提交 82e4fab4 编写于 作者: C caoying03

follow comments.

上级 b7359ee3
...@@ -80,13 +80,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) { ...@@ -80,13 +80,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
<< "input of " << getName() << "input of " << getName()
<< " must be a sequence or a nested sequence."; << " must be a sequence or a nested sequence.";
CHECK_EQ(input.value->getWidth(), 1UL) CHECK_EQ(input.value->getWidth(), 1UL)
<< "input of " << getName() << "input of " << getName() << " are scores over a sequence or "
<< " is score over a sequence or a nested sequence, so its width " << "a nested sequence, so its width must be 1.";
<< " must be 1.";
if (useGpu_) { if (useGpu_) {
// this Layer runs only in CPU, if the model is runing on GPU, /*
// then copy the input to this layer from GPU to CPU. * currently, this Layer only runs in CPU, if the other part of the model is
* runing on GPU, then copy the input to this layer from GPU to CPU.
*/
Matrix::resizeOrCreate(scores_, Matrix::resizeOrCreate(scores_,
inputScore->getHeight(), inputScore->getHeight(),
1, 1,
...@@ -97,13 +98,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) { ...@@ -97,13 +98,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
scores_ = inputScore; scores_ = inputScore;
} }
// TODO(caoying) /*
// In PaddlePaddle, the currently available matrixes all a have real-typed * TODO(caoying)
// data field, but the selected indices information are actually int-typed * In PaddePaddle, currently all matrices are real number types,
// (with -1 as a special token). Storing indices information in real-typed * but output of this layer which is some selected indices of the give
// Matrix leads to converting real to int. This is very dangerous if a user * sequence are actually filled with int types so that storing int types
// fills this matrix himself, invalid data may occur. * information in a real number matrix is dangerous, since real numbers will
// The selected indices should be stored in an int-typed matrix. * be convered to int types.
*/
Matrix::resizeOrCreate( Matrix::resizeOrCreate(
output_.value, output_.value,
input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(), input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(),
......
...@@ -31,13 +31,15 @@ public: ...@@ -31,13 +31,15 @@ public:
void backward(const UpdateCallback& callback = nullptr) override; void backward(const UpdateCallback& callback = nullptr) override;
private: private:
// TODO(caoying) /*
// In PaddlePaddle, the currently available matrixes all a have real-typed * TODO(caoying)
// data field, but the selected indices information are actually int-typed * In PaddePaddle, currently all matrices are real number types,
// (with -1 as a special token). Storing indices information in real-typed * but the second and the (optional) third input which are some
// Matrix leads to converting real to int. This is very dangerous if a user * selected indices of the give sequence to trim the sequence, are actually
// fills this matrix himself, invalid data may occur. * filled with int types so that storing int types information in real number
// The selected indices should be stored in an int-typed matrix. * matrices is very dangerous, since real numbers will be convered to int
* types. If a user fills this matrix himself, invalid data may occor.
*/
MatrixPtr startIdsOnCpu_; MatrixPtr startIdsOnCpu_;
MatrixPtr endIdsOnCpu_; MatrixPtr endIdsOnCpu_;
...@@ -68,7 +70,7 @@ bool SequenceSliceLayer::init(const LayerMap& layerMap, ...@@ -68,7 +70,7 @@ bool SequenceSliceLayer::init(const LayerMap& layerMap,
void SequenceSliceLayer::checkInputs() { void SequenceSliceLayer::checkInputs() {
const Argument& inputSeq = getInput(0); const Argument& inputSeq = getInput(0);
CHECK(inputSeq.hasSeq()) << "The first input of sequence slic layer " CHECK(inputSeq.hasSeq()) << "The first input of sequence slice layer "
<< "must be a sequence."; << "must be a sequence.";
const MatrixPtr indices1 = getInputValue(1); const MatrixPtr indices1 = getInputValue(1);
CHECK_EQ(static_cast<size_t>(indices1->getHeight()), CHECK_EQ(static_cast<size_t>(indices1->getHeight()),
...@@ -86,22 +88,6 @@ void SequenceSliceLayer::checkInputs() { ...@@ -86,22 +88,6 @@ void SequenceSliceLayer::checkInputs() {
} }
void SequenceSliceLayer::copySliceIdsToCpu() { void SequenceSliceLayer::copySliceIdsToCpu() {
if (!useGpu_) {
if (inputLayers_.size() == 2U) {
if (config_.select_first()) {
startIdsOnCpu_ = getInputValue(1);
endIdsOnCpu_ = nullptr;
} else {
startIdsOnCpu_ = nullptr;
endIdsOnCpu_ = getInputValue(1);
}
} else if (inputLayers_.size() == 3U) {
startIdsOnCpu_ = getInputValue(1);
endIdsOnCpu_ = getInputValue(2);
}
return;
}
const MatrixPtr indices1 = getInputValue(1); const MatrixPtr indices1 = getInputValue(1);
if (inputLayers_.size() == 2U) { if (inputLayers_.size() == 2U) {
if (config_.select_first()) { if (config_.select_first()) {
...@@ -141,22 +127,19 @@ void SequenceSliceLayer::copySliceIdsToCpu() { ...@@ -141,22 +127,19 @@ void SequenceSliceLayer::copySliceIdsToCpu() {
void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts, void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts,
const MatrixPtr ends) { const MatrixPtr ends) {
CHECK(starts && ends);
outSeqStartPos_.resize(1, 0); outSeqStartPos_.resize(1, 0);
outSubSeqStartPos_.resize(1, 0); outSubSeqStartPos_.resize(1, 0);
selectedRows_.clear(); selectedRows_.clear();
size_t beamSize = starts ? starts->getWidth() : ends->getWidth(); size_t beamSize = starts ? starts->getWidth() : ends->getWidth();
// iterate over sequence
size_t rowIdx = 0; size_t rowIdx = 0;
for (size_t i = 0; i < inputSeqInfoVec_.size(); ++i) { for (size_t i = 0; i < inputSeqInfoVec_.size(); ++i) {
// iterate over sub-sequence in a sequence
for (size_t j = 0; j < inputSeqInfoVec_[i].size() - 1; ++j) { for (size_t j = 0; j < inputSeqInfoVec_[i].size() - 1; ++j) {
// iterate over each index for slicing.
for (size_t k = 0; k < beamSize; ++k) { for (size_t k = 0; k < beamSize; ++k) {
if (starts) { if (starts && starts->getElement(rowIdx, k) == -1.) break;
if (starts->getElement(rowIdx, k) == -1.) break; if (ends && ends->getElement(rowIdx, k) == -1.) break;
} else if (ends->getElement(rowIdx, k) == -1.)
break;
int begPos = inputSeqInfoVec_[i][j]; int begPos = inputSeqInfoVec_[i][j];
if (starts) begPos += starts->getElement(rowIdx, k); if (starts) begPos += starts->getElement(rowIdx, k);
...@@ -165,7 +148,7 @@ void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts, ...@@ -165,7 +148,7 @@ void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts,
if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k); if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k);
int seqLen = endPos - begPos + 1; int seqLen = endPos - begPos + 1;
CHECK(seqLen); CHECK_LT(seqLen, 0U);
for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m); for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m);
inputSeqInfoVec_.size() > 1 inputSeqInfoVec_.size() > 1
? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen) ? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen)
...@@ -208,6 +191,15 @@ void SequenceSliceLayer::forward(PassType passType) { ...@@ -208,6 +191,15 @@ void SequenceSliceLayer::forward(PassType passType) {
Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions, Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions, inputSeq.subSequenceStartPositions,
inputSeqInfoVec_); inputSeqInfoVec_);
if (!useGpu_) {
if (inputLayers_.size() == 2U) {
startIdsOnCpu_ = config_.select_first() ? getInputValue(1) : nullptr;
endIdsOnCpu_ = config_.select_first() ? nullptr : getInputValue(1);
} else if (inputLayers_.size() == 3U) {
startIdsOnCpu_ = getInputValue(1);
endIdsOnCpu_ = getInputValue(2);
}
} else
copySliceIdsToCpu(); copySliceIdsToCpu();
// calculate the selected row indices in a batch, // calculate the selected row indices in a batch,
...@@ -221,10 +213,7 @@ void SequenceSliceLayer::forward(PassType passType) { ...@@ -221,10 +213,7 @@ void SequenceSliceLayer::forward(PassType passType) {
} }
void SequenceSliceLayer::backward(const UpdateCallback& callback) { void SequenceSliceLayer::backward(const UpdateCallback& callback) {
MatrixPtr inputSeqGrad = getInputGrad(0); getOutputGrad()->addToRows(*getInputGrad(0), *rowIndice_);
MatrixPtr outputGrad = getOutputGrad();
outputGrad->addToRows(*inputSeqGrad, *rowIndice_);
} }
} // namespace paddle } // namespace paddle
...@@ -58,23 +58,28 @@ private: ...@@ -58,23 +58,28 @@ private:
void calSelectedRows(const MatrixPtr selectedIndices, void calSelectedRows(const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo); const std::vector<std::vector<int>>& inputSeqInfo);
// if the second input of this layer is on GPU memory, copy it to CPU memory. /*
// TODO(caoying) * TODO(caoying)
// In PaddlePaddle, the currently available matrixes all a have real-typed * In PaddePaddle, currently all matrices are real number types,
// data field, but the selected indices information are actually int-typed * but the second is some selected indices of the give sequence to trim
// (with -1 as a special token). Storing indices information in real-typed * the nested sequence, are actually filled with int types so that storing
// Matrix leads to converting real to int. This is very dangerous if a user * int types information in real number matrices is very dangerous, since
// fills this matrix himself, invalid data may occur. * real numbers will be convered to int types. If a user fills this matrix
// The selected indices should be stored in an int-typed matrix. * himself, invalid data may occor.
*
* if the second input of this layer is on GPU memory, copy it to CPU memory.
*/
MatrixPtr selIdsCpu_; MatrixPtr selIdsCpu_;
// reorganized sequenceStartPositions and subSequenceStartPositions /*
// into a 2d vector to facilitate the sequence selection process. * reorganize sequenceStartPositions and subSequenceStartPositions
* into a 2d vector to facilitate the sequence selection process.
*/
std::vector<std::vector<int>> inputSeqInfoVec_; std::vector<std::vector<int>> inputSeqInfoVec_;
// the final selected row indices in a batch, /* store the final selected row indices in a batch */
// rowIndice_ and selectedRows_ actually share a same memory.
IVectorPtr rowIndice_; IVectorPtr rowIndice_;
/* rowIndice_ and selectedRows_ actually share a same memory. */
std::vector<int> selectedRows_; std::vector<int> selectedRows_;
}; };
......
...@@ -2717,10 +2717,7 @@ class SeqSliceLayer(LayerBase): ...@@ -2717,10 +2717,7 @@ class SeqSliceLayer(LayerBase):
'If start and end indices are both given to' 'If start and end indices are both given to'
'sequence slice layer, they should have the same width.') 'sequence slice layer, they should have the same width.')
elif len(inputs) == 2: elif len(inputs) == 2:
if starts is not None: self.config.select_first = (starts is not None)
self.config.select_first = True
else:
self.config.select_first = False
@config_layer('sub_nested_seq') @config_layer('sub_nested_seq')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册