Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
832b0a15
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
832b0a15
编写于
9月 30, 2022
作者:
光明和真理
提交者:
GitHub
9月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add_fluid_mluop_yolo_box (#46573)
上级
d16360c8
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
476 addition
and
1 deletion
+476
-1
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+2
-1
paddle/fluid/operators/detection/yolo_box_op_mlu.cc
paddle/fluid/operators/detection/yolo_box_op_mlu.cc
+137
-0
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+40
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+21
-0
python/paddle/fluid/tests/unittests/mlu/test_yolo_box_op_mlu.py
.../paddle/fluid/tests/unittests/mlu/test_yolo_box_op_mlu.py
+276
-0
未找到文件。
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
832b0a15
...
...
@@ -47,6 +47,7 @@ elseif(WITH_MLU)
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op_mlu.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc yolo_box_op_mlu.cc
)
elseif
(
WITH_ASCEND_CL
)
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op_npu.cc
)
...
...
@@ -55,6 +56,7 @@ else()
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op.cu
)
detection_library
(
prior_box_op SRCS prior_box_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc
)
# detection_library(generate_proposals_v2_op SRCS generate_proposals_v2_op.cc)
endif
()
...
...
@@ -73,7 +75,6 @@ detection_library(locality_aware_nms_op SRCS locality_aware_nms_op.cc DEPS gpc)
detection_library
(
matrix_nms_op SRCS matrix_nms_op.cc DEPS gpc
)
detection_library
(
box_clip_op SRCS box_clip_op.cc box_clip_op.cu
)
detection_library
(
yolov3_loss_op SRCS yolov3_loss_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc
)
detection_library
(
box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc
box_decoder_and_assign_op.cu
)
detection_library
(
sigmoid_focal_loss_op SRCS sigmoid_focal_loss_op.cc
...
...
paddle/fluid/operators/detection/yolo_box_op_mlu.cc
0 → 100644
浏览文件 @
832b0a15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
YoloBoxMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
img_size
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Scores"
);
const
std
::
vector
<
int
>
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
auto
conf_thresh
=
ctx
.
Attr
<
float
>
(
"conf_thresh"
);
auto
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
auto
clip_bbox
=
ctx
.
Attr
<
bool
>
(
"clip_bbox"
);
auto
scale
=
ctx
.
Attr
<
float
>
(
"scale_x_y"
);
auto
iou_aware
=
ctx
.
Attr
<
bool
>
(
"iou_aware"
);
auto
iou_aware_factor
=
ctx
.
Attr
<
float
>
(
"iou_aware_factor"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
int64_t
size
=
anchors
.
size
();
auto
dim_x
=
x
->
dims
();
int
n
=
dim_x
[
0
];
int
s
=
anchor_num
;
int
h
=
dim_x
[
2
];
int
w
=
dim_x
[
3
];
// The output of mluOpYoloBox: A 4-D tensor with shape [N, anchor_num, 4,
// H*W], the coordinates of boxes, and a 4-D tensor with shape [N,
// anchor_num, :attr:`class_num`, H*W], the classification scores of boxes.
std
::
vector
<
int64_t
>
boxes_dim_mluops
({
n
,
s
,
4
,
h
*
w
});
std
::
vector
<
int64_t
>
scores_dim_mluops
({
n
,
s
,
class_num
,
h
*
w
});
// In Paddle framework: A 3-D tensor with shape [N, M, 4], the coordinates
// of boxes, and a 3-D tensor with shape [N, M, :attr:`class_num`], the
// classification scores of boxes.
std
::
vector
<
int64_t
>
boxes_out_dim
({
n
,
s
,
h
*
w
,
4
});
std
::
vector
<
int64_t
>
scores_out_dim
({
n
,
s
,
h
*
w
,
class_num
});
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MLUDeviceContext
>();
phi
::
DenseTensor
boxes_tensor_mluops
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
n
,
s
,
4
,
h
*
w
},
dev_ctx
);
phi
::
DenseTensor
scores_tensor_mluops
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
n
,
s
,
class_num
,
h
*
w
},
dev_ctx
);
MLUOpTensorDesc
boxes_trans_desc_mluops
(
4
,
boxes_dim_mluops
.
data
(),
ToMluOpDataType
<
T
>
());
MLUCnnlTensorDesc
boxes_trans_desc_cnnl
(
4
,
boxes_dim_mluops
.
data
(),
ToCnnlDataType
<
T
>
());
MLUOpTensorDesc
scores_trans_desc_mluops
(
4
,
scores_dim_mluops
.
data
(),
ToMluOpDataType
<
T
>
());
MLUCnnlTensorDesc
scores_trans_desc_cnnl
(
4
,
scores_dim_mluops
.
data
(),
ToCnnlDataType
<
T
>
());
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
scores
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
0
),
boxes
);
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
0
),
scores
);
MLUOpTensorDesc
x_desc
(
*
x
,
MLUOP_LAYOUT_ARRAY
,
ToMluOpDataType
<
T
>
());
MLUOpTensorDesc
img_size_desc
(
*
img_size
,
MLUOP_LAYOUT_ARRAY
,
ToMluOpDataType
<
int32_t
>
());
Tensor
anchors_temp
(
framework
::
TransToPhiDataType
(
VT
::
INT32
));
anchors_temp
.
Resize
({
size
});
paddle
::
framework
::
TensorFromVector
(
anchors
,
ctx
.
device_context
(),
&
anchors_temp
);
MLUOpTensorDesc
anchors_desc
(
anchors_temp
);
MLUCnnlTensorDesc
boxes_desc_cnnl
(
4
,
boxes_out_dim
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
scores_desc_cnnl
(
4
,
scores_out_dim
.
data
(),
ToCnnlDataType
<
T
>
());
MLUOP
::
OpYoloBox
(
ctx
,
x_desc
.
get
(),
GetBasePtr
(
x
),
img_size_desc
.
get
(),
GetBasePtr
(
img_size
),
anchors_desc
.
get
(),
GetBasePtr
(
&
anchors_temp
),
class_num
,
conf_thresh
,
downsample_ratio
,
clip_bbox
,
scale
,
iou_aware
,
iou_aware_factor
,
boxes_trans_desc_mluops
.
get
(),
GetBasePtr
(
&
boxes_tensor_mluops
),
scores_trans_desc_mluops
.
get
(),
GetBasePtr
(
&
scores_tensor_mluops
));
const
std
::
vector
<
int
>
perm
=
{
0
,
1
,
3
,
2
};
// transpose the boxes from [N, S, 4, H*W] to [N, S, H*W, 4]
MLUCnnl
::
Transpose
(
ctx
,
perm
,
4
,
boxes_trans_desc_cnnl
.
get
(),
GetBasePtr
(
&
boxes_tensor_mluops
),
boxes_desc_cnnl
.
get
(),
GetBasePtr
(
boxes
));
// transpose the scores from [N, S, class_num, H*W] to [N, S, H*W,
// class_num]
MLUCnnl
::
Transpose
(
ctx
,
perm
,
4
,
scores_trans_desc_cnnl
.
get
(),
GetBasePtr
(
&
scores_tensor_mluops
),
scores_desc_cnnl
.
get
(),
GetBasePtr
(
scores
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
yolo_box
,
ops
::
YoloBoxMLUKernel
<
float
>
);
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
832b0a15
...
...
@@ -5418,5 +5418,45 @@ MLURNNDesc::~MLURNNDesc() {
diff_x
));
}
/* static */
void
MLUOP
::
OpYoloBox
(
const
ExecutionContext
&
ctx
,
const
mluOpTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
mluOpTensorDescriptor_t
img_size_desc
,
const
void
*
img_size
,
const
mluOpTensorDescriptor_t
anchors_desc
,
const
void
*
anchors
,
const
int
class_num
,
const
float
conf_thresh
,
const
int
downsample_ratio
,
const
bool
clip_bbox
,
const
float
scale
,
const
bool
iou_aware
,
const
float
iou_aware_factor
,
const
mluOpTensorDescriptor_t
boxes_desc
,
void
*
boxes
,
const
mluOpTensorDescriptor_t
scores_desc
,
void
*
scores
)
{
mluOpHandle_t
handle
=
GetMLUOpHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
mluOpYoloBox
(
handle
,
x_desc
,
x
,
img_size_desc
,
img_size
,
anchors_desc
,
anchors
,
class_num
,
conf_thresh
,
downsample_ratio
,
clip_bbox
,
scale
,
iou_aware
,
iou_aware_factor
,
boxes_desc
,
boxes
,
scores_desc
,
scores
));
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
832b0a15
...
...
@@ -2292,6 +2292,27 @@ class MLUCnnl {
void
*
diff_x
);
};
class
MLUOP
{
public:
static
void
OpYoloBox
(
const
ExecutionContext
&
ctx
,
const
mluOpTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
mluOpTensorDescriptor_t
img_size_desc
,
const
void
*
img_size
,
const
mluOpTensorDescriptor_t
anchors_desc
,
const
void
*
anchors
,
const
int
class_num
,
const
float
conf_thresh
,
const
int
downsample_ratio
,
const
bool
clip_bbox
,
const
float
scale
,
const
bool
iou_aware
,
const
float
iou_aware_factor
,
const
mluOpTensorDescriptor_t
boxes_desc
,
void
*
boxes
,
const
mluOpTensorDescriptor_t
scores_desc
,
void
*
scores
);
};
const
std
::
map
<
const
std
::
string
,
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>>
TransPermMap
=
{
// trans_mode, (forward_perm, backward_perm)
...
...
python/paddle/fluid/tests/unittests/mlu/test_yolo_box_op_mlu.py
0 → 100644
浏览文件 @
832b0a15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
from
paddle.fluid
import
core
import
paddle.fluid
as
fluid
from
paddle.fluid.op
import
Operator
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
enable_static
()
def
sigmoid
(
x
):
return
(
1.0
/
(
1.0
+
np
.
exp
(((
-
1.0
)
*
x
))))
def
YoloBox
(
x
,
img_size
,
attrs
):
(
n
,
c
,
h
,
w
)
=
x
.
shape
anchors
=
attrs
[
'anchors'
]
an_num
=
int
((
len
(
anchors
)
//
2
))
class_num
=
attrs
[
'class_num'
]
conf_thresh
=
attrs
[
'conf_thresh'
]
downsample
=
attrs
[
'downsample_ratio'
]
clip_bbox
=
attrs
[
'clip_bbox'
]
scale_x_y
=
attrs
[
'scale_x_y'
]
iou_aware
=
attrs
[
'iou_aware'
]
iou_aware_factor
=
attrs
[
'iou_aware_factor'
]
bias_x_y
=
((
-
0.5
)
*
(
scale_x_y
-
1.0
))
input_h
=
(
downsample
*
h
)
input_w
=
(
downsample
*
w
)
if
iou_aware
:
ioup
=
x
[:,
:
an_num
,
:,
:]
ioup
=
np
.
expand_dims
(
ioup
,
axis
=
(
-
1
))
x
=
x
[:,
an_num
:,
:,
:]
x
=
x
.
reshape
((
n
,
an_num
,
(
5
+
class_num
),
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
pred_box
[:,
:,
:,
:,
0
]
=
((
(
grid_x
+
(
sigmoid
(
pred_box
[:,
:,
:,
:,
0
])
*
scale_x_y
))
+
bias_x_y
)
/
w
)
pred_box
[:,
:,
:,
:,
1
]
=
((
(
grid_y
+
(
sigmoid
(
pred_box
[:,
:,
:,
:,
1
])
*
scale_x_y
))
+
bias_x_y
)
/
h
)
anchors
=
[(
anchors
[
i
],
anchors
[(
i
+
1
)])
for
i
in
range
(
0
,
len
(
anchors
),
2
)]
anchors_s
=
np
.
array
([((
an_w
/
input_w
),
(
an_h
/
input_h
))
for
(
an_w
,
an_h
)
in
anchors
])
anchor_w
=
anchors_s
[:,
0
:
1
].
reshape
((
1
,
an_num
,
1
,
1
))
anchor_h
=
anchors_s
[:,
1
:
2
].
reshape
((
1
,
an_num
,
1
,
1
))
pred_box
[:,
:,
:,
:,
2
]
=
(
np
.
exp
(
pred_box
[:,
:,
:,
:,
2
])
*
anchor_w
)
pred_box
[:,
:,
:,
:,
3
]
=
(
np
.
exp
(
pred_box
[:,
:,
:,
:,
3
])
*
anchor_h
)
if
iou_aware
:
pred_conf
=
((
sigmoid
(
x
[:,
:,
:,
:,
4
:
5
])
**
(
1
-
iou_aware_factor
))
*
(
sigmoid
(
ioup
)
**
iou_aware_factor
))
else
:
pred_conf
=
sigmoid
(
x
[:,
:,
:,
:,
4
:
5
])
pred_conf
[(
pred_conf
<
conf_thresh
)]
=
0.0
pred_score
=
(
sigmoid
(
x
[:,
:,
:,
:,
5
:])
*
pred_conf
)
pred_box
=
(
pred_box
*
(
pred_conf
>
0.0
).
astype
(
'float32'
))
pred_box
=
pred_box
.
reshape
((
n
,
(
-
1
),
4
))
(
pred_box
[:,
:,
:
2
],
pred_box
[:,
:,
2
:
4
])
=
((
pred_box
[:,
:,
:
2
]
-
(
pred_box
[:,
:,
2
:
4
]
/
2.0
)),
(
pred_box
[:,
:,
:
2
]
+
(
pred_box
[:,
:,
2
:
4
]
/
2.0
)))
pred_box
[:,
:,
0
]
=
(
pred_box
[:,
:,
0
]
*
img_size
[:,
1
][:,
np
.
newaxis
])
pred_box
[:,
:,
1
]
=
(
pred_box
[:,
:,
1
]
*
img_size
[:,
0
][:,
np
.
newaxis
])
pred_box
[:,
:,
2
]
=
(
pred_box
[:,
:,
2
]
*
img_size
[:,
1
][:,
np
.
newaxis
])
pred_box
[:,
:,
3
]
=
(
pred_box
[:,
:,
3
]
*
img_size
[:,
0
][:,
np
.
newaxis
])
if
clip_bbox
:
for
i
in
range
(
len
(
pred_box
)):
pred_box
[
i
,
:,
0
]
=
np
.
clip
(
pred_box
[
i
,
:,
0
],
0
,
np
.
inf
)
pred_box
[
i
,
:,
1
]
=
np
.
clip
(
pred_box
[
i
,
:,
1
],
0
,
np
.
inf
)
pred_box
[
i
,
:,
2
]
=
np
.
clip
(
pred_box
[
i
,
:,
2
],
(
-
np
.
inf
),
(
img_size
[(
i
,
1
)]
-
1
))
pred_box
[
i
,
:,
3
]
=
np
.
clip
(
pred_box
[
i
,
:,
3
],
(
-
np
.
inf
),
(
img_size
[(
i
,
0
)]
-
1
))
return
(
pred_box
,
pred_score
.
reshape
((
n
,
(
-
1
),
class_num
)))
class
TestYoloBoxOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
'yolo_box'
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
python_api
=
paddle
.
vision
.
ops
.
yolo_box
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
'float32'
)
img_size
=
np
.
random
.
randint
(
10
,
20
,
self
.
imgsize_shape
).
astype
(
'int32'
)
self
.
attrs
=
{
'anchors'
:
self
.
anchors
,
'class_num'
:
self
.
class_num
,
'conf_thresh'
:
self
.
conf_thresh
,
'downsample_ratio'
:
self
.
downsample
,
'clip_bbox'
:
self
.
clip_bbox
,
'scale_x_y'
:
self
.
scale_x_y
,
'iou_aware'
:
self
.
iou_aware
,
'iou_aware_factor'
:
self
.
iou_aware_factor
}
self
.
inputs
=
{
'X'
:
x
,
'ImgSize'
:
img_size
}
(
boxes
,
scores
)
=
YoloBox
(
x
,
img_size
,
self
.
attrs
)
self
.
outputs
=
{
'Boxes'
:
boxes
,
'Scores'
:
scores
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
,
atol
=
1e-5
)
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
True
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
5
+
self
.
class_num
)),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.0
self
.
iou_aware
=
False
self
.
iou_aware_factor
=
0.5
class
TestYoloBoxOpNoClipBbox
(
TestYoloBoxOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
False
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
5
+
self
.
class_num
)),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.0
self
.
iou_aware
=
False
self
.
iou_aware_factor
=
0.5
class
TestYoloBoxOpScaleXY
(
TestYoloBoxOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
True
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
5
+
self
.
class_num
)),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.2
self
.
iou_aware
=
False
self
.
iou_aware_factor
=
0.5
class
TestYoloBoxOpIoUAware
(
TestYoloBoxOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
True
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
6
+
self
.
class_num
)),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.0
self
.
iou_aware
=
True
self
.
iou_aware_factor
=
0.5
class
TestYoloBoxDygraph
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
paddle
.
disable_static
()
img_size
=
np
.
ones
((
2
,
2
)).
astype
(
'int32'
)
img_size
=
paddle
.
to_tensor
(
img_size
)
x1
=
np
.
random
.
random
([
2
,
14
,
8
,
8
]).
astype
(
'float32'
)
x1
=
paddle
.
to_tensor
(
x1
)
(
boxes
,
scores
)
=
paddle
.
vision
.
ops
.
yolo_box
(
x1
,
img_size
=
img_size
,
anchors
=
[
10
,
13
,
16
,
30
],
class_num
=
2
,
conf_thresh
=
0.01
,
downsample_ratio
=
8
,
clip_bbox
=
True
,
scale_x_y
=
1.0
)
assert
((
boxes
is
not
None
)
and
(
scores
is
not
None
))
x2
=
np
.
random
.
random
([
2
,
16
,
8
,
8
]).
astype
(
'float32'
)
x2
=
paddle
.
to_tensor
(
x2
)
(
boxes
,
scores
)
=
paddle
.
vision
.
ops
.
yolo_box
(
x2
,
img_size
=
img_size
,
anchors
=
[
10
,
13
,
16
,
30
],
class_num
=
2
,
conf_thresh
=
0.01
,
downsample_ratio
=
8
,
clip_bbox
=
True
,
scale_x_y
=
1.0
,
iou_aware
=
True
,
iou_aware_factor
=
0.5
)
paddle
.
enable_static
()
class
TestYoloBoxStatic
(
unittest
.
TestCase
):
def
test_static
(
self
):
x1
=
paddle
.
static
.
data
(
'x1'
,
[
2
,
14
,
8
,
8
],
'float32'
)
img_size
=
paddle
.
static
.
data
(
'img_size'
,
[
2
,
2
],
'int32'
)
(
boxes
,
scores
)
=
paddle
.
vision
.
ops
.
yolo_box
(
x1
,
img_size
=
img_size
,
anchors
=
[
10
,
13
,
16
,
30
],
class_num
=
2
,
conf_thresh
=
0.01
,
downsample_ratio
=
8
,
clip_bbox
=
True
,
scale_x_y
=
1.0
)
assert
((
boxes
is
not
None
)
and
(
scores
is
not
None
))
x2
=
paddle
.
static
.
data
(
'x2'
,
[
2
,
16
,
8
,
8
],
'float32'
)
(
boxes
,
scores
)
=
paddle
.
vision
.
ops
.
yolo_box
(
x2
,
img_size
=
img_size
,
anchors
=
[
10
,
13
,
16
,
30
],
class_num
=
2
,
conf_thresh
=
0.01
,
downsample_ratio
=
8
,
clip_bbox
=
True
,
scale_x_y
=
1.0
,
iou_aware
=
True
,
iou_aware_factor
=
0.5
)
assert
((
boxes
is
not
None
)
and
(
scores
is
not
None
))
class
TestYoloBoxOpHW
(
TestYoloBoxOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
False
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
5
+
self
.
class_num
)),
13
,
9
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.0
self
.
iou_aware
=
False
self
.
iou_aware_factor
=
0.5
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录