Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8063f586
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8063f586
编写于
4月 11, 2019
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove sigmoid change; test=develop
上级
97d4622b
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
0 addition
and
93 deletion
+0
-93
python/paddle/fluid/tests/unittests/test_sigmoid_cross_entropy_with_logits_op.py
...ts/unittests/test_sigmoid_cross_entropy_with_logits_op.py
+0
-93
未找到文件。
python/paddle/fluid/tests/unittests/test_sigmoid_cross_entropy_with_logits_op.py
浏览文件 @
8063f586
...
...
@@ -149,98 +149,5 @@ class TestSigmoidCrossEntropyWithNorm(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSigmoidCrossEntropyWithLogitsOp5
(
OpTest
):
"""Test sigmoid_cross_entropy_with_logit_op with probabalistic label
"""
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
batch_size
=
[
10
,
10
]
num_classes
=
20
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)),
'Label'
:
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
self
.
outputs
=
{
'Out'
:
-
term1
-
term2
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSigmoidCrossEntropyWithNorm2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
batch_size
=
[
10
,
10
]
num_classes
=
20
ignore_index
=
-
1
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)),
'Label'
:
np
.
random
.
randint
(
-
1
,
2
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)
}
self
.
attrs
=
{
'ignore_index'
:
ignore_index
,
'normalize'
:
True
}
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
out
=
-
term1
-
term2
out
[
np
.
where
(
self
.
inputs
[
'Label'
]
==
ignore_index
)]
=
0
if
self
.
attrs
[
'normalize'
]:
out
=
out
/
float
(
np
.
where
(
self
.
inputs
[
'Label'
]
!=
ignore_index
)[
0
].
size
)
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSigmoidCrossEntropyWithLogitsOp6
(
OpTest
):
"""Test sigmoid_cross_entropy_with_logit_op with binary label
"""
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
batch_size
=
[
10
,
10
]
num_classes
=
20
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)),
'Label'
:
np
.
random
.
randint
(
0
,
2
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
self
.
outputs
=
{
'Out'
:
-
term1
-
term2
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录