER_REDUCE_OP
(
reduce_amin
);
REGISTER_OPERATOR
(
REGISTER_OP_CPU_KERNEL
(
reduce_amin
,
reduce_amin
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
float
,
ops
::
MinFunctor
>
,
ops
::
ReduceOp
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
double
,
ops
::
MinFunctor
>
,
ReduceAMinOpMaker
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
int
,
ops
::
MinFunctor
>
,
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
framework
::
OpDesc
,
true
>
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
int64_t
,
ops
::
MinFunctor
>
);
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
imperative
::
OpBase
,
true
>
,
REGISTER_OP_CPU_KERNEL
(
ReduceAMinInferShapeFunctor
);
reduce_amin_grad
,
REGISTER_OPERATOR
(
reduce_amin_grad
,
ops
::
ReduceGradOp
)
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
float
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
double
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
int
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
int64_t
,
ops
::
AMaxOrAMinGradFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
浏览文件 @
8482f1ae
...
@@ -55,120 +55,5 @@ struct MaxOrMinGradFunctor {
...
@@ -55,120 +55,5 @@ struct MaxOrMinGradFunctor {
}
}
};
};
#define HANDLE_AXIS_DIM(BROADCAST_DIM, AXIS_DIM) \
if (broadcast_dim_size == BROADCAST_DIM && rank == AXIS_DIM) { \
AMaxOrAMinAxisIsListGradFunctor<DeviceContext, \
X, \
Y, \
DX, \
DY, \
Dim, \
BROADCAST_DIM, \
AXIS_DIM>( \
place, x, y, dx, dy, dim, axis_dim); \
}
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
,
int
R
,
int
D
>
void
AMaxOrAMinAxisIsListGradFunctor
(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
const
std
::
vector
<
int
>&
axis_dim
)
{
// R is x->dimensions().size();
// D is axis_dim->dimensions().size();
auto
axis
=
Eigen
::
array
<
int
,
D
>
();
auto
reshape_x
=
Eigen
::
array
<
int
,
R
>
();
auto
reshape_y
=
Eigen
::
array
<
int
,
R
>
();
for
(
int
i
=
0
;
i
<
D
;
i
++
)
axis
[
i
]
=
axis_dim
[
i
];
for
(
int
i
=
0
;
i
<
R
;
i
++
)
{
reshape_x
[
i
]
=
x
->
dimensions
()[
i
];
reshape_y
[
i
]
=
y
->
dimensions
()[
i
];
}
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
reshape
(
reshape_x
).
sum
(
axis
).
reshape
(
reshape_y
).
broadcast
(
dim
);
}
struct
AMaxOrAMinGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
// If there are multiple minimum or maximum elements,
// we evenly distribute gradient between these equal values
size_t
x_numel
=
1
;
for
(
size_t
i
=
0
;
i
<
x
->
dimensions
().
size
();
i
++
)
x_numel
*=
x
->
dimensions
()[
i
];
// reduce_all
if
(
size
==
static_cast
<
int
>
(
x_numel
))
{
auto
equal_number
=
mask
.
sum
()
.
reshape
(
Eigen
::
array
<
int
,
1
>
({
1
}))
.
broadcast
(
Eigen
::
array
<
int
,
1
>
({
size
}));
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
equal_number
;
return
;
}
// compute forward reduce axis_dim by dim (which is broadcast_dim)
std
::
vector
<
int
>
axis_dim
;
int
broadcast_dim_size
=
static_cast
<
int
>
(
dim
.
size
());
for
(
int
i
=
0
;
i
<
broadcast_dim_size
;
i
++
)
{
if
(
dim
[
i
]
>
1
)
{
axis_dim
.
push_back
(
i
);
}
}
int
rank
=
static_cast
<
int
>
(
axis_dim
.
size
());
// axis is a int element
if
(
rank
==
1
)
{
auto
axis
=
Eigen
::
array
<
int
,
1
>
({
axis_dim
[
0
]});
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
sum
(
axis
).
reshape
(
dy
->
dimensions
()).
broadcast
(
dim
);
return
;
}
// axis is list, HANDLE_AXIS_DIM(broadcast_dim_size, rank)
HANDLE_AXIS_DIM
(
3
,
2
);
HANDLE_AXIS_DIM
(
4
,
2
);
HANDLE_AXIS_DIM
(
4
,
3
);
// comments for accelerating compiling temporarily.
// HANDLE_AXIS_DIM(5, 2);
// HANDLE_AXIS_DIM(5, 3);
// HANDLE_AXIS_DIM(5, 4);
// HANDLE_AXIS_DIM(6, 2);
// HANDLE_AXIS_DIM(6, 3);
// HANDLE_AXIS_DIM(6, 4);
// HANDLE_AXIS_DIM(6, 5);
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
8482f1ae
...
@@ -838,87 +838,6 @@ struct DivideFunctor {
...
@@ -838,87 +838,6 @@ struct DivideFunctor {
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
};
};
template
<
typename
T
,
template
<
typename
,
typename
>
class
TransformOp
>
class
ReduceCudaAMaxAMinGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
std
::
vector
<
int
>
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out_y
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
d_out
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
out_dtype
=
context
.
Attr
<
int
>
(
"in_dtype"
);
auto
pt_out_dtype
=
framework
::
TransToPhiDataType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
out_dtype
));
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
in_x
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
=
GetReduceDim
(
dims
,
dim_size
,
reduce_all
);
auto
update_dims
=
vectorize
(
d_x
->
dims
());
int
reduce_num
=
1
;
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
in_x
->
dims
())[
i
];
update_dims
[
i
]
=
1
;
}
auto
&
dev_ctx
=
context
.
cuda_device_context
();
// make new tensor reduce_out
phi
::
DenseTensor
new_y
(
out_y
->
type
());
new_y
.
ShareDataWith
(
*
out_y
);
new_y
.
Resize
(
phi
::
make_ddim
(
update_dims
));
// make new tensor d_out
phi
::
DenseTensor
new_dout
(
d_out
->
type
());
new_dout
.
ShareDataWith
(
*
d_out
);
new_dout
.
Resize
(
phi
::
make_ddim
(
update_dims
));
d_x
->
mutable_data
(
dev_ctx
.
GetPlace
(),
d_out
->
dtype
());
auto
new_in
=
paddle
::
experimental
::
MakePhiDenseTensor
(
*
in_x
);
auto
new_in_tensor
=
new_in
.
get
();
auto
new_dx
=
paddle
::
experimental
::
MakePhiDenseTensor
(
*
d_x
);
auto
new_dx_tensor
=
new_dx
.
get
();
// make equal_out
phi
::
DenseTensor
*
equal_out
=
new
phi
::
DenseTensor
();
equal_out
->
Resize
(
in_x
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
equal_out
);
auto
equal_out_tensor
=
*
equal_out
;
// make new tensor equal_count
phi
::
DenseTensor
*
equal_count
=
new
phi
::
DenseTensor
();
equal_count
->
Resize
(
phi
::
make_ddim
(
update_dims
));
dev_ctx
.
template
Alloc
<
T
>(
equal_count
);
// compute
// 1. equal_out = Equal(x, y)
std
::
vector
<
const
phi
::
DenseTensor
*>
equal_inputs
=
{
&
new_y
,
new_in_tensor
};
std
::
vector
<
phi
::
DenseTensor
*>
equal_outputs
=
{
&
equal_out_tensor
};
phi
::
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
equal_inputs
,
&
equal_outputs
,
0
,
EqualFunctor
<
T
>
());
// 2. equal_count = reduceSum(equal_out)
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
,
MPType
>>
(
dev_ctx
,
equal_out_tensor
,
equal_count
,
kps
::
IdentityFunctor
<
T
,
MPType
>
(),
reduce_dims
,
false
);
// 3. dx = Div(dout, equal_out)
std
::
vector
<
const
phi
::
DenseTensor
*>
grad_inputs
=
{
&
equal_out_tensor
,
equal_count
};
std
::
vector
<
phi
::
DenseTensor
*>
grad_outputs
=
{
new_dx_tensor
};
phi
::
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
grad_inputs
,
&
grad_outputs
,
0
,
DivideFunctor
<
T
>
());
delete
equal_out
;
delete
equal_count
;
}
};
#endif
#endif
#endif
#endif
...
...
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
8482f1ae
...
@@ -129,6 +129,24 @@
...
@@ -129,6 +129,24 @@
kernel
:
kernel
:
func
:
allclose
func
:
allclose
-
api
:
amax
args
:
(Tensor x, int64_t[] dims={}, bool keep_dim=false)
output
:
Tensor(out)
infer_meta
:
func
:
ReduceInferMeta
kernel
:
func
:
amax
backward
:
amax_grad
-
api
:
amin
args
:
(Tensor x, int64_t[] dims={}, bool keep_dim=false)
output
:
Tensor(out)
infer_meta
:
func
:
ReduceInferMeta
kernel
:
func
:
amin
backward
:
amin_grad
-
api
:
angle
-
api
:
angle
args
:
(Tensor x)
args
:
(Tensor x)
output
:
Tensor
output
:
Tensor
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
8482f1ae
...
@@ -92,6 +92,26 @@
...
@@ -92,6 +92,26 @@
kernel
:
kernel
:
func
:
addmm_grad
func
:
addmm_grad
-
backward_api
:
amax_grad
forward
:
amax (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out)
args
:
(Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
amax_grad
-
backward_api
:
amin_grad
forward
:
amin (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out)
args
:
(Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
amin_grad
-
backward_api
:
angle_grad
-
backward_api
:
angle_grad
forward
:
angle (Tensor x) -> Tensor(out)
forward
:
angle (Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
args
:
(Tensor x, Tensor out_grad)
...
...
paddle/phi/kernels/cpu/reduce_amax_grad_kernel.cc
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amax_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMaxGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceGradKernel
<
Context
,
T
,
funcs
::
AMaxOrAMinGradFunctor
>
(
dev_ctx
,
x
,
out
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amax_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
ReduceAMaxGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/cpu/reduce_amax_kernel.cc
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amax_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMaxRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
CPUContext
,
T
,
phi
::
funcs
::
MaxFunctor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amax_raw
,
CPU
,
ALL_LAYOUT
,
phi
::
AMaxRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/cpu/reduce_amin_grad_kernel.cc
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amin_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMinGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceGradKernel
<
Context
,
T
,
funcs
::
AMaxOrAMinGradFunctor
>
(
dev_ctx
,
x
,
out
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amin_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
ReduceAMinGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/cpu/reduce_amin_kernel.cc
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amin_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMinRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
CPUContext
,
T
,
phi
::
funcs
::
MinFunctor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amin_raw
,
CPU
,
ALL_LAYOUT
,
phi
::
AMinRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/funcs/reduce_functor.h
浏览文件 @
8482f1ae
...
@@ -14,6 +14,9 @@
...
@@ -14,6 +14,9 @@
#pragma once
#pragma once
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
namespace
phi
{
namespace
phi
{
namespace
funcs
{
namespace
funcs
{
...
@@ -178,5 +181,120 @@ struct MaxOrMinGradFunctor {
...
@@ -178,5 +181,120 @@ struct MaxOrMinGradFunctor {
}
}
};
};
#define HANDLE_AXIS_DIM(BROADCAST_DIM, AXIS_DIM) \
if (broadcast_dim_size == BROADCAST_DIM && rank == AXIS_DIM) { \
AMaxOrAMinAxisIsListGradFunctor<DeviceContext, \
X, \
Y, \
DX, \
DY, \
Dim, \
BROADCAST_DIM, \
AXIS_DIM>( \
place, x, y, dx, dy, dim, axis_dim); \
}
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
,
int
R
,
int
D
>
void
AMaxOrAMinAxisIsListGradFunctor
(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
const
std
::
vector
<
int
>&
axis_dim
)
{
// R is x->dimensions().size();
// D is axis_dim->dimensions().size();
auto
axis
=
Eigen
::
array
<
int
,
D
>
();
auto
reshape_x
=
Eigen
::
array
<
int
,
R
>
();
auto
reshape_y
=
Eigen
::
array
<
int
,
R
>
();
for
(
int
i
=
0
;
i
<
D
;
i
++
)
axis
[
i
]
=
axis_dim
[
i
];
for
(
int
i
=
0
;
i
<
R
;
i
++
)
{
reshape_x
[
i
]
=
x
->
dimensions
()[
i
];
reshape_y
[
i
]
=
y
->
dimensions
()[
i
];
}
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
reshape
(
reshape_x
).
sum
(
axis
).
reshape
(
reshape_y
).
broadcast
(
dim
);
}
struct
AMaxOrAMinGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
// If there are multiple minimum or maximum elements,
// we evenly distribute gradient between these equal values
size_t
x_numel
=
1
;
for
(
size_t
i
=
0
;
i
<
x
->
dimensions
().
size
();
i
++
)
x_numel
*=
x
->
dimensions
()[
i
];
// reduce_all
if
(
size
==
static_cast
<
int
>
(
x_numel
))
{
auto
equal_number
=
mask
.
sum
()
.
reshape
(
Eigen
::
array
<
int
,
1
>
({
1
}))
.
broadcast
(
Eigen
::
array
<
int
,
1
>
({
size
}));
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
equal_number
;
return
;
}
// compute forward reduce axis_dim by dim (which is broadcast_dim)
std
::
vector
<
int
>
axis_dim
;
int
broadcast_dim_size
=
static_cast
<
int
>
(
dim
.
size
());
for
(
int
i
=
0
;
i
<
broadcast_dim_size
;
i
++
)
{
if
(
dim
[
i
]
>
1
)
{
axis_dim
.
push_back
(
i
);
}
}
int
rank
=
static_cast
<
int
>
(
axis_dim
.
size
());
// axis is a int element
if
(
rank
==
1
)
{
auto
axis
=
Eigen
::
array
<
int
,
1
>
({
axis_dim
[
0
]});
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
sum
(
axis
).
reshape
(
dy
->
dimensions
()).
broadcast
(
dim
);
return
;
}
// axis is list, HANDLE_AXIS_DIM(broadcast_dim_size, rank)
HANDLE_AXIS_DIM
(
3
,
2
);
HANDLE_AXIS_DIM
(
4
,
2
);
HANDLE_AXIS_DIM
(
4
,
3
);
// comments for accelerating compiling temporarily.
// HANDLE_AXIS_DIM(5, 2);
// HANDLE_AXIS_DIM(5, 3);
// HANDLE_AXIS_DIM(5, 4);
// HANDLE_AXIS_DIM(6, 2);
// HANDLE_AXIS_DIM(6, 3);
// HANDLE_AXIS_DIM(6, 4);
// HANDLE_AXIS_DIM(6, 5);
}
};
}
// namespace funcs
}
// namespace funcs
}
// namespace phi
}
// namespace phi
paddle/phi/kernels/gpu/reduce_amax_grad_kernel.cu
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce_amin_amax_common.h"
#include "paddle/phi/kernels/reduce_max_grad_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMaxGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceCudaAMaxAMinGrad
<
T
,
Context
>
(
dev_ctx
,
x
,
out
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amax_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
ReduceAMaxGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/gpu/reduce_amin_amax_common.h
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/compare_functors.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceCudaAMaxAMinGrad
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
auto
*
in_x
=
&
x
;
auto
*
out_y
=
&
out
;
auto
*
d_out
=
&
out_grad
;
auto
*
d_x
=
x_grad
;
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
in_x
->
dims
().
size
();
auto
reduce_dims
=
funcs
::
details
::
GetReduceDim
(
dims
,
dim_size
,
reduce_all
);
auto
update_dims
=
vectorize
(
d_x
->
dims
());
int
reduce_num
=
1
;
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
in_x
->
dims
())[
i
];
update_dims
[
i
]
=
1
;
}
// make new tensor reduce_out
phi
::
DenseTensor
new_y
(
out_y
->
type
());
new_y
.
ShareDataWith
(
*
out_y
);
new_y
.
Resize
(
phi
::
make_ddim
(
update_dims
));
// make new tensor d_out
phi
::
DenseTensor
new_dout
(
d_out
->
type
());
new_dout
.
ShareDataWith
(
*
d_out
);
new_dout
.
Resize
(
phi
::
make_ddim
(
update_dims
));
dev_ctx
.
Alloc
(
d_x
,
d_out
->
dtype
());
auto
new_in
=
paddle
::
experimental
::
MakePhiDenseTensor
(
*
in_x
);
auto
new_in_tensor
=
new_in
.
get
();
auto
new_dx
=
paddle
::
experimental
::
MakePhiDenseTensor
(
*
d_x
);
auto
new_dx_tensor
=
new_dx
.
get
();
// make equal_out
phi
::
DenseTensor
*
equal_out
=
new
phi
::
DenseTensor
();
equal_out
->
Resize
(
in_x
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
equal_out
);
auto
equal_out_tensor
=
*
equal_out
;
// make new tensor equal_count
phi
::
DenseTensor
*
equal_count
=
new
phi
::
DenseTensor
();
equal_count
->
Resize
(
phi
::
make_ddim
(
update_dims
));
dev_ctx
.
template
Alloc
<
T
>(
equal_count
);
// compute
// 1. equal_out = Equal(x, y)
std
::
vector
<
const
phi
::
DenseTensor
*>
equal_inputs
=
{
&
new_y
,
new_in_tensor
};
std
::
vector
<
phi
::
DenseTensor
*>
equal_outputs
=
{
&
equal_out_tensor
};
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
equal_inputs
,
&
equal_outputs
,
0
,
funcs
::
EqualFunctor
<
T
>
());
// 2. equal_count = reduceSum(equal_out)
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
,
MPType
>>
(
dev_ctx
,
equal_out_tensor
,
equal_count
,
kps
::
IdentityFunctor
<
T
,
MPType
>
(),
reduce_dims
,
false
);
// 3. dx = Div(dout, equal_out)
std
::
vector
<
const
phi
::
DenseTensor
*>
grad_inputs
=
{
&
equal_out_tensor
,
equal_count
};
std
::
vector
<
phi
::
DenseTensor
*>
grad_outputs
=
{
new_dx_tensor
};
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
grad_inputs
,
&
grad_outputs
,
0
,
funcs
::
DivideFunctor
<
T
>
());
delete
equal_out
;
delete
equal_count
;
}
}
// namespace phi
paddle/phi/kernels/gpu/reduce_amin_grad_kernel.cu
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amin_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce_amin_amax_common.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMinGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceCudaAMaxAMinGrad
<
T
,
Context
>
(
dev_ctx
,
x
,
out
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amin_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
ReduceAMinGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/kps/reduce_amax_kernel.cu
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/reduce_amin_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMaxRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
T
,
kps
::
MaxFunctor
,
kps
::
IdentityFunctor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
}
}
// namespace phi
#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL
(
amax_raw
,
KPS
,
ALL_LAYOUT
,
phi
::
AMaxRawKernel
,
float
)
{}
#else
PD_REGISTER_KERNEL
(
amax_raw
,
KPS
,
ALL_LAYOUT
,
phi
::
AMaxRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
paddle/phi/kernels/kps/reduce_amin_kernel.cu
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amin_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMinRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
T
,
kps
::
MinFunctor
,
kps
::
IdentityFunctor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
}
}
// namespace phi
#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL
(
amin_raw
,
KPS
,
ALL_LAYOUT
,
phi
::
AMinRawKernel
,
float
)
{}
#else
PD_REGISTER_KERNEL
(
amin_raw
,
KPS
,
ALL_LAYOUT
,
phi
::
AMinRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
paddle/
fluid/operators/reduce_ops/reduce_amax_op.part.cu
→
paddle/
phi/kernels/reduce_amax_grad_kernel.h
浏览文件 @
8482f1ae
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
//
//
// Licensed under the Apache License, Version 2.0 (the "License");
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// you may not use this file except in compliance with the License.
...
@@ -12,13 +12,21 @@
...
@@ -12,13 +12,21 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#
include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#
pragma once
template
<
typename
T
>
#include "paddle/phi/common/data_type.h"
using
CUDAReduceMaxGradKernel
=
#include "paddle/phi/core/dense_tensor.h"
ops
::
ReduceCudaAMaxAMinGradKernel
<
T
,
kps
::
IdentityFunctor
>
;
REGISTER_OP_CUDA_KERNEL
(
reduce_amax_grad
,
namespace
phi
{
CUDAReduceMaxGradKernel
<
int
>
,
CUDAReduceMaxGradKernel
<
int64_t
>
,
template
<
typename
T
,
typename
Context
>
CUDAReduceMaxGradKernel
<
float
>
,
void
ReduceAMaxGradKernel
(
const
Context
&
dev_ctx
,
CUDAReduceMaxGradKernel
<
double
>
);
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/
fluid/operators/reduce_ops/reduce_amax_op.kps
→
paddle/
phi/kernels/reduce_amax_kernel.cc
浏览文件 @
8482f1ae
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
//
//
// Licensed under the Apache License, Version 2.0 (the "License");
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// you may not use this file except in compliance with the License.
...
@@ -12,25 +12,33 @@
...
@@ -12,25 +12,33 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#ifndef PADDLE_WITH_XPU_KP
#include "paddle/phi/kernels/reduce_amax_kernel.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#endif
#include "paddle/
fluid/operators/reduce_ops/reduce_op
.h"
#include "paddle/
phi/backends/all_context
.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
namespace ops = paddle::operators;
namespace
phi
{
namespace plat = paddle::platform;
template
<
typename
T
,
typename
Context
>
#ifdef PADDLE_WITH_XPU_KP
void
AMaxKernel
(
const
Context
&
dev_ctx
,
REGISTER_OP_KERNEL(
const
DenseTensor
&
x
,
reduce_amax, KP, plat::XPUPlace,
const
std
::
vector
<
int64_t
>&
dims
,
ops::ReduceCudaKernel<float, kps::MaxFunctor, kps::IdentityFunctor>);
bool
keep_dim
,
#else
DenseTensor
*
out
)
{
REGISTER_OP_CUDA_KERNEL(
bool
reduce_all
=
false
;
reduce_amax,
AMaxRawKernel
<
T
>
(
dev_ctx
,
x
,
dims
,
keep_dim
,
reduce_all
,
out
);
ops::ReduceCudaKernel<float, kps::MaxFunctor, kps::IdentityFunctor>,
}
ops::ReduceCudaKernel<double, kps::MaxFunctor, kps::IdentityFunctor>,
ops::ReduceCudaKernel<int, kps::MaxFunctor, kps::IdentityFunctor>,
}
// namespace phi
ops::ReduceCudaKernel<int64_t, kps::MaxFunctor, kps::IdentityFunctor>);
PD_REGISTER_KERNEL
(
amax
,
CPU
,
ALL_LAYOUT
,
phi
::
AMaxKernel
,
float
,
double
,
int
,
int64_t
)
{}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
amax
,
GPU
,
ALL_LAYOUT
,
phi
::
AMaxKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
#if defined(PADDLE_WITH_XPU_KP)
PD_REGISTER_KERNEL
(
amax
,
KPS
,
ALL_LAYOUT
,
phi
::
AMaxKernel
,
float
)
{}
#endif
#endif
paddle/phi/kernels/reduce_amax_kernel.h
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMaxRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
AMaxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DenseTensor
*
out
);
}
// namespace phi
paddle/
fluid/operators/reduce_ops/reduce_amin_op.part.cu
→
paddle/
phi/kernels/reduce_amin_grad_kernel.h
浏览文件 @
8482f1ae
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
//
//
// Licensed under the Apache License, Version 2.0 (the "License");
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// you may not use this file except in compliance with the License.
...
@@ -12,13 +12,21 @@
...
@@ -12,13 +12,21 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#
include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#
pragma once
template
<
typename
T
>
#include "paddle/phi/common/data_type.h"
using
CUDAReduceMinGradKernel
=
#include "paddle/phi/core/dense_tensor.h"
ops
::
ReduceCudaAMaxAMinGradKernel
<
T
,
kps
::
IdentityFunctor
>
;
REGISTER_OP_CUDA_KERNEL
(
reduce_amin_grad
,
namespace
phi
{
CUDAReduceMinGradKernel
<
int
>
,
CUDAReduceMinGradKernel
<
int64_t
>
,
template
<
typename
T
,
typename
Context
>
CUDAReduceMinGradKernel
<
float
>
,
void
ReduceAMinGradKernel
(
const
Context
&
dev_ctx
,
CUDAReduceMinGradKernel
<
double
>
);
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/
fluid/operators/reduce_ops/reduce_amin_op.kps
→
paddle/
phi/kernels/reduce_amin_kernel.cc
浏览文件 @
8482f1ae
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
//
//
// Licensed under the Apache License, Version 2.0 (the "License");
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// you may not use this file except in compliance with the License.
...
@@ -12,25 +12,33 @@
...
@@ -12,25 +12,33 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#ifndef PADDLE_WITH_XPU_KP
#include "paddle/phi/kernels/reduce_amin_kernel.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#endif
#include "paddle/
fluid/operators/reduce_ops/reduce_op
.h"
#include "paddle/
phi/backends/all_context
.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
namespace ops = paddle::operators;
namespace
phi
{
namespace plat = paddle::platform;
template
<
typename
T
,
typename
Context
>
#ifdef PADDLE_WITH_XPU_KP
void
AMinKernel
(
const
Context
&
dev_ctx
,
REGISTER_OP_KERNEL(
const
DenseTensor
&
x
,
reduce_amin, KP, plat::XPUPlace,
const
std
::
vector
<
int64_t
>&
dims
,
ops::ReduceCudaKernel<float, kps::MinFunctor, kps::IdentityFunctor>);
bool
keep_dim
,
#else
DenseTensor
*
out
)
{
REGISTER_OP_CUDA_KERNEL(
bool
reduce_all
=
false
;
reduce_amin,
AMinRawKernel
<
T
>
(
dev_ctx
,
x
,
dims
,
keep_dim
,
reduce_all
,
out
);
ops::ReduceCudaKernel<float, kps::MinFunctor, kps::IdentityFunctor>,
}
ops::ReduceCudaKernel<double, kps::MinFunctor, kps::IdentityFunctor>,
ops::ReduceCudaKernel<int, kps::MinFunctor, kps::IdentityFunctor>,
}
// namespace phi
ops::ReduceCudaKernel<int64_t, kps::MinFunctor, kps::IdentityFunctor>);
PD_REGISTER_KERNEL
(
amin
,
CPU
,
ALL_LAYOUT
,
phi
::
AMinKernel
,
float
,
double
,
int
,
int64_t
)
{}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
amin
,
GPU
,
ALL_LAYOUT
,
phi
::
AMinKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
#if defined(PADDLE_WITH_XPU_KP)
PD_REGISTER_KERNEL
(
amin
,
KPS
,
ALL_LAYOUT
,
phi
::
AMinKernel
,
float
)
{}
#endif
#endif
paddle/phi/kernels/reduce_amin_kernel.h
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMinRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
AMinKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/reduce_sig.cc
浏览文件 @
8482f1ae
...
@@ -83,6 +83,22 @@ KernelSignature ReduceMaxOpArgumentMapping(const ArgumentMappingContext& ctx) {
...
@@ -83,6 +83,22 @@ KernelSignature ReduceMaxOpArgumentMapping(const ArgumentMappingContext& ctx) {
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
}
KernelSignature
ReduceAMaxOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
// When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
// InferShape, so we must return the "max_raw" KernelSignature.
// And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
// the "max_raw" KernelSignature
if
(
ctx
.
IsForInferShape
()
||
reduce_all
)
{
return
KernelSignature
(
"amax_raw"
,
{
"X"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
},
{
"Out"
});
}
return
KernelSignature
(
"amax"
,
{
"X"
},
{
"dim"
,
"keep_dim"
},
{
"Out"
});
}
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
KernelSignature
ReduceMinOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
KernelSignature
ReduceMinOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
...
@@ -99,6 +115,22 @@ KernelSignature ReduceMinOpArgumentMapping(const ArgumentMappingContext& ctx) {
...
@@ -99,6 +115,22 @@ KernelSignature ReduceMinOpArgumentMapping(const ArgumentMappingContext& ctx) {
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
}
KernelSignature
ReduceAMinOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
// When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
// InferShape, so we must return the "min_raw" KernelSignature.
// And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
// the "min_raw" KernelSignature
if
(
ctx
.
IsForInferShape
()
||
reduce_all
)
{
return
KernelSignature
(
"amin_raw"
,
{
"X"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
},
{
"Out"
});
}
return
KernelSignature
(
"amin"
,
{
"X"
},
{
"dim"
,
"keep_dim"
},
{
"Out"
});
}
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
KernelSignature
ReduceAnyOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
KernelSignature
ReduceAnyOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
...
@@ -151,6 +183,14 @@ KernelSignature ReduceMaxGradOpArgumentMapping(
...
@@ -151,6 +183,14 @@ KernelSignature ReduceMaxGradOpArgumentMapping(
{
"X@GRAD"
});
{
"X@GRAD"
});
}
}
KernelSignature
ReduceAMaxGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"amax_grad"
,
{
"X"
,
"Out"
,
"Out@GRAD"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
},
{
"X@GRAD"
});
}
KernelSignature
ReduceMinGradOpArgumentMapping
(
KernelSignature
ReduceMinGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"min_grad"
,
return
KernelSignature
(
"min_grad"
,
...
@@ -159,6 +199,14 @@ KernelSignature ReduceMinGradOpArgumentMapping(
...
@@ -159,6 +199,14 @@ KernelSignature ReduceMinGradOpArgumentMapping(
{
"X@GRAD"
});
{
"X@GRAD"
});
}
}
KernelSignature
ReduceAMinGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"amin_grad"
,
{
"X"
,
"Out"
,
"Out@GRAD"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
},
{
"X@GRAD"
});
}
KernelSignature
ReduceProdGradOpArgumentMapping
(
KernelSignature
ReduceProdGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"prod_grad"
,
return
KernelSignature
(
"prod_grad"
,
...
@@ -173,6 +221,8 @@ PD_REGISTER_BASE_KERNEL_NAME(reduce_sum, sum);
...
@@ -173,6 +221,8 @@ PD_REGISTER_BASE_KERNEL_NAME(reduce_sum, sum);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_mean
,
mean
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_mean
,
mean
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_max
,
max
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_max
,
max
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_min
,
min
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_min
,
min
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_amax
,
amax
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_amin
,
amin
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_prod
,
prod
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_prod
,
prod
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_all
,
all
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_all
,
all
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_any
,
any
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_any
,
any
);
...
@@ -182,12 +232,16 @@ PD_REGISTER_BASE_KERNEL_NAME(reduce_mean_grad, mean_grad);
...
@@ -182,12 +232,16 @@ PD_REGISTER_BASE_KERNEL_NAME(reduce_mean_grad, mean_grad);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_prod_grad
,
prod_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_prod_grad
,
prod_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_max_grad
,
max_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_max_grad
,
max_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_min_grad
,
min_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_min_grad
,
min_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_amax_grad
,
amax_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_amin_grad
,
amin_grad
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_sum
,
phi
::
ReduceSumOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_sum
,
phi
::
ReduceSumOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_mean
,
phi
::
ReduceMeanOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_mean
,
phi
::
ReduceMeanOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_prod
,
phi
::
ReduceProdOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_prod
,
phi
::
ReduceProdOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_max
,
phi
::
ReduceMaxOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_max
,
phi
::
ReduceMaxOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_amax
,
phi
::
ReduceAMaxOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_min
,
phi
::
ReduceMinOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_min
,
phi
::
ReduceMinOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_amin
,
phi
::
ReduceAMinOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_all
,
phi
::
ReduceAllOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_all
,
phi
::
ReduceAllOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_any
,
phi
::
ReduceAnyOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_any
,
phi
::
ReduceAnyOpArgumentMapping
);
...
@@ -199,5 +253,9 @@ PD_REGISTER_ARG_MAPPING_FN(reduce_prod_grad,
...
@@ -199,5 +253,9 @@ PD_REGISTER_ARG_MAPPING_FN(reduce_prod_grad,
phi
::
ReduceProdGradOpArgumentMapping
);
phi
::
ReduceProdGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_max_grad
,
PD_REGISTER_ARG_MAPPING_FN
(
reduce_max_grad
,
phi
::
ReduceMaxGradOpArgumentMapping
);
phi
::
ReduceMaxGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_amax_grad
,
phi
::
ReduceAMaxGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_min_grad
,
PD_REGISTER_ARG_MAPPING_FN
(
reduce_min_grad
,
phi
::
ReduceMinGradOpArgumentMapping
);
phi
::
ReduceMinGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_amin_grad
,
phi
::
ReduceAMinGradOpArgumentMapping
);
python/paddle/tensor/math.py
浏览文件 @
8482f1ae
...
@@ -29,7 +29,7 @@ from .layer_function_generator import _generate_doc_string_, generate_activation
...
@@ -29,7 +29,7 @@ from .layer_function_generator import _generate_doc_string_, generate_activation
import
paddle
import
paddle
from
..static
import
Variable
from
..static
import
Variable
from
..framework
import
core
,
in_dygraph_mode
,
_non_static_mode
,
LayerHelper
from
..framework
import
core
,
in_dygraph_mode
,
_non_static_mode
,
LayerHelper
,
_in_legacy_dygraph
from
..fluid.framework
import
_in_legacy_dygraph
from
..fluid.framework
import
_in_legacy_dygraph
from
..framework
import
_varbase_creator
,
convert_np_dtype_to_dtype_
from
..framework
import
_varbase_creator
,
convert_np_dtype_to_dtype_
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
...
@@ -2334,7 +2334,11 @@ def amax(x, axis=None, keepdim=False, name=None):
...
@@ -2334,7 +2334,11 @@ def amax(x, axis=None, keepdim=False, name=None):
"""
"""
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
if
paddle
.
in_dynamic_mode
():
if
in_dygraph_mode
():
if
reduce_all
:
axis
=
range
(
len
(
x
.
shape
))
return
_C_ops
.
final_state_amax
(
x
,
axis
,
keepdim
)
if
_in_legacy_dygraph
():
return
_C_ops
.
reduce_amax
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
return
_C_ops
.
reduce_amax
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
helper
=
LayerHelper
(
'amax'
,
**
locals
())
helper
=
LayerHelper
(
'amax'
,
**
locals
())
...
@@ -2446,9 +2450,12 @@ def amin(x, axis=None, keepdim=False, name=None):
...
@@ -2446,9 +2450,12 @@ def amin(x, axis=None, keepdim=False, name=None):
"""
"""
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
if
paddle
.
in_dynamic_mode
():
if
in_dygraph_mode
():
if
reduce_all
:
axis
=
range
(
len
(
x
.
shape
))
return
_C_ops
.
final_state_amin
(
x
,
axis
,
keepdim
)
elif
_in_legacy_dygraph
():
return
_C_ops
.
reduce_amin
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
return
_C_ops
.
reduce_amin
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
helper
=
LayerHelper
(
'amin'
,
**
locals
())
helper
=
LayerHelper
(
'amin'
,
**
locals
())
check_variable_and_dtype
(
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'amin'
)
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'amin'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录