未验证 提交 81f1402f 编写于 作者: F Feiyu Chan 提交者: GitHub

Add functional convolutions in paddle.nn.functional (#23408)

* add functional conv

* add test and doc for function convs, test=develop

* update ConvTransposeOp's InferShape and error message, test=develop
上级 70782e63
......@@ -109,14 +109,30 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
for (size_t i = 0; i < strides.size(); ++i) {
auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
auto infer_shape = (in_dims[i + offset] - 1) * strides[i] -
paddings[2 * i] - paddings[2 * i + 1] + filter_extent;
auto infer_shape = (ctx->IsRuntime() || in_dims[i + offset] > 0)
? (in_dims[i + offset] - 1) * strides[i] -
paddings[2 * i] - paddings[2 * i + 1] +
filter_extent
: -1;
if (output_size.size()) {
PADDLE_ENFORCE_EQ((output_size[i] >= infer_shape &&
output_size[i] < infer_shape + strides[i]),
true,
"output_size of Op(ConvTransposeOp) should be "
"in appropriate range.");
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_GE(
output_size[i], infer_shape,
platform::errors::InvalidArgument(
"output_size of Op(ConvTransposeOp) should not be "
"less than the infered output size. But received output_size = "
"[%s], whose dim %d is less than the infered output size [%s]",
framework::make_ddim(output_size), i, infer_shape));
PADDLE_ENFORCE_LT(
output_size[i], infer_shape + strides[i],
platform::errors::InvalidArgument(
"output_size of Op(ConvTransposeOp) should be less "
"than infered size + stride. But received output_size = [%s], "
"whose dim %d is not less than the infered output size (%d) + "
"stride (%d) = %d",
framework::make_ddim(output_size), i, infer_shape, strides[i],
infer_shape + strides[i]));
}
output_shape.push_back(output_size[i]);
} else {
output_shape.push_back(infer_shape);
......
......@@ -3857,10 +3857,10 @@ def conv2d_transpose(input,
if output_size is None:
output_size = []
elif isinstance(output_size, list) or isinstance(output_size, int):
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 2, 'output_size')
else:
raise ValueError("output_size should be list or int")
raise ValueError("output_size should be int, list[int] or tuple[int]")
groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size
......@@ -4129,7 +4129,7 @@ def conv3d_transpose(input,
if output_size is None:
raise ValueError("output_size must be set when filter_size is None")
if isinstance(output_size, int):
output_size = [output_size, output_size]
output_size = [output_size, output_size, output_size]
d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
......@@ -4149,6 +4149,13 @@ def conv3d_transpose(input,
if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
padding = [padding[0], padding[2], padding[4]]
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 3, 'output_size')
else:
raise ValueError("output_size should be int, list[int] or tuple[int]")
groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
......@@ -4166,6 +4173,7 @@ def conv3d_transpose(input,
'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'output_size': output_size,
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv2D(TestCase):
batch_size = 4
spatial_shape = (16, 16)
dtype = "float32"
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 2
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.out_channels, self.in_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv2d(
x,
self.out_channels,
self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv2d(
x,
weight,
None if self.no_bias else bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv2d(
x,
weight,
bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
act=self.act,
groups=self.groups,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv2DError(TestCase):
batch_size = 4
spatial_shape = (16, 16)
dtype = "float32"
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 2
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.out_channels, self.in_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv2d(
x,
weight,
None if self.no_bias else bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
class TestFunctionalConv2DCase2(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase3(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 3, 1]
self.stride = 2
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase4(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 1, 2, 2]
self.stride = 1
self.dilation = 2
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase5(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 1], [2, 2], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase6(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase7(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 6
self.out_channels = 8
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase8(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 6
self.out_channels = 12
self.filter_shape = 3
self.padding = "valid"
self.stride = 1
self.dilation = 1
self.groups = 6
self.no_bias = True
self.act = None
self.use_cudnn = False
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase2(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [3, 4], [5, 6]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase3(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "not_valid"
class TestFunctionalConv2DErrorCase4(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 3
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase6(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = "not_valid"
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase7(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "not_valid"
class TestFunctionalConv2DErrorCase8(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = -5
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [3, 2], [1, 2]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase10(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NHWC"
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv2D(TestCase):
batch_size = 4
spatial_shape = (16, 16)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 2
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.in_channels, self.out_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv2d_transpose(
x,
self.out_channels,
output_size=self.output_size,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv2d_transpose(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv2d_transpose(
x,
weight,
bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
act=self.act,
groups=self.groups,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv2DError(TestCase):
batch_size = 4
spatial_shape = (16, 16)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 2
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.in_channels, self.out_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv2d_transpose(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
class TestFunctionalConv2DCase2(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase3(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = True
self.act = None
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase4(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase5(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase6(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2)
self.dilation = (2, 1)
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase7(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2)
self.dilation = 1
self.groups = 4
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NHWC"
class TestFunctionalConv2DCase8(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.output_size = [18, 34]
self.stride = (1, 2)
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase9(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [2, 1], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase10(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase11(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 1, 2, 2]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase12(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 2]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase2(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 2, 1, 3]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DErrorCase3(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 2], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DErrorCase4(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [0, 0], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase5(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = -2
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase6(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = "not_valid"
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase7(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.output_size = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase8(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "not_valid"
class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv3D(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.out_channels, self.in_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NDHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv3d(
x,
self.out_channels,
self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv3d(
x,
weight,
None if self.no_bias else bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv3d(
x,
weight,
bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
act=self.act,
groups=self.groups,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv3DError(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.out_channels, self.in_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NDHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv3d(
x,
weight,
None if self.no_bias else bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
class TestFunctionalConv3DCase2(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DCase3(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 3, 1, 2, 3]
self.stride = 2
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DCase4(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 1, 2, 2, 3, 3]
self.stride = 1
self.dilation = 2
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DCase5(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 1], [2, 2], [1, 1], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DCase6(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [2, 2], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DCase7(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 6
self.out_channels = 8
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DCase8(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 6
self.out_channels = 12
self.filter_shape = 3
self.padding = "valid"
self.stride = 1
self.dilation = 1
self.groups = 6
self.no_bias = True
self.act = None
self.use_cudnn = False
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase2(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 1], [1, 2], [3, 4], [5, 6]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase3(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "not_valid"
class TestFunctionalConv3DErrorCase4(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 3
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase6(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = "not_valid"
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase7(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "not_valid"
class TestFunctionalConv3DErrorCase8(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase9(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = -5
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [3, 2], [1, 2], [1, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase10(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NDHWC"
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv3DTranspose(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.in_channels, self.out_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NDHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv3d_transpose(
x,
self.out_channels,
output_size=self.output_size,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv3d_transpose(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv3d_transpose(
x,
weight,
bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
act=self.act,
groups=self.groups,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv3DTransposeError(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.in_channels, self.out_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NDHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv3d_transpose(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
class TestFunctionalConv3DTransposeCase2(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase3(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase4(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = True
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase5(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2, 1)
self.dilation = (2, 1, 1)
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase6(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2, 1)
self.dilation = 1
self.groups = 4
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase7(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.output_size = (10, 17, 10)
self.stride = (1, 2, 1)
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase8(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [1, 2], [2, 1], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase9(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [1, 1], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase10(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 1, 2, 2, 1, 1]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase11(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase2(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 2, 1, 3]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeErrorCase3(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [1, 2], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeErrorCase4(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [1, 1], [0, 0], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase5(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = -2
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase6(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = "not_valid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase7(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.output_size = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase8(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "not_valid"
class TestFunctionalConv3DTransposeErrorCase9(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
if __name__ == "__main__":
unittest.main()
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: import all neural network related api under this directory,
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
__all__ = []
......@@ -85,10 +85,10 @@ from .layer import loss #DEFINE_ALIAS
# from .layer.common import Embedding #DEFINE_ALIAS
# from .layer.common import Linear #DEFINE_ALIAS
# from .layer.common import UpSample #DEFINE_ALIAS
# from .functional.conv import conv2d #DEFINE_ALIAS
# from .functional.conv import conv2d_transpose #DEFINE_ALIAS
# from .functional.conv import conv3d #DEFINE_ALIAS
# from .functional.conv import conv3d_transpose #DEFINE_ALIAS
from .functional.conv import conv2d #DEFINE_ALIAS
from .functional.conv import conv2d_transpose #DEFINE_ALIAS
from .functional.conv import conv3d #DEFINE_ALIAS
from .functional.conv import conv3d_transpose #DEFINE_ALIAS
# from .functional.loss import bpr_loss #DEFINE_ALIAS
# from .functional.loss import center_loss #DEFINE_ALIAS
# from .functional.loss import cross_entropy #DEFINE_ALIAS
......
......@@ -12,15 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: import all neural network related api under this directory,
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
# __all__ = [ ]
# TODO: define alias in functional directory
# from .conv import conv2d #DEFINE_ALIAS
# from .conv import conv2d_transpose #DEFINE_ALIAS
# from .conv import conv3d #DEFINE_ALIAS
# from .conv import conv3d_transpose #DEFINE_ALIAS
from .conv import conv2d #DEFINE_ALIAS
from .conv import conv2d_transpose #DEFINE_ALIAS
from .conv import conv3d #DEFINE_ALIAS
from .conv import conv3d_transpose #DEFINE_ALIAS
# from .loss import bpr_loss #DEFINE_ALIAS
# from .loss import center_loss #DEFINE_ALIAS
# from .loss import cross_entropy #DEFINE_ALIAS
......
......@@ -11,9 +11,1005 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
__all__ = ['conv2d', 'conv2d_transpose', 'conv3d', 'conv3d_transpose']
# TODO: define functions of convolutional neural network
# __all__ = ['conv2d',
# 'conv2d_transpose',
# 'conv3d',
# 'conv3d_transpose']
import numpy as np
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid import core, dygraph_utils
from ...fluid.layers import nn, utils
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.param_attr import ParamAttr
from ...fluid.layer_helper import LayerHelper
def _is_list_or_tuple(input):
return isinstance(input, (list, tuple))
def _zero_padding_in_batch_and_channel(padding, channel_last):
if channel_last:
return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
else:
return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
def _exclude_padding_in_batch_and_channel(padding, channel_last):
padding_ = padding[1:-1] if channel_last else padding[2:]
padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
return padding_
def _update_padding_nd(padding, channel_last, num_dims):
if isinstance(padding, str):
padding = padding.upper()
if padding not in ["SAME", "VALID"]:
raise ValueError(
"Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
format(padding))
if padding == "VALID":
padding_algorithm = "VALID"
padding = [0] * num_dims
else:
padding_algorithm = "SAME"
padding = [0] * num_dims
elif _is_list_or_tuple(padding):
# for padding like
# [(pad_before, pad_after), (pad_before, pad_after), ...]
# padding for batch_dim and channel_dim included
if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
if not _zero_padding_in_batch_and_channel(padding, channel_last):
raise ValueError(
"Non-zero padding({}) in the batch or channel dimensions "
"is not supported.".format(padding))
padding_algorithm = "EXPLICIT"
padding = _exclude_padding_in_batch_and_channel(padding,
channel_last)
if utils._is_symmetric_padding(padding, num_dims):
padding = padding[0::2]
# for padding like [pad_before, pad_after, pad_before, pad_after, ...]
elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
padding_algorithm = "EXPLICIT"
padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
if utils._is_symmetric_padding(padding, num_dims):
padding = padding[0::2]
# for padding like [pad_d1, pad_d2, ...]
elif len(padding) == num_dims and isinstance(padding[0], int):
padding_algorithm = "EXPLICIT"
padding = utils.convert_to_list(padding, num_dims, 'padding')
else:
raise ValueError("In valid padding: {}".format(padding))
# for integer padding
else:
padding_algorithm = "EXPLICIT"
padding = utils.convert_to_list(padding, num_dims, 'padding')
return padding, padding_algorithm
def conv2d(input,
weight,
bias=None,
padding=0,
stride=1,
dilation=1,
groups=1,
use_cudnn=True,
act=None,
data_format="NCHW",
name=None):
"""
The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input and
Output are in NCHW or NHWC format, where N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of the feature.
Filter is in MCHW format, where M is the number of output image channels,
C is the number of input image channels, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input image channels divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more details.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a tensor with NCHW or NHWC format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args:
input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type
of input is float16 or float32 or float64.
weight (Variable): The convolution kernel with shape [M, C/g, kH, kW], where M is
the number of output channels, g is the number of groups, kH is the filter's
height, kW is the filter's width.
bias (Variable, optional): The bias with shape [M,].
padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
on both sides for each dimension.If `padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If padding size is a tuple or list,
it could be in three forms: `[pad_height, pad_width]` or
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
`data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
[pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NHWC"`, `pool_padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
stride (int|tuple): The stride size. It means the stride in convolution.
If stride is a tuple, it must contain two integers, (stride_height, stride_width).
Otherwise, stride_height = stride_width = stride. Default: stride = 1.
dilation (int|tuple): The dilation size. It means the spacing between the kernel
points. If dilation is a tuple, it must contain two integers, (dilation_height,
dilation_width). Otherwise, dilation_height = dilation_width = dilation.
Default: dilation = 1.
groups (int): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
A Variable holding Tensor representing the conv2d, whose data type is the
same with input. If act is None, the tensor variable storing the convolution
result, and if act is not None, the tensor variable storing convolution
and non-linearity activation result.
Raises:
ValueError: If the type of `use_cudnn` is not bool.
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If the channel dimmention of the input is less than or equal to zero.
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ShapeError: If the input is not 4-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 2.
ShapeError: If the number of input channels is not equal to filter's channels * groups.
ShapeError: If the number of output channels is not be divided by groups.
Examples:
.. code-block:: python
from paddle import fluid
import paddle.nn.functional as F
import paddle.fluid.dygraph as dg
import numpy as np
x = np.random.randn(2, 3, 8, 8).astype(np.float32)
w = np.random.randn(6, 3, 3, 3).astype(np.float32)
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
w_var = dg.to_variable(w)
y_var = F.conv2d(x_var, w_var, act="relu")
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)
"""
# entry checks
if not isinstance(use_cudnn, bool):
raise ValueError("Attr(use_cudnn) should be True or False. "
"Received Attr(use_cudnn): {}.".format(use_cudnn))
if data_format not in ["NCHW", "NHWC"]:
raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
"Received Attr(data_format): {}.".format(data_format))
channel_last = (data_format == "NHWC")
channel_dim = -1 if channel_last else 1
num_channels = input.shape[channel_dim]
num_filters = weight.shape[0]
if num_channels < 0:
raise ValueError("The channel dimmention of the input({}) "
"should be defined. Received: {}.".format(
input.shape, num_channels))
if num_channels % groups != 0:
raise ValueError(
"the channel of input must be divisible by groups,"
"received: the channel of input is {}, the shape of input is {}"
", the groups is {}".format(num_channels, input.shape, groups))
if num_filters % groups != 0:
raise ValueError(
"the number of filters must be divisible by groups,"
"received: the number of filters is {}, the shape of weight is {}"
", the groups is {}".format(num_filters, weight.shape, groups))
# update attrs
padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
stride = utils.convert_to_list(stride, 2, 'stride')
dilation = utils.convert_to_list(dilation, 2, 'dilation')
l_type = "conv2d"
if (num_channels == groups and num_filters % num_channels == 0 and
not use_cudnn):
l_type = 'depthwise_conv2d'
inputs = {'Input': [input], 'Filter': [weight]}
attrs = {
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'use_mkldnn': False,
'fuse_relu_before_depthwise_conv': False,
"padding_algorithm": padding_algorithm,
"data_format": data_format
}
if in_dygraph_mode():
attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
padding_algorithm, "data_format", data_format)
pre_bias = getattr(core.ops, l_type)(input, weight, *attrs)
if bias is not None:
pre_act = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
else:
pre_act = pre_bias
out = dygraph_utils._append_activation_in_dygraph(
pre_act, act, use_cudnn=use_cudnn)
else:
inputs = {'Input': [input], 'Filter': [weight]}
attrs = {
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'use_mkldnn': False,
'fuse_relu_before_depthwise_conv': False,
"padding_algorithm": padding_algorithm,
"data_format": data_format
}
check_variable_and_dtype(input, 'input',
['float16', 'float32', 'float64'], 'conv2d')
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
pre_bias = helper.create_variable_for_type_inference(dtype)
outputs = {"Output": [pre_bias]}
helper.append_op(
type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
if bias is not None:
pre_act = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
else:
pre_act = pre_bias
out = helper.append_activation(pre_act)
return out
def conv2d_transpose(input,
weight,
bias=None,
output_size=None,
padding=0,
stride=1,
dilation=1,
groups=1,
use_cudnn=True,
act=None,
data_format='NCHW',
name=None):
"""
The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
H is the height of the feature, and W is the width of the feature.
Parameters(dilations, strides, paddings) are two elements. These two elements
represent height and width, respectively. The details of convolution transpose
layer, please refer to the following explanation and references
`therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
* :math:`W`: Filter value, a 4-D Tensor with MCHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]
Note:
The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
when stride > 1, conv2d maps multiple input shape to the same output shape,
so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`,
conv2d_transpose can compute the kernel size automatically.
Args:
input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
whose data type is float32 or float64.
weight(Variable): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
where M is the number of output channels(filters), g is the number of groups,
kH is the height of the kernel, and kW is the width of the kernel.
bias(Variable, optional): The bias, a Tensor with shape [M, ].
output_size(int|tuple|list, optional): The output image size. If output size is a
tuple, it must contain two integers, (image_height, image_width). None if use
filter_size, padding, and stride to calculate output_size.
If output_size is specified, output_size and filter_size (weight)'s shape
should follow the formula above. Default: None. output_size and filter_size
should not be None at the same time.
padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
`dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
If `padding` is a tuple or list, it could be in three forms:
`[pad_height, pad_width]` or
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
when `data_format` is `'NCHW'`,
`padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `'NHWC'`, `padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain two integers, (stride_height, stride_width).
Otherwise, stride_height = stride_width = stride. Default: stride = 1.
dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width).
Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups = 1.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
A Variable holding Tensor representing the conv2d_transpose, whose
data type is the same with input and shape is (num_batches, channels, out_h,
out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable
storing the transposed convolution result, and if act is not None, the
tensor variable storing transposed convolution and non-linearity activation
result.
Raises:
ValueError: If the type of `use_cudnn` is not bool.
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and filter_size are None at the same time.
ShapeError: If the input is not 4-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 2.
ShapeError: If the number of input channels is not equal to filter's channels.
ShapeError: If the size of `output_size` is not equal to that of `stride`.
Examples:
.. code-block:: python
from paddle import fluid
import paddle.nn.functional as F
import paddle.fluid.dygraph as dg
import numpy as np
x = np.random.randn(2, 3, 8, 8).astype(np.float32)
w = np.random.randn(3, 6, 3, 3).astype(np.float32)
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
w_var = dg.to_variable(w)
y_var = F.conv2d_transpose(x_var, w_var, act="relu")
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10)
"""
if not isinstance(use_cudnn, bool):
raise ValueError("Attr(use_cudnn) should be True or False. "
"Received Attr(use_cudnn): {}.".format(use_cudnn))
if data_format not in ['NCHW', 'NHWC']:
raise ValueError(
"Attr(data_format) of conv2d_transpose got wrong value: "
"received {}, but only 'NCHW' or 'NHWC' are supported.".format(
data_format))
channel_last = (data_format == "NHWC")
channel_dim = -1 if channel_last else 1
num_channels = input.shape[channel_dim]
if num_channels < 0:
raise ValueError("The channel dimmention of the input({}) "
"should be defined. Received: {}.".format(
input.shape, num_channels))
if num_channels % groups != 0:
raise ValueError(
"the channel of input must be divisible by groups,"
"received: the channel of input is {}, the shape of input is {}"
", the groups is {}".format(num_channels, input.shape, groups))
# update attrs
padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
stride = utils.convert_to_list(stride, 2, 'stride')
dilation = utils.convert_to_list(dilation, 2, 'dilation')
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 2, 'output_size')
else:
raise ValueError("output_size should be int, or list, tuple of ints")
op_type = 'conv2d_transpose'
num_filters = weight.shape[1]
if (num_channels == groups and num_filters == 1 and not use_cudnn):
op_type = 'depthwise_conv2d_transpose'
if in_dygraph_mode():
attrs = ('output_size', output_size, 'strides', stride, 'paddings',
padding, 'padding_algorithm', padding_algorithm, 'dilations',
dilation, 'groups', groups, 'use_cudnn', use_cudnn,
'data_format', data_format)
pre_bias = getattr(core.ops, op_type)(input, weight, *attrs)
if bias is not None:
pre_act = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
else:
pre_act = pre_bias
out = dygraph_utils._append_activation_in_dygraph(
pre_act, act, use_cudnn=use_cudnn)
else:
inputs = {'Input': [input], 'Filter': [weight]}
attrs = {
'output_size': output_size,
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'data_format': data_format
}
check_variable_and_dtype(input, 'input',
['float16', 'float32', 'float64'],
'conv2d_transpose')
helper = LayerHelper(op_type, **locals())
dtype = helper.input_dtype()
pre_bias = helper.create_variable_for_type_inference(dtype)
outputs = {"Output": [pre_bias]}
helper.append_op(
type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
if bias is not None:
pre_act = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
else:
pre_act = pre_bias
out = helper.append_activation(pre_act)
return out
def conv3d(input,
weight,
bias=None,
padding=0,
stride=1,
dilation=1,
groups=1,
use_cudnn=True,
act=None,
data_format="NCDHW",
name=None):
"""
The convolution3D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature. Convlution3D is similar with Convlution2D
but adds one dimension(depth). If bias attribution and activation type are
provided, bias is added to the output of the convolution, and the
corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
Args:
input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data
type of input is float16 or float32 or float64.
weight (Variable): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
where M is the number of filters(output channels), g is the number of groups,
kD, kH, kW are the filter's depth, height and width respectively.
bias (Variable, optional): The bias, a Tensor of shape [M, ].
padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
on both sides for each dimension. If `padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If padding size is a tuple or list,
it could be in three forms: `[pad_depth, pad_height, pad_width]` or
`[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
`[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
stride (int|tuple): The stride size. It means the stride in convolution. If stride is a
tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
dilation (int|tuple): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
Default: dilation = 1.
groups (int): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
name(str|None): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
A Variable holding Tensor representing the conv3d, whose data type is
the same with input. If act is None, the tensor variable storing the
convolution result, and if act is not None, the tensor variable storing
convolution and non-linearity activation result.
Raises:
ValueError: If the type of `use_cudnn` is not bool.
ValueError: If `data_format` is not "NCDHW" or "NDHWC".
ValueError: If the channel dimmention of the input is less than or equal to zero.
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ShapeError: If the input is not 5-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 2.
ShapeError: If the number of input channels is not equal to filter's channels * groups.
ShapeError: If the number of output channels is not be divided by groups.
Examples:
.. code-block:: python
from paddle import fluid
import paddle.nn.functional as F
import paddle.fluid.dygraph as dg
import numpy as np
x = np.random.randn(2, 3, 8, 8, 8).astype(np.float32)
w = np.random.randn(6, 3, 3, 3, 3).astype(np.float32)
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
w_var = dg.to_variable(w)
y_var = F.conv3d(x_var, w_var, act="relu")
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6, 6)
"""
# entry check
if not isinstance(use_cudnn, bool):
raise ValueError("Attr(use_cudnn) should be True or False. Received "
"Attr(use_cudnn): {}. ".format(use_cudnn))
if data_format not in ["NCDHW", "NDHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
"Attr(data_format): {}.".format(data_format))
channel_last = (data_format == "NDHWC")
channel_dim = -1 if channel_last else 1
num_channels = input.shape[channel_dim]
num_filters = weight.shape[0]
if num_channels < 0:
raise ValueError(
"The channel dimmention of the input({}) should be defined. "
"Received: {}.".format(input.shape, num_channels))
if num_channels % groups != 0:
raise ValueError(
"The number of input channels must be divisible by Attr(groups). "
"Received: number of channels({}), groups({}).".format(num_channels,
groups))
if num_filters % groups != 0:
raise ValueError(
"The number of filters must be divisible by Attr(groups). "
"Received: number of filters({}), groups({}).".format(num_filters,
groups))
padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
stride = utils.convert_to_list(stride, 3, 'stride')
dilation = utils.convert_to_list(dilation, 3, 'dilation')
op_type = "conv3d"
if in_dygraph_mode():
attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
"padding_algorithm", padding_algorithm, "data_format",
data_format)
pre_bias = getattr(core.ops, op_type)(input, weight, *attrs)
if bias is not None:
pre_act = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
else:
pre_act = pre_bias
out = dygraph_utils._append_activation_in_dygraph(
pre_act, act, use_cudnn=use_cudnn)
else:
inputs = {'Input': [input], 'Filter': [weight]}
attrs = {
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'use_mkldnn': False,
"padding_algorithm": padding_algorithm,
"data_format": data_format
}
helper = LayerHelper(op_type, **locals())
dtype = helper.input_dtype()
check_variable_and_dtype(input, 'input',
['float16', 'float32', 'float64'], 'conv3d')
pre_bias = helper.create_variable_for_type_inference(dtype)
outputs = {"Output": [pre_bias]}
helper.append_op(
type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
if bias is not None:
pre_act = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
else:
pre_act = pre_bias
out = helper.append_activation(pre_act)
return out
def conv3d_transpose(input,
weight,
bias=None,
output_size=None,
padding=0,
stride=1,
dilation=1,
groups=1,
use_cudnn=True,
act=None,
data_format='NCDHW',
name=None):
"""
The convolution3D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
D is the depth of the feature, H is the height of the feature, and W
is the width of the feature. Parameters(dilations, strides, paddings) are
two elements. These two elements represent height and width, respectively.
The details of convolution transpose layer, please refer to the following
explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
In the above equation:
* :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
* :math:`W`: Filter value, a Tensor with MCDHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Note:
The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
when stride > 1, conv3d maps multiple input shape to the same output shape,
so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
conv3d_transpose can compute the kernel size automatically.
Args:
input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
of input is float32 or float64.
weight (Variable): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
where M is the number of filters(output channels), g is the number of groups,
kD, kH, kW are the filter's depth, height and width respectively.
bias (Variable, optional): The bias, a Tensor of shape [M, ].
output_size(int|tuple, optional): The output image size. If output size is a
tuple, it must contain three integers, (image_depth, image_height, image_width). This
parameter only works when filter_size is None. If output_size and filter_size are
specified at the same time, They should follow the formula above. Default: None.
Output_size and filter_size should not be None at the same time.
padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
`[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `'NCDHW'`, `padding` can be in the form
`[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `'NDHWC'`, `padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
Default: stride = 1.
dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
Default: dilation = 1.
groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups=1
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
A Variable holding Tensor representing the conv3d_transpose, whose data
type is the same with input and shape is (num_batches, channels, out_d, out_h,
out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
variable storing the transposed convolution result, and if act is not None, the tensor
variable storing transposed convolution and non-linearity activation result.
Raises:
ValueError: If the type of `use_cudnn` is not bool.
ValueError: If `data_format` is not "NCDHW" or "NDHWC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and filter_size are None at the same time.
ShapeError: If the input is not 5-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 2.
ShapeError: If the number of input channels is not equal to filter's channels.
ShapeError: If the size of `output_size` is not equal to that of `stride`.
Examples:
.. code-block:: python
from paddle import fluid
import paddle.nn.functional as F
import paddle.fluid.dygraph as dg
import numpy as np
x = np.random.randn(2, 3, 8, 8, 8).astype(np.float32)
w = np.random.randn(3, 6, 3, 3, 3).astype(np.float32)
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
w_var = dg.to_variable(w)
y_var = F.conv3d_transpose(x_var, w_var, act="relu")
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10, 10)
"""
# entry checks
if not isinstance(use_cudnn, bool):
raise ValueError("Attr(use_cudnn) should be True or False. "
"Received Attr(use_cudnn): {}.".format(use_cudnn))
if data_format not in ["NCDHW", "NDHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
"Attr(data_format): {}.".format(data_format))
channel_last = (data_format == "NDHWC")
channel_dim = -1 if channel_last else 1
num_channels = input.shape[channel_dim]
num_filters = weight.shape[1]
if num_channels < 0:
raise ValueError(
"The channel dimmention of the input({}) should be defined. "
"Received: {}.".format(input.shape, num_channels))
if num_channels % groups != 0:
raise ValueError(
"The number of input channels must be divisible by Attr(groups). "
"Received: number of channels({}), groups({}).".format(num_channels,
groups))
padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
stride = utils.convert_to_list(stride, 3, 'stride')
dilation = utils.convert_to_list(dilation, 3, 'dilation')
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 3, 'output_size')
else:
raise ValueError("output_size should be int, or list, tuple of ints")
op_type = 'conv3d_transpose'
data_format_ = "NHWC" if channel_last else "NCHW"
if in_dygraph_mode():
attrs = ('output_size', output_size, 'paddings', padding,
"padding_algorithm", padding_algorithm, 'strides', stride,
'dilations', dilation, 'groups', groups, 'use_cudnn',
use_cudnn, "data_format", data_format_)
pre_bias = getattr(core.ops, op_type)(input, weight, *attrs)
if bias is not None:
pre_act = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
else:
pre_act = pre_bias
out = dygraph_utils._append_activation_in_dygraph(
pre_act, act, use_cudnn=use_cudnn)
else:
inputs = {'Input': [input], 'Filter': [weight]}
attrs = {
'output_size': output_size,
'paddings': padding,
"padding_algorithm": padding_algorithm,
'strides': stride,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
"data_format": data_format_
}
helper = LayerHelper(op_type, **locals())
dtype = helper.input_dtype()
check_variable_and_dtype(input, 'input',
['float16', 'float32', 'float64'], 'conv3d')
pre_bias = helper.create_variable_for_type_inference(dtype)
outputs = {"Output": [pre_bias]}
helper.append_op(
type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
if bias is not None:
pre_act = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
else:
pre_act = pre_bias
out = helper.append_activation(pre_act)
return out
......@@ -146,7 +146,10 @@ packages=['paddle',
'paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler',
'paddle.fluid.incubate.fleet.parameter_server.pslib',
'paddle.fluid.incubate.fleet.collective',
'paddle.fluid.incubate.fleet.utils']
'paddle.fluid.incubate.fleet.utils',
'paddle.nn',
'paddle.nn.functional',
'paddle.nn.layer']
with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
setup_requires = f.read().splitlines()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册