diff --git a/.gitignore b/.gitignore index 90138f996cf9cacc3c1cbff0cf2600eefca3f305..fa0c8882606b76ac71b43dcde7e1df6770c46c31 100644 --- a/.gitignore +++ b/.gitignore @@ -28,3 +28,4 @@ third_party/ build_* # clion workspace. cmake-build-* +model_test diff --git a/CMakeLists.txt b/CMakeLists.txt index 6aa2e1715b92d73aa4e5e97d5e52ffac51451d80..ed704585d8a6bf3befd9a549aa5a62a33fea3da9 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -62,13 +62,12 @@ option(WITH_DISTRIBUTE "Compile with distributed support" OFF) option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF) option(EIGEN_USE_THREADS "Compile with multi-threaded Eigen" OFF) option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF) -option(WITH_FAST_BUNDLE_TEST "Bundle tests that can be run in a single process together to reduce launch overhead" OFF) option(WITH_CONTRIB "Compile the third-party contributation" OFF) option(REPLACE_ENFORCE_GLOG "Replace PADDLE_ENFORCE with glog/CHECK for better debug." OFF) option(WITH_ANAKIN "Compile with Anakin library" OFF) option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE}) option(WITH_BRPC_RDMA "Use brpc rdma as the rpc protocal" OFF) -option(WITH_INFERENCE "Compile fluid inference library" ON) +option(ON_INFER "Turn on inference optimization." OFF) option(WITH_INFERENCE_API_TEST "Test fluid inference high-level api interface" OFF) option(WITH_SYSTEM_BLAS "Use system blas library" OFF) option(PY_VERSION "Compile PaddlePaddle with python3 support" ${PY_VERSION}) @@ -179,6 +178,7 @@ include(external/eigen) # download eigen3 include(external/pybind11) # download pybind11 include(external/cares) include(external/cub) +include(external/xxhash) # download xxhash if (NOT WIN32) # there is no official support of snappystream, warpctc, nccl, cupti in windows @@ -301,3 +301,11 @@ if(WITH_DOC) find_python_module(recommonmark REQUIRED) add_subdirectory(doc) endif() + +if (ON_INFER) + message(STATUS "On inference mode, will take place some specific optimization.") + add_definitions(-DPADDLE_ON_INFERENCE) +else() + #TODO(luotao), combine this warning with `make inference_lib_dist` command. + message(WARNING "On inference mode, will take place some specific optimization. Turn on the ON_INFER flag when building inference_lib only.") +endif() diff --git a/Dockerfile b/Dockerfile index 738bba9bc2e1ab19709722fe04f1490b1b13bd4f..c8b9eed6d60e5d3b32fc14c0c7af80a785145d1b 100644 --- a/Dockerfile +++ b/Dockerfile @@ -75,14 +75,14 @@ RUN pip3 install -U wheel && \ pip3 install -U docopt PyYAML sphinx==1.5.6 && \ pip3 install sphinx-rtd-theme==0.1.9 recommonmark && \ easy_install -U pip && \ - pip install -U wheel && \ + pip install -U pip setuptools wheel && \ pip install -U docopt PyYAML sphinx==1.5.6 && \ pip install sphinx-rtd-theme==0.1.9 recommonmark -RUN pip3 install pre-commit 'ipython==5.3.0' && \ +RUN pip3 install 'pre-commit==1.10.4' 'ipython==5.3.0' && \ pip3 install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip3 install opencv-python && \ - pip install pre-commit 'ipython==5.3.0' && \ + pip install 'pre-commit==1.10.4' 'ipython==5.3.0' && \ pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip install opencv-python diff --git a/README.md b/README.md index 8ee67f66423df8bce27f70015be8752457cd9784..56d6c10c642787836abb55cb2974bda0b8d22da4 100644 --- a/README.md +++ b/README.md @@ -2,8 +2,8 @@ [![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle) -[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://paddlepaddle.org/documentation/docs/en/1.0/getstarted/index_en.html) -[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://paddlepaddle.org/documentation/docs/zh/1.0/beginners_guide/index.html) +[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://paddlepaddle.org/documentation/docs/en/1.1/getstarted/index_en.html) +[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://paddlepaddle.org/documentation/docs/zh/1.1/beginners_guide/index.html) [![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases) [![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE) @@ -19,7 +19,7 @@ Our vision is to enable deep learning for everyone via PaddlePaddle. Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle. -### Latest PaddlePaddle Release: [Fluid 1.0.1](https://github.com/PaddlePaddle/Paddle/tree/release/1.0.0) +### Latest PaddlePaddle Release: [Fluid 1.1.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.1) ### Install Latest Stable Release: ``` # Linux CPU @@ -27,9 +27,9 @@ pip install paddlepaddle # Linux GPU cuda9cudnn7 pip install paddlepaddle-gpu # Linux GPU cuda8cudnn7 -pip install paddlepaddle-gpu==1.0.1.post87 +pip install paddlepaddle-gpu==1.1.0.post87 # Linux GPU cuda8cudnn5 -pip install paddlepaddle-gpu==1.0.1.post85 +pip install paddlepaddle-gpu==1.1.0.post85 # For installation on other platform, refer to http://paddlepaddle.org/ ``` @@ -76,26 +76,26 @@ pip install paddlepaddle-gpu==1.0.1.post85 ## Installation -It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/1.0/beginners_guide/index.html) on our website. +It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/1.1/beginners_guide/index.html) on our website. ## Documentation -We provide [English](http://paddlepaddle.org/documentation/docs/en/1.0.0/getstarted/index_en.html) and -[Chinese](http://paddlepaddle.org/documentation/docs/zh/1.0/beginners_guide/index.html) documentation. +We provide [English](http://paddlepaddle.org/documentation/docs/en/1.1/getstarted/index_en.html) and +[Chinese](http://paddlepaddle.org/documentation/docs/zh/1.1/beginners_guide/index.html) documentation. - [Deep Learning 101](https://github.com/PaddlePaddle/book) You might want to start from this online interactive book that can run in a Jupyter Notebook. -- [Distributed Training](http://paddlepaddle.org/documentation/docs/zh/1.0/user_guides/howto/training/cluster_howto.html) +- [Distributed Training](http://paddlepaddle.org/documentation/docs/zh/1.1/user_guides/howto/training/cluster_howto.html) You can run distributed training jobs on MPI clusters. -- [Python API](http://paddlepaddle.org/documentation/api/zh/1.0/fluid.html) +- [Python API](http://paddlepaddle.org/documentation/api/zh/1.1/fluid.html) Our new API enables much shorter programs. -- [How to Contribute](http://paddlepaddle.org/documentation/docs/zh/1.0/advanced_usage/development/contribute_to_paddle.html) +- [How to Contribute](http://paddlepaddle.org/documentation/docs/zh/1.1/advanced_usage/development/contribute_to_paddle.html) We appreciate your contributions! diff --git a/benchmark/fluid/args.py b/benchmark/fluid/args.py index 9540900b112f54594bbfdbc8d7cd3b6e1f5269dd..ff616ddbb2cb1cb7f348d6d164815823b08b7629 100644 --- a/benchmark/fluid/args.py +++ b/benchmark/fluid/args.py @@ -142,5 +142,10 @@ def parse_args(): choices=['reduce', 'all_reduce'], default='all_reduce', help='Specify the reduce strategy, can be reduce, all_reduce') + parser.add_argument( + '--fuse_broadcast_op', + action='store_true', + help='If set, would fuse multiple broadcast operators into one fused_broadcast operator.' + ) args = parser.parse_args() return args diff --git a/benchmark/fluid/fluid_benchmark.py b/benchmark/fluid/fluid_benchmark.py index ddd9fe809853a830ca676cc98f1819f683866def..5f3ce300acc44ad8d2898c27296b866c403f3cc8 100644 --- a/benchmark/fluid/fluid_benchmark.py +++ b/benchmark/fluid/fluid_benchmark.py @@ -177,6 +177,7 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog, else: build_strategy.reduce_strategy = fluid.BuildStrategy( ).ReduceStrategy.AllReduce + build_strategy.fuse_broadcast_op = args.fuse_broadcast_op avg_loss = train_args[0] @@ -240,7 +241,6 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog, if args.use_fake_data or args.use_reader_op: try: - fetch_ret = exe.run(fetch_list) except fluid.core.EOFException as eof: break diff --git a/cmake/external/xxhash.cmake b/cmake/external/xxhash.cmake new file mode 100644 index 0000000000000000000000000000000000000000..c227e09719bd5f0e825f81fb96f78105aa10c79b --- /dev/null +++ b/cmake/external/xxhash.cmake @@ -0,0 +1,50 @@ +INCLUDE(ExternalProject) + +set(XXHASH_SOURCE_DIR ${THIRD_PARTY_PATH}/xxhash) +set(XXHASH_INSTALL_DIR ${THIRD_PARTY_PATH}/install/xxhash) +set(XXHASH_INCLUDE_DIR "${XXHASH_INSTALL_DIR}/include") + +IF(WITH_STATIC_LIB) + SET(BUILD_CMD make lib) +ELSE() + IF(APPLE) + SET(BUILD_CMD sed -i \"\" "s/-Wstrict-prototypes -Wundef/-Wstrict-prototypes -Wundef -fPIC/g" ${XXHASH_SOURCE_DIR}/src/extern_xxhash/Makefile && make lib) + ELSE(APPLE) + SET(BUILD_CMD sed -i "s/-Wstrict-prototypes -Wundef/-Wstrict-prototypes -Wundef -fPIC/g" ${XXHASH_SOURCE_DIR}/src/extern_xxhash/Makefile && make lib) + ENDIF(APPLE) +ENDIF() + +ExternalProject_Add( + extern_xxhash + ${EXTERNAL_PROJECT_LOG_ARGS} + GIT_REPOSITORY "https://github.com/Cyan4973/xxHash" + GIT_TAG "v0.6.5" + PREFIX ${XXHASH_SOURCE_DIR} + DOWNLOAD_NAME "xxhash" + UPDATE_COMMAND "" + CONFIGURE_COMMAND "" + BUILD_IN_SOURCE 1 + PATCH_COMMAND + BUILD_COMMAND ${BUILD_CMD} + INSTALL_COMMAND export PREFIX=${XXHASH_INSTALL_DIR}/ && make install + TEST_COMMAND "" +) + +set(XXHASH_LIBRARIES "${XXHASH_INSTALL_DIR}/lib/libxxhash.a") +INCLUDE_DIRECTORIES(${XXHASH_INCLUDE_DIR}) + +add_library(xxhash STATIC IMPORTED GLOBAL) +set_property(TARGET xxhash PROPERTY IMPORTED_LOCATION ${XXHASH_LIBRARIES}) +include_directories(${XXHASH_INCLUDE_DIR}) +add_dependencies(xxhash extern_xxhash) + +LIST(APPEND external_project_dependencies xxhash) + +IF(WITH_C_API) + INSTALL(DIRECTORY ${XXHASH_INCLUDE_DIR} DESTINATION third_party/xxhash) + IF(ANDROID) + INSTALL(FILES ${XXHASH_LIBRARIES} DESTINATION third_party/xxhash/lib/${ANDROID_ABI}) + ELSE() + INSTALL(FILES ${XXHASH_LIBRARIES} DESTINATION third_party/xxhash/lib) + ENDIF() +ENDIF() diff --git a/cmake/inference_lib.cmake b/cmake/inference_lib.cmake index 67cca09b64c1ed7a503a886e78347d786eae0de7..efdb093a7b28e19f3b2a774dd54f2e7f042e9ca7 100644 --- a/cmake/inference_lib.cmake +++ b/cmake/inference_lib.cmake @@ -31,7 +31,7 @@ function(copy TARGET) foreach(index RANGE ${len}) list(GET copy_lib_SRCS ${index} src) list(GET copy_lib_DSTS ${index} dst) - add_custom_command(TARGET ${TARGET} PRE_BUILD + add_custom_command(TARGET ${TARGET} PRE_BUILD COMMAND mkdir -p "${dst}" COMMAND cp -r "${src}" "${dst}" COMMENT "copying ${src} -> ${dst}") @@ -67,6 +67,13 @@ copy(boost_lib DEPS boost ) +set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/xxhash") +copy(xxhash_lib + SRCS ${XXHASH_INCLUDE_DIR} ${XXHASH_LIBRARIES} + DSTS ${dst_dir} ${dst_dir}/lib + DEPS xxhash +) + if(NOT PROTOBUF_FOUND) set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/protobuf") copy(protobuf_lib @@ -186,7 +193,7 @@ copy(cmake_cache DSTS ${FLUID_INSTALL_DIR}) # This command generates a complete fluid library for both train and inference -add_custom_target(fluid_lib_dist DEPENDS ${fluid_lib_dist_dep}) +add_custom_target(fluid_lib_dist DEPENDS ${fluid_lib_dist_dep}) # Following commands generate a inference-only fluid library # third_party, version.txt and CMakeCache.txt are the same position with ${FLUID_INSTALL_DIR} diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index 6653244507742b33d9524a7a0e4a5b2b575d358a..6b665a9effba4bef083d007c0c74f2f4c79e647e 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -24,6 +24,7 @@ if(NOT WITH_FLUID_ONLY) endif() add_subdirectory(testing) +set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests CACHE INTERNAL "python tests directory") if(NOT MOBILE_INFERENCE AND NOT RPI AND NOT WITH_C_API) add_subdirectory(fluid) endif() diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 19ef23cdfa90912ff6fbd050a685d10861d909d2..b6b7af951093e4d721e5d0c99e7bb818c67af749 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -64,11 +64,11 @@ paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', ' paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None, None)) paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)) paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)) -paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type', 'is_test'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)) paddle.fluid.layers.softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(True, None)) -paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None)) -paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None)) +paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)) +paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)) paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False)) paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)) @@ -86,7 +86,7 @@ paddle.fluid.layers.reduce_prod ArgSpec(args=['input', 'dim', 'keep_dim', 'name' paddle.fluid.layers.sequence_first_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.sequence_last_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.sequence_slice ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)) -paddle.fluid.layers.dropout ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name'], varargs=None, keywords=None, defaults=(False, None, None)) +paddle.fluid.layers.dropout ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')) paddle.fluid.layers.split ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)) paddle.fluid.layers.ctc_greedy_decoder ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.edit_distance ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)) @@ -103,11 +103,11 @@ paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 's paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)) -paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index'], varargs=None, keywords=None, defaults=(False, -100)) +paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode'], varargs=None, keywords=None, defaults=(False, -100, False)) paddle.fluid.layers.smooth_l1 ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.layers.one_hot ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.autoincreased_step_counter ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1)) -paddle.fluid.layers.reshape ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None)) +paddle.fluid.layers.reshape ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, False, None)) paddle.fluid.layers.squeeze ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.unsqueeze ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.lod_reset ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None)) @@ -174,7 +174,13 @@ paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)) paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.affine_grid ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None)) +paddle.fluid.layers.hash ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)) +paddle.fluid.layers.grid_sampler ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.log_loss ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None)) +paddle.fluid.layers.add_position_encoding ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)) paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None) @@ -353,6 +359,8 @@ paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_wind paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.optimizer.ModelAverage.restore ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None) +paddle.fluid.optimizer.LarsMomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'lars_coeff', 'lars_weight_decay', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.0005, None, None)) +paddle.fluid.optimizer.LarsMomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.backward.append_backward ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.regularizer.L1DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)) paddle.fluid.regularizer.L2DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)) diff --git a/paddle/fluid/CMakeLists.txt b/paddle/fluid/CMakeLists.txt index 48b36df6499e59fe742766b5f81fd30a9fb8b900..7d48f0057140cf021a21ea7e304b7e38cc8b9ec2 100644 --- a/paddle/fluid/CMakeLists.txt +++ b/paddle/fluid/CMakeLists.txt @@ -9,8 +9,6 @@ add_subdirectory(pybind) add_subdirectory(recordio) endif(NOT WIN32) -if(WITH_INFERENCE) - # NOTE: please add subdirectory inference at last. - add_subdirectory(inference) - add_subdirectory(train) -endif() +# NOTE: please add subdirectory inference at last. +add_subdirectory(inference) +add_subdirectory(train) diff --git a/paddle/fluid/framework/attribute.cc b/paddle/fluid/framework/attribute.cc index 0dcecb62dba971b48c4f11c0ef47494be40eeea0..fabf2abfc803b8838edb48aa01ab8896799c97ac 100644 --- a/paddle/fluid/framework/attribute.cc +++ b/paddle/fluid/framework/attribute.cc @@ -64,6 +64,13 @@ Attribute GetAttrValue(const proto::OpDesc::Attr& attr_desc) { case proto::AttrType::LONG: { return attr_desc.l(); } + case proto::AttrType::LONGS: { + std::vector val(attr_desc.longs_size()); + for (int i = 0; i < attr_desc.longs_size(); ++i) { + val[i] = attr_desc.longs(i); + } + return val; + } default: PADDLE_THROW("Unsupport attr type %d", attr_desc.type()); } diff --git a/paddle/fluid/framework/attribute.h b/paddle/fluid/framework/attribute.h index 14ca3e96209ed17f12e87fda8506806514698977..d9c76881b7e98d0b7cd29024b98c8f7720398c66 100644 --- a/paddle/fluid/framework/attribute.h +++ b/paddle/fluid/framework/attribute.h @@ -26,6 +26,113 @@ limitations under the License. */ namespace paddle { namespace framework { + +template +struct ExtractAttribute { + explicit ExtractAttribute(const std::string& attr_name) + : attr_name_(attr_name) {} + + T* operator()(Attribute& attr) const { + T* attr_value = nullptr; + try { + attr_value = &boost::get(attr); + } catch (boost::bad_get& bad_get) { + PADDLE_THROW("Cannot get attribute %s by type %s, its type is %s", + attr_name_, paddle::platform::demangle(typeid(T).name()), + paddle::platform::demangle(attr.type().name())); + } + return attr_value; + } + + const std::string& attr_name_; +}; + +// special handle bool +// FIXME(yuyang18): Currently we cast bool into int in python binding. It is +// hard to change the logic there. In another way, we should correct handle +// if the user set `some_flag=1`. +// +// FIX ME anytime if there is a better solution. +template <> +struct ExtractAttribute { + explicit ExtractAttribute(const std::string& attr_name) + : attr_name_(attr_name) {} + + bool* operator()(Attribute& attr) const { + if (attr.type() == typeid(int)) { // NOLINT + int val = boost::get(attr); + attr = static_cast(val); + } else if (attr.type() == typeid(float)) { // NOLINT + float val = boost::get(attr); + attr = static_cast(val); + } + bool* attr_value = nullptr; + try { + attr_value = &boost::get(attr); + } catch (boost::bad_get& bad_get) { + PADDLE_THROW("Cannot get attribute %s by type bool, its type is %s", + attr_name_, paddle::platform::demangle(attr.type().name())); + } + return attr_value; + } + + const std::string& attr_name_; +}; + +template <> +struct ExtractAttribute { + explicit ExtractAttribute(const std::string& attr_name) + : attr_name_(attr_name) {} + + int64_t* operator()(Attribute& attr) const { + if (attr.type() == typeid(int)) { // NOLINT + int val = boost::get(attr); + attr = static_cast(val); + } else if (attr.type() == typeid(float)) { // NOLINT + int val = boost::get(attr); + attr = static_cast(val); + } + int64_t* attr_value = nullptr; + try { + attr_value = &boost::get(attr); + } catch (boost::bad_get& bad_get) { + PADDLE_THROW("Cannot get attribute %s by type int64_t, its type is %s", + attr_name_, paddle::platform::demangle(attr.type().name())); + } + return attr_value; + } + + const std::string& attr_name_; +}; + +template <> +struct ExtractAttribute> { + explicit ExtractAttribute(const std::string& attr_name) + : attr_name_(attr_name) {} + + std::vector* operator()(Attribute& attr) const { + if (attr.type() == typeid(std::vector)) { // NOLINT + std::vector val = boost::get>(attr); + std::vector vec(val.begin(), val.end()); + attr = vec; + } else if (attr.type() == typeid(std::vector)) { // NOLINT + std::vector val = boost::get>(attr); + std::vector vec(val.begin(), val.end()); + attr = vec; + } + std::vector* attr_value = nullptr; + try { + attr_value = &boost::get>(attr); + } catch (boost::bad_get& bad_get) { + PADDLE_THROW("Cannot get attribute %s by type int64_t, its type is %s", + attr_name_, paddle::platform::demangle(attr.type().name())); + } + return attr_value; + } + + const std::string& attr_name_; +}; + template inline proto::AttrType AttrTypeID() { Attribute tmp = T(); @@ -42,7 +149,11 @@ class AttrReader { inline const T& Get(const std::string& name) const { PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap", name); - return boost::get(attrs_.at(name)); + + Attribute& attr = const_cast(attrs_.at(name)); + ExtractAttribute extract_attr(name); + T* attr_value = extract_attr(attr); + return *attr_value; } private: @@ -82,7 +193,7 @@ class DefaultValueSetter { public: explicit DefaultValueSetter(T default_value) : default_value_(default_value) {} - void operator()(T& value) const { value = default_value_; } + void operator()(T& value) const { value = default_value_; } // NOLINT private: T default_value_; @@ -117,84 +228,6 @@ class EnumInContainer { std::unordered_set container_; }; -template -struct ExtractAttribute { - explicit ExtractAttribute(const std::string& attr_name) - : attr_name_(attr_name) {} - - T* operator()(Attribute& attr) const { - T* attr_value = nullptr; - try { - attr_value = &boost::get(attr); - } catch (boost::bad_get& bad_get) { - PADDLE_THROW("Cannot get attribute %s by type %s, its type is %s", - attr_name_, paddle::platform::demangle(typeid(T).name()), - paddle::platform::demangle(attr.type().name())); - } - return attr_value; - } - - const std::string& attr_name_; -}; - -// special handle bool -// FIXME(yuyang18): Currently we cast bool into int in python binding. It is -// hard to change the logic there. In another way, we should correct handle -// if the user set `some_flag=1`. -// -// FIX ME anytime if there is a better solution. -template <> -struct ExtractAttribute { - explicit ExtractAttribute(const std::string& attr_name) - : attr_name_(attr_name) {} - - bool* operator()(Attribute& attr) const { - if (attr.type() == typeid(int)) { // NOLINT - int val = boost::get(attr); - attr = static_cast(val); - } else if (attr.type() == typeid(float)) { // NOLINT - float val = boost::get(attr); - attr = static_cast(val); - } - bool* attr_value = nullptr; - try { - attr_value = &boost::get(attr); - } catch (boost::bad_get& bad_get) { - PADDLE_THROW("Cannot get attribute %s by type bool, its type is %s", - attr_name_, paddle::platform::demangle(attr.type().name())); - } - return attr_value; - } - - const std::string& attr_name_; -}; - -template <> -struct ExtractAttribute { - explicit ExtractAttribute(const std::string& attr_name) - : attr_name_(attr_name) {} - - int64_t* operator()(Attribute& attr) const { - if (attr.type() == typeid(int)) { // NOLINT - int val = boost::get(attr); - attr = static_cast(val); - } else if (attr.type() == typeid(float)) { // NOLINT - int val = boost::get(attr); - attr = static_cast(val); - } - int64_t* attr_value = nullptr; - try { - attr_value = &boost::get(attr); - } catch (boost::bad_get& bad_get) { - PADDLE_THROW("Cannot get attribute %s by type int64_t, its type is %s", - attr_name_, paddle::platform::demangle(attr.type().name())); - } - return attr_value; - } - - const std::string& attr_name_; -}; - // check whether a certain attribute fit its limits // an attribute can have more than one limits template @@ -235,7 +268,7 @@ class TypedAttrChecker { return *this; } - void operator()(AttributeMap& attr_map) const { + void operator()(AttributeMap& attr_map) const { // NOLINT if (!attr_map.count(attr_name_)) { // user do not set this attr PADDLE_ENFORCE(!default_value_setter_.empty(), @@ -271,7 +304,7 @@ class OpAttrChecker { return *(checker.target>()); } - void Check(AttributeMap& attr_map) const { + void Check(AttributeMap& attr_map) const { // NOLINT for (const auto& checker : attr_checkers_) { checker(attr_map); } diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt index bf1cfd1a6f13320a6a5264a10c1bd8677c9e0296..57573b37c3852c46a1e06ba7d6f57d8a56dad18e 100644 --- a/paddle/fluid/framework/details/CMakeLists.txt +++ b/paddle/fluid/framework/details/CMakeLists.txt @@ -17,12 +17,14 @@ if(WITH_GPU) dynload_cuda variable_visitor) nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda) nv_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor dynload_cuda) + nv_library(fused_broadcast_op_handle SRCS fused_broadcast_op_handle.cc DEPS broadcast_op_handle) else() cc_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory variable_visitor) cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim) cc_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor) + cc_library(fused_broadcast_op_handle SRCS fused_broadcast_op_handle.cc DEPS broadcast_op_handle) endif() cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_base scope lod_tensor) @@ -36,15 +38,18 @@ if(WITH_GPU) all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass) endif() +cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass) + cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle - scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle) + scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle) -if(WITH_GPU) - cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto reference_count_pass modify_op_lock_and_record_event_pass) -else() - cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto modify_op_lock_and_record_event_pass) +set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto modify_op_lock_and_record_event_pass sequential_execution_pass) +if (WITH_GPU) + list(APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass) endif() +cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ${SSA_GRAPH_EXECUTOR_DEPS}) + cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context) @@ -57,8 +62,9 @@ cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_execu # device_context reduce_op_handle ) cc_library(fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context) +cc_test(fused_broadcast_op_test SRCS fused_broadcast_op_handle_test.cc DEPS fused_broadcast_op_handle) cc_library(build_strategy SRCS build_strategy.cc DEPS graph_viz_pass multi_devices_graph_pass multi_devices_graph_print_pass multi_devices_graph_check_pass - fuse_elewise_add_act_pass) + fuse_elewise_add_act_pass multi_batch_merge_pass) diff --git a/paddle/fluid/framework/details/all_reduce_op_handle.cc b/paddle/fluid/framework/details/all_reduce_op_handle.cc index 7c5f5bd80a937bf1a1c891155764833d7b21c5c2..b8690156763e4037811245b8016982710445e6a2 100644 --- a/paddle/fluid/framework/details/all_reduce_op_handle.cc +++ b/paddle/fluid/framework/details/all_reduce_op_handle.cc @@ -34,7 +34,7 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, nccl_ctxs_(ctxs) { if (nccl_ctxs_) { for (auto &p : places_) { - this->dev_ctxes_[p] = nccl_ctxs_->DevCtx(p); + this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p)); } } } @@ -46,7 +46,7 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, #endif void AllReduceOpHandle::RunImpl() { - platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second); + platform::RecordEvent record_event(Name(), dev_ctxes_.cbegin()->second); if (NoDummyInputSize() == 1) { return; // No need to all reduce when GPU count = 1; @@ -127,7 +127,7 @@ void AllReduceOpHandle::RunImpl() { *local_scopes_[i]->FindVar(kLocalExecScopeName)->Get(); auto &p = places_[i]; auto *var = scope.FindVar(out_var_handles[i]->name_); - auto *dev_ctx = dev_ctxes_[p]; + auto *dev_ctx = dev_ctxes_.at(p); RunAndRecordEvent(p, [&trg, var, dev_ctx, p] { auto &tensor_gpu = *var->GetMutable(); diff --git a/paddle/fluid/framework/details/broadcast_op_handle.cc b/paddle/fluid/framework/details/broadcast_op_handle.cc index 4fdab5cd94358d08eac7f8b041bf16d09042f0bd..7f0d06c892541a2697a4ed083f6f4c0fc774a2a4 100644 --- a/paddle/fluid/framework/details/broadcast_op_handle.cc +++ b/paddle/fluid/framework/details/broadcast_op_handle.cc @@ -48,16 +48,27 @@ void BroadcastOpHandle::RunImpl() { var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get()); } + BroadcastOneVar(*in_var_handle, out_var_handles, var_scopes); +} + +void BroadcastOpHandle::BroadcastOneVar( + const VarHandle &in_var_handle, + const std::vector &out_var_handles, + const std::vector &var_scopes) { auto *in_var = - var_scopes.at(in_var_handle->scope_idx_)->FindVar(in_var_handle->name_); + var_scopes.at(in_var_handle.scope_idx_)->FindVar(in_var_handle.name_); PADDLE_ENFORCE_NOT_NULL(in_var); Tensor &in_tensor = VariableVisitor::GetMutableTensor(in_var); + if (UNLIKELY(!in_tensor.IsInitialized())) { + VLOG(3) << "in var " << in_var_handle.name_ << "not inited, return!"; + return; + } - InitOutputValue(*in_var_handle, out_var_handles); + InitOutputValue(in_var_handle, out_var_handles); if (platform::is_cpu_place(in_tensor.place())) { for (auto *out_var_handle : out_var_handles) { - if (out_var_handle->IsTheSameVar(*in_var_handle)) { + if (out_var_handle->IsTheSameVar(in_var_handle)) { continue; } auto &out_p = out_var_handle->place_; @@ -114,12 +125,12 @@ void BroadcastOpHandle::RunImpl() { } } - if (!out_handle->IsTheSameVar(*in_var_handle)) { - auto out_var = var_scopes.at(in_var_handle->scope_idx_) + if (!out_handle->IsTheSameVar(in_var_handle)) { + auto out_var = var_scopes.at(in_var_handle.scope_idx_) ->FindVar(out_var_handles[0]->name_); paddle::framework::TensorCopy( - in_tensor, in_var_handle->place_, - *(dev_ctxes_.at(in_var_handle->place_)), + in_tensor, in_var_handle.place_, + *(dev_ctxes_.at(in_var_handle.place_)), &VariableVisitor::GetMutableTensor(out_var)); } }); diff --git a/paddle/fluid/framework/details/broadcast_op_handle.h b/paddle/fluid/framework/details/broadcast_op_handle.h index fe4e733e43417977df324fde808f52b228a27d19..72180fac864256ddda076c57e50ab1083c113d32 100644 --- a/paddle/fluid/framework/details/broadcast_op_handle.h +++ b/paddle/fluid/framework/details/broadcast_op_handle.h @@ -44,7 +44,8 @@ struct BroadcastOpHandle : public OpHandleBase { nccl_ctxs_(nccl_ctxs) { if (nccl_ctxs_) { for (auto &p_ctx : nccl_ctxs_->contexts_) { - dev_ctxes_[platform::CUDAPlace(p_ctx.first)] = p_ctx.second.ctx_.get(); + this->SetDeviceContext(platform::CUDAPlace(p_ctx.first), + p_ctx.second.ctx_.get()); } } } @@ -61,7 +62,10 @@ struct BroadcastOpHandle : public OpHandleBase { protected: void RunImpl() override; - private: + void BroadcastOneVar(const VarHandle &in_var_handle, + const std::vector &out_var_handles, + const std::vector &var_scopes); + std::vector local_scopes_; std::vector places_; #ifdef PADDLE_WITH_CUDA diff --git a/paddle/fluid/framework/details/broadcast_op_handle_test.cc b/paddle/fluid/framework/details/broadcast_op_handle_test.cc index ab7412a19fbd13fa39dbae9af528d158cc9ddbd0..650de5a48de6b1fdab120cdeda563a169fd1a1c1 100644 --- a/paddle/fluid/framework/details/broadcast_op_handle_test.cc +++ b/paddle/fluid/framework/details/broadcast_op_handle_test.cc @@ -12,232 +12,12 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include "paddle/fluid/framework/details/broadcast_op_handle.h" -#include "gtest/gtest.h" - -#include "paddle/fluid/platform/device_context.h" +#include "paddle/fluid/framework/details/broadcast_op_handle_test.h" namespace paddle { namespace framework { namespace details { -namespace f = paddle::framework; -namespace p = paddle::platform; - -// test data amount -const f::DDim kDims = {20, 20}; - -struct TestBroadcastOpHandle { - std::vector> ctxs_; - std::vector local_scopes_; - std::vector param_scopes_; - Scope g_scope_; - std::unique_ptr op_handle_; - std::vector> vars_; - std::vector gpu_list_; - bool use_gpu_; -#ifdef PADDLE_WITH_CUDA - std::unique_ptr nccl_ctxs_; -#endif - - void WaitAll() { - for (size_t j = 0; j < ctxs_.size(); ++j) { - ctxs_[j]->Wait(); - } -#ifdef PADDLE_WITH_CUDA - if (nccl_ctxs_) { - nccl_ctxs_->WaitAll(); - } -#endif - } - - void InitCtxOnGpu(bool use_gpu) { - use_gpu_ = use_gpu; - if (use_gpu_) { -#ifdef PADDLE_WITH_CUDA - int count = p::GetCUDADeviceCount(); - if (count <= 1) { - LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA " - "device count is " - << count; - exit(0); - } - for (int i = 0; i < count; ++i) { - auto p = p::CUDAPlace(i); - gpu_list_.push_back(p); - ctxs_.emplace_back(new p::CUDADeviceContext(p)); - } - nccl_ctxs_.reset(new platform::NCCLContextMap(gpu_list_)); -#else - PADDLE_THROW("CUDA is not support."); -#endif - } else { - int count = 8; - for (int i = 0; i < count; ++i) { - auto p = p::CPUPlace(); - gpu_list_.push_back(p); - ctxs_.emplace_back(new p::CPUDeviceContext(p)); - } -#ifdef PADDLE_WITH_CUDA - nccl_ctxs_.reset(nullptr); -#endif - } - } - - void InitBroadcastOp(size_t input_scope_idx) { - for (size_t j = 0; j < gpu_list_.size(); ++j) { - local_scopes_.push_back(&(g_scope_.NewScope())); - Scope& local_scope = local_scopes_.back()->NewScope(); - *local_scopes_.back() - ->Var(details::kLocalExecScopeName) - ->GetMutable() = &local_scope; - local_scope.Var("out"); - param_scopes_.emplace_back(&local_scope); - } - param_scopes_[input_scope_idx]->Var("input"); - - std::unique_ptr n = - ir::CreateNodeForTest("node0", ir::Node::Type::kOperation); - if (use_gpu_) { -#ifdef PADDLE_WITH_CUDA - op_handle_.reset(new BroadcastOpHandle(n.get(), local_scopes_, gpu_list_, - nccl_ctxs_.get())); -#else - PADDLE_THROW("CUDA is not support."); -#endif - } else { -#ifdef PADDLE_WITH_CUDA - op_handle_.reset(new BroadcastOpHandle(n.get(), local_scopes_, gpu_list_, - nccl_ctxs_.get())); -#else - op_handle_.reset( - new BroadcastOpHandle(n.get(), local_scopes_, gpu_list_)); -#endif - } - - std::unique_ptr v = - ir::CreateNodeForTest("node1", ir::Node::Type::kVariable); - auto* in_var_handle = new VarHandle(v.get(), 1, input_scope_idx, "input", - gpu_list_[input_scope_idx]); - vars_.emplace_back(in_var_handle); - op_handle_->AddInput(in_var_handle); - - // add dummy var - - std::unique_ptr v2 = - ir::CreateNodeForTest("node2", ir::Node::Type::kVariable); - vars_.emplace_back(new DummyVarHandle(v2.get())); - DummyVarHandle* dummy_var_handle = - static_cast(vars_.back().get()); - dummy_var_handle->ClearGeneratedOp(); - op_handle_->AddInput(dummy_var_handle); - - for (size_t j = 0; j < gpu_list_.size(); ++j) { - if (!use_gpu_) { - op_handle_->SetDeviceContext(gpu_list_[j], ctxs_[j].get()); - } - std::unique_ptr v3 = - ir::CreateNodeForTest("node3", ir::Node::Type::kVariable); - VarHandle* out_var_handle = - new VarHandle(v3.get(), 2, j, "out", gpu_list_[j]); - vars_.emplace_back(out_var_handle); - op_handle_->AddOutput(out_var_handle); - } - - // add dummy var - std::unique_ptr v4 = - ir::CreateNodeForTest("node4", ir::Node::Type::kVariable); - vars_.emplace_back(new DummyVarHandle(v4.get())); - DummyVarHandle* out_dummy_var_handle = - static_cast(vars_.back().get()); - out_dummy_var_handle->ClearGeneratedOp(); - op_handle_->AddOutput(out_dummy_var_handle); - } - - void TestBroadcastLodTensor(size_t input_scope_idx) { - auto in_var = param_scopes_[input_scope_idx]->FindVar("input"); - PADDLE_ENFORCE_NOT_NULL(in_var); - auto in_lod_tensor = in_var->GetMutable(); - in_lod_tensor->mutable_data(kDims, gpu_list_[input_scope_idx]); - - std::vector send_vector(static_cast(f::product(kDims))); - for (size_t k = 0; k < send_vector.size(); ++k) { - send_vector[k] = k; - } - f::LoD lod{{0, 10, 20}}; - paddle::framework::TensorFromVector( - send_vector, *(ctxs_[input_scope_idx]), in_lod_tensor); - in_lod_tensor->set_lod(lod); - in_lod_tensor->Resize(kDims); - - op_handle_->Run(false); - - WaitAll(); - - p::CPUPlace cpu_place; - for (size_t j = 0; j < gpu_list_.size(); ++j) { - auto out_var = param_scopes_[j]->FindVar("out"); - PADDLE_ENFORCE_NOT_NULL(out_var); - auto out_tensor = out_var->Get(); - PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal."); - - f::Tensor result_tensor; - f::TensorCopySync(out_tensor, cpu_place, &result_tensor); - float* ct = result_tensor.mutable_data(cpu_place); - - for (int64_t i = 0; i < f::product(kDims); ++i) { - ASSERT_NEAR(ct[i], send_vector[i], 1e-5); - } - } - } - - void TestBroadcastSelectedRows(size_t input_scope_idx) { - auto in_var = param_scopes_[input_scope_idx]->FindVar("input"); - PADDLE_ENFORCE_NOT_NULL(in_var); - auto in_selected_rows = in_var->GetMutable(); - auto value = in_selected_rows->mutable_value(); - value->mutable_data(kDims, gpu_list_[input_scope_idx]); - int height = static_cast(kDims[0]) * 2; - std::vector rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1, - 2, 4, 6, 3, 1, 1, 1, 1, 3, 7}; - in_selected_rows->set_height(height); - in_selected_rows->set_rows(rows); - - std::vector send_vector(static_cast(f::product(kDims))); - for (size_t k = 0; k < send_vector.size(); ++k) { - send_vector[k] = k; - } - paddle::framework::TensorFromVector( - send_vector, *(ctxs_[input_scope_idx]), value); - - op_handle_->Run(false); - - WaitAll(); - - p::CPUPlace cpu_place; - for (size_t j = 0; j < gpu_list_.size(); ++j) { - auto out_var = param_scopes_[j]->FindVar("out"); - PADDLE_ENFORCE_NOT_NULL(out_var); - auto& out_select_rows = out_var->Get(); - auto rt = out_select_rows.value(); - - PADDLE_ENFORCE_EQ(out_select_rows.height(), height, - "height is not equal."); - for (size_t k = 0; k < out_select_rows.rows().size(); ++k) { - PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k]); - } - - f::Tensor result_tensor; - f::TensorCopySync(rt, cpu_place, &result_tensor); - float* ct = result_tensor.data(); - - for (int64_t i = 0; i < f::product(kDims); ++i) { - ASSERT_NEAR(ct[i], send_vector[i], 1e-5); - } - } - } -}; - TEST(BroadcastTester, TestCPUBroadcastTestLodTensor) { TestBroadcastOpHandle test_op; size_t input_scope_idx = 0; diff --git a/paddle/fluid/framework/details/broadcast_op_handle_test.h b/paddle/fluid/framework/details/broadcast_op_handle_test.h new file mode 100644 index 0000000000000000000000000000000000000000..1a2a9ac328c4a9b89bfb89106af81b9fb3ed3028 --- /dev/null +++ b/paddle/fluid/framework/details/broadcast_op_handle_test.h @@ -0,0 +1,271 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include + +#include "gtest/gtest.h" +#include "paddle/fluid/framework/details/broadcast_op_handle.h" + +#include "paddle/fluid/platform/device_context.h" + +namespace paddle { +namespace framework { +namespace details { + +namespace f = paddle::framework; +namespace p = paddle::platform; + +// test data amount +const f::DDim kDims = {20, 20}; + +struct TestBroadcastOpHandle { + std::vector> ctxs_; + std::vector local_scopes_; + std::vector param_scopes_; + Scope g_scope_; + std::unique_ptr op_handle_; + std::vector> vars_; + std::vector place_list_; + bool use_gpu_; +#ifdef PADDLE_WITH_CUDA + std::unique_ptr nccl_ctxs_; +#endif + + void WaitAll() { + for (size_t j = 0; j < ctxs_.size(); ++j) { + ctxs_[j]->Wait(); + } +#ifdef PADDLE_WITH_CUDA + if (nccl_ctxs_) { + nccl_ctxs_->WaitAll(); + } +#endif + } + + void InitCtxOnGpu(bool use_gpu) { + use_gpu_ = use_gpu; + if (use_gpu_) { +#ifdef PADDLE_WITH_CUDA + int count = p::GetCUDADeviceCount(); + if (count <= 1) { + LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA " + "device count is " + << count; + exit(0); + } + for (int i = 0; i < count; ++i) { + auto p = p::CUDAPlace(i); + place_list_.push_back(p); + ctxs_.emplace_back(new p::CUDADeviceContext(p)); + } + nccl_ctxs_.reset(new platform::NCCLContextMap(place_list_)); +#else + PADDLE_THROW("CUDA is not support."); +#endif + } else { + int count = 8; + for (int i = 0; i < count; ++i) { + auto p = p::CPUPlace(); + place_list_.push_back(p); + ctxs_.emplace_back(new p::CPUDeviceContext(p)); + } +#ifdef PADDLE_WITH_CUDA + nccl_ctxs_.reset(nullptr); +#endif + } + } + + void InitBroadcastOp(size_t input_scope_idx) { + for (size_t j = 0; j < place_list_.size(); ++j) { + local_scopes_.push_back(&(g_scope_.NewScope())); + Scope& local_scope = local_scopes_.back()->NewScope(); + *local_scopes_.back() + ->Var(details::kLocalExecScopeName) + ->GetMutable() = &local_scope; + local_scope.Var("out"); + param_scopes_.emplace_back(&local_scope); + } + param_scopes_[input_scope_idx]->Var("input"); + + std::unique_ptr n = + ir::CreateNodeForTest("node0", ir::Node::Type::kOperation); + if (use_gpu_) { +#ifdef PADDLE_WITH_CUDA + op_handle_.reset(new BroadcastOpHandle(n.get(), local_scopes_, + place_list_, nccl_ctxs_.get())); +#else + PADDLE_THROW("CUDA is not support."); +#endif + } else { +#ifdef PADDLE_WITH_CUDA + op_handle_.reset(new BroadcastOpHandle(n.get(), local_scopes_, + place_list_, nccl_ctxs_.get())); +#else + op_handle_.reset( + new BroadcastOpHandle(n.get(), local_scopes_, place_list_)); +#endif + } + + std::unique_ptr v = + ir::CreateNodeForTest("node1", ir::Node::Type::kVariable); + auto* in_var_handle = new VarHandle(v.get(), 1, input_scope_idx, "input", + place_list_[input_scope_idx]); + vars_.emplace_back(in_var_handle); + op_handle_->AddInput(in_var_handle); + + // add dummy var + + std::unique_ptr v2 = + ir::CreateNodeForTest("node2", ir::Node::Type::kVariable); + vars_.emplace_back(new DummyVarHandle(v2.get())); + DummyVarHandle* dummy_var_handle = + static_cast(vars_.back().get()); + dummy_var_handle->ClearGeneratedOp(); + op_handle_->AddInput(dummy_var_handle); + + for (size_t j = 0; j < place_list_.size(); ++j) { + if (!use_gpu_) { + op_handle_->SetDeviceContext(place_list_[j], ctxs_[j].get()); + } + std::unique_ptr v3 = + ir::CreateNodeForTest("node3", ir::Node::Type::kVariable); + VarHandle* out_var_handle = + new VarHandle(v3.get(), 2, j, "out", place_list_[j]); + vars_.emplace_back(out_var_handle); + op_handle_->AddOutput(out_var_handle); + } + + // add dummy var + std::unique_ptr v4 = + ir::CreateNodeForTest("node4", ir::Node::Type::kVariable); + vars_.emplace_back(new DummyVarHandle(v4.get())); + DummyVarHandle* out_dummy_var_handle = + static_cast(vars_.back().get()); + out_dummy_var_handle->ClearGeneratedOp(); + op_handle_->AddOutput(out_dummy_var_handle); + } + + std::vector InitLoDTensor(const std::string& varname, + size_t input_scope_idx, const f::LoD& lod, + float val_scalar = 0.0) { + auto var = param_scopes_[input_scope_idx]->FindVar(varname); + + PADDLE_ENFORCE_NOT_NULL(var); + auto lod_tensor = var->GetMutable(); + std::vector send_vector(static_cast(f::product(kDims))); + for (size_t k = 0; k < send_vector.size(); ++k) { + send_vector[k] = k + val_scalar; + } + paddle::framework::TensorFromVector( + send_vector, *(ctxs_[input_scope_idx]), lod_tensor); + lod_tensor->set_lod(lod); + lod_tensor->Resize(kDims); + return send_vector; + } + + std::vector InitSelectedRows(const std::string& varname, + size_t input_scope_idx, + const std::vector& rows, + int height, float value_scalar = 0.0) { + std::vector send_vector(static_cast(f::product(kDims))); + for (size_t k = 0; k < send_vector.size(); ++k) { + send_vector[k] = k + value_scalar; + } + + auto var = param_scopes_[input_scope_idx]->FindVar(varname); + PADDLE_ENFORCE_NOT_NULL(var); + auto selected_rows = var->GetMutable(); + auto value = selected_rows->mutable_value(); + value->mutable_data(kDims, place_list_[input_scope_idx]); + selected_rows->set_height(height); + selected_rows->set_rows(rows); + + paddle::framework::TensorFromVector( + send_vector, *(ctxs_[input_scope_idx]), value); + + return send_vector; + } + + void SelectedRowsEqual(const std::string& varname, int input_scope_idx, + const std::vector& send_vector, + const std::vector& rows, int height) { + auto var = param_scopes_[input_scope_idx]->FindVar(varname); + PADDLE_ENFORCE_NOT_NULL(var); + auto& selected_rows = var->Get(); + auto rt = selected_rows.value(); + PADDLE_ENFORCE_EQ(selected_rows.height(), height, "height is not equal."); + + for (size_t k = 0; k < selected_rows.rows().size(); ++k) { + PADDLE_ENFORCE_EQ(selected_rows.rows()[k], rows[k]); + } + + p::CPUPlace cpu_place; + f::Tensor result_tensor; + f::TensorCopySync(rt, cpu_place, &result_tensor); + float* ct = result_tensor.data(); + + for (int64_t i = 0; i < f::product(kDims); ++i) { + ASSERT_NEAR(ct[i], send_vector[i], 1e-5); + } + } + + void LoDTensorEqual(const std::string& varname, + const std::vector& send_vec, const f::LoD& lod, + framework::Scope* scope) { + p::CPUPlace cpu_place; + auto var = scope->FindVar(varname); + PADDLE_ENFORCE_NOT_NULL(var); + auto tensor = var->Get(); + PADDLE_ENFORCE_EQ(tensor.lod(), lod, "lod is not equal."); + f::Tensor result_tensor; + f::TensorCopySync(tensor, cpu_place, &result_tensor); + float* ct = result_tensor.mutable_data(cpu_place); + for (int64_t k = 0; k < f::product(kDims); ++k) { + ASSERT_NEAR(ct[k], send_vec[k], 1e-5); + } + } + + void TestBroadcastLodTensor(size_t input_scope_idx) { + f::LoD lod{{0, 10, 20}}; + auto send_vector = InitLoDTensor("input", input_scope_idx, lod); + + op_handle_->Run(false); + + WaitAll(); + for (size_t j = 0; j < place_list_.size(); ++j) { + LoDTensorEqual("out", send_vector, lod, param_scopes_[j]); + } + } + + void TestBroadcastSelectedRows(size_t input_scope_idx) { + std::vector rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1, + 2, 4, 6, 3, 1, 1, 1, 1, 3, 7}; + int height = static_cast(kDims[0] * 2); + auto send_vector = InitSelectedRows("input", input_scope_idx, rows, height); + + op_handle_->Run(false); + + WaitAll(); + for (size_t j = 0; j < place_list_.size(); ++j) { + SelectedRowsEqual("out", input_scope_idx, send_vector, rows, height); + } + } +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/build_strategy.cc b/paddle/fluid/framework/details/build_strategy.cc index 6a6b497fa897e3882995688bf36704b1d77ea962..bc19bd36610bf144f163c8ebf582d4afbc6592e3 100644 --- a/paddle/fluid/framework/details/build_strategy.cc +++ b/paddle/fluid/framework/details/build_strategy.cc @@ -16,6 +16,7 @@ limitations under the License. */ #include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h" #include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h" +#include "paddle/fluid/framework/details/sequential_execution_pass.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph_viz_pass.h" @@ -27,6 +28,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { public: explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy) : ir::PassBuilder(), strategy_(strategy) { + if (strategy_.enable_sequential_execution_) { + AppendPass("sequential_execution_pass"); + } + // Add a graph viz pass to record a graph. if (!strategy_.debug_graphviz_path_.empty()) { auto viz_pass = AppendPass("graph_viz_pass"); @@ -110,6 +115,11 @@ std::unique_ptr BuildStrategy::Apply( pass->Erase("nccl_ctxs"); pass->SetNotOwned("nccl_ctxs", nctx); #endif + } else if (pass->Type() == "sequential_execution_pass") { + pass->Erase(kAllOpDescs); + pass->Set>( + kAllOpDescs, + new std::vector(main_program.Block(0).AllOps())); } graph = pass->Apply(std::move(graph)); } @@ -121,6 +131,8 @@ std::unique_ptr BuildStrategy::Apply( USE_PASS(fuse_elewise_add_act_pass); USE_PASS(graph_viz_pass); +USE_PASS(multi_batch_merge_pass); USE_PASS(multi_devices_pass); USE_PASS(multi_devices_check_pass); USE_PASS(multi_devices_print_pass); +USE_PASS(sequential_execution_pass); diff --git a/paddle/fluid/framework/details/build_strategy.h b/paddle/fluid/framework/details/build_strategy.h index 02c4bea16916d58a6d0fce8918f8fceb9ff9356e..88459320b0eb6d6c4405bff4c8b13c99aa7edb0d 100644 --- a/paddle/fluid/framework/details/build_strategy.h +++ b/paddle/fluid/framework/details/build_strategy.h @@ -69,6 +69,10 @@ struct BuildStrategy { bool enable_data_balance_{false}; + bool enable_sequential_execution_{false}; + + bool fuse_broadcast_op_{false}; + // User normally doesn't need to call this API. // The PassBuilder allows for more customized insert, remove of passes // from python side. diff --git a/paddle/fluid/framework/details/computation_op_handle.cc b/paddle/fluid/framework/details/computation_op_handle.cc index 690d37211ec0de56c5ffbdeec551ad3c3d0c91ec..7beb8c8de9fc49aebc66ca44de8736240aabbc30 100644 --- a/paddle/fluid/framework/details/computation_op_handle.cc +++ b/paddle/fluid/framework/details/computation_op_handle.cc @@ -45,7 +45,7 @@ void ComputationOpHandle::RunImpl() { bool ComputationOpHandle::NeedWait(VarHandleBase *in_var) { bool need_wait = in_var && in_var->GeneratedOp() && - in_var->GeneratedOp()->DeviceContext(place_) != dev_ctxes_[place_]; + in_var->GeneratedOp()->DeviceContext(place_) != dev_ctxes_.at(place_); return need_wait; } diff --git a/paddle/fluid/framework/details/data_balance_op_handle.cc b/paddle/fluid/framework/details/data_balance_op_handle.cc index 525d24322442ef4dd6e8c24212af61c908959b87..0b772f9b63e2cfb78175f5e0d7011db8e6a5ec20 100644 --- a/paddle/fluid/framework/details/data_balance_op_handle.cc +++ b/paddle/fluid/framework/details/data_balance_op_handle.cc @@ -28,7 +28,7 @@ DataBalanceOpHandle::DataBalanceOpHandle( : OpHandleBase(node), local_scopes_(local_scopes), places_(places) { if (ctxs) { for (auto &p : places_) { - this->dev_ctxes_[p] = ctxs->DevCtx(p); + this->SetDeviceContext(p, ctxs->DevCtx(p)); } } } @@ -89,8 +89,8 @@ void DataBalanceOpHandle::RunImpl() { PADDLE_ENFORCE_GT(places_.size(), 1, "Data balance can only be enabled when the number of " "places to run larger than 1."); - auto in_var_handles = DynamicCast(inputs_); - auto out_var_handles = DynamicCast(outputs_); + auto in_var_handles = DynamicCast(this->Inputs()); + auto out_var_handles = DynamicCast(this->Outputs()); PADDLE_ENFORCE(in_var_handles.size() % places_.size() == 0); PADDLE_ENFORCE_EQ( in_var_handles.size(), out_var_handles.size(), diff --git a/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc index 6e22fedf1c39428528c00cce4c9a4460dfb95cb3..98fc390e72fab3701538fd6f974460fa5114fdb0 100644 --- a/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc +++ b/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc @@ -92,13 +92,13 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run( size_t num_complete = 0; remaining_ = 0; - BlockingQueue complete_q; + auto complete_q = std::make_shared>(); for (auto op : bootstrap_ops_) { - RunOpAsync(op_deps.get(), op, &complete_q); + RunOpAsync(op_deps.get(), op, complete_q); } while (num_complete != op_deps->size()) { - size_t num_comp = complete_q.Pop(); + size_t num_comp = complete_q->Pop(); if (num_comp == -1UL) { int remaining = 0; while (true) { @@ -107,7 +107,7 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run( break; } for (int i = 0; i < remaining; ++i) { - complete_q.Pop(); + complete_q->Pop(); } } exception_.ReThrow(); @@ -120,7 +120,8 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run( } void FastThreadedSSAGraphExecutor::RunOpAsync( std::unordered_map> *op_deps, - OpHandleBase *op, BlockingQueue *complete_q) { + OpHandleBase *op, + const std::shared_ptr> &complete_q) { ++remaining_; this->pool_.enqueue([=] { OpHandleBase *op_to_run = op; @@ -144,7 +145,7 @@ void FastThreadedSSAGraphExecutor::RunOpAsync( if (op_to_run == nullptr) { op_to_run = pending_op; } else { - this->RunOpAsync(op_deps, pending_op, complete_q); + RunOpAsync(op_deps, pending_op, complete_q); } } } @@ -156,8 +157,7 @@ void FastThreadedSSAGraphExecutor::RunOpAsync( } void FastThreadedSSAGraphExecutor::PrepareAtomicOpDeps() { atomic_op_deps_ = pool_.enqueue([&] { - std::unordered_map> *op_deps = - new std::unordered_map>; + auto *op_deps = new std::unordered_map>; for (auto &pair : op_deps_) { (*op_deps)[pair.first] = pair.second; } diff --git a/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h b/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h index dad3a231cba6402f57ba654a9ac5fb520b9c8f04..8b8382447105c8caa36963214684d6ee9fa15200 100644 --- a/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h +++ b/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h @@ -50,7 +50,8 @@ class FastThreadedSSAGraphExecutor : public SSAGraphExecutor { std::atomic remaining_; void RunOpAsync(std::unordered_map> *op_deps, - OpHandleBase *op, BlockingQueue *complete_q); + OpHandleBase *op, + const std::shared_ptr> &complete_q); void PrepareAtomicOpDeps(); diff --git a/paddle/fluid/framework/details/fused_broadcast_op_handle.cc b/paddle/fluid/framework/details/fused_broadcast_op_handle.cc new file mode 100644 index 0000000000000000000000000000000000000000..51dfa2d0711f49aaefab0af3549283dbf77eee4a --- /dev/null +++ b/paddle/fluid/framework/details/fused_broadcast_op_handle.cc @@ -0,0 +1,55 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h" +#include "paddle/fluid/framework/details/container_cast.h" +#include "paddle/fluid/framework/details/variable_visitor.h" +#include "paddle/fluid/platform/profiler.h" + +namespace paddle { +namespace framework { +namespace details { + +void FusedBroadcastOpHandle::RunImpl() { + platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second); + + if (places_.size() == 1UL) return; + + auto in_var_handles = DynamicCast(inputs_); + auto out_var_handles = DynamicCast(outputs_); + + WaitInputVarGenerated(); + + std::vector var_scopes; + for (auto *s : local_scopes_) { + var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get()); + } + + size_t place_num = places_.size(); + PADDLE_ENFORCE_EQ(in_var_handles.size() * place_num, out_var_handles.size()); + + for (size_t i = 0; i < in_var_handles.size(); ++i) { + BroadcastOneVar( + *in_var_handles[i], + std::vector(out_var_handles.begin() + i * place_num, + out_var_handles.begin() + (i + 1) * place_num), + var_scopes); + } +} + +std::string FusedBroadcastOpHandle::Name() const { return "fused_broadcast"; } + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/fused_broadcast_op_handle.h b/paddle/fluid/framework/details/fused_broadcast_op_handle.h new file mode 100644 index 0000000000000000000000000000000000000000..e37259526a5f6f57d51a0ca8bca96a18211a4790 --- /dev/null +++ b/paddle/fluid/framework/details/fused_broadcast_op_handle.h @@ -0,0 +1,57 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include + +#include "paddle/fluid/framework/details/broadcast_op_handle.h" +#include "paddle/fluid/framework/details/multi_devices_helper.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/framework/selected_rows.h" +#include "paddle/fluid/platform/device_context.h" + +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/platform/nccl_helper.h" +#endif + +namespace paddle { +namespace framework { +namespace details { + +struct FusedBroadcastOpHandle : public BroadcastOpHandle { + public: +#ifdef PADDLE_WITH_CUDA + FusedBroadcastOpHandle(ir::Node *node, + const std::vector local_scopes, + const std::vector &places, + const platform::NCCLContextMap *nccl_ctx) + : BroadcastOpHandle(node, local_scopes, places, nccl_ctx) {} +#else + FusedBroadcastOpHandle(ir::Node* node, const std::vector local_scopes, + const std::vector& places) + : BroadcastOpHandle(node, local_scopes, places) {} +#endif + std::string Name() const override; + + protected: + void RunImpl() override; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/fused_broadcast_op_handle_test.cc b/paddle/fluid/framework/details/fused_broadcast_op_handle_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..0f12bd2b4e857648342aeb5ad33b6c0fe01c9c73 --- /dev/null +++ b/paddle/fluid/framework/details/fused_broadcast_op_handle_test.cc @@ -0,0 +1,165 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h" +#include "gtest/gtest.h" +#include "paddle/fluid/framework/details/broadcast_op_handle_test.h" + +namespace paddle { +namespace framework { +namespace details { + +struct TestFusedBroadcastOpHandle : TestBroadcastOpHandle { + std::vector out_varnames_; + + void InitFusedBroadcastOp(std::vector input_scope_idxes) { + // initialize scope and var + for (size_t i = 0; i < place_list_.size(); ++i) { + local_scopes_.push_back(&(g_scope_.NewScope())); + Scope& local_scope = local_scopes_.back()->NewScope(); + *local_scopes_.back() + ->Var(details::kLocalExecScopeName) + ->GetMutable() = &local_scope; + for (size_t j = 0; j < input_scope_idxes.size(); ++j) { + local_scope.Var("out_var" + j); + if (i == j) local_scope.Var("in_var" + j); + } + param_scopes_.emplace_back(&local_scope); + } + + // create op handle node + std::unique_ptr n = + ir::CreateNodeForTest("fused_broadcast", ir::Node::Type::kOperation); + if (use_gpu_) { +#ifdef PADDLE_WITH_CUDA + op_handle_.reset(new FusedBroadcastOpHandle( + n.get(), local_scopes_, place_list_, nccl_ctxs_.get())); +#else + PADDLE_THROW("CUDA is not supported."); +#endif + } else { +#ifdef PADDLE_WITH_CUDA + op_handle_.reset(new FusedBroadcastOpHandle( + n.get(), local_scopes_, place_list_, nccl_ctxs_.get())); +#else + op_handle_.reset( + new FusedBroadcastOpHandle(n.get(), local_scopes_, place_list_)); +#endif + } + + for (size_t i = 0; i < input_scope_idxes.size(); ++i) { + // add input var handle + std::unique_ptr in_node = + ir::CreateNodeForTest("in_node" + i, ir::Node::Type::kVariable); + VarHandle* in_var_handle = + new VarHandle(in_node.get(), 1, input_scope_idxes[i], "in_var" + i, + place_list_[input_scope_idxes[i]]); + vars_.emplace_back(in_var_handle); + op_handle_->AddInput(in_var_handle); + + // add output var handle + for (size_t j = 0; j < place_list_.size(); ++j) { + std::unique_ptr out_node = + ir::CreateNodeForTest("out_node" + i, ir::Node::Type::kVariable); + VarHandle* out_var_handle = + new VarHandle(out_node.get(), 2, j, "out_var" + i, place_list_[j]); + vars_.emplace_back(out_var_handle); + op_handle_->AddOutput(out_var_handle); + } + } + } + + void TestFusedBroadcastLoDTensor(std::vector input_scope_idxes) { + std::vector> send_vec; + f::LoD lod{{0, 10, 20}}; + for (size_t i = 0; i < input_scope_idxes.size(); ++i) { + const std::string varname("in_var" + i); + float val_scalar = static_cast(i); + send_vec.push_back( + InitLoDTensor(varname, input_scope_idxes[i], lod, val_scalar)); + } + + op_handle_->Run(false); + + WaitAll(); + for (size_t i = 0; i < input_scope_idxes.size(); ++i) { + const std::string& varname("out_var" + i); + for (size_t j = 0; j < place_list_.size(); ++j) { + LoDTensorEqual(varname, send_vec[i], lod, param_scopes_[j]); + } + } + } + + void TestFusedBroadcastSelectedRows(std::vector input_scope_idxes) { + std::vector> send_vector; + std::vector rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1, + 2, 4, 6, 3, 1, 1, 1, 1, 3, 7}; + int height = static_cast(kDims[0] * 2); + for (size_t i = 0; i < input_scope_idxes.size(); ++i) { + const std::string varname("in_var" + i); + float val_scalar = static_cast(i); + send_vector.push_back(InitSelectedRows(varname, input_scope_idxes[i], + rows, height, val_scalar)); + } + + op_handle_->Run(false); + + WaitAll(); + for (size_t i = 0; i < input_scope_idxes.size(); ++i) { + const std::string& varname("out_var" + i); + for (size_t j = 0; j < place_list_.size(); ++j) { + SelectedRowsEqual(varname, input_scope_idxes[i], send_vector[i], rows, + height); + } + } + } +}; + +TEST(FusedBroadcastTester, CPULodTensor) { + TestFusedBroadcastOpHandle test_op; + std::vector input_scope_idxes = {0, 1}; + test_op.InitCtxOnGpu(false); + test_op.InitFusedBroadcastOp(input_scope_idxes); + test_op.TestFusedBroadcastLoDTensor(input_scope_idxes); +} + +TEST(FusedBroadcastTester, CPUSelectedRows) { + TestFusedBroadcastOpHandle test_op; + std::vector input_scope_idxes = {0, 1}; + test_op.InitCtxOnGpu(false); + test_op.InitFusedBroadcastOp(input_scope_idxes); + test_op.TestFusedBroadcastSelectedRows(input_scope_idxes); +} + +#ifdef PADDLE_WITH_CUDA +TEST(FusedBroadcastTester, GPULodTensor) { + TestFusedBroadcastOpHandle test_op; + std::vector input_scope_idxes = {0, 1}; + test_op.InitCtxOnGpu(true); + test_op.InitFusedBroadcastOp(input_scope_idxes); + test_op.TestFusedBroadcastLoDTensor(input_scope_idxes); +} + +TEST(FusedBroadcastTester, GPUSelectedRows) { + TestFusedBroadcastOpHandle test_op; + std::vector input_scope_idxes = {0, 1}; + test_op.InitCtxOnGpu(true); + test_op.InitFusedBroadcastOp(input_scope_idxes); + test_op.TestFusedBroadcastSelectedRows(input_scope_idxes); +} +#endif + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/gather_op_handle.cc b/paddle/fluid/framework/details/gather_op_handle.cc index 9aae19fc73de4387186da47c55710c94d53f1b88..ca4633c5a8f22fc9f7319b06aa766f9fe37dc68c 100644 --- a/paddle/fluid/framework/details/gather_op_handle.cc +++ b/paddle/fluid/framework/details/gather_op_handle.cc @@ -36,7 +36,7 @@ void GatherOpHandle::RunImpl() { VarHandle *out_var_handle; { - auto out_var_handles = DynamicCast(outputs_); + auto out_var_handles = DynamicCast(this->Outputs()); PADDLE_ENFORCE_EQ(out_var_handles.size(), 1, "The number of output should be one."); out_var_handle = out_var_handles.front(); @@ -99,7 +99,7 @@ void GatherOpHandle::RunImpl() { Tensor *out_tensor = out_value->mutable_value(); // copy - auto dev_ctx = dev_ctxes_[out_var_handle->place_]; + auto dev_ctx = dev_ctxes_.at(out_var_handle->place_); RunAndRecordEvent(out_var_handle->place_, [in_tensors, out_tensor, &dev_ctx, t_out_p] { int s = 0, e = 0; diff --git a/paddle/fluid/framework/details/multi_devices_graph_pass.cc b/paddle/fluid/framework/details/multi_devices_graph_pass.cc index fb51cfdd19be6edcb6280045bd814f28f352897c..7154385a4122022ffde5f47623c1c2471be39dc1 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_pass.cc +++ b/paddle/fluid/framework/details/multi_devices_graph_pass.cc @@ -21,6 +21,7 @@ #include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/data_balance_op_handle.h" +#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h" #include "paddle/fluid/framework/details/multi_devices_graph_pass.h" #include "paddle/fluid/framework/details/reduce_op_handle.h" #include "paddle/fluid/framework/details/rpc_op_handle.h" @@ -252,9 +253,9 @@ std::vector SortOpsAndDelayOptimizeOp(const ir::Graph &graph) { std::vector sorted_ret; for (size_t i = 0; i < ret.size(); ++i) { if (i < last_backward) { - if (boost::get(ret[i]->Op()->GetAttr( - OpProtoAndCheckerMaker::OpRoleAttrName())) == - static_cast(OpRole::kOptimize)) { + if (static_cast(boost::get(ret[i]->Op()->GetAttr( + OpProtoAndCheckerMaker::OpRoleAttrName())) & + static_cast(OpRole::kOptimize))) { optimize_ops.push_back(ret[i]); } else { sorted_ret.push_back(ret[i]); @@ -347,7 +348,7 @@ std::unique_ptr MultiDevSSAGraphBuilder::ApplyImpl( BuildStrategy::GradientScaleStrategy::kCustomized) { // TODO(paddle-dev): Why is there no input for this op_handle? auto loss_grad_name = node->Op()->OutputArgumentNames()[0]; - CreateScaleLossGradOp(&result, loss_grad_name); + CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0]); } // This assumes the backward generating code will ensure IsScaleLossOp // is true only for the op that scale the final scalar loss. @@ -436,10 +437,14 @@ std::unique_ptr MultiDevSSAGraphBuilder::ApplyImpl( if ((use_gpu && strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) || is_dist_train) { - for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) { - auto &to_bcast_set = bcast_var_name_set[dev_id]; - for (auto &bcast_name : to_bcast_set) { - CreateBroadcastOp(&result, bcast_name, dev_id); + if (strategy_.fuse_broadcast_op_) { + CreateFusedBroadcastOp(&result, bcast_var_name_set); + } else { + for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) { + auto &to_bcast_set = bcast_var_name_set[dev_id]; + for (auto &bcast_name : to_bcast_set) { + CreateBroadcastOp(&result, bcast_name, dev_id); + } } } } @@ -508,6 +513,44 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result, } } +void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp( + ir::Graph *result, + const std::vector> &bcast_varnames) const { +#ifdef PADDLE_WITH_CUDA + auto *op_handle = new FusedBroadcastOpHandle( + result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation), + local_scopes_, places_, nccl_ctxs_); +#else + auto *op_handle = new FusedBroadcastOpHandle( + result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation), + local_scopes_, places_); +#endif + result->Get(kGraphOps).emplace_back(op_handle); + + for (size_t i = 0; i < places_.size(); ++i) { + auto &p = places_[i]; + SetCommunicationContext(op_handle, p); + } + + for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) { + for (auto &p_name : bcast_varnames[dev_id]) { + auto *in = + result->Get(kGraphVars).at(dev_id).at(p_name).back().get(); + op_handle->AddInput(in); + for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) { + auto &p = places_[out_dev_id]; + auto &vars = + result->Get(kGraphVars).at(out_dev_id).at(p_name); + auto *out_var = new VarHandle( + result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), + vars.size(), out_dev_id, p_name, p); + vars.emplace_back(out_var); + op_handle->AddOutput(out_var); + } + } + } +} + void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result, ir::Node *node, int dev_id) const { @@ -602,7 +645,8 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(const ir::Graph &graph, } void MultiDevSSAGraphBuilder::CreateScaleLossGradOp( - ir::Graph *result, const std::string &loss_grad_name) const { + ir::Graph *result, const std::string &loss_grad_name, + ir::Node *out_var_node) const { for (size_t i = 0; i < places_.size(); ++i) { // Insert ScaleCost OpHandle auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]); @@ -617,10 +661,8 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp( // loss->pending_ops_.emplace_back(op_handle); // op_handle->inputs_.emplace_back(loss); - CreateOpOutput( - result, op_handle, - result->CreateEmptyNode(loss_grad_name, ir::Node::Type::kVariable), - places_[i], i); + CreateOpOutput(result, op_handle, + result->CreateVarNode(out_var_node->Var()), places_[i], i); } } @@ -680,7 +722,8 @@ int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result, } if (node->Op()->Type() == "split_byref" || - node->Op()->Type() == "split_selected_rows") { + node->Op()->Type() == "split_selected_rows" || + node->Op()->Type() == "split_ids") { // TODO(paddle-dev): getting the first var is not safe. op_dev_id = GetVarDeviceID(*result, input_var_names[0]); if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) { diff --git a/paddle/fluid/framework/details/multi_devices_graph_pass.h b/paddle/fluid/framework/details/multi_devices_graph_pass.h index cdf9f13cde608b546d17a1e53e0f6acea9e12566..03b2de2f04da4bac8d342a76c80fd12beaeba4b7 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_pass.h +++ b/paddle/fluid/framework/details/multi_devices_graph_pass.h @@ -61,7 +61,8 @@ class MultiDevSSAGraphBuilder : public ir::Pass { size_t num_places) const; void CreateScaleLossGradOp(ir::Graph *result, - const std::string &loss_grad_name) const; + const std::string &loss_grad_name, + ir::Node *out_var_node) const; VarHandle *CreateReduceOp(ir::Graph *result, const std::string &og, int dst_dev_id) const; @@ -78,6 +79,10 @@ class MultiDevSSAGraphBuilder : public ir::Pass { void CreateBroadcastOp(ir::Graph *result, const std::string &p_name, size_t src_dev_id) const; + void CreateFusedBroadcastOp( + ir::Graph *result, + const std::vector> &bcast_varnames) const; + bool IsSparseGradient(const std::string &og) const; size_t GetAppropriateDeviceID( diff --git a/paddle/fluid/framework/details/op_handle_base.cc b/paddle/fluid/framework/details/op_handle_base.cc index 3812f0abf1b7069525c4420054c61c01c908acfe..4822627ac3b65972f41d9a23d9fe3dba3de3f97d 100644 --- a/paddle/fluid/framework/details/op_handle_base.cc +++ b/paddle/fluid/framework/details/op_handle_base.cc @@ -103,7 +103,7 @@ void OpHandleBase::WaitInputVarGenerated() { void OpHandleBase::WaitInputVarGenerated(const platform::Place &place) { for (auto *in : inputs_) { if (NeedWait(in)) { - in->GeneratedOp()->RecordWaitEventOnCtx(dev_ctxes_[place]); + in->GeneratedOp()->RecordWaitEventOnCtx(dev_ctxes_.at(place)); } } } diff --git a/paddle/fluid/framework/details/reduce_op_handle.cc b/paddle/fluid/framework/details/reduce_op_handle.cc index 7fc06f234d42a992328c0b6164f17945d8075c28..4503123eac810917cabcf1e62cff98552ed2f742 100644 --- a/paddle/fluid/framework/details/reduce_op_handle.cc +++ b/paddle/fluid/framework/details/reduce_op_handle.cc @@ -27,7 +27,7 @@ namespace framework { namespace details { void ReduceOpHandle::RunImpl() { - platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second); + platform::RecordEvent record_event(Name(), dev_ctxes_.cbegin()->second); if (places_.size() == 1) return; // the input and output may have dummy var. diff --git a/paddle/fluid/framework/details/reduce_op_handle.h b/paddle/fluid/framework/details/reduce_op_handle.h index a6289b055f97b7b0e57928358d84117b33cf2df8..999828ae457ba43541da06088ce7c25331fd05ec 100644 --- a/paddle/fluid/framework/details/reduce_op_handle.h +++ b/paddle/fluid/framework/details/reduce_op_handle.h @@ -46,7 +46,8 @@ struct ReduceOpHandle : public OpHandleBase { nccl_ctxs_(nccl_ctxs) { if (nccl_ctxs_) { for (auto &p_ctx : nccl_ctxs_->contexts_) { - dev_ctxes_[platform::CUDAPlace(p_ctx.first)] = p_ctx.second.ctx_.get(); + this->SetDeviceContext(platform::CUDAPlace(p_ctx.first), + p_ctx.second.ctx_.get()); } } } diff --git a/paddle/fluid/framework/details/rpc_op_handle.cc b/paddle/fluid/framework/details/rpc_op_handle.cc index f44b374edb29228dff5a8bf003d945291f166d49..65df7f2d510bf4e3e930398182c6dd1eae89241f 100644 --- a/paddle/fluid/framework/details/rpc_op_handle.cc +++ b/paddle/fluid/framework/details/rpc_op_handle.cc @@ -38,7 +38,7 @@ void RPCOpHandle::RunImpl() { continue; } if (in->GeneratedOp()) { - in->GeneratedOp()->RecordWaitEventOnCtx(dev_ctxes_[p]); + in->GeneratedOp()->RecordWaitEventOnCtx(dev_ctxes_.at(p)); } } auto &tmp_scope = local_scope_->FindVar(kLocalExecScopeName)->Get(); diff --git a/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc b/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc index ba243979b34aa1f683de707525403becaf0a1c00..ef1626599795a553e654fe5d3ed74ef3a3a67d78 100644 --- a/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc +++ b/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc @@ -27,7 +27,7 @@ ScaleLossGradOpHandle::ScaleLossGradOpHandle(ir::Node *node, size_t num_dev, coeff_(static_cast(1.0 / num_dev)), scope_(scope), place_(place) { - dev_ctxes_[place_] = dev_ctx; + this->SetDeviceContext(place_, dev_ctx); } ScaleLossGradOpHandle::~ScaleLossGradOpHandle() {} @@ -46,9 +46,9 @@ void ScaleLossGradOpHandle::RunImpl() { } else { #ifdef PADDLE_WITH_CUDA this->RunAndRecordEvent([&] { - auto stream = - static_cast(this->dev_ctxes_[place_]) - ->stream(); + auto stream = static_cast( + this->dev_ctxes_.at(place_)) + ->stream(); memory::Copy(boost::get(place_), tmp, platform::CPUPlace(), &coeff_, sizeof(float), stream); VLOG(10) << place_ << "RUN Scale loss grad op"; diff --git a/paddle/fluid/framework/details/sequential_execution_pass.cc b/paddle/fluid/framework/details/sequential_execution_pass.cc new file mode 100644 index 0000000000000000000000000000000000000000..cc2c8bfef9f9f54c2e499467df0d22ce3f69d6b8 --- /dev/null +++ b/paddle/fluid/framework/details/sequential_execution_pass.cc @@ -0,0 +1,109 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/sequential_execution_pass.h" +#include +#include +#include +#include +#include "paddle/fluid/framework/op_proto_maker.h" + +namespace paddle { +namespace framework { +namespace details { + +static bool IsSameOpDesc(OpDesc *op1, OpDesc *op2) { + return op1->Type() == op2->Type() && op1->Inputs() == op2->Inputs() && + op1->Outputs() == op2->Outputs(); +} + +std::unique_ptr SequentialExecutionPass::ApplyImpl( + std::unique_ptr graph) const { + // FIXME(zjl): Insert dependencies between some distributed ops may cause + // the multi_devices_graph_pass fails. So we skip these ops here. + // Indeed, maybe we should not insert dependencies between these ops + // casually, which may cause deadlock easily. + // We should add more skipped distributed ops when found errors in + // multi_devices_graph_pass + static std::unordered_set skip_dist_ops{ + "send", "recv", "send_barrier", "fetch_barrier"}; + + auto &ops = Get>(kAllOpDescs); + std::vector op_node_list; + op_node_list.reserve(ops.size()); + + std::unordered_map op_deps; + std::unordered_map> pending_ops; + std::unordered_set ready_ops; + + for (ir::Node *node : graph->Nodes()) { + if (!node->IsOp()) continue; + std::unordered_set preceding_ops; + for (auto *in : node->inputs) { + PADDLE_ENFORCE(in->IsVar(), + "Preceding Node of Op Nodes must be Var Node"); + if (in->inputs.empty()) continue; + PADDLE_ENFORCE(in->inputs.size() == 1 && in->inputs[0]->IsOp(), + "Preceding Op Node of Var Node must be unique"); + preceding_ops.insert(in->inputs[0]); + pending_ops[in->inputs[0]].insert(node); + } + op_deps[node] = preceding_ops.size(); + if (preceding_ops.empty()) { + ready_ops.insert(node); + } + } + + for (auto *op_desc : ops) { + ir::Node *found_node = nullptr; + for (auto *node : ready_ops) { + if (IsSameOpDesc(op_desc, node->Op())) { + PADDLE_ENFORCE(found_node == nullptr, + "Found multiple op_desc in graph: %s", op_desc->Type()); + found_node = node; + } + } + + PADDLE_ENFORCE_NOT_NULL(found_node, "Cannot find op_desc in graph: %s", + op_desc->Type()); + for (auto *pending_op : pending_ops[found_node]) { + if (--op_deps.at(pending_op) == 0) { + ready_ops.insert(pending_op); + } + } + ready_ops.erase(found_node); + if (skip_dist_ops.count(op_desc->Type()) == 0) { + op_node_list.push_back(found_node); + } + } + + for (size_t i = 1; i < op_node_list.size(); ++i) { + auto *dep_var = graph->CreateControlDepVar(); + op_node_list[i]->inputs.push_back(dep_var); + op_node_list[i - 1]->outputs.push_back(dep_var); + dep_var->outputs.push_back(op_node_list[i]); + dep_var->inputs.push_back(op_node_list[i - 1]); + VLOG(10) << "Add dependencies between " << op_node_list[i - 1]->Name() + << " and " << op_node_list[i]->Name(); + } + return graph; +} + +} // namespace details +} // namespace framework +} // namespace paddle + +REGISTER_PASS(sequential_execution_pass, + paddle::framework::details::SequentialExecutionPass) + .RequirePassAttr(paddle::framework::details::kAllOpDescs); diff --git a/paddle/fluid/framework/details/sequential_execution_pass.h b/paddle/fluid/framework/details/sequential_execution_pass.h new file mode 100644 index 0000000000000000000000000000000000000000..a04c08bc2eb3bae797d648b30a22a5fee7ba0eaa --- /dev/null +++ b/paddle/fluid/framework/details/sequential_execution_pass.h @@ -0,0 +1,34 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/ir/graph.h" +#include "paddle/fluid/framework/ir/pass.h" + +namespace paddle { +namespace framework { +namespace details { + +constexpr char kAllOpDescs[] = "all_op_descs"; + +class SequentialExecutionPass : public ir::Pass { + protected: + std::unique_ptr ApplyImpl( + std::unique_ptr graph) const override; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc index 31beef3ae829d72570ee7c879dac71ed600cd216..dc63effd1b7c8fe5bb3fc91058eb855e552d3926 100644 --- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc @@ -39,7 +39,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( new platform::RecordEvent("ThreadedSSAGraphExecutorPrepare", nullptr)); std::unordered_map pending_ops; std::unordered_set pending_vars; - BlockingQueue ready_vars; + auto ready_vars = std::make_shared>(); std::unordered_set ready_ops; // For ops (e.g. nccl_all_reduce) that need to coordinate multiple // streams from multiple GPUs, it's faster to buffer them and schedule @@ -51,12 +51,12 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( for (auto &var_map : graph_->Get(details::kGraphVars)) { for (auto &name_pair : var_map) { for (auto &version_pair : name_pair.second) { - InsertPendingVar(&pending_vars, &ready_vars, version_pair.get()); + InsertPendingVar(&pending_vars, ready_vars.get(), version_pair.get()); } } } for (auto &var : graph_->Get(details::kGraphDepVars)) { - InsertPendingVar(&pending_vars, &ready_vars, var.get()); + InsertPendingVar(&pending_vars, ready_vars.get(), var.get()); } for (auto &op : graph_->Get(details::kGraphOps)) { @@ -73,12 +73,12 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( FeedFetchList fetch_data(fetch_tensors.size()); InsertFetchOps(fetch_tensors, &fetch_ops, &fetch_dependencies, &pending_ops, - &pending_vars, &ready_vars, &fetch_data); + &pending_vars, ready_vars.get(), &fetch_data); auto run_all_ops = [&](std::unordered_set &set) { for (auto *op : set) { running_ops_++; - RunOp(&ready_vars, op); + RunOp(ready_vars, op); } set.clear(); }; @@ -87,7 +87,6 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( run_op_futures_.clear(); exception_holder_.Clear(); event.reset(nullptr); - // Step 3. Execution while (!pending_vars.empty()) { // 1. Run All Ready ops @@ -103,7 +102,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( // 2. Find ready variable bool timeout; - auto cur_ready_vars = ready_vars.PopAll(1, &timeout); + auto cur_ready_vars = ready_vars->PopAll(1, &timeout); if (timeout) { if (exception_holder_.IsCaught()) { @@ -133,7 +132,6 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( } } PADDLE_ENFORCE(ready_ops.empty()); - // Wait FetchOps. ClearFetchOp(graph_.get(), &fetch_ops); @@ -206,7 +204,8 @@ void ThreadedSSAGraphExecutor::InsertPendingVar( } void ThreadedSSAGraphExecutor::RunOp( - BlockingQueue *ready_var_q, details::OpHandleBase *op) { + const std::shared_ptr> &ready_var_q, + details::OpHandleBase *op) { auto op_run = [ready_var_q, op, this] { try { if (VLOG_IS_ON(10)) { diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h index 512f8a4ca5a9b82a395dde11722b8db44ea5ec27..dbb0b498d995a897b109bd4ef98521b2193276ed 100644 --- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h @@ -51,7 +51,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ~ThreadedSSAGraphExecutor() {} private: - void RunOp(BlockingQueue *ready_var_q, + void RunOp(const std::shared_ptr> &ready_var_q, details::OpHandleBase *op); private: diff --git a/paddle/fluid/framework/framework.proto b/paddle/fluid/framework/framework.proto index c99406799ba5f664c4b9f80e0567b293e4ffea51..efdabffb9b33ddf007c13008d0f3afb7a3961eda 100644 --- a/paddle/fluid/framework/framework.proto +++ b/paddle/fluid/framework/framework.proto @@ -35,6 +35,7 @@ enum AttrType { BLOCK = 8; LONG = 9; BLOCKS = 10; + LONGS = 11; } // OpDesc describes an instance of a C++ framework::OperatorBase @@ -55,6 +56,7 @@ message OpDesc { optional int32 block_idx = 12; optional int64 l = 13; repeated int32 blocks_idx = 14; + repeated int64 longs = 15; }; message Var { diff --git a/paddle/fluid/framework/ir/CMakeLists.txt b/paddle/fluid/framework/ir/CMakeLists.txt index a145b2fafe64f8c80ac7808583d6670ca0218c06..28231a53bad50fe9f19cfe3e73c3dc09aa3762cf 100644 --- a/paddle/fluid/framework/ir/CMakeLists.txt +++ b/paddle/fluid/framework/ir/CMakeLists.txt @@ -36,10 +36,12 @@ pass_library(fc_lstm_fuse_pass inference) pass_library(embedding_fc_lstm_fuse_pass inference) pass_library(fc_gru_fuse_pass inference) pass_library(seq_concat_fc_fuse_pass inference) +pass_library(multi_batch_merge_pass base) pass_library(conv_bn_fuse_pass inference) pass_library(seqconv_eltadd_relu_fuse_pass inference) if(WITH_MKLDNN) pass_library(mkldnn_placement_pass base) + pass_library(depthwise_conv_mkldnn_pass base) pass_library(conv_bias_mkldnn_fuse_pass inference) pass_library(conv_relu_mkldnn_fuse_pass inference) pass_library(conv_elementwise_add_mkldnn_fuse_pass inference) @@ -58,6 +60,7 @@ cc_test(graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector) cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto) if (WITH_MKLDNN) + cc_test(test_depthwise_conv_mkldnn_pass SRCS depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass) cc_test(test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass) cc_test(test_conv_elementwise_add_mkldnn_fuse_pass SRCS conv_elementwise_add_mkldnn_fuse_pass_tester.cc DEPS conv_elementwise_add_mkldnn_fuse_pass) endif () diff --git a/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h index b5de0d548713772e7ad41cfb6d8b3e9460683efb..fe585bd7c41bb32ae00462e989ab4c0051fc89a8 100644 --- a/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h +++ b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h @@ -31,7 +31,8 @@ class ConvReLUFusePass : public FusePassBase { virtual ~ConvReLUFusePass() {} protected: - std::unique_ptr ApplyImpl(std::unique_ptr graph) const; + std::unique_ptr ApplyImpl( + std::unique_ptr graph) const override; }; } // namespace ir diff --git a/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc index 8f4bab25ed4919881baf19a961a52aa229e06a8f..19248b4dfee1da81d18cd2effac08ba68dde80fb 100644 --- a/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc +++ b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc @@ -15,6 +15,7 @@ #include "paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h" #include +#include "paddle/fluid/framework/op_proto_maker.h" namespace paddle { namespace framework { @@ -36,6 +37,8 @@ void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name, op->SetInput("X", inputs); } op->SetOutput("Out", outputs); + op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), + static_cast(OpRole::kForward)); } // a->OP0->b diff --git a/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.cc b/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.cc new file mode 100644 index 0000000000000000000000000000000000000000..19056e18aa892dbc83dfbf7305b6ad8b6b6bc51c --- /dev/null +++ b/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.cc @@ -0,0 +1,58 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h" +#include "paddle/fluid/framework/ir/graph_pattern_detector.h" + +namespace paddle { +namespace framework { +namespace ir { + +#define GET_NODE(id, pattern) \ + PADDLE_ENFORCE(subgraph.count(pattern.RetrieveNode(#id)), \ + "pattern has no Node called %s", #id); \ + auto* id = subgraph.at(pattern.RetrieveNode(#id)); \ + PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", #id); + +std::unique_ptr DepthwiseConvMKLDNNPass::ApplyImpl( + std::unique_ptr graph) const { + PADDLE_ENFORCE(graph.get()); + FusePassBase::Init("depthwise_conv_mkldnn_pass", graph.get()); + GraphPatternDetector gpd; + + auto* pattern = gpd.mutable_pattern(); + pattern->NewNode("depthwise_conv") + ->assert_is_op("depthwise_conv2d") + ->assert_op_attr("use_mkldnn", true); + + int found_depthwise_conv_mkldnn_count = 0; + auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, + Graph* g) { + VLOG(3) << "handle DepthwiseConvMKLDNN fuse"; + GET_NODE(depthwise_conv, (*pattern)); + depthwise_conv->Op()->SetType("conv2d"); + found_depthwise_conv_mkldnn_count++; + }; + + gpd(graph.get(), handler); + AddStatis(found_depthwise_conv_mkldnn_count); + return graph; +} + +} // namespace ir +} // namespace framework +} // namespace paddle + +REGISTER_PASS(depthwise_conv_mkldnn_pass, + paddle::framework::ir::DepthwiseConvMKLDNNPass); diff --git a/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h b/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h new file mode 100644 index 0000000000000000000000000000000000000000..8ca6a7325186401c26eb7f9375cf83b7b97cc1c9 --- /dev/null +++ b/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h @@ -0,0 +1,34 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/fluid/framework/ir/fuse_pass_base.h" + +namespace paddle { +namespace framework { +namespace ir { + +class DepthwiseConvMKLDNNPass : public FusePassBase { + public: + virtual ~DepthwiseConvMKLDNNPass() {} + + protected: + std::unique_ptr ApplyImpl( + std::unique_ptr graph) const override; +}; + +} // namespace ir +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass_tester.cc b/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..09d0b15f46a7e50afb6aea46383013ce6a6c6118 --- /dev/null +++ b/paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass_tester.cc @@ -0,0 +1,123 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h" + +#include + +namespace paddle { +namespace framework { +namespace ir { + +void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name, + const std::vector& inputs, + const std::vector& outputs, bool use_mkldnn = false) { + auto* op = prog->MutableBlock(0)->AppendOp(); + op->SetType(type); + op->SetAttr("use_mkldnn", use_mkldnn); + op->SetAttr("name", name); + op->SetInput("Input", {inputs[0]}); + op->SetInput("Filter", {inputs[1]}); + op->SetInput("Bias", {inputs[2]}); + op->SetOutput("Out", outputs); +} + +// (a, weights, bias)->depthwise conv mkldnn->b +// (b, weights2, bias2)->depthwise conv no mkldnn->c +// (c, weights3, bias3)->conv mkldnn->d +// (d, weights3, bias3)->conv no mkldnn->e +ProgramDesc BuildProgramDesc() { + ProgramDesc prog; + for (auto& v : std::vector( + {"a", "b", "c", "d", "e", "weights", "bias", "weights2", "bias2", + "weights3", "bias3", "weights4", "bias4"})) { + auto* var = prog.MutableBlock(0)->Var(v); + var->SetType(proto::VarType::SELECTED_ROWS); + if (v == "weights" || v == "bias" || v == "weights2" || v == "bias2" || + v == "weights3" || v == "bias3" || v == "weights4" || v == "bias4") { + var->SetPersistable(true); + } + } + + // depthwise conv with MKL-DNN + SetOp(&prog, "depthwise_conv2d", "conv1", + std::vector({"a", "weights", "bias"}), + std::vector({"b"}), true); + // depthwise conv without MKL-DNN + SetOp(&prog, "depthwise_conv2d", "conv2", + std::vector({"b", "weights2", "bias2"}), + std::vector({"c"}), false); + // conv with MKL-DNN + SetOp(&prog, "conv2d", "conv3", + std::vector({"c", "weights3", "bias3"}), + std::vector({"d"}), true); + // conv without MKL-dNN + SetOp(&prog, "conv2d", "conv4", + std::vector({"d", "weights4", "bias4"}), + std::vector({"e"}), false); + + return prog; +} + +TEST(DepthwiseConvMKLDNNPass, basic) { + auto prog = BuildProgramDesc(); + + std::unique_ptr graph(new ir::Graph(prog)); + + auto pass = PassRegistry::Instance().Get("depthwise_conv_mkldnn_pass"); + + struct counters { + int mkldnn_depthwise_conv_nodes; + int other_depthwise_conv_nodes; + int mkldnn_conv_nodes; + int other_conv_nodes; + }; + + counters before{1, 1, 1, 1}; + + graph = pass->Apply(std::move(graph)); + + // initialize counters before loop + counters after{0, 0, 0, 0}; + + for (auto* node : graph->Nodes()) { + if (node->IsOp()) { + auto* op = node->Op(); + if (op->Type() == "conv2d") { + if (boost::get(op->GetAttr("use_mkldnn"))) + after.mkldnn_conv_nodes++; + else + after.other_conv_nodes++; + } else if (op->Type() == "depthwise_conv2d") { + if (boost::get(op->GetAttr("use_mkldnn"))) + after.mkldnn_depthwise_conv_nodes++; + else + after.other_depthwise_conv_nodes++; + } + } + } + + EXPECT_EQ(after.other_depthwise_conv_nodes, + before.other_depthwise_conv_nodes); + EXPECT_EQ(after.other_conv_nodes, before.other_conv_nodes); + EXPECT_EQ(after.mkldnn_depthwise_conv_nodes, + before.mkldnn_depthwise_conv_nodes - 1); + EXPECT_EQ(after.mkldnn_conv_nodes, before.mkldnn_conv_nodes + 1); +} + +} // namespace ir +} // namespace framework +} // namespace paddle + +USE_PASS(depthwise_conv_mkldnn_pass); diff --git a/paddle/fluid/framework/ir/fc_fuse_pass_tester.cc b/paddle/fluid/framework/ir/fc_fuse_pass_tester.cc index 06286a109d01af638e74e06ccc83e2a5500663ea..2db7d95cae1c8c59691fd642e2462e92ed58814f 100644 --- a/paddle/fluid/framework/ir/fc_fuse_pass_tester.cc +++ b/paddle/fluid/framework/ir/fc_fuse_pass_tester.cc @@ -15,6 +15,7 @@ #include "paddle/fluid/framework/ir/fc_fuse_pass.h" #include +#include "paddle/fluid/framework/op_proto_maker.h" namespace paddle { namespace framework { @@ -32,6 +33,8 @@ void SetOp(ProgramDesc* prog, const std::string& type, op->SetInput("X", inputs); } op->SetOutput("Out", outputs); + op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), + static_cast(OpRole::kForward)); } // a->OP0->b diff --git a/paddle/fluid/framework/ir/graph.cc b/paddle/fluid/framework/ir/graph.cc index 398f7095968e62f92d610f560d7574b27706d13e..4be165e7a10dae00f54b5976e375021f03bad4f8 100644 --- a/paddle/fluid/framework/ir/graph.cc +++ b/paddle/fluid/framework/ir/graph.cc @@ -23,80 +23,84 @@ limitations under the License. */ namespace paddle { namespace framework { namespace ir { - -std::vector FindDistTrainSendVars( - const std::vector &nodes) { - std::vector send_vars; - // since parameters are all in block 0, - // it's enough to only scan send ops in block 0 - for (auto &node : nodes) { - auto op_vars = node->Op()->InputArgumentNames(); - send_vars.reserve(send_vars.size() + - std::distance(op_vars.begin(), op_vars.end())); - send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end()); - } - return send_vars; -} - -std::vector FindDistTrainRecvVars( - const std::vector &nodes) { - std::vector recv_vars; - for (auto &node : nodes) { - auto op_vars = node->Op()->OutputArgumentNames(); - recv_vars.reserve(recv_vars.size() + - std::distance(op_vars.begin(), op_vars.end())); - recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end()); - } - return recv_vars; -} - -bool IsDistTrainOp(ir::Node *node, const std::vector &send_vars, - const std::vector &recv_vars) { - if (send_vars.size() == 0 || recv_vars.size() == 0) { - return false; - } - - /** - * Check any of opvars contains `.block` and in sendvars - */ - auto checker = [](const std::vector &opvars, - const std::vector &rpc_vars) -> bool { - for (auto &var : opvars) { - // a variable name with the suffix `.block` means it's a splited - // variable by (DistributeTranspiler) - // [python/paddle/fluid/transpiler/distribute_transpiler.py] - if (var.find(".block") != std::string::npos && - std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) { - return true; +namespace { + +void CheckProgram(const ProgramDesc &program) { + std::map visit; +#define _INT(role) static_cast(role) + + for (size_t i = 0; i < program.Size(); ++i) { + for (OpDesc *op : program.Block(i).AllOps()) { + // For backward compatibility, some program doesn't have role added. + if (!op->HasAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) continue; + int role_id = boost::get( + op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())); + visit[role_id] = true; + switch (role_id) { + case _INT(OpRole::kForward): + if (visit.find(_INT(OpRole::kBackward)) != visit.end()) { + LOG(ERROR) + << "Cannot add backward operator before forward operator %s." + << op->Type(); + } + break; + case _INT(OpRole::kBackward): + case _INT(OpRole::kBackward) | _INT(OpRole::kLoss): + PADDLE_ENFORCE( + visit.find(_INT(OpRole::kOptimize)) == visit.end(), + "Cannot add backward operator %s before optimize operator.", + op->Type()); + break; + case _INT(OpRole::kForward) | _INT(OpRole::kLoss): + PADDLE_ENFORCE(visit.find(_INT(OpRole::kBackward) | + _INT(OpRole::kLoss)) == visit.end(), + "Cannot add backward|loss operator before " + "forward|loss operator %s.", + op->Type()); + PADDLE_ENFORCE( + visit.find(_INT(OpRole::kOptimize)) == visit.end(), + "Cannot add forward|loss operator %s after optimize operator.", + op->Type()); + break; + case _INT(OpRole::kOptimize): + case _INT(OpRole::kOptimize) | _INT(OpRole::kLRSched): + PADDLE_ENFORCE(visit.find(_INT(OpRole::kBackward)) != visit.end(), + "Optimize operators %s must follow backward operator.", + op->Type()); + break; + case _INT(OpRole::kLRSched): + case _INT(OpRole::kDist): + case _INT(OpRole::kRPC): + case _INT(OpRole::kNotSpecified): + break; + default: + LOG(FATAL) << "Unknown operator role. Don't add new role because " + "you don't know what you are doing."; } } - return false; - }; - - std::vector input_var_names; - std::vector output_var_names; - for (ir::Node *input : node->inputs) { - input_var_names.push_back(input->Name()); } - for (ir::Node *output : node->outputs) { - output_var_names.push_back(output->Name()); - } - - return checker(output_var_names, send_vars) || - checker(input_var_names, recv_vars); +#undef _INT } +} // namespace Graph::Graph(const ProgramDesc &program) : program_(program) { + CheckProgram(program_); // Make the nodes id start from 0. Node::ResetId(); + auto var_nodes = InitFromProgram(program_); + ResolveHazard(var_nodes); +} +std::map> Graph::InitFromProgram( + const ProgramDesc &program) { VLOG(3) << "block in program:" << program_.Size(); std::unordered_map all_vars; + // var nodes for each var name, will have multiple versions in SSA + std::map> var_nodes; for (auto *var : program.Block(0).AllVars()) { all_vars.emplace(var->Name(), var); } - std::map> var_nodes; for (auto *op : program.Block(0).AllOps()) { ir::Node *node = CreateOpNode(op); // For input args, reuse the same var name if it was created before. @@ -134,7 +138,11 @@ Graph::Graph(const ProgramDesc &program) : program_(program) { var->inputs.push_back(node); } } + return std::move(var_nodes); +} +void Graph::ResolveHazard( + const std::map> &var_nodes) { /** * We should handle write after read(WAR) and write after write(WAW) here. * Because some of the operators of the program can be executed parallelly. @@ -153,6 +161,7 @@ Graph::Graph(const ProgramDesc &program) : program_(program) { auto it_old = versions.rbegin(); ++it_old; for (; it_old != versions.rend(); it_new = it_old, ++it_old) { + VLOG(3) << "deal with var: " << (*it_new)->Name(); ir::Node *write_op = (*it_new)->inputs.empty() ? nullptr : (*it_new)->inputs[0]; const auto &read_ops = (*it_old)->outputs; diff --git a/paddle/fluid/framework/ir/graph.h b/paddle/fluid/framework/ir/graph.h index ab687e760a761d4e445726bd5149966adc2403d0..9d7aa5d32deb274fbf29481b0d4754c05d1e21b5 100644 --- a/paddle/fluid/framework/ir/graph.h +++ b/paddle/fluid/framework/ir/graph.h @@ -160,6 +160,12 @@ class Graph { return nullptr; } + std::map> InitFromProgram( + const ProgramDesc &program); + + void ResolveHazard( + const std::map> &var_nodes); + private: // This method takes ownership of `node`. ir::Node *AddNode(ir::Node *node) { diff --git a/paddle/fluid/framework/ir/graph_helper.cc b/paddle/fluid/framework/ir/graph_helper.cc index c54766d95a61ac1a4b61566c6de62cbc86685a1d..01e878089171e4620f32b57a65d92d1c86d307db 100644 --- a/paddle/fluid/framework/ir/graph_helper.cc +++ b/paddle/fluid/framework/ir/graph_helper.cc @@ -120,19 +120,25 @@ size_t GraphNum(const Graph &graph) { std::deque q_nodes; std::vector> graph_nodes; std::unordered_set g_nodes; + // q_set used to record records in the queue. + std::unordered_set q_set; size_t graph_count = 0; - auto traverse_nodes = [&visited_nodes, - &q_nodes](const std::vector &nodes) { - std::copy_if( - nodes.begin(), nodes.end(), std::back_inserter(q_nodes), - [&visited_nodes](Node *node) { return !visited_nodes.count(node); }); + auto traverse_nodes = [&visited_nodes, &q_nodes, + &q_set](const std::vector &nodes) { + for (auto n : nodes) { + if (visited_nodes.count(n) == 0 && q_set.count(n) == 0) { + q_nodes.push_back(n); + q_set.insert(n); + } + } }; while (visited_nodes.size() != nodes.size()) { if (!q_nodes.empty()) { auto cur_node = q_nodes.front(); q_nodes.pop_front(); + q_set.erase(cur_node); visited_nodes.insert(cur_node); g_nodes.insert(cur_node); traverse_nodes(cur_node->inputs); @@ -146,6 +152,7 @@ size_t GraphNum(const Graph &graph) { for (auto &n : nodes) { if (visited_nodes.count(n) == 0) { q_nodes.push_back(n); + q_set.insert(n); break; } } diff --git a/paddle/fluid/framework/ir/graph_pattern_detector.cc b/paddle/fluid/framework/ir/graph_pattern_detector.cc index 29b604afbfcfc2bac67e447db8cd4c671c036dbe..b20d70132256bd5df7411c46ff4eb246b1f14ba8 100644 --- a/paddle/fluid/framework/ir/graph_pattern_detector.cc +++ b/paddle/fluid/framework/ir/graph_pattern_detector.cc @@ -259,6 +259,15 @@ GraphPatternDetector::DetectPatterns() { return result; } +bool GraphItemCMP(const std::pair &a, + const std::pair &b) { + if (a.first != b.first) { + return a.first < b.first; + } else { + return a.second < b.second; + } +} + // TODO(Superjomn) enhance the function as it marks unique unique as duplicates // see https://github.com/PaddlePaddle/Paddle/issues/13550 void GraphPatternDetector::UniquePatterns( @@ -267,12 +276,16 @@ void GraphPatternDetector::UniquePatterns( std::vector result; std::unordered_set set; + std::hash hasher; for (auto &g : *subgraphs) { - size_t key = 0; - for (auto &item : g) { - key ^= std::hash{}(item.first); - key ^= std::hash{}(item.second); + // Sort the items in the sub-graph, and transform to a string key. + std::vector> sorted_keys(g.begin(), g.end()); + std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemCMP); + std::stringstream ss; + for (auto &item : sorted_keys) { + ss << item.first << ":" << item.second; } + auto key = hasher(ss.str()); if (!set.count(key)) { result.emplace_back(g); set.insert(key); diff --git a/paddle/fluid/framework/ir/multi_batch_merge_pass.cc b/paddle/fluid/framework/ir/multi_batch_merge_pass.cc new file mode 100644 index 0000000000000000000000000000000000000000..bd5b76426eb55cebdabfccd700439a4c418a10f0 --- /dev/null +++ b/paddle/fluid/framework/ir/multi_batch_merge_pass.cc @@ -0,0 +1,315 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/ir/multi_batch_merge_pass.h" + +#include +#include +#include + +#include "paddle/fluid/framework/ir/graph_helper.h" +#include "paddle/fluid/framework/op_proto_maker.h" + +namespace paddle { +namespace framework { +namespace ir { + +static const char kNumRepeats[] = "num_repeats"; +typedef std::unordered_map> SSAVarList; + +ir::Node* SameNameVar(std::unordered_set all, ir::Node* target) { + for (auto n : all) { + if (target->IsVar() && target->Name() == n->Name()) { + return n; + } + } + return nullptr; +} + +VarDesc CopyVarDesc(VarDesc* var_desc) { + VarDesc repeated_var(var_desc->Name()); + // copy other variable attributes + if (var_desc->GetType() != proto::VarType::READER) { + repeated_var.SetType(var_desc->GetType()); + repeated_var.SetShape(var_desc->GetShape()); + repeated_var.SetDataType(var_desc->GetDataType()); + repeated_var.SetLoDLevel(var_desc->GetLoDLevel()); + repeated_var.SetPersistable(var_desc->Persistable()); + } else { + // TODO(typhoonzero): copy reader var + } + return repeated_var; +} + +VarDesc UpdateGradVarDesc( + VarDesc* var_desc, int repeat, + const std::unordered_set& grad_names, + const std::unordered_set& bn_vars_need_rename) { + if (grad_names.find(var_desc->Name()) != grad_names.end() || + bn_vars_need_rename.find(var_desc->Name()) != bn_vars_need_rename.end()) { + std::string new_gname = + string::Sprintf("%s.repeat.%d", var_desc->Name(), repeat); + VarDesc repeated_var = CopyVarDesc(var_desc); + repeated_var.SetName(new_gname); + VLOG(3) << "update " << var_desc->Name() << " to repeat " << repeat; + return repeated_var; + } + return *var_desc; +} + +std::unique_ptr BatchMergePass::ApplyImpl( + std::unique_ptr graph) const { + int num_repeats = Get(kNumRepeats); + std::vector forward_backward_ops; + std::vector optimize_ops; + std::vector lr_ops; // ops other than forward/backward/optimize + std::unordered_set grad_names; + + std::vector nodes = TopologySortOperations(*graph); + auto origin_nodes = graph->ReleaseNodes(); + VLOG(3) << "origin nodes count: " << origin_nodes.size(); + ir::Graph& result = *graph; + + // 1. record op nodes of different roles + for (auto node : nodes) { + if (node->IsVar()) continue; + int op_role = boost::get(node->Op()->GetAttr( + framework::OpProtoAndCheckerMaker::OpRoleAttrName())); + if ((op_role == static_cast(framework::OpRole::kForward)) || + (op_role & static_cast(framework::OpRole::kBackward)) || + (op_role & static_cast(framework::OpRole::kLoss))) { + forward_backward_ops.push_back(node); + } else if ((op_role & static_cast(framework::OpRole::kOptimize)) || + (op_role & static_cast(framework::OpRole::kDist)) || + (op_role & static_cast(framework::OpRole::kRPC))) { + optimize_ops.push_back(node); + auto op_role_var = node->Op()->GetNullableAttr( + OpProtoAndCheckerMaker::OpRoleVarAttrName()); + auto op_role_vars = boost::get>(op_role_var); + for (size_t i = 0; i < op_role_vars.size(); i += 2) { + grad_names.insert(op_role_vars[i + 1]); + } + } else if (op_role & static_cast(framework::OpRole::kLRSched)) { + lr_ops.push_back(node); + } else { // NOLINT + PADDLE_THROW("Invalid op_role: %d", static_cast(op_role)); + } + } + + // 2. copy forward backward + ir::Node* prev_repeat_last_op_node = nullptr; + // record origin_grad -> repeated grad list map. + std::map> grad_repeated_map; + std::map> created; + std::unordered_set bn_vars_need_rename; + for (int i = 0; i < num_repeats; ++i) { + std::unordered_set copied; + for (size_t node_idx = 0; node_idx < forward_backward_ops.size(); + ++node_idx) { + auto node = forward_backward_ops[node_idx]; + OpDesc repeated_op(*(node->Op()), node->Op()->Block()); + // 3. rename grad outputs to current repeat. + for (auto outname : repeated_op.OutputArgumentNames()) { + if (grad_names.find(outname) != grad_names.end()) { + std::string new_gname = string::Sprintf("%s.repeat.%d", outname, i); + repeated_op.RenameOutput(outname, new_gname); + } + } + // 3.5 let batch_norm ops use independent vars, note batch_norm_grad do + // not need this update + if (node->Name() == "batch_norm") { + // NOTE: assume bn op created by layers use save var as output mean and + // variance + std::string new_mean_name = + string::Sprintf("%s.repeat.%d", repeated_op.Input("Mean")[0], i); + std::string new_var_name = string::Sprintf( + "%s.repeat.%d", repeated_op.Input("Variance")[0], i); + bn_vars_need_rename.insert(repeated_op.Input("Mean")[0]); + bn_vars_need_rename.insert(repeated_op.Input("Variance")[0]); + VLOG(3) << "renaming " << repeated_op.Input("Mean")[0] << " to " + << new_mean_name; + repeated_op.RenameInput(repeated_op.Input("Mean")[0], new_mean_name); + repeated_op.RenameInput(repeated_op.Input("Variance")[0], new_var_name); + repeated_op.RenameOutput(repeated_op.Output("MeanOut")[0], + new_mean_name); + repeated_op.RenameOutput(repeated_op.Output("VarianceOut")[0], + new_var_name); + } + + // 3.9 do copy + auto repeated_node = result.CreateOpNode(&repeated_op); + copied.insert(node); + + // 4. add deps between repeats + if (node_idx == forward_backward_ops.size() - 1) { + prev_repeat_last_op_node = repeated_node; + } + if (node_idx == 0 && prev_repeat_last_op_node) { + auto* depvar = result.CreateControlDepVar(); + prev_repeat_last_op_node->outputs.push_back(depvar); + depvar->inputs.push_back(prev_repeat_last_op_node); + repeated_node->inputs.push_back(depvar); + depvar->outputs.push_back(repeated_node); + } + + for (auto in_node : node->inputs) { + if (in_node->IsCtrlVar()) { + continue; + } + ir::Node* var = nullptr; + auto updated_var = UpdateGradVarDesc(in_node->Var(), i, grad_names, + bn_vars_need_rename); + // should be initialized by startup, how to initilize tensor in the + // scope? + if (node->Name() == "batch_norm" && + bn_vars_need_rename.find(in_node->Name()) != + bn_vars_need_rename.end()) { + // Create bn mean/variance for each repeat + var = result.CreateVarNode(&updated_var); + created[updated_var.Name()].push_back(var); + copied.insert(in_node); + repeated_node->inputs.push_back(var); + var->outputs.push_back(repeated_node); + continue; + } + + // for other ops + if (in_node->inputs.empty() && i > 0) { + // do not copy head vars (inputs, params) in repeats > 0 + var = created.at(in_node->Name()).back(); + } else { + if (copied.find(in_node) == copied.end()) { + var = result.CreateVarNode(&updated_var); + if (grad_names.find(in_node->Var()->Name()) != grad_names.end()) { + grad_repeated_map[in_node].push_back(var); + } + copied.insert(in_node); + created[updated_var.Name()].push_back(var); + } else { + var = created.at(updated_var.Name()).back(); + } + } + repeated_node->inputs.push_back(var); + var->outputs.push_back(repeated_node); + } + for (auto out_node : node->outputs) { + if (out_node->IsCtrlVar()) { + continue; + } + ir::Node* var = nullptr; + auto updated_var = UpdateGradVarDesc(out_node->Var(), i, grad_names, + bn_vars_need_rename); + if (copied.find(out_node) == copied.end()) { + var = result.CreateVarNode(&updated_var); + if (grad_names.find(out_node->Var()->Name()) != grad_names.end()) { + grad_repeated_map[out_node].push_back(var); + } + copied.insert(out_node); + created[updated_var.Name()].push_back(var); + } else { + var = created.at(updated_var.Name()).back(); + } + repeated_node->outputs.push_back(var); + var->inputs.push_back(repeated_node); + } + } + } + + // 5. create GRAD merge op node + for (auto kv : grad_repeated_map) { + OpDesc sum_op; + sum_op.SetType("sum"); + std::vector repeated_grad_names; + for (auto r : kv.second) { + repeated_grad_names.push_back(r->Var()->Name()); + } + sum_op.SetInput("X", repeated_grad_names); + sum_op.SetOutput("Out", {kv.first->Var()->Name()}); + sum_op.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), + static_cast(OpRole::kBackward)); + auto sum_op_node = result.CreateOpNode(&sum_op); + for (auto r : kv.second) { + sum_op_node->inputs.push_back(r); + r->outputs.push_back(sum_op_node); + } + auto sum_out_var_node = result.CreateVarNode(kv.first->Var()); + sum_op_node->outputs.push_back(sum_out_var_node); + sum_out_var_node->inputs.push_back(sum_op_node); + created[sum_out_var_node->Name()].push_back(sum_out_var_node); + + OpDesc scale_op; + scale_op.SetType("scale"); + scale_op.SetInput("X", {sum_out_var_node->Var()->Name()}); + // NOTE: inplace scale. + scale_op.SetOutput("Out", {sum_out_var_node->Var()->Name()}); + scale_op.SetAttr("scale", static_cast(1.0f / num_repeats)); + scale_op.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), + static_cast(OpRole::kBackward)); + auto scale_op_node = result.CreateOpNode(&scale_op); + scale_op_node->inputs.push_back(sum_out_var_node); + sum_out_var_node->outputs.push_back(scale_op_node); + auto scale_out_var_node = result.CreateVarNode(sum_out_var_node->Var()); + scale_op_node->outputs.push_back(scale_out_var_node); + scale_out_var_node->inputs.push_back(scale_op_node); + created[scale_out_var_node->Name()].push_back(scale_out_var_node); + } + // 6. add optimize ops + { + auto copy_node = [&result, &created](ir::Node* node) { + auto op_node = result.CreateOpNode(node->Op()); + // copy op ins/outs + // NOTE: for send/recv ops, the OpDesc uses ctrldepvar to describe + // dependencies, so create those depvars if OpDesc have in/outs. + for (auto in_node : node->inputs) { + if (in_node->IsCtrlVar() && !in_node->Var()) { + continue; + } + ir::Node* var = nullptr; + if (created.find(in_node->Name()) == created.end()) { + var = result.CreateVarNode(in_node->Var()); + created[in_node->Name()].push_back(var); + } else { + var = created.at(in_node->Name()).back(); + } + op_node->inputs.push_back(var); + var->outputs.push_back(op_node); + } + for (auto out_node : node->outputs) { + if (out_node->IsCtrlVar() && !out_node->Var()) { + continue; + } + auto var = result.CreateVarNode(out_node->Var()); + created[out_node->Name()].push_back(var); + op_node->outputs.push_back(var); + var->inputs.push_back(op_node); + } + }; + for (auto node : lr_ops) { + copy_node(node); + } + for (auto node : optimize_ops) { + copy_node(node); + } + } + + result.ResolveHazard(created); + return graph; +} + +} // namespace ir +} // namespace framework +} // namespace paddle + +REGISTER_PASS(multi_batch_merge_pass, paddle::framework::ir::BatchMergePass) + .RequirePassAttr(paddle::framework::ir::kNumRepeats); diff --git a/paddle/fluid/framework/ir/multi_batch_merge_pass.h b/paddle/fluid/framework/ir/multi_batch_merge_pass.h new file mode 100644 index 0000000000000000000000000000000000000000..c1e5aef20dbc60c18ed03038818bfd8ab217bf28 --- /dev/null +++ b/paddle/fluid/framework/ir/multi_batch_merge_pass.h @@ -0,0 +1,44 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/ir/fuse_pass_base.h" +#include "paddle/fluid/framework/ir/graph.h" +#include "paddle/fluid/framework/ir/pass.h" + +namespace paddle { +namespace framework { +namespace ir { + +// BatchMergePass is used to copy forward and backward ops for several +// times to run several batches to simulate large batch size training +// as if we have more than 1 GPUs. +// User can define how many batches to run, gradients will be merged +// through those repeats, and then do optimization using merged gradients. +// This pass is extremely useful when doing large batch-size distributed +// sync training, we can simulate even large batch size as if we have more +// GPUs. + +class BatchMergePass : public Pass { + public: + virtual ~BatchMergePass() {} + + protected: + std::unique_ptr ApplyImpl(std::unique_ptr graph) const override; +}; + +} // namespace ir +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/ir/node.h b/paddle/fluid/framework/ir/node.h index 5d6da9f1d76a3c0fc64b7ff35264e385cf19a14b..d6d42f5e92080aa57445e2d6ce59aa3faa89d22d 100644 --- a/paddle/fluid/framework/ir/node.h +++ b/paddle/fluid/framework/ir/node.h @@ -44,6 +44,7 @@ class Node { return op_desc_.get(); } + // Please don't use this API! int id() const { return id_; } bool IsOp() const { return type_ == Type::kOperation; } @@ -92,6 +93,7 @@ class Node { Node() = delete; static int count_; + // Please don't use this API or make this public. static void ResetId() { count_ = 0; } DISABLE_COPY_AND_ASSIGN(Node); }; diff --git a/paddle/fluid/framework/lod_tensor.cc b/paddle/fluid/framework/lod_tensor.cc index 1e7da9a69c7cbf8c13306656599a759515802b76..669d08c70c9b7453264806b346a6c9eb211cfd4a 100644 --- a/paddle/fluid/framework/lod_tensor.cc +++ b/paddle/fluid/framework/lod_tensor.cc @@ -418,7 +418,7 @@ void LoDTensor::MergeLoDTensor( PADDLE_ENFORCE_EQ(new_lod.size(), lod.size()); for (size_t j = 0; j < lod.size(); ++j) { auto &sub_lod = new_lod[j]; - auto &offset = sub_lod.back(); + size_t offset = sub_lod.back(); for (size_t k = 1; k < lod[j].size(); ++k) { sub_lod.push_back(lod[j][k] + offset); } diff --git a/paddle/fluid/framework/lod_tensor_array.h b/paddle/fluid/framework/lod_tensor_array.h index 6d7b6a4ada8729e3698dab5d2b1861aac632be79..36a5c3c5d601390beedaf37ceb98ee2c63ecf5a6 100644 --- a/paddle/fluid/framework/lod_tensor_array.h +++ b/paddle/fluid/framework/lod_tensor_array.h @@ -18,6 +18,8 @@ limitations under the License. */ namespace paddle { namespace framework { + using LoDTensorArray = std::vector; -} + +} // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/mixed_vector.h b/paddle/fluid/framework/mixed_vector.h index 77386f4f069489b6ff7b927a281bdc286ff816e0..e1aac6dc5a92fb616f00de5806f044b83c2f503f 100644 --- a/paddle/fluid/framework/mixed_vector.h +++ b/paddle/fluid/framework/mixed_vector.h @@ -542,6 +542,33 @@ class CPUVector : public std::vector> { this->reserve(this->size() + size_t(end - begin)); this->insert(this->end(), begin, end); } + + const T *CUDAData(platform::Place place) const { + PADDLE_THROW( + "Vector::CUDAData() method is not supported in CPU-only version"); + } + + T *CUDAMutableData(platform::Place place) { + PADDLE_THROW( + "Vector::CUDAMutableData() method is not supported in CPU-only " + "version"); + } + + const T *Data(platform::Place place) const { + PADDLE_ENFORCE( + platform::is_cpu_place(place), + "Vector::Data() method is not supported when not in CPUPlace"); + return this->data(); + } + + T *MutableData(platform::Place place) { + PADDLE_ENFORCE( + platform::is_cpu_place(place), + "Vector::MutableData() method is not supported when not in CPUPlace"); + return this->data(); + } + + const void *Handle() const { return static_cast(this); } }; template diff --git a/paddle/fluid/framework/naive_executor.cc b/paddle/fluid/framework/naive_executor.cc index 2840d503f1454271afb309efdd435225ab077dc0..7fb42feb95b4d54aec693228721c052f683f4d80 100644 --- a/paddle/fluid/framework/naive_executor.cc +++ b/paddle/fluid/framework/naive_executor.cc @@ -146,22 +146,5 @@ void NaiveExecutor::CleanFeedFetchOps() { ops_.swap(ops); } -void NaiveExecutor::EnableMKLDNN(const ProgramDesc &program) { -#ifdef PADDLE_WITH_MKLDNN - VLOG(3) << "use_mkldnn=True"; - for (size_t block_id = 0; block_id < program.Size(); ++block_id) { - auto *block = const_cast(program).MutableBlock(block_id); - for (auto *op : block->AllOps()) { - if (op->HasAttr("use_mkldnn")) { - op->SetAttr("use_mkldnn", true); - } - } - } -#else - LOG(WARNING) - << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option"; -#endif -} - } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/naive_executor.h b/paddle/fluid/framework/naive_executor.h index 9374f3f4a35cc0f90e5b2d6e8b397784b8eae123..ddfa6e1f4d8b73f594fc381ab505797491cdd378 100644 --- a/paddle/fluid/framework/naive_executor.h +++ b/paddle/fluid/framework/naive_executor.h @@ -48,8 +48,6 @@ class NaiveExecutor { void CleanFeedFetchOps(); - void EnableMKLDNN(const ProgramDesc& program); - protected: void CreateVariables(const ProgramDesc& desc, Scope* scope, int block_id); diff --git a/paddle/fluid/framework/op_desc.cc b/paddle/fluid/framework/op_desc.cc index c293cf92b4f3d530109c76850df184af9cad7399..8ece618f3f72552fedcffab3e03ebb30476b7cab 100644 --- a/paddle/fluid/framework/op_desc.cc +++ b/paddle/fluid/framework/op_desc.cc @@ -419,8 +419,15 @@ struct SetAttrDescVisitor : public boost::static_visitor { } VectorToRepeated(blocks_idx, attr_->mutable_blocks_idx()); } + void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->ID()); } + void operator()(int64_t v) const { attr_->set_l(v); } + + void operator()(const std::vector &v) const { + VectorToRepeated(v, attr_->mutable_longs()); + } + void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); } }; diff --git a/paddle/fluid/framework/op_desc.h b/paddle/fluid/framework/op_desc.h index 440e0509be727ec2b84abc76fca44edda11f8a0a..30c8a26c3d2f0068674aa70b4ff875a2f73c1dca 100644 --- a/paddle/fluid/framework/op_desc.h +++ b/paddle/fluid/framework/op_desc.h @@ -121,10 +121,6 @@ class OpDesc { BlockDesc *Block() { return this->block_; } - const BlockDesc &BlockRef() const { return *this->block_; } - - void SetBlock(BlockDesc *block) { this->block_ = block; } - private: template static std::vector MapKeys(const MapType &map) { diff --git a/paddle/fluid/framework/op_proto_maker.cc b/paddle/fluid/framework/op_proto_maker.cc index 152fc3361a733b906765f3206089c5252658c213..ca31303f77c4a30eb64c43404e214779ea78aeaf 100644 --- a/paddle/fluid/framework/op_proto_maker.cc +++ b/paddle/fluid/framework/op_proto_maker.cc @@ -71,6 +71,8 @@ void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto, static_cast(OpRole::kLoss) | static_cast(OpRole::kForward), static_cast(OpRole::kLoss) | static_cast(OpRole::kBackward), + static_cast(OpRole::kOptimize) | + static_cast(OpRole::kLRSched), static_cast(OpRole::kNotSpecified)}) .SetDefault(static_cast(OpRole::kNotSpecified)); AddAttr>(OpRoleVarAttrName(), diff --git a/paddle/fluid/framework/op_proto_maker.h b/paddle/fluid/framework/op_proto_maker.h index cd2471dc49503bb83245673ce543364f5f873995..4c59c73d8779eceb267ad532aabccabbd54b0df2 100644 --- a/paddle/fluid/framework/op_proto_maker.h +++ b/paddle/fluid/framework/op_proto_maker.h @@ -20,17 +20,20 @@ limitations under the License. */ namespace paddle { namespace framework { +////////////////////////// +// Don't add more roles to make this too complicated! +////////////////////////// enum class OpRole { kForward = 0x0000, kBackward = 0x0001, kOptimize = 0x0002, // RPC role is for send/recv releated op - kRPC = 0x0003, + kRPC = 0x0004, // Dist role is for split_byref/split_selected_rows/concat // used for distributed training. - kDist = 0x0004, + kDist = 0x0008, // Tag all learning rate scheduler operators. - kLRSched = 0x0005, + kLRSched = 0x0010, kLoss = 0x0100, // The default value of op's role. This should be only used for unittests and diff --git a/paddle/fluid/framework/operator.cc b/paddle/fluid/framework/operator.cc index 14fcde2fe3b1c3acfc0994e9cd37a784c57826d7..45fc36c70633204dbfadbd10757c08b009d2cc74 100644 --- a/paddle/fluid/framework/operator.cc +++ b/paddle/fluid/framework/operator.cc @@ -354,18 +354,18 @@ void OperatorBase::GenerateTemporaryNames() { } } -static bool VarIsTensor(const Variable* var) { - return var->IsType() || var->IsType(); +static bool VarIsTensor(const Variable& var) { + return var.IsType() || var.IsType(); } -static const Tensor* GetTensorFromVar(Variable* var) { - if (var->IsType()) { - return var->GetMutable(); - } else if (var->IsType()) { - return var->GetMutable()->mutable_value(); +const Tensor* GetTensorFromVar(const Variable& var) { + if (var.IsType()) { + return static_cast(&(var.Get())); + } else if (var.IsType()) { + return &(var.Get().value()); } else { PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", - var->Type().name()); + var.Type().name()); } } @@ -415,8 +415,7 @@ bool ExecutionContext::HasOutput(const std::string& name) const { template <> const Tensor* ExecutionContext::Input(const std::string& name) const { auto* var = InputVar(name); - return var == nullptr ? nullptr - : GetTensorFromVar(const_cast(var)); + return var == nullptr ? nullptr : GetTensorFromVar(*var); } template <> @@ -428,7 +427,7 @@ const std::vector ExecutionContext::MultiInput( std::transform(names.begin(), names.end(), std::back_inserter(res), [&](const std::string& sub_name) { auto var = scope_.FindVar(sub_name); - return var == nullptr ? nullptr : GetTensorFromVar(var); + return var == nullptr ? nullptr : GetTensorFromVar(*var); }); return res; } @@ -770,8 +769,10 @@ void OperatorWithKernel::TransferInplaceVarsBack( for (auto& var_name : inplace_vars) { VLOG(3) << "share inplace var " + var_name + " back to it's original scope"; auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name)); - auto* transformed_tensor = - GetTensorFromVar(transfer_scope.FindVar(var_name)); + auto* var = transfer_scope.FindVar(var_name); + PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr", + var_name); + auto* transformed_tensor = GetTensorFromVar(*var); original_tensor->ShareDataWith(*transformed_tensor); } } @@ -784,11 +785,11 @@ Scope* OperatorWithKernel::TryTransferData( for (auto& var_name : var_name_item.second) { auto* var = scope.FindVar(var_name); // Only tensor can be tranfer to another device. - if (var == nullptr || !VarIsTensor(var)) { + if (var == nullptr || !VarIsTensor(*var)) { continue; } - auto* tensor_in = GetTensorFromVar(var); + auto* tensor_in = GetTensorFromVar(*var); if (!tensor_in->IsInitialized()) { continue; } diff --git a/paddle/fluid/framework/operator.h b/paddle/fluid/framework/operator.h index 626b50edfd39424473be33e9f8baec5970471477..96ad3205235b921a7cf60ed674a8350f74d18509 100644 --- a/paddle/fluid/framework/operator.h +++ b/paddle/fluid/framework/operator.h @@ -63,6 +63,7 @@ inline std::string GradVarName(const std::string& var_name) { } proto::VarType::Type GetDataTypeOfVar(const Variable* var); +const Tensor* GetTensorFromVar(const Variable& var); class OperatorBase; class ExecutionContext; diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index 78c96f1a0632ef9b4b2fefe70ee34e7a08b55000..47f914e98f1f1de92b2aa1e90658022274f7b958 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -109,18 +109,9 @@ ParallelExecutor::ParallelExecutor( if (member_->local_scopes_.size() != 1 && local_scopes.empty()) { BCastParamsToDevices(bcast_vars); } - // Startup Program has been run. All local scopes has correct parameters. +// Startup Program has been run. All local scopes has correct parameters. - // Step 2. Create vars in each scope; - std::vector var_infos; - for (auto *var : main_program.Block(0).AllVars()) { - var_infos.emplace_back(); - var_infos.back().name_ = var->Name(); - var_infos.back().type_ = var->GetType(); - var_infos.back().persistable_ = var->Persistable(); - } - -// Step 3. Convert main_program to SSA form and dependency graph. Also, insert +// Step 2. Convert main_program to SSA form and dependency graph. Also, insert // ncclOp #ifdef PADDLE_WITH_CUDA std::unique_ptr graph = build_strategy.Apply( @@ -164,6 +155,23 @@ ParallelExecutor::ParallelExecutor( ->Apply(std::move(graph)); #endif + // Step 3. Create vars in each scope. Passes may also create new vars. + // skip control vars and empty vars + std::vector var_infos; + for (auto &node : graph->Nodes()) { + if (node->IsVar() && !node->IsCtrlVar() && node->Var()) { + var_infos.emplace_back(); + var_infos.back().name_ = node->Var()->Name(); + var_infos.back().type_ = node->Var()->GetType(); + var_infos.back().persistable_ = node->Var()->Persistable(); + } + } + // If the loss_var_name is given, the number of graph should be only one. + if (loss_var_name.size()) { + PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1, + "The number of graph should be only one"); + } + if (exec_strategy.type_ == ExecutionStrategy::kDefault) { member_->executor_.reset(new details::ThreadedSSAGraphExecutor( exec_strategy, member_->local_scopes_, places, std::move(graph))); @@ -187,6 +195,10 @@ void ParallelExecutor::BCastParamsToDevices( } auto &main_tensor = main_var->Get(); + if (!main_tensor.IsInitialized()) { + VLOG(3) << "one in var not inited, return!"; + continue; + } auto &dims = main_tensor.dims(); if (paddle::platform::is_gpu_place(main_tensor.place())) { #ifdef PADDLE_WITH_CUDA @@ -299,10 +311,8 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes( } ParallelExecutor::~ParallelExecutor() { - const auto dev_ctxs = - platform::DeviceContextPool::Instance().GetAllDeviceContexts(); - for (auto &dev_ctx : dev_ctxs) { - dev_ctx->Wait(); + for (auto &p : member_->places_) { + platform::DeviceContextPool::Instance().Get(p)->Wait(); } if (member_->own_local_scope_) { diff --git a/paddle/fluid/framework/scope.h b/paddle/fluid/framework/scope.h index 14f9f36812d690fc4a7440f2e7e6a85e9993a535..9462620e829ec815e1553f6378a67463ea3b8aa3 100644 --- a/paddle/fluid/framework/scope.h +++ b/paddle/fluid/framework/scope.h @@ -78,6 +78,8 @@ class Scope { /// Drop all kids scopes belonged to this scope. void DropKids(); + std::list& kids() const { return kids_; } + /// Find if a scope exists in the kid scopes bool HasKid(const Scope* scope) const; diff --git a/paddle/fluid/framework/tensor_test.cc b/paddle/fluid/framework/tensor_test.cc index cb2061c06a429d8e8116001a4aa4e8c46ea13428..a0a9a573603ceb6b577529101cb331adbc81337a 100644 --- a/paddle/fluid/framework/tensor_test.cc +++ b/paddle/fluid/framework/tensor_test.cc @@ -75,6 +75,19 @@ TEST(Tensor, MutableData) { platform::CPUPlace()); EXPECT_EQ(p1, p2); } + // Not sure if it's desired, but currently, Tensor type can be changed. + { + framework::Tensor src_tensor; + int8_t* p1 = src_tensor.mutable_data(framework::make_ddim({1}), + platform::CPUPlace()); + EXPECT_NE(p1, nullptr); + *p1 = 1; + + uint8_t* p2 = src_tensor.mutable_data(framework::make_ddim({1}), + platform::CPUPlace()); + EXPECT_NE(p2, nullptr); + EXPECT_EQ(static_cast(p2[0]), 1); + } #ifdef PADDLE_WITH_CUDA { diff --git a/paddle/fluid/framework/tensor_util.cc b/paddle/fluid/framework/tensor_util.cc index 69bcbc0e5891f95af4de8dfd49a25648ca920ab1..ca1e01c89f07c4ffc3979a6a6c3728328e0a1819 100644 --- a/paddle/fluid/framework/tensor_util.cc +++ b/paddle/fluid/framework/tensor_util.cc @@ -153,6 +153,12 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place, auto src_gpu_place = boost::get(src_place); auto dst_gpu_place = boost::get(dst_place); memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr); + } else if (platform::is_cuda_pinned_place(src_place) && + platform::is_gpu_place(dst_place)) { + auto src_pinned_place = boost::get(src_place); + auto dst_gpu_place = boost::get(dst_place); + memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size, + nullptr); } #endif } diff --git a/paddle/fluid/framework/threadpool.cc b/paddle/fluid/framework/threadpool.cc index 18cdca3a658a6a89e6ab637a7f38825756acfea8..a588cb417aebe94bd4aeda02b1bc8ba07a04b960 100644 --- a/paddle/fluid/framework/threadpool.cc +++ b/paddle/fluid/framework/threadpool.cc @@ -25,7 +25,6 @@ DEFINE_int32(dist_threadpool_size, 0, namespace paddle { namespace framework { - std::unique_ptr ThreadPool::threadpool_(nullptr); std::once_flag ThreadPool::init_flag_; @@ -47,8 +46,7 @@ void ThreadPool::Init() { } } -ThreadPool::ThreadPool(int num_threads) - : total_threads_(num_threads), idle_threads_(num_threads), running_(true) { +ThreadPool::ThreadPool(int num_threads) : running_(true) { threads_.resize(num_threads); for (auto& thread : threads_) { // TODO(Yancey1989): binding the thread on the specify CPU number @@ -59,6 +57,7 @@ ThreadPool::ThreadPool(int num_threads) ThreadPool::~ThreadPool() { { // notify all threads to stop running + std::lock_guard l(mutex_); running_ = false; scheduled_.notify_all(); } @@ -69,36 +68,24 @@ ThreadPool::~ThreadPool() { } } -void ThreadPool::Wait() { - std::unique_lock lock(mutex_); - completed_.wait(lock, [=] { return Done() == true; }); -} - void ThreadPool::TaskLoop() { - while (running_) { + while (true) { std::unique_lock lock(mutex_); - scheduled_.wait(lock, [=] { return !tasks_.empty() || !running_; }); - if (!running_) { - break; + scheduled_.wait( + lock, [this] { return !this->tasks_.empty() || !this->running_; }); + + if (!running_ || tasks_.empty()) { + return; } + // pop a task from the task queue auto task = std::move(tasks_.front()); tasks_.pop(); - - --idle_threads_; lock.unlock(); // run the task task(); - - { - std::unique_lock lock(mutex_); - ++idle_threads_; - if (Done()) { - completed_.notify_all(); - } - } } } diff --git a/paddle/fluid/framework/threadpool.h b/paddle/fluid/framework/threadpool.h index 94111ee335b1a5df327b3e46d62069b4735c54f6..0687e628aaa4fb7b2e67938fa09a319c8bb35aff 100644 --- a/paddle/fluid/framework/threadpool.h +++ b/paddle/fluid/framework/threadpool.h @@ -57,15 +57,6 @@ class ThreadPool { ~ThreadPool(); - // Returns the number of threads created by the constructor. - size_t Threads() const { return total_threads_; } - - // Returns the number of currently idle threads. - size_t IdleThreads() { - std::unique_lock lock(mutex_); - return idle_threads_; - } - // Run pushes a function to the task queue and returns a std::future // object. To wait for the completion of the task, call // std::future::wait(). @@ -94,25 +85,13 @@ class ThreadPool { }); std::future> f = task.get_future(); tasks_.push(std::move(task)); - lock.unlock(); scheduled_.notify_one(); return f; } - // Wait until all the tasks are completed. - void Wait(); - private: DISABLE_COPY_AND_ASSIGN(ThreadPool); - // If the task queue is empty and avaialbe is equal to the number of - // threads, means that all tasks are completed. Note: this function - // is not thread-safe. Returns true if all tasks are completed. - // Note: don't delete the data member total_threads_ and use - // threads_.size() instead; because you'd need to lock the mutex - // before accessing threads_. - bool Done() { return tasks_.empty() && idle_threads_ == total_threads_; } - // The constructor starts threads to run TaskLoop, which retrieves // and runs tasks from the queue. void TaskLoop(); @@ -125,14 +104,11 @@ class ThreadPool { static std::once_flag init_flag_; std::vector> threads_; - const size_t total_threads_; - size_t idle_threads_; std::queue tasks_; std::mutex mutex_; bool running_; std::condition_variable scheduled_; - std::condition_variable completed_; }; class ThreadPoolIO : ThreadPool { diff --git a/paddle/fluid/framework/threadpool_test.cc b/paddle/fluid/framework/threadpool_test.cc index 27a4ffd4fcbf293a3dea1744b29384d0bee0c137..884d61e23428a0ad758946295ca9c470767e93ef 100644 --- a/paddle/fluid/framework/threadpool_test.cc +++ b/paddle/fluid/framework/threadpool_test.cc @@ -19,10 +19,11 @@ limitations under the License. */ namespace framework = paddle::framework; -void do_sum(framework::ThreadPool* pool, std::atomic* sum, int cnt) { - std::vector> fs; +void do_sum(std::vector>* fs, std::mutex* mu, + std::atomic* sum, int cnt) { for (int i = 0; i < cnt; ++i) { - fs.push_back(framework::Async([sum]() { sum->fetch_add(1); })); + std::lock_guard l(*mu); + fs->push_back(framework::Async([sum]() { sum->fetch_add(1); })); } } @@ -40,18 +41,21 @@ TEST(ThreadPool, ConcurrentInit) { } TEST(ThreadPool, ConcurrentRun) { - framework::ThreadPool* pool = framework::ThreadPool::GetInstance(); std::atomic sum(0); std::vector threads; + std::vector> fs; + std::mutex fs_mu; int n = 50; // sum = (n * (n + 1)) / 2 for (int i = 1; i <= n; ++i) { - std::thread t(do_sum, pool, &sum, i); + std::thread t(do_sum, &fs, &fs_mu, &sum, i); threads.push_back(std::move(t)); } for (auto& t : threads) { t.join(); } - pool->Wait(); + for (auto& t : fs) { + t.wait(); + } EXPECT_EQ(sum, ((n + 1) * n) / 2); } diff --git a/paddle/fluid/framework/type_defs.h b/paddle/fluid/framework/type_defs.h index e099e40f121ff13657e563eb608feecbca0551be..2de6233a9e0d320ec9a06d547db3575eb61925c0 100644 --- a/paddle/fluid/framework/type_defs.h +++ b/paddle/fluid/framework/type_defs.h @@ -36,7 +36,7 @@ using Attribute = boost::variant, std::vector, std::vector, bool, std::vector, BlockDesc*, int64_t, - std::vector>; + std::vector, std::vector>; using AttributeMap = std::unordered_map; diff --git a/paddle/fluid/inference/CMakeLists.txt b/paddle/fluid/inference/CMakeLists.txt index 9794a193bcfaae19552b1f6fbdf2dab2898033d5..d31c8e3b7d66a0cdb2c4725783c9a24f049c666d 100644 --- a/paddle/fluid/inference/CMakeLists.txt +++ b/paddle/fluid/inference/CMakeLists.txt @@ -1,3 +1,6 @@ +if(WITH_TESTING) + include(test.cmake) # some generic cmake funtion for inference +endif() # analysis and tensorrt must be added before creating static library, # otherwise, there would be undefined reference to them in static library. add_subdirectory(analysis) @@ -30,7 +33,7 @@ if (WITH_GPU AND TENSORRT_FOUND) endif() # Create static library -cc_library(paddle_fluid DEPS ${fluid_modules} ${STATIC_INFERENCE_APIS} zero_copy_tensor) +cc_library(paddle_fluid DEPS ${fluid_modules} ${STATIC_INFERENCE_APIS} zero_copy_tensor reset_tensor_array) if(NOT APPLE) # TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac. @@ -40,7 +43,7 @@ endif() # Create shared library cc_library(paddle_fluid_shared SHARED SRCS ${SHARED_INFERENCE_SRCS} - DEPS ${fluid_modules} paddle_fluid_api) + DEPS ${fluid_modules} paddle_fluid_api reset_tensor_array) set_target_properties(paddle_fluid_shared PROPERTIES OUTPUT_NAME paddle_fluid) if(NOT APPLE) diff --git a/paddle/fluid/inference/analysis/CMakeLists.txt b/paddle/fluid/inference/analysis/CMakeLists.txt index d4d2fd4634f9e11f3f002e11e177c332ced49885..0354f9e6e9588af601210b8a71ae98c1f90d62f0 100644 --- a/paddle/fluid/inference/analysis/CMakeLists.txt +++ b/paddle/fluid/inference/analysis/CMakeLists.txt @@ -20,22 +20,17 @@ cc_test(test_node SRCS node_tester.cc DEPS analysis) cc_test(test_dot SRCS dot_tester.cc DEPS analysis) cc_binary(inference_analyzer SRCS analyzer_main.cc DEPS analysis paddle_fluid) -function (inference_analysis_test TARGET) - if(WITH_TESTING) - set(options "") - set(oneValueArgs "") - set(multiValueArgs SRCS ARGS EXTRA_DEPS) - cmake_parse_arguments(analysis_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) - set(mem_opt "") - if(WITH_GPU) - set(mem_opt "--fraction_of_gpu_memory_to_use=0.5") - endif() - cc_test(${TARGET} - SRCS "${analysis_test_SRCS}" - DEPS analysis pass ${GLOB_PASS_LIB} ${analysis_test_EXTRA_DEPS} - ARGS --inference_model_dir=${PYTHON_TESTS_DIR}/book/word2vec.inference.model ${mem_opt} ${analysis_test_ARGS}) - set_tests_properties(${TARGET} PROPERTIES DEPENDS test_word2vec) - endif(WITH_TESTING) +function(inference_analysis_test TARGET) + if(WITH_TESTING) + set(options "") + set(oneValueArgs "") + set(multiValueArgs SRCS ARGS EXTRA_DEPS) + cmake_parse_arguments(analysis_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) + inference_base_test(${TARGET} + SRCS ${analysis_test_SRCS} + DEPS analysis pass ${GLOB_PASS_LIB} ${analysis_test_EXTRA_DEPS} + ARGS --inference_model_dir=${WORD2VEC_MODEL_DIR} ${analysis_test_ARGS}) + endif() endfunction(inference_analysis_test) inference_analysis_test(test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS paddle_inference_api) diff --git a/paddle/fluid/inference/analysis/analyzer.cc b/paddle/fluid/inference/analysis/analyzer.cc index 2e79d495d5ff00000000029ac0f6eb486aaea94a..ef4142f334e503380dc7ccd74c348404ffe52ee6 100644 --- a/paddle/fluid/inference/analysis/analyzer.cc +++ b/paddle/fluid/inference/analysis/analyzer.cc @@ -107,6 +107,9 @@ void Analyzer::Run(Argument* argument) { passes.push_back("mkldnn_placement_pass"); } #endif + // infer_clean_graph_pass should be the first default pass + // after mkldnn_placement_pass. + passes.push_back("infer_clean_graph_pass"); for (auto& pass : ir_passes_) { if (!disabled_ir_passes_.count(pass)) { passes.push_back(pass); diff --git a/paddle/fluid/inference/analysis/analyzer.h b/paddle/fluid/inference/analysis/analyzer.h index c51a4fdb2f6b27e54637481c23bf6f1f6ec97718..3af1d572dfd81197797dd7e57d87ba12c2f3548e 100644 --- a/paddle/fluid/inference/analysis/analyzer.h +++ b/paddle/fluid/inference/analysis/analyzer.h @@ -67,7 +67,6 @@ class Analyzer : public OrderedRegistry { // larger fusion. const std::vector all_ir_passes_{{ // Manual update the passes here. - "infer_clean_graph_pass", // "attention_lstm_fuse_pass", // "seqconv_eltadd_relu_fuse_pass", // "embedding_fc_lstm_fuse_pass", // @@ -80,6 +79,7 @@ class Analyzer : public OrderedRegistry { "conv_bn_fuse_pass", // "conv_eltwiseadd_bn_fuse_pass", // #ifdef PADDLE_WITH_MKLDNN + "depthwise_conv_mkldnn_pass", // "conv_bias_mkldnn_fuse_pass", // "conv_relu_mkldnn_fuse_pass", // "conv_elementwise_add_mkldnn_fuse_pass", // diff --git a/paddle/fluid/inference/analysis/data_flow_graph_tester.cc b/paddle/fluid/inference/analysis/data_flow_graph_tester.cc index 1682011c3d8cc9927a4b026b370671798cace625..50ce20621fb289023ecccf7bb39d98169765d5ee 100644 --- a/paddle/fluid/inference/analysis/data_flow_graph_tester.cc +++ b/paddle/fluid/inference/analysis/data_flow_graph_tester.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/analysis/data_flow_graph.h" +#include "paddle/fluid/framework/op_proto_maker.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/inference/analysis/ut_helper.h" @@ -130,6 +131,8 @@ void SetOp(framework::ProgramDesc* prog, const std::string& type, op->SetType(type); op->SetInput("Xs", inputs); op->SetOutput("Xs", outputs); + op->SetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName(), + static_cast(framework::OpRole::kForward)); } TEST(DataFlowGraph, Build_IR_Graph) { diff --git a/paddle/fluid/inference/api/CMakeLists.txt b/paddle/fluid/inference/api/CMakeLists.txt index 0ddd5d53f836131fe37d412fc867cb38f11ee2b5..49a9ebe3ddec1e4fd59ae1155a706859e249d25c 100644 --- a/paddle/fluid/inference/api/CMakeLists.txt +++ b/paddle/fluid/inference/api/CMakeLists.txt @@ -17,32 +17,14 @@ if(APPLE) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=pessimizing-move") endif(APPLE) - set(inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager naive_executor ${GLOB_PASS_LIB}) if(WITH_GPU AND TENSORRT_FOUND) set(inference_deps ${inference_deps} paddle_inference_tensorrt_subgraph_engine analysis_predictor) endif() -function(inference_api_test TARGET_NAME) - if (WITH_TESTING) - set(options "") - set(oneValueArgs SRC) - set(multiValueArgs ARGS) - cmake_parse_arguments(inference_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) - - cc_test(${TARGET_NAME} - SRCS ${inference_test_SRC} - DEPS "${inference_deps}" - ARGS --dirname=${PYTHON_TESTS_DIR}/book/) - if(inference_test_ARGS) - set_tests_properties(${TARGET_NAME} - PROPERTIES DEPENDS "${inference_test_ARGS}") - endif() - endif(WITH_TESTING) -endfunction(inference_api_test) - -cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope) +cc_library(reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope) +cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS reset_tensor_array lod_tensor scope) cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor) cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS paddle_inference_api) cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc DEPS paddle_inference_api) @@ -50,10 +32,11 @@ cc_test(test_paddle_inference_api SRCS api_tester.cc DEPS paddle_inference_api) -inference_api_test(test_api_impl SRC api_impl_tester.cc - ARGS test_word2vec test_image_classification) - -set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests) +if(WITH_TESTING) + inference_base_test(test_api_impl SRCS api_impl_tester.cc DEPS ${inference_deps} + ARGS --word2vec_dirname=${WORD2VEC_MODEL_DIR} --book_dirname=${PYTHON_TESTS_DIR}/book) + set_tests_properties(test_api_impl PROPERTIES DEPENDS test_image_classification) +endif() cc_test(test_analysis_predictor SRCS analysis_predictor_tester.cc DEPS analysis_predictor ${inference_deps} paddle_inference_api ARGS --dirname=${PYTHON_TESTS_DIR}/book) @@ -61,8 +44,10 @@ if(WITH_GPU AND TENSORRT_FOUND) cc_library(paddle_inference_tensorrt_subgraph_engine SRCS api_tensorrt_subgraph_engine.cc DEPS paddle_inference_api analysis tensorrt_engine paddle_inference_api paddle_fluid_api tensorrt_converter zero_copy_tensor_dummy) - -inference_api_test(test_api_tensorrt_subgraph_engine SRC api_tensorrt_subgraph_engine_tester.cc ARGS test_word2vec) + if(WITH_TESTING) + inference_base_test(test_api_tensorrt_subgraph_engine SRCS api_tensorrt_subgraph_engine_tester.cc DEPS ${inference_deps} + ARGS --dirname=${WORD2VEC_MODEL_DIR}) + endif() endif() if (WITH_ANAKIN AND WITH_MKL) # only needed in CI diff --git a/paddle/fluid/inference/api/analysis_predictor.cc b/paddle/fluid/inference/api/analysis_predictor.cc index eec665767164dc6e79738890947c54d7f7217037..54c37fe64590aa82d7100c93c4c5c4ee36491421 100644 --- a/paddle/fluid/inference/api/analysis_predictor.cc +++ b/paddle/fluid/inference/api/analysis_predictor.cc @@ -82,6 +82,7 @@ bool AnalysisPredictor::Init( // Get the feed_target_names and fetch_target_names PrepareFeedFetch(); + return true; } @@ -109,6 +110,10 @@ bool AnalysisPredictor::Run(const std::vector &inputs, return false; } VLOG(3) << "predict cost: " << timer.toc() << "ms"; + + // Fix TensorArray reuse not cleaned bug. + tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get()); + tensor_array_batch_cleaner_.ResetTensorArray(); return true; } @@ -322,6 +327,9 @@ std::unique_ptr AnalysisPredictor::GetOutputTensor( bool AnalysisPredictor::ZeroCopyRun() { executor_->Run(); + // Fix TensorArray reuse not cleaned bug. + tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get()); + tensor_array_batch_cleaner_.ResetTensorArray(); return true; } diff --git a/paddle/fluid/inference/api/analysis_predictor.h b/paddle/fluid/inference/api/analysis_predictor.h index 5a9f4d36959d4ee7ca16dec769d9d1283b8787cb..b7dc2067332278c1c38df4beefb5059efe76417f 100644 --- a/paddle/fluid/inference/api/analysis_predictor.h +++ b/paddle/fluid/inference/api/analysis_predictor.h @@ -18,6 +18,7 @@ #include "paddle/fluid/framework/naive_executor.h" #include "paddle/fluid/inference/analysis/analyzer.h" #include "paddle/fluid/inference/api/api_impl.h" +#include "paddle/fluid/inference/api/details/reset_tensor_array.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/string/printf.h" @@ -88,6 +89,7 @@ class AnalysisPredictor : public PaddlePredictor { // Memory buffer for feed inputs. The temporary LoDTensor will cause serious // concurrency problems, so cache them. std::vector feed_tensors_; + details::TensorArrayBatchCleaner tensor_array_batch_cleaner_; }; } // namespace paddle diff --git a/paddle/fluid/inference/api/api_impl.cc b/paddle/fluid/inference/api/api_impl.cc index 7cda9c5d8a8366bd097491f37f5352a10e4fb16c..d06ab8f8c8e3c0adf4a4074eb1450012126e83ea 100644 --- a/paddle/fluid/inference/api/api_impl.cc +++ b/paddle/fluid/inference/api/api_impl.cc @@ -22,6 +22,7 @@ limitations under the License. */ #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/inference/api/api_impl.h" +#include "paddle/fluid/inference/api/details/reset_tensor_array.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/platform/cpu_helper.h" #include "paddle/fluid/platform/profiler.h" @@ -157,6 +158,10 @@ bool NativePaddlePredictor::Run(const std::vector &inputs, return false; } VLOG(3) << "predict cost: " << timer.toc() << "ms"; + + // Fix TensorArray reuse not cleaned bug. + tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get()); + tensor_array_batch_cleaner_.ResetTensorArray(); return true; } diff --git a/paddle/fluid/inference/api/api_impl.h b/paddle/fluid/inference/api/api_impl.h index 7882f6a53c7ce9a2486158ea9b50c018d1814091..4e4ab47ca9c5e37f2714ebd48d250c23c7e9b117 100644 --- a/paddle/fluid/inference/api/api_impl.h +++ b/paddle/fluid/inference/api/api_impl.h @@ -26,11 +26,11 @@ limitations under the License. */ #include #include -#include "paddle/fluid/inference/api/paddle_inference_api.h" - #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/naive_executor.h" +#include "paddle/fluid/inference/api/details/reset_tensor_array.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/io.h" #include "paddle/fluid/platform/init.h" @@ -77,6 +77,7 @@ class NativePaddlePredictor : public PaddlePredictor { std::vector fetchs_; // Do not use unique_ptr, use parent scope to delete framework::Scope *sub_scope_{nullptr}; + details::TensorArrayBatchCleaner tensor_array_batch_cleaner_; }; } // namespace paddle diff --git a/paddle/fluid/inference/api/api_impl_tester.cc b/paddle/fluid/inference/api/api_impl_tester.cc index b7b8ee6ea08fe907f3f052ae1118f782ac853ca7..5152b8670ddb206f0927c03149684af4a096df42 100644 --- a/paddle/fluid/inference/api/api_impl_tester.cc +++ b/paddle/fluid/inference/api/api_impl_tester.cc @@ -27,7 +27,9 @@ limitations under the License. */ #define ACC_DIFF 1e-3 #endif -DEFINE_string(dirname, "", "Directory of the inference model."); +DEFINE_string(word2vec_dirname, "", + "Directory of the word2vec inference model."); +DEFINE_string(book_dirname, "", "Directory of the book inference model."); namespace paddle { @@ -49,7 +51,7 @@ PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) { NativeConfig GetConfig() { NativeConfig config; - config.model_dir = FLAGS_dirname + "/word2vec.inference.model"; + config.model_dir = FLAGS_word2vec_dirname; LOG(INFO) << "dirname " << config.model_dir; config.fraction_of_gpu_memory = 0.15; #ifdef PADDLE_WITH_CUDA @@ -116,7 +118,7 @@ void MainImageClassification(bool use_gpu) { NativeConfig config = GetConfig(); config.use_gpu = use_gpu; config.model_dir = - FLAGS_dirname + "/image_classification_resnet.inference.model"; + FLAGS_book_dirname + "/image_classification_resnet.inference.model"; const bool is_combined = false; std::vector> feed_target_shapes = @@ -187,7 +189,7 @@ void MainThreadsWord2Vec(bool use_gpu) { std::vector threads; for (int tid = 0; tid < num_jobs; ++tid) { threads.emplace_back([&, tid]() { - auto predictor = main_predictor->Clone(); + auto predictor = CreatePaddlePredictor(config); auto& local_inputs = paddle_tensor_feeds[tid]; std::vector local_outputs; ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs)); @@ -220,7 +222,7 @@ void MainThreadsImageClassification(bool use_gpu) { NativeConfig config = GetConfig(); config.use_gpu = use_gpu; config.model_dir = - FLAGS_dirname + "/image_classification_resnet.inference.model"; + FLAGS_book_dirname + "/image_classification_resnet.inference.model"; auto main_predictor = CreatePaddlePredictor(config); std::vector jobs(num_jobs); @@ -245,7 +247,7 @@ void MainThreadsImageClassification(bool use_gpu) { std::vector threads; for (int tid = 0; tid < num_jobs; ++tid) { threads.emplace_back([&, tid]() { - auto predictor = main_predictor->Clone(); + auto predictor = CreatePaddlePredictor(config); auto& local_inputs = paddle_tensor_feeds[tid]; std::vector local_outputs; ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs)); @@ -271,7 +273,7 @@ TEST(inference_api_native, word2vec_cpu_threads) { MainThreadsWord2Vec(false /*use_gpu*/); } TEST(inference_api_native, image_classification_cpu) { - MainThreadsImageClassification(false /*use_gpu*/); + MainImageClassification(false /*use_gpu*/); } TEST(inference_api_native, image_classification_cpu_threads) { MainThreadsImageClassification(false /*use_gpu*/); @@ -279,15 +281,17 @@ TEST(inference_api_native, image_classification_cpu_threads) { #ifdef PADDLE_WITH_CUDA TEST(inference_api_native, word2vec_gpu) { MainWord2Vec(true /*use_gpu*/); } -TEST(inference_api_native, word2vec_gpu_threads) { - MainThreadsWord2Vec(true /*use_gpu*/); -} +// Turn off temporarily for the unstable result. +// TEST(inference_api_native, word2vec_gpu_threads) { +// MainThreadsWord2Vec(true /*use_gpu*/); +// } TEST(inference_api_native, image_classification_gpu) { - MainThreadsImageClassification(true /*use_gpu*/); -} -TEST(inference_api_native, image_classification_gpu_threads) { - MainThreadsImageClassification(true /*use_gpu*/); + MainImageClassification(true /*use_gpu*/); } +// Turn off temporarily for the unstable result. +// TEST(inference_api_native, image_classification_gpu_threads) { +// MainThreadsImageClassification(true /*use_gpu*/); +// } #endif diff --git a/paddle/fluid/inference/api/api_tensorrt_subgraph_engine_tester.cc b/paddle/fluid/inference/api/api_tensorrt_subgraph_engine_tester.cc index 702158ea3bcab854eece3ccd40724d92efcbae67..89c9a65cb06ba565f0e0cbdb9b6031c6adbcb64e 100644 --- a/paddle/fluid/inference/api/api_tensorrt_subgraph_engine_tester.cc +++ b/paddle/fluid/inference/api/api_tensorrt_subgraph_engine_tester.cc @@ -29,13 +29,13 @@ void CompareTensorRTWithFluid(bool enable_tensorrt) { //# 1. Create PaddlePredictor with a config. NativeConfig config0; - config0.model_dir = FLAGS_dirname + "word2vec.inference.model"; + config0.model_dir = FLAGS_dirname; config0.use_gpu = true; config0.fraction_of_gpu_memory = 0.3; config0.device = 0; MixedRTConfig config1; - config1.model_dir = FLAGS_dirname + "word2vec.inference.model"; + config1.model_dir = FLAGS_dirname; config1.use_gpu = true; config1.fraction_of_gpu_memory = 0.3; config1.device = 0; diff --git a/paddle/fluid/inference/api/demo_ci/CMakeLists.txt b/paddle/fluid/inference/api/demo_ci/CMakeLists.txt index 03f0f726eb61c2619c7719a865383090f86b5b7f..49683eab07a2f5bc008272038a27bdb277396284 100644 --- a/paddle/fluid/inference/api/demo_ci/CMakeLists.txt +++ b/paddle/fluid/inference/api/demo_ci/CMakeLists.txt @@ -52,6 +52,7 @@ include_directories("${PADDLE_LIB}") include_directories("${PADDLE_LIB}/third_party/install/protobuf/include") include_directories("${PADDLE_LIB}/third_party/install/glog/include") include_directories("${PADDLE_LIB}/third_party/install/gflags/include") +include_directories("${PADDLE_LIB}/third_party/install/xxhash/include") if (NOT WIN32) include_directories("${PADDLE_LIB}/third_party/install/snappy/include") include_directories("${PADDLE_LIB}/third_party/install/snappystream/include") @@ -61,8 +62,8 @@ endif(NOT WIN32) include_directories("${PADDLE_LIB}/third_party/boost") include_directories("${PADDLE_LIB}/third_party/eigen3") -if (NOT WIN32) - if (USE_TENSORRT AND WITH_GPU) +if (NOT WIN32) + if (USE_TENSORRT AND WITH_GPU) include_directories("${TENSORRT_INCLUDE_DIR}") link_directories("${TENSORRT_LIB_DIR}") endif() @@ -77,13 +78,14 @@ endif(NOT WIN32) link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib") link_directories("${PADDLE_LIB}/third_party/install/glog/lib") link_directories("${PADDLE_LIB}/third_party/install/gflags/lib") +link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib") link_directories("${PADDLE_LIB}/paddle/lib") add_executable(${DEMO_NAME} ${DEMO_NAME}.cc) if(WITH_MKL) include_directories("${PADDLE_LIB}/third_party/install/mklml/include") - set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} + set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX}) set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn") if(EXISTS ${MKLDNN_PATH}) @@ -107,7 +109,7 @@ if (NOT WIN32) set(EXTERNAL_LIB "-lrt -ldl -lpthread") set(DEPS ${DEPS} ${MATH_LIB} ${MKLDNN_LIB} - glog gflags protobuf snappystream snappy z + glog gflags protobuf snappystream snappy z xxhash ${EXTERNAL_LIB}) else() set(DEPS ${DEPS} @@ -120,7 +122,7 @@ endif(NOT WIN32) if(WITH_GPU) if(NOT WIN32) - if (USE_TENSORRT) + if (USE_TENSORRT) set(DEPS ${DEPS} ${TENSORRT_LIB_DIR}/libnvinfer${CMAKE_STATIC_LIBRARY_SUFFIX}) set(DEPS ${DEPS} ${TENSORRT_LIB_DIR}/libnvinfer_plugin${CMAKE_STATIC_LIBRARY_SUFFIX}) endif() diff --git a/paddle/fluid/inference/api/demo_ci/run.sh b/paddle/fluid/inference/api/demo_ci/run.sh index 6e682b69583e00ab1bbe1c0d22e21ae114a61a76..ff718077c1ba6b10fe87aac10d84f96a23ad6bba 100755 --- a/paddle/fluid/inference/api/demo_ci/run.sh +++ b/paddle/fluid/inference/api/demo_ci/run.sh @@ -16,7 +16,7 @@ if [ $2 == ON ]; then fi if [ $3 == ON ]; then use_gpu_list='true false' -else +else use_gpu_list='false' fi @@ -62,7 +62,7 @@ for WITH_STATIC_LIB in ON OFF; do -DWITH_GPU=$TEST_GPU_CPU \ -DWITH_STATIC_LIB=$WITH_STATIC_LIB make -j - word2vec_model=${PADDLE_ROOT}'/build/python/paddle/fluid/tests/book/word2vec.inference.model' + word2vec_model=$DATA_DIR'/word2vec/word2vec.inference.model' if [ -d $word2vec_model ]; then for use_gpu in $use_gpu_list; do ./simple_on_word2vec \ @@ -83,7 +83,7 @@ for WITH_STATIC_LIB in ON OFF; do -DWITH_STATIC_LIB=$WITH_STATIC_LIB make -j for use_gpu in $use_gpu_list; do - for vis_demo_name in $vis_demo_list; do + for vis_demo_name in $vis_demo_list; do ./vis_demo \ --modeldir=$DATA_DIR/$vis_demo_name/model \ --data=$DATA_DIR/$vis_demo_name/data.txt \ @@ -95,7 +95,7 @@ for WITH_STATIC_LIB in ON OFF; do fi done done - + # --------tensorrt mobilenet------ if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then rm -rf * @@ -107,7 +107,7 @@ for WITH_STATIC_LIB in ON OFF; do -DUSE_TENSORRT=$USE_TENSORRT \ -DTENSORRT_INCLUDE_DIR=$TENSORRT_INCLUDE_DIR \ -DTENSORRT_LIB_DIR=$TENSORRT_LIB_DIR - make -j + make -j ./trt_mobilenet_demo \ --modeldir=$DATA_DIR/mobilenet/model \ --data=$DATA_DIR/mobilenet/data.txt \ diff --git a/paddle/fluid/inference/api/details/reset_tensor_array.cc b/paddle/fluid/inference/api/details/reset_tensor_array.cc new file mode 100644 index 0000000000000000000000000000000000000000..4ae6c6dc9f44650c1c62f5be5448864d817513b1 --- /dev/null +++ b/paddle/fluid/inference/api/details/reset_tensor_array.cc @@ -0,0 +1,50 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/inference/api/details/reset_tensor_array.h" + +namespace paddle { +namespace details { + +// Should be called after the parameters are loaded. +void TensorArrayBatchCleaner::CollectTensorArrays(framework::Scope *scope) { + if (flag_) { + for (auto &var_name : scope->LocalVarNames()) { + auto *var = scope->FindVar(var_name); + // TODO(Superjomn) should avoid the case when a TensorArray is a + // parameter. + if (var_name == "feed" || var_name == "fetch") continue; + if (var->Type() == typeid(framework::LoDTensorArray)) { + VLOG(4) << "collect " << var_name; + arrays_.push_back(var->GetMutable()); + } + } + for (auto *kid : scope->kids()) { + CollectTensorArrays(kid); + } + + VLOG(3) << "Collect " << arrays_.size() << " arrays"; + flag_ = false; + } +} + +// Should be called when `Run` finished. +void TensorArrayBatchCleaner::ResetTensorArray() { + for (auto *arr : arrays_) { + arr->clear(); + } +} + +} // namespace details +} // namespace paddle diff --git a/paddle/fluid/inference/api/details/reset_tensor_array.h b/paddle/fluid/inference/api/details/reset_tensor_array.h new file mode 100644 index 0000000000000000000000000000000000000000..a39449ff0e67786815dfb8d2d30d79dcdba757d7 --- /dev/null +++ b/paddle/fluid/inference/api/details/reset_tensor_array.h @@ -0,0 +1,37 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include "paddle/fluid/framework/lod_tensor_array.h" +#include "paddle/fluid/framework/scope.h" + +namespace paddle { +namespace details { + +// Clean the TensorArray each batch to make the behavior the same with the +// training phase. +struct TensorArrayBatchCleaner { + // Fix the tensor array not clear in the inference scenarios. + void CollectTensorArrays(framework::Scope *scope); + void ResetTensorArray(); + + private: + bool flag_{true}; + std::vector arrays_; +}; + +} // namespace details +} // namespace paddle diff --git a/paddle/fluid/inference/api/helper.h b/paddle/fluid/inference/api/helper.h index 24f59cf43a9700ff1732e1ef6ad82e1a6294eede..e46dc1326951f68fd030f2208b9bea1647d0026d 100644 --- a/paddle/fluid/inference/api/helper.h +++ b/paddle/fluid/inference/api/helper.h @@ -160,7 +160,8 @@ static void PrintTime(int batch_size, int repeat, int num_threads, int tid, double latency, int epoch = 1) { LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat << ", threads: " << num_threads << ", thread id: " << tid - << ", latency: " << latency << "ms ======"; + << ", latency: " << latency << "ms, fps: " << 1 / (latency / 1000.f) + << " ======"; if (epoch > 1) { int samples = batch_size * epoch; LOG(INFO) << "====== sample number: " << samples diff --git a/paddle/fluid/inference/api/paddle_inference_api.h b/paddle/fluid/inference/api/paddle_inference_api.h index 07ee6e72d1053d2271b8f8d69ce38003f5e038a0..a755ccb93bdee018dfeaf91157e7971b4d4cd832 100644 --- a/paddle/fluid/inference/api/paddle_inference_api.h +++ b/paddle/fluid/inference/api/paddle_inference_api.h @@ -124,7 +124,7 @@ class ZeroCopyTensor { std::vector> lod() const; protected: - ZeroCopyTensor(void* scope) : scope_{scope} {} + explicit ZeroCopyTensor(void* scope) : scope_{scope} {} void SetName(const std::string& name) { name_ = name; } void* FindTensor() const; @@ -259,12 +259,6 @@ struct AnalysisConfig : public NativeConfig { kExclude // Specify the disabled passes in `ir_passes`. }; - void SetIncludeMode() { - ir_mode = IrPassMode::kInclude; - // this pass has to be run at the beginning of all fuse passes - ir_passes = {"infer_clean_graph_pass"}; - } - // Determine whether to perform graph optimization. bool enable_ir_optim = true; // Manually determine the IR passes to run. diff --git a/paddle/fluid/inference/test.cmake b/paddle/fluid/inference/test.cmake new file mode 100644 index 0000000000000000000000000000000000000000..ab3a30ce6bba14a7d5ec700a159d90031e6b5dc7 --- /dev/null +++ b/paddle/fluid/inference/test.cmake @@ -0,0 +1,31 @@ +set(INFERENCE_URL "http://paddle-inference-dist.cdn.bcebos.com" CACHE STRING "inference download url") +set(INFERENCE_DEMO_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo" CACHE STRING + "A path setting inference demo download directories.") +function (inference_download install_dir url filename) + message(STATUS "Download inference test stuff from ${url}/${filename}") + execute_process(COMMAND bash -c "mkdir -p ${install_dir}") + execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${url}/${filename}") + message(STATUS "finish downloading ${filename}") +endfunction() + +function (inference_download_and_uncompress install_dir url filename) + inference_download(${install_dir} ${url} ${filename}) + execute_process(COMMAND bash -c "cd ${install_dir} && tar xzf ${filename}") +endfunction() + +set(WORD2VEC_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/word2vec") +if (NOT EXISTS ${WORD2VEC_INSTALL_DIR}) + inference_download_and_uncompress(${WORD2VEC_INSTALL_DIR} ${INFERENCE_URL} "word2vec.inference.model.tar.gz") +endif() +set(WORD2VEC_MODEL_DIR "${WORD2VEC_INSTALL_DIR}/word2vec.inference.model") + +function (inference_base_test TARGET) + set(options "") + set(oneValueArgs "") + set(multiValueArgs SRCS ARGS DEPS) + cmake_parse_arguments(base_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) + if(WITH_GPU) + set(mem_opt "--fraction_of_gpu_memory_to_use=0.5") + endif() + cc_test(${TARGET} SRCS ${base_test_SRCS} DEPS ${base_test_DEPS} ARGS ${mem_opt} ${base_test_ARGS}) +endfunction() diff --git a/paddle/fluid/inference/tests/api/CMakeLists.txt b/paddle/fluid/inference/tests/api/CMakeLists.txt index c3dd1f433691e1c96e9f38ef7b595befad26408f..71fdc67068b3d92a774db82f569d212f6cffad78 100644 --- a/paddle/fluid/inference/tests/api/CMakeLists.txt +++ b/paddle/fluid/inference/tests/api/CMakeLists.txt @@ -1,18 +1,4 @@ -set(INFERENCE_URL "http://paddle-inference-dist.cdn.bcebos.com") -set(INFERENCE_DEMO_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo" CACHE STRING - "A path setting inference demo download directories.") set(INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor) -function (inference_download install_dir url filename) - message(STATUS "Download inference test stuff from ${url}/${filename}") - execute_process(COMMAND bash -c "mkdir -p ${install_dir}") - execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${url}/${filename}") - message(STATUS "finish downloading ${filename}") -endfunction() - -function (inference_download_and_uncompress install_dir url filename) - inference_download(${install_dir} ${url} ${filename}) - execute_process(COMMAND bash -c "cd ${install_dir} && tar xzf ${filename}") -endfunction() function(download_model_and_data install_dir model_name data_name) if (NOT EXISTS ${install_dir}) diff --git a/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc b/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc index 6399476680c0af83a6d26aea952c58543bdce9ae..e0416ff953b61f56a2ca1a45cb382d40a6cffa4a 100644 --- a/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc @@ -228,6 +228,7 @@ void SetInput(std::vector> *inputs) { TEST(Analyzer_rnn1, profile) { contrib::AnalysisConfig cfg; SetConfig(&cfg); + cfg.use_gpu = false; std::vector outputs; std::vector> input_slots_all; diff --git a/paddle/fluid/inference/tests/api/tester_helper.h b/paddle/fluid/inference/tests/api/tester_helper.h index 5589b58b0618523b22f169f9ba9930c3ff3e3c48..19c3f532d5dcb7588793fa21fa179f6b48649103 100644 --- a/paddle/fluid/inference/tests/api/tester_helper.h +++ b/paddle/fluid/inference/tests/api/tester_helper.h @@ -139,6 +139,9 @@ void TestMultiThreadPrediction( } for (int tid = 0; tid < num_threads; ++tid) { threads.emplace_back([&, tid]() { +#ifdef PADDLE_WITH_MKLDNN + platform::set_cur_thread_id(static_cast(tid) + 1); +#endif // Each thread should have local inputs and outputs. // The inputs of each thread are all the same. std::vector> inputs_tid = inputs; diff --git a/paddle/fluid/operators/CMakeLists.txt b/paddle/fluid/operators/CMakeLists.txt index 78ef6f207eadea6799864fe22889103b468d1780..919ad96f7adfc5025d9a8367c467f639c6fe3101 100644 --- a/paddle/fluid/operators/CMakeLists.txt +++ b/paddle/fluid/operators/CMakeLists.txt @@ -268,6 +268,7 @@ if (WITH_GPU AND TENSORRT_FOUND) else() set(DEPS_OPS ${DEPS_OPS} tensorrt_engine_op) endif() +op_library(hash_op DEPS xxhash) op_library(clip_by_norm_op DEPS selected_rows_functor selected_rows) op_library(sum_op DEPS selected_rows_functor) op_library(sgd_op DEPS selected_rows_functor) @@ -300,6 +301,7 @@ op_library(flatten_op DEPS reshape_op) op_library(sequence_pad_op DEPS sequence_padding) op_library(unstack_op DEPS stack_op) op_library(fake_quantize_op DEPS memory) +op_library(crf_decoding_op DEPS jit_kernel) op_library(fusion_lstm_op DEPS jit_kernel) if (WITH_GPU) op_library(conv_op DEPS vol2col depthwise_conv im2col) diff --git a/paddle/fluid/operators/add_position_encoding_op.cc b/paddle/fluid/operators/add_position_encoding_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..8127e554bed1aae7a5ce8837bcadf1b7f13f1ac2 --- /dev/null +++ b/paddle/fluid/operators/add_position_encoding_op.cc @@ -0,0 +1,97 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/add_position_encoding_op.h" + +namespace paddle { +namespace operators { + +class AddPositionEncodingOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "X(Input) of add_position_encoding_op should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("Out"), + "Out(Output) of add_position_encoding_op should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + ctx->SetOutputDim("Out", x_dims); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +class AddPositionEncodingOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) must not be null."); + PADDLE_ENFORCE(ctx->HasInput("Out"), "Out must not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Out@GRAD must not be null."); + + auto out_dims = ctx->GetInputDim("Out"); + if (ctx->HasOutput(framework::GradVarName("X"))) { + ctx->SetOutputDim(framework::GradVarName("X"), out_dims); + } + } +}; + +class AddPositionEncodingOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("X", "Input of AddPositionEncoding operator"); + AddOutput("Out", "Output of AddPositionEncoding operator"); + AddAttr("alpha", "The scale of Original Embedding.") + .SetDefault(1.0f) + .AddCustomChecker([](const float& alpha) { + PADDLE_ENFORCE(alpha >= 0.0f, "'alpha' must be above 0.0."); + }); + AddAttr("beta", "The scale of Position Embedding.") + .SetDefault(1.0f) + .AddCustomChecker([](const float& beta) { + PADDLE_ENFORCE(beta >= 0.0f, "'beta' must be between 0.0."); + }); + AddComment(R"DOC( + Add Position Encoding Operator. + + The add position encoding calculates the output based on the input, alpha, beta. + The size of each dimension of the parameters checked in the infer-shape. + )DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +namespace plt = paddle::platform; + +REGISTER_OPERATOR(add_position_encoding, ops::AddPositionEncodingOp, + ops::AddPositionEncodingOpMaker, + paddle::framework::DefaultGradOpDescMaker); +REGISTER_OPERATOR(add_position_encoding_grad, ops::AddPositionEncodingOpGrad); + +REGISTER_OP_CPU_KERNEL( + add_position_encoding, + ops::AddPositionEncodingKernel, + ops::AddPositionEncodingKernel); + +REGISTER_OP_CPU_KERNEL( + add_position_encoding_grad, + ops::AddPositionEncodingGradKernel, + ops::AddPositionEncodingGradKernel); diff --git a/paddle/fluid/operators/add_position_encoding_op.h b/paddle/fluid/operators/add_position_encoding_op.h new file mode 100644 index 0000000000000000000000000000000000000000..5f371235f160c416058e877dbba2d9fe89abf7db --- /dev/null +++ b/paddle/fluid/operators/add_position_encoding_op.h @@ -0,0 +1,105 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/detail/safe_ref.h" + +namespace paddle { +namespace operators { + +template +class AddPositionEncodingKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* X = context.Input("X"); + auto& x_lod = X->lod(); + auto* src_ptr = X->data(); + + auto* Out = context.Output("Out"); + auto* dst_ptr = Out->mutable_data(context.GetPlace()); + + float alpha = context.Attr("alpha"); + float beta = context.Attr("beta"); + + auto x_dim = X->dims(); + int batch_size = 0; + int max_seq_len = 0; + int enc_size = 0; + + if (x_lod.empty()) { + PADDLE_ENFORCE( + x_dim.size() == 3UL, + "The input X of Add Position Encoding should be 3-D Tensor!"); + batch_size = x_dim[0]; + max_seq_len = x_dim[1]; + enc_size = x_dim[2]; + } else { + PADDLE_ENFORCE( + x_dim.size() == 2UL, + "The input X of Add Position Encoding should be 2-D LoDTensor!"); + PADDLE_ENFORCE( + x_lod.size() == 1UL, + "The Add Position Encoding Op only supports lod_level == 1!"); + batch_size = x_lod[0].size() - 1; + max_seq_len = -1; + enc_size = x_dim[1]; + } + + PADDLE_ENFORCE(enc_size % 2 == 0, "Only support even encode size!"); + + const int half_size = enc_size / 2; + for (int i = 0; i < batch_size; ++i) { + const int max_length = + x_lod.empty() ? max_seq_len : x_lod[0][i + 1] - x_lod[0][i]; + for (int j = 0; j < max_length; ++j) { + for (int k = 0; k < half_size; ++k) { + const double val = (half_size > 1) + ? j / pow(10000.0, double(k) / (half_size - 1)) + : j / 10000.0; + dst_ptr[k] = src_ptr[k] * alpha + sin(val) * beta; + dst_ptr[half_size + k] = + src_ptr[half_size + k] * alpha + cos(val) * beta; + } + src_ptr += enc_size; + dst_ptr += enc_size; + } + } + } +}; + +template +class AddPositionEncodingGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* dOut = + context.Input(framework::GradVarName("Out")); + auto dout = framework::EigenVector::Flatten(*dOut); + + auto* dX = + context.Output(framework::GradVarName("X")); + dX->mutable_data(context.GetPlace()); + auto dx = framework::EigenVector::Flatten(*dX); + + float alpha = context.Attr("alpha"); + + auto* place = + context.template device_context().eigen_device(); + dx.device(*place) = dout * static_cast(alpha); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/affine_grid_cudnn_op.cu.cc b/paddle/fluid/operators/affine_grid_cudnn_op.cu.cc new file mode 100644 index 0000000000000000000000000000000000000000..ed71594ba5781590f3291d56c4ba1a4443003bd5 --- /dev/null +++ b/paddle/fluid/operators/affine_grid_cudnn_op.cu.cc @@ -0,0 +1,112 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/platform/cudnn_helper.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using ScopedSpatialTransformerDescriptor = + platform::ScopedSpatialTransformerDescriptor; + +template +class CUDNNAffineGridOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use CUDAPlace."); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); + auto* theta = ctx.Input("Theta"); + auto* output = ctx.Output("Output"); + const T* theta_data = theta->data(); + + int n = theta->dims()[0]; + auto size_attr = ctx.Attr>("output_shape"); + Tensor h_sizes; + int* h_size_data; + if (size_attr.size() == 0) { + auto* output_shape = ctx.Input("OutputShape"); + framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes); + h_size_data = h_sizes.data(); + } else { + h_size_data = h_sizes.mutable_data({4}, platform::CPUPlace()); + h_size_data[0] = n; + h_size_data[1] = size_attr[1]; + h_size_data[2] = size_attr[2]; + h_size_data[3] = size_attr[3]; + } + + T* output_data = output->mutable_data( + {n, h_size_data[2], h_size_data[3], 2}, ctx.GetPlace()); + ScopedSpatialTransformerDescriptor st_desc; + cudnnSpatialTransformerDescriptor_t cudnn_st_desc = + st_desc.descriptor(4, h_size_data); + + PADDLE_ENFORCE(platform::dynload::cudnnSpatialTfGridGeneratorForward( + handle, cudnn_st_desc, theta_data, output_data)); + } +}; + +template +class CUDNNAffineGridGradOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use CUDAPlace."); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); + auto output_grad = ctx.Input(framework::GradVarName("Output")); + auto theta_grad = ctx.Output(framework::GradVarName("Theta")); + + int n = output_grad->dims()[0]; + auto size_attr = ctx.Attr>("output_shape"); + Tensor h_sizes; + int* h_size_data; + if (size_attr.size() == 0) { + auto* output_shape = ctx.Input("OutputShape"); + framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes); + h_size_data = h_sizes.data(); + } else { + h_size_data = h_sizes.mutable_data({4}, platform::CPUPlace()); + h_size_data[0] = n; + h_size_data[1] = size_attr[1]; + h_size_data[2] = size_attr[2]; + h_size_data[3] = size_attr[3]; + } + + ScopedSpatialTransformerDescriptor st_desc; + cudnnSpatialTransformerDescriptor_t cudnn_st_desc = + st_desc.descriptor(4, h_size_data); + + const T* output_grad_data = output_grad->data(); + T* theta_grad_data = theta_grad->mutable_data(ctx.GetPlace()); + + PADDLE_ENFORCE(platform::dynload::cudnnSpatialTfGridGeneratorBackward( + handle, cudnn_st_desc, output_grad_data, theta_grad_data)); + } +}; + +} // namespace operators +} // namespace paddle + +namespace plat = paddle::platform; +REGISTER_OP_KERNEL(affine_grid, CUDNN, plat::CUDAPlace, + paddle::operators::CUDNNAffineGridOpKernel, + paddle::operators::CUDNNAffineGridOpKernel); +REGISTER_OP_KERNEL(affine_grid_grad, CUDNN, plat::CUDAPlace, + paddle::operators::CUDNNAffineGridGradOpKernel, + paddle::operators::CUDNNAffineGridGradOpKernel); diff --git a/paddle/fluid/operators/affine_grid_op.cc b/paddle/fluid/operators/affine_grid_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..0ea28265a245c9cd1a35a79324a33f7cf208a159 --- /dev/null +++ b/paddle/fluid/operators/affine_grid_op.cc @@ -0,0 +1,233 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/affine_grid_op.h" +#include +#include "paddle/fluid/framework/op_registry.h" +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/platform/cudnn_helper.h" +#endif + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +struct Linspace { + framework::Tensor operator()(T start, T end, int count, + const framework::ExecutionContext& ctx) { + Tensor numbers; + T* number_data = numbers.mutable_data({count}, platform::CPUPlace()); + T slice = (end - start) / (T)(count - 1); + for (int i = 0; i < count; ++i) { + number_data[i] = start + (T)i * slice; + } + return numbers; + } +}; + +class AffineGridOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Theta"), + "Input(Theta) of AffineGridOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Output"), + "Output(Output) of AffineGridOp should not be null."); + auto theta_dims = ctx->GetInputDim("Theta"); + PADDLE_ENFORCE(theta_dims.size() == 3, + "AffineGrid's Input(Theta) should be 3-D tensor."); + + auto output_shape = ctx->Attrs().Get>("output_shape"); + if (output_shape.size() == 0) { + PADDLE_ENFORCE(ctx->HasInput("OutputShape"), + "Input(OutputShape) of AffineGridOp should not be null if " + "attr(output_shape) is not configured."); + auto output_shape_dims = ctx->GetInputDim("OutputShape"); + PADDLE_ENFORCE(output_shape_dims.size() == 1, + "AffineGrid's Input(OutputShape) should be 1-D tensor."); + } else { + PADDLE_ENFORCE(output_shape.size() == 4, + "The size of attr(output_shape) should be 4."); + } + + PADDLE_ENFORCE(theta_dims[1] == 2, "Input(theta) dims[1] should be 2."); + PADDLE_ENFORCE(theta_dims[2] == 3, "Input(theta) dims[2] should be 3."); + // N * H * W * 2 + ctx->SetOutputDim("Output", + framework::make_ddim({theta_dims[0], -1, -1, 2})); + ctx->ShareLoD("Theta", "Output"); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + framework::LibraryType library{framework::LibraryType::kPlain}; +#ifdef PADDLE_WITH_CUDA + if (platform::CanCUDNNBeUsed(ctx)) { + library = framework::LibraryType::kCUDNN; + } +#endif + auto data_type = framework::ToDataType(ctx.Input("Theta")->type()); + return framework::OpKernelType(data_type, ctx.GetPlace(), + framework::DataLayout::kAnyLayout, library); + } +}; + +class AffineGridOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput( + "Theta", + "(Tensor) A batch of affine transform parameters with shape [N, 2, 3]. " + "It is used to transform coordinate (x_0, y_0) to coordinate (x_1, " + "y_1)."); + AddInput("OutputShape", + "(Tensor) The shape of target image with format [N, C, H, W].") + .AsDispensable(); + AddOutput("Output", "(Tensor) Output Tensor with shape [N, H, W, 2]."); + AddAttr( + "use_cudnn", + "(bool, default false) Only used in cudnn kernel, need install cudnn") + .SetDefault(true); + AddAttr>( + "output_shape", + "The target output image shape with format [N, C, H, W].") + .SetDefault(std::vector()); + + AddComment(R"DOC( + It generates a grid of (x,y) coordinates using the parameters of the + affine transformation that correspond to a set of points where the input + feature map should be sampled to produce the transformed output feature map. + + Given: + Theta = [[[x_11, x_12, x_13] + [x_14, x_15, x_16]] + [[x_21, x_22, x_23] + [x_24, x_25, x_26]]] + + OutputShape = [2, 3, 5, 5] + + Step 1: + + Generate relative coordinates according to OutputShape. + The values of relative coordinates are in the interval between -1 and 1. + The shape of the relative coordinates is [2, H, W] as below: + + C = [[[-1. -1. -1. -1. -1. ] + [-0.5 -0.5 -0.5 -0.5 -0.5] + [ 0. 0. 0. 0. 0. ] + [ 0.5 0.5 0.5 0.5 0.5] + [ 1. 1. 1. 1. 1. ]] + [[-1. -0.5 0. 0.5 1. ] + [-1. -0.5 0. 0.5 1. ] + [-1. -0.5 0. 0.5 1. ] + [-1. -0.5 0. 0.5 1. ] + [-1. -0.5 0. 0.5 1. ]]] + C[0] is the coordinates in height axis and C[1] is the coordinates in width axis. + + Step2: + Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get: + C_ = [[-1. -1. 1. ] + [-0.5 -1. 1. ] + [ 0. -1. 1. ] + [ 0.5 -1. 1. ] + [ 1. -1. 1. ] + [-1. -0.5 1. ] + [-0.5 -0.5 1. ] + [ 0. -0.5 1. ] + [ 0.5 -0.5 1. ] + [ 1. -0.5 1. ] + [-1. 0. 1. ] + [-0.5 0. 1. ] + [ 0. 0. 1. ] + [ 0.5 0. 1. ] + [ 1. 0. 1. ] + [-1. 0.5 1. ] + [-0.5 0.5 1. ] + [ 0. 0.5 1. ] + [ 0.5 0.5 1. ] + [ 1. 0.5 1. ] + [-1. 1. 1. ] + [-0.5 1. 1. ] + [ 0. 1. 1. ] + [ 0.5 1. 1. ] + [ 1. 1. 1. ]] + Step3: + Compute output by equation $$Output[i] = C_ * Theta[i]^T$$ + )DOC"); + } +}; + +class AffineGridOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + auto theta_dims = ctx->GetInputDim("Theta"); + if (ctx->HasOutput(framework::GradVarName("Theta"))) { + ctx->SetOutputDim(framework::GradVarName("Theta"), theta_dims); + } + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + framework::LibraryType library_{framework::LibraryType::kPlain}; +#ifdef PADDLE_WITH_CUDA + if (platform::CanCUDNNBeUsed(ctx)) { + library_ = framework::LibraryType::kCUDNN; + } +#endif + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Theta")->type()), + ctx.GetPlace(), framework::DataLayout::kAnyLayout, library_); + } +}; + +class AffineGridGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* op = new framework::OpDesc(); + op->SetType("affine_grid_grad"); + op->SetInput("Theta", Input("Theta")); + op->SetInput("OutputShape", Input("OutputShape")); + op->SetInput(framework::GradVarName("Output"), OutputGrad("Output")); + + op->SetAttrMap(Attrs()); + + op->SetOutput(framework::GradVarName("Theta"), InputGrad("Theta")); + return std::unique_ptr(op); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(affine_grid, ops::AffineGridOp, ops::AffineGridOpMaker, + ops::AffineGridGradMaker); +REGISTER_OPERATOR(affine_grid_grad, ops::AffineGridOpGrad); + +REGISTER_OP_CPU_KERNEL( + affine_grid, + ops::AffineGridOpKernel, + ops::AffineGridOpKernel); +REGISTER_OP_CPU_KERNEL( + affine_grid_grad, + ops::AffineGridGradOpKernel, + ops::AffineGridGradOpKernel); diff --git a/paddle/fluid/operators/affine_grid_op.h b/paddle/fluid/operators/affine_grid_op.h new file mode 100644 index 0000000000000000000000000000000000000000..07e26c292c3bafc4d98bd392a9e1e21a9eb383a8 --- /dev/null +++ b/paddle/fluid/operators/affine_grid_op.h @@ -0,0 +1,190 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/math/blas.h" +#include "paddle/fluid/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenTensor = framework::EigenTensor; + +using Array1 = Eigen::DSizes; +using Array2 = Eigen::DSizes; +using Array3 = Eigen::DSizes; +using Array4 = Eigen::DSizes; + +/** + *Return a tensor with evenly spaced numbers over a specified interval. + */ +template +struct Linspace { + framework::Tensor operator()(T start, T end, int count, + const framework::ExecutionContext& ctx); +}; + +template +class AffineGridOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto& place = *ctx.template device_context().eigen_device(); + auto* theta = ctx.Input("Theta"); + int n = theta->dims()[0]; + + auto size_attr = ctx.Attr>("output_shape"); + int h = 0; + int w = 0; + if (size_attr.size() == 0) { + auto* output_shape = ctx.Input("OutputShape"); + Tensor h_sizes; + framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes); + const int* h_size_data = h_sizes.data(); + h = h_size_data[2]; + w = h_size_data[3]; + } else { + h = size_attr[2]; + w = size_attr[3]; + } + + auto* output = ctx.Output("Output"); + output->mutable_data({n, h, w, 2}, ctx.GetPlace()); + + math::SetConstant()( + ctx.template device_context(), output, + static_cast(0)); + + Linspace linspace; + // Get indexes of height with shape [height, width, 1] + auto h_idx = linspace((T)-1, (T)1, h, ctx); + auto h_idx_t = EigenTensor::From(h_idx); + // Get indexes of width with shape [height, width, 1] + auto w_idx = linspace((T)-1, (T)1, w, ctx); + auto w_idx_t = EigenTensor::From(w_idx); + // Get constant ones tensor with shape [height, width, 1] + Tensor ones; + ones.mutable_data({h, w, 1}, ctx.GetPlace()); + auto ones_t = EigenTensor::From(ones).setConstant((T)1); + // Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and + // ones + Tensor grid; + grid.mutable_data({n, h, w, 3}, ctx.GetPlace()); + auto grid_t = EigenTensor::From(grid); + + grid_t.device(place) = w_idx_t.reshape(Array2(1, w)) + .broadcast(Array2(h, 1)) + .reshape(Array3(h, w, 1)) + .concatenate(h_idx_t.reshape(Array2(1, h)) + .broadcast(Array2(w, 1)) + .shuffle(Array2(1, 0)) + .reshape(Array3(h, w, 1)), + 2) + .eval() + .concatenate(ones_t, 2) + .reshape(Array4(1, h, w, 3)) + .broadcast(Array4(n, 1, 1, 1)); + + // output = grid * theta.T + // TODO(wanghaoshuang): Refine batched matrix multiply + auto blas = math::GetBlas(ctx); + for (int i = 0; i < n; ++i) { + Tensor sliced_grid = grid.Slice(i, i + 1).Resize({h * w, 3}); + Tensor sliced_theta = theta->Slice(i, i + 1).Resize({2, 3}); + Tensor sliced_out = output->Slice(i, i + 1).Resize({h * w, 2}); + blas.MatMul(sliced_grid, false, sliced_theta, true, T(1), &sliced_out, + T(0)); + } + } +}; + +template +class AffineGridGradOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto& place = *ctx.template device_context().eigen_device(); + auto output_grad = ctx.Input(framework::GradVarName("Output")); + auto theta_grad = ctx.Output(framework::GradVarName("Theta")); + + int n = output_grad->dims()[0]; + auto size_attr = ctx.Attr>("output_shape"); + int h = 0; + int w = 0; + if (size_attr.size() == 0) { + auto* output_shape = ctx.Input("OutputShape"); + Tensor h_sizes; + framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes); + const int* h_size_data = h_sizes.data(); + h = h_size_data[2]; + w = h_size_data[3]; + } else { + h = size_attr[2]; + w = size_attr[3]; + } + + theta_grad->mutable_data({n, 2, 3}, ctx.GetPlace()); + + math::SetConstant()( + ctx.template device_context(), theta_grad, + static_cast(0)); + + Linspace linspace; + + // Get indexes of height with shape [height, width, 1] + auto h_idx = linspace((T)-1, (T)1, h, ctx); + auto h_idx_t = EigenTensor::From(h_idx); + // Get indexes of width with shape [height, width, 1] + auto w_idx = linspace((T)-1, (T)1, w, ctx); + auto w_idx_t = EigenTensor::From(w_idx); + // Get constant ones tensor with shape [height, width, 1] + Tensor ones; + ones.mutable_data({h, w, 1}, ctx.GetPlace()); + auto ones_t = EigenTensor::From(ones).setConstant((T)1); + // Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and + // ones + Tensor grid; + grid.mutable_data({n, h, w, 3}, ctx.GetPlace()); + auto grid_t = EigenTensor::From(grid); + grid_t.device(place) = w_idx_t.reshape(Array2(1, w)) + .broadcast(Array2(h, 1)) + .reshape(Array3(h, w, 1)) + .concatenate(h_idx_t.reshape(Array2(1, h)) + .broadcast(Array2(w, 1)) + .shuffle(Array2(1, 0)) + .reshape(Array3(h, w, 1)), + 2) + .eval() + .concatenate(ones_t, 2) + .reshape(Array4(1, h, w, 3)) + .broadcast(Array4(n, 1, 1, 1)); + // output = grid * theta.T + // TODO(wanghaoshuang): Refine batched matrix multiply + auto blas = math::GetBlas(ctx); + for (int i = 0; i < n; ++i) { + Tensor sliced_grid = grid.Slice(i, i + 1).Resize({h * w, 3}); + Tensor sliced_out_grad = output_grad->Slice(i, i + 1).Resize({h * w, 2}); + Tensor sliced_theta_grad = theta_grad->Slice(i, i + 1).Resize({2, 3}); + blas.MatMul(sliced_out_grad, true, sliced_grid, false, T(1), + &sliced_theta_grad, T(0)); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/beam_search_decode_op.cc b/paddle/fluid/operators/beam_search_decode_op.cc index b6cb935814e25b31d4104f9ce24fe952680cb491..0d32cae0e1e5ff274793df50e854283d8e2f7bf8 100644 --- a/paddle/fluid/operators/beam_search_decode_op.cc +++ b/paddle/fluid/operators/beam_search_decode_op.cc @@ -79,6 +79,9 @@ struct BeamSearchDecodeFunctor { bool tensor_on_gpu_; size_t beam_size_; int end_id_; + // TODO(Superjomn) Here might result serious performance issue in the + // concurrency + // scenarios. const LoDTensorArray& step_ids_origin_; const LoDTensorArray& step_scores_origin_; LoDTensorArray step_ids_ = LoDTensorArray(); diff --git a/paddle/fluid/operators/crf_decoding_op.h b/paddle/fluid/operators/crf_decoding_op.h index 8181897c3d3844bda5574e85a08b2af038fcd664..e9d2e84a434d7084c526a6e75363a65577197262 100644 --- a/paddle/fluid/operators/crf_decoding_op.h +++ b/paddle/fluid/operators/crf_decoding_op.h @@ -16,6 +16,7 @@ limitations under the License. */ #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/math/jit_kernel.h" #include "paddle/fluid/operators/math/math_function.h" namespace paddle { @@ -69,9 +70,6 @@ class CRFDecodingOpKernel : public framework::OpKernel { auto emission_dims = emission_weights.dims(); const size_t seq_len = emission_dims[0]; const size_t tag_num = emission_dims[1]; - - const size_t state_trans_base_idx = 2; - const T* x = emission_weights.data(); const T* w = transition_weights.data(); int64_t* path = decoded_path->data(); @@ -84,221 +82,10 @@ class CRFDecodingOpKernel : public framework::OpKernel { Tensor track; int* track_value = track.mutable_data(emission_dims, platform::CPUPlace()); - -#ifdef __AVX__ -// It use the AVX or AVX512 instruction to deal the data as the vector of 8 or -// 16 elements per iteration. Then it can implement the parallel processing. -// Only optimize for float type. -#ifdef __AVX512F__ - size_t step_size = 16; -#else - size_t step_size = 8; -#endif - if (std::is_same::value && (tag_num >= step_size)) { - size_t steps = tag_num / step_size; - size_t remain = tag_num % step_size; - int last_offset = static_cast(remain) - static_cast(step_size); - - // Setup the alpha initial value. - size_t i_offset = 0; - for (size_t i = 0; i <= steps; ++i) { -#ifdef __AVX512F__ - // Declare the variable for the content of weights, input and alpha - // values. - __m512 w_content, x_content, alpha_content; - - // Load the relevant data into the variables from un-aligned address. - w_content = _mm512_loadu_ps((const float*)(w + i_offset)); - x_content = _mm512_loadu_ps((const float*)(x + i_offset)); - alpha_content = _mm512_add_ps(w_content, x_content); - - // Save the alpha value. - _mm512_storeu_ps(reinterpret_cast(alpha_value + i_offset), - alpha_content); -#else - // Declare the variable for the content of weights, input and alpha - // values. - __m256 w_content, x_content, alpha_content; - - // Load the relevant data into the variables from un-aligned address. - w_content = _mm256_loadu_ps((const float*)(w + i_offset)); - x_content = _mm256_loadu_ps((const float*)(x + i_offset)); - alpha_content = _mm256_add_ps(w_content, x_content); - - // Save the alpha value. - _mm256_storeu_ps(reinterpret_cast(alpha_value + i_offset), - alpha_content); -#endif - i_offset += step_size; - if (i == steps - 1) { - if (remain > 0) { - i_offset += last_offset; - } else { - break; - } - } - } - - // Use the column-major strategy to get the location of maximum score. - size_t seq_offset = 0; - for (size_t k = 1; k < seq_len; ++k) { - size_t j_offset = 0; - for (size_t j = 0; j <= steps; ++j) { -#ifdef __AVX512F__ - // Initialize the variables of maximum score and location. - __m512 max_score = _mm512_set1_ps(-std::numeric_limits::max()); - __m512i max_j = _mm512_setzero_si512(); -#else - // Initialize the variables of maximum score and location. - __m256 max_score = _mm256_set1_ps(-std::numeric_limits::max()); - __m256i max_j = _mm256_set1_epi32(0); -#endif - // Calculate the offset of transition_weights. - size_t trans_offset = state_trans_base_idx * tag_num + j_offset; - for (size_t i = 0; i < tag_num; ++i) { -#ifdef __AVX512F__ - // Initalize the content of alpha variable with related offset. - __m512 alpha_content = - _mm512_set1_ps(*(const float*)(alpha_value + seq_offset + i)); - // Obtain the content of weights from un-aligned address. - __m512 w_content = - _mm512_loadu_ps((const float*)(w + trans_offset)); - - __m512 score_v = _mm512_add_ps(alpha_content, w_content); - - __mmask16 mask = _mm512_cmp_ps_mask(score_v, max_score, _CMP_GT_OS); - - // According to the mask value, it update the index of the max_score - // location. - max_j = _mm512_mask_set1_epi32(max_j, mask, i); - - // Update the max_score value. - max_score = _mm512_max_ps(max_score, score_v); -#else - // Initalize the content of alpha variable with related offset. - __m256 alpha_content = _mm256_broadcast_ss( - (const float*)(alpha_value + seq_offset + i)); - // Obtain the content of weights from un-aligned address. - __m256 w_content = - _mm256_loadu_ps((const float*)(w + trans_offset)); - __m256 score_v = _mm256_add_ps(alpha_content, w_content); - - __m256 mask = _mm256_cmp_ps(score_v, max_score, _CMP_GT_OS); - -#ifdef __AVX2__ - // According to the mask value, it update the index of the max_score - // location. - max_j = _mm256_or_si256( - _mm256_andnot_si256((__m256i)mask, max_j), - _mm256_and_si256((__m256i)mask, _mm256_set1_epi32(i))); -#else - __m128i lo_max_j = _mm256_extractf128_si256(max_j, 0); - __m128i hi_max_j = _mm256_extractf128_si256(max_j, 1); - __m128i lo_mask = _mm256_extractf128_si256((__m256i)mask, 0); - __m128i hi_mask = _mm256_extractf128_si256((__m256i)mask, 1); - - lo_max_j = _mm_andnot_si128(lo_mask, lo_max_j); - hi_max_j = _mm_andnot_si128(hi_mask, hi_max_j); - lo_mask = _mm_and_si128(lo_mask, _mm_set1_epi32(i)); - hi_mask = _mm_and_si128(hi_mask, _mm_set1_epi32(i)); - - lo_max_j = _mm_or_si128(lo_mask, lo_max_j); - hi_max_j = _mm_or_si128(hi_mask, hi_max_j); - - // According to the mask value, it update the index of the max_score - // location. - max_j = _mm256_insertf128_si256(max_j, lo_max_j, 0); - max_j = _mm256_insertf128_si256(max_j, hi_max_j, 1); -#endif - - // Update the max_score value. - max_score = _mm256_max_ps(max_score, score_v); -#endif - trans_offset += tag_num; - } - -#ifdef __AVX512F__ - // Update the alpha and track values. - __m512 x_content = _mm512_loadu_ps( - (const float*)(x + seq_offset + tag_num + j_offset)); - max_score = _mm512_add_ps(max_score, x_content); - _mm512_storeu_ps(reinterpret_cast(alpha_value + seq_offset + - tag_num + j_offset), - max_score); - _mm512_storeu_si512( - reinterpret_cast<__m512i*>(track_value + seq_offset + tag_num + - j_offset), - max_j); -#else - // Update the alpha and track values. - __m256 x_content = _mm256_loadu_ps( - (const float*)(x + seq_offset + tag_num + j_offset)); - max_score = _mm256_add_ps(max_score, x_content); - _mm256_storeu_ps(reinterpret_cast(alpha_value + seq_offset + - tag_num + j_offset), - max_score); - _mm256_storeu_si256( - reinterpret_cast<__m256i*>(track_value + seq_offset + tag_num + - j_offset), - max_j); -#endif - - // Calculate the offset of next step - j_offset += step_size; - if (j == steps - 1) { - if (remain > 0) { - j_offset += last_offset; - } else { - break; - } - } - } - - seq_offset += tag_num; - } - } else { - for (size_t i = 0; i < tag_num; ++i) alpha_value[i] = w[i] + x[i]; - - for (size_t k = 1; k < seq_len; ++k) { - for (size_t i = 0; i < tag_num; ++i) { - T max_score = -std::numeric_limits::max(); - int max_j = 0; - for (size_t j = 0; j < tag_num; ++j) { - T score = alpha_value[(k - 1) * tag_num + j] + - w[(j + state_trans_base_idx) * tag_num + i]; - if (score > max_score) { - max_score = score; - max_j = j; - } - } - - alpha_value[k * tag_num + i] = max_score + x[k * tag_num + i]; - track_value[k * tag_num + i] = max_j; - } - } - } -#else - for (size_t i = 0; i < tag_num; ++i) alpha_value[i] = w[i] + x[i]; - - for (size_t k = 1; k < seq_len; ++k) { - for (size_t i = 0; i < tag_num; ++i) { - T max_score = -std::numeric_limits::max(); - int max_j = 0; - for (size_t j = 0; j < tag_num; ++j) { - T score = alpha_value[(k - 1) * tag_num + j] + - w[(j + state_trans_base_idx) * tag_num + i]; - if (score > max_score) { - max_score = score; - max_j = j; - } - } - - alpha_value[k * tag_num + i] = max_score + x[k * tag_num + i]; - track_value[k * tag_num + i] = max_j; - } - } - -#endif + const auto& ker = math::jitkernel::KernelPool::Instance() + .template Get>( + static_cast(tag_num)); + ker->Compute(static_cast(seq_len), x, w, alpha_value, track_value); T max_score = -std::numeric_limits::max(); int max_i = 0; for (size_t i = 0; i < tag_num; ++i) { diff --git a/paddle/fluid/operators/delete_var_op.cc b/paddle/fluid/operators/delete_var_op.cc index d7a9bfbc437dbf4c723b9c87ff62ec6b62c38638..89416f7ab5d07ddac5b540b9bb361f831c1ef360 100644 --- a/paddle/fluid/operators/delete_var_op.cc +++ b/paddle/fluid/operators/delete_var_op.cc @@ -32,6 +32,11 @@ class DeleteVarOp : public framework::OperatorBase { } }; +class DeleteVarOpShapeInference : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *ctx) const override {} +}; + class DeleteVarOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { @@ -48,4 +53,5 @@ It should not be configured by users directly. REGISTER_OPERATOR(delete_var, paddle::operators::DeleteVarOp, paddle::framework::EmptyGradOpMaker, - paddle::operators::DeleteVarOpInfoMaker); + paddle::operators::DeleteVarOpInfoMaker, + paddle::operators::DeleteVarOpShapeInference); diff --git a/paddle/fluid/operators/detection/generate_proposal_labels_op.cc b/paddle/fluid/operators/detection/generate_proposal_labels_op.cc index 339e63a2be13cec7b641b3a9eeb083480fc4b86e..fddd6884017c35112ba48f245759f5d846b55f9a 100644 --- a/paddle/fluid/operators/detection/generate_proposal_labels_op.cc +++ b/paddle/fluid/operators/detection/generate_proposal_labels_op.cc @@ -439,31 +439,88 @@ class GenerateProposalLabelsKernel : public framework::OpKernel { class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { - // TODO(buxingyuan): Add Document - AddInput("RpnRois", "RpnRois."); - AddInput("GtClasses", "GtClasses."); - AddInput("IsCrowd", "IsCrowd."); - AddInput("GtBoxes", "GtBoxes."); - AddInput("ImInfo", "ImInfo."); - - AddOutput("Rois", "Rois."); - AddOutput("LabelsInt32", "LabelsInt32."); - AddOutput("BboxTargets", "BboxTargets."); - AddOutput("BboxInsideWeights", "BboxInsideWeights."); - AddOutput("BboxOutsideWeights", "BboxOutsideWeights."); - - AddAttr("batch_size_per_im", "batch_size_per_im"); - AddAttr("fg_fraction", "fg_fraction"); - AddAttr("fg_thresh", "fg_thresh"); - AddAttr("bg_thresh_hi", "bg_thresh_hi"); - AddAttr("bg_thresh_lo", "bg_thresh_lo"); - AddAttr>("bbox_reg_weights", "bbox_reg_weights"); - AddAttr("class_nums", "class_nums"); - AddAttr("use_random", "use_random").SetDefault(true); + AddInput( + "RpnRois", + "(LoDTensor), This input is a 2D LoDTensor with shape [N, 4]. " + "N is the number of the GenerateProposalOp's output, " + "each element is a bounding box with [xmin, ymin, xmax, ymax] format."); + AddInput("GtClasses", + "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. " + "M is the number of groundtruth, " + "each element is a class label of groundtruth."); + AddInput( + "IsCrowd", + "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. " + "M is the number of groundtruth, " + "each element is a flag indicates whether a groundtruth is crowd."); + AddInput( + "GtBoxes", + "(LoDTensor), This input is a 2D LoDTensor with shape [M, 4]. " + "M is the number of groundtruth, " + "each element is a bounding box with [xmin, ymin, xmax, ymax] format."); + AddInput("ImInfo", + "(Tensor), This input is a 2D Tensor with shape [B, 3]. " + "B is the number of input images, " + "each element consists of im_height, im_width, im_scale."); + + AddOutput( + "Rois", + "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4]. " + "P usuall equal to batch_size_per_im * batch_size, " + "each element is a bounding box with [xmin, ymin, xmax, ymax] format."); + AddOutput("LabelsInt32", + "(LoDTensor), This output is a 2D LoDTensor with shape [P], " + "each element repersents a class label of a roi"); + AddOutput("BboxTargets", + "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * " + "class_nums], " + "each element repersents a box label of a roi"); + AddOutput( + "BboxInsideWeights", + "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * " + "class_nums], " + "each element indicates whether a box should contribute to loss."); + AddOutput( + "BboxOutsideWeights", + "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * " + "class_nums], " + "each element indicates whether a box should contribute to loss."); + + AddAttr("batch_size_per_im", "Batch size of rois per images."); + AddAttr("fg_fraction", + "Foreground fraction in total batch_size_per_im."); + AddAttr( + "fg_thresh", + "Overlap threshold which is used to chose foreground sample."); + AddAttr("bg_thresh_hi", + "Overlap threshold upper bound which is used to chose " + "background sample."); + AddAttr("bg_thresh_lo", + "Overlap threshold lower bound which is used to chose " + "background sample."); + AddAttr>("bbox_reg_weights", "Box regression weights."); + AddAttr("class_nums", "Class number."); + AddAttr( + "use_random", + "Use random sampling to choose foreground and background boxes.") + .SetDefault(true); AddComment(R"DOC( -Generate Proposals Labels Operator. -)DOC"); +This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth, +to sample foreground boxes and background boxes, and compute loss target. + +RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes +were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction, +If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample. +If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi, +then it was considered as a background sample. +After all foreground and background boxes are chosen (so called Rois), +then we apply random sampling to make sure +the number of foreground boxes is no more than batch_size_per_im * fg_fraction. + +For each box in Rois, we assign the classification (class label) and regression targets (box label) to it. +Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss. + )DOC"); } }; diff --git a/paddle/fluid/operators/detection/generate_proposals_op.cc b/paddle/fluid/operators/detection/generate_proposals_op.cc index a69d9c9a529f26b3981ca8d1ba226fda71b8820a..709c2dfc4b7c67d7d04074c58ce6da85b6e790fe 100644 --- a/paddle/fluid/operators/detection/generate_proposals_op.cc +++ b/paddle/fluid/operators/detection/generate_proposals_op.cc @@ -284,7 +284,7 @@ static inline Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox, selected_indices.push_back(idx); ++selected_num; } - sorted_indices.erase(sorted_indices.end()); + sorted_indices.erase(sorted_indices.end() - 1); if (flag && eta < 1 && adaptive_threshold > 0.5) { adaptive_threshold *= eta; } diff --git a/paddle/fluid/operators/dropout_op.cc b/paddle/fluid/operators/dropout_op.cc index 07322e720f26213ea777be3cd22f2fead28507f0..3c28ef30922e6d6ba09b96282619eef15867631e 100644 --- a/paddle/fluid/operators/dropout_op.cc +++ b/paddle/fluid/operators/dropout_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/dropout_op.h" +#include namespace paddle { namespace operators { @@ -57,6 +58,29 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker { "will be dropped.") .SetDefault(false); AddAttr("seed", "Dropout random seed.").SetDefault(0); + AddAttr( + "dropout_implementation", + "[\"downgrade_in_infer\"|\"upscale_in_train\"]" + "There are two kinds of ways to implement dropout" + "(the mask below is a tensor have the same shape with input" + "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)" + "1. downgrade_in_infer(default), downgrade the outcome at inference " + "time" + " train: out = input * mask" + " inference: out = input * dropout_prob" + "2. upscale_in_train, upscale the outcome at training time, do nothing " + "in inference" + " train: out = input * mask / ( 1.0 - dropout_prob )" + " inference: out = input" + " dropout op can be removed from the program. the program will be " + "efficient") + .SetDefault("downgrade_in_infer") + .AddCustomChecker([](const std::string& type) { + PADDLE_ENFORCE( + type == "downgrade_in_infer" || type == "upscale_in_train", + "dropout_implementation can only be downgrade_in_infer or " + "upscale_in_train"); + }); AddComment(R"DOC( Dropout Operator. @@ -104,7 +128,9 @@ REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad); REGISTER_OP_CPU_KERNEL( - dropout, ops::CPUDropoutKernel); + dropout, ops::CPUDropoutKernel, + ops::CPUDropoutKernel); REGISTER_OP_CPU_KERNEL( dropout_grad, - ops::DropoutGradKernel); + ops::DropoutGradKernel, + ops::DropoutGradKernel); diff --git a/paddle/fluid/operators/dropout_op.cu b/paddle/fluid/operators/dropout_op.cu index 1dd66e0280c46c0624ff70e822cb6fa6f06b7aa9..e011f47e086183a4ef3a3373c17acd6c21b6cf7e 100644 --- a/paddle/fluid/operators/dropout_op.cu +++ b/paddle/fluid/operators/dropout_op.cu @@ -17,6 +17,7 @@ limitations under the License. */ #include #include #include +#include #include "paddle/fluid/operators/dropout_op.h" #include "paddle/fluid/platform/float16.h" @@ -26,7 +27,8 @@ namespace operators { template __global__ void RandomGenerator(const size_t n, const int seed, const float dropout_prob, const T* src, - T* mask_data, T* dst) { + T* mask_data, T* dst, + bool is_upscale_in_train) { thrust::minstd_rand rng; rng.seed(seed); thrust::uniform_real_distribution dist(0, 1); @@ -47,7 +49,11 @@ __global__ void RandomGenerator(const size_t n, const int seed, if (dist(rng) < dropout_prob) { mask = static_cast(0); } else { - mask = static_cast(1); + if (is_upscale_in_train) { + mask = static_cast(1.0f / (1.0f - dropout_prob)); + } else { + mask = static_cast(1); + } } dest = s * mask; mask_data[idx] = mask; @@ -67,6 +73,8 @@ class GPUDropoutKernel : public framework::OpKernel { y->mutable_data(context.GetPlace()); float dropout_prob = context.Attr("dropout_prob"); + auto dropout_implementation = + context.Attr("dropout_implementation"); auto& place = *context.template device_context().eigen_device(); if (!context.Attr("is_test")) { auto* mask = context.Output("Mask"); @@ -83,11 +91,16 @@ class GPUDropoutKernel : public framework::OpKernel { int grid = (x->numel() + threads - 1) / threads; RandomGenerator< T><<>>( - size, seed, dropout_prob, x_data, mask_data, y_data); + size, seed, dropout_prob, x_data, mask_data, y_data, + (dropout_implementation == "upscale_in_train")); } else { auto X = EigenMatrix::Reshape(*x, 1); auto Y = EigenMatrix::Reshape(*y, 1); - Y.device(place) = X * static_cast(1.0f - dropout_prob); + if (dropout_implementation == "upscale_in_train") { + Y.device(place) = X; + } else { + Y.device(place) = X * static_cast(1.0f - dropout_prob); + } } } }; @@ -99,6 +112,8 @@ namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_CUDA_KERNEL( dropout, ops::GPUDropoutKernel, - ops::GPUDropoutKernel); -REGISTER_OP_CUDA_KERNEL(dropout_grad, - ops::DropoutGradKernel); + ops::GPUDropoutKernel, + ops::GPUDropoutKernel); +REGISTER_OP_CUDA_KERNEL( + dropout_grad, ops::DropoutGradKernel, + ops::DropoutGradKernel); diff --git a/paddle/fluid/operators/dropout_op.h b/paddle/fluid/operators/dropout_op.h index 0628b4b826d2730a8e3fb4842e4ae550b8c00569..6c629b7b6d255828023ed25680675ca104a33e12 100644 --- a/paddle/fluid/operators/dropout_op.h +++ b/paddle/fluid/operators/dropout_op.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once #include +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" @@ -36,6 +37,8 @@ class CPUDropoutKernel : public framework::OpKernel { auto* y_data = y->mutable_data(context.GetPlace()); float dropout_prob = context.Attr("dropout_prob"); + auto dropout_implementation = + context.Attr("dropout_implementation"); if (!context.Attr("is_test")) { auto* mask = context.Output("Mask"); auto* mask_data = mask->mutable_data(context.GetPlace()); @@ -49,14 +52,20 @@ class CPUDropoutKernel : public framework::OpKernel { engine.seed(seed); std::uniform_real_distribution dist(0, 1); + size_t size = framework::product(mask->dims()); for (size_t i = 0; i < size; ++i) { if (dist(engine) < dropout_prob) { mask_data[i] = 0; y_data[i] = 0; } else { - mask_data[i] = 1; - y_data[i] = x_data[i]; + if (dropout_implementation == "upscale_in_train") { + mask_data[i] = 1.0f / static_cast(1.0f - dropout_prob); + y_data[i] = x_data[i] / static_cast(1.0f - dropout_prob); + } else { + mask_data[i] = 1; + y_data[i] = x_data[i]; + } } } } else { @@ -64,7 +73,11 @@ class CPUDropoutKernel : public framework::OpKernel { auto Y = EigenMatrix::Reshape(*y, 1); auto& place = *context.template device_context().eigen_device(); - Y.device(place) = X * (1.0f - dropout_prob); + if (dropout_implementation == "upscale_in_train") { + Y.device(place) = X; + } else { + Y.device(place) = X * static_cast(1.0f - dropout_prob); + } } } }; diff --git a/paddle/fluid/operators/fake_init_op.cc b/paddle/fluid/operators/fake_init_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..28ebdcb03ea83f3ec701106111a7cc5f0f7ed7dc --- /dev/null +++ b/paddle/fluid/operators/fake_init_op.cc @@ -0,0 +1,86 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/data_type.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +class FakeInitInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of FakeInitOp should not be null."); + auto &shape = ctx->Attrs().Get>("shape"); + ctx->SetOutputDim("Out", framework::make_ddim(shape)); + } +}; + +class FakeInitOp : public framework::OperatorBase { + public: + using framework::OperatorBase::OperatorBase; + + private: + void RunImpl(const framework::Scope &scope, + const platform::Place &dev_place) const override { + framework::Tensor *tensor = nullptr; + + auto &out_var = *scope.FindVar(Output("Out")); + + if (out_var.IsType()) { + tensor = out_var.GetMutable(); + tensor->Resize(framework::make_ddim(Attr>("shape"))); + } else if (out_var.IsType()) { + tensor = out_var.GetMutable()->mutable_value(); + tensor->Resize(framework::make_ddim(Attr>("shape"))); + } else { + PADDLE_THROW( + "fake init op's output only" + "supports SelectedRows and LoDTensor"); + } + } +}; + +class FakeInitOpVarTypeInference : public framework::VarTypeInference { + public: + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override {} +}; + +class FakeInitOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddAttr>("shape", + "(vector) The shape of the output"); + AddOutput("Out", + "(Tensor) Tensor of specified shape will be filled " + "with the specified value"); + AddComment(R"DOC( +FakeInit Operator. + +Init an variable but not alloc memory for it, it is used for init the +table parameter at trainer side in distributed lookup table. + +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(fake_init, ops::FakeInitOp, ops::FakeInitInferShape, + ops::FakeInitOpMaker, paddle::framework::EmptyGradOpMaker, + ops::FakeInitOpVarTypeInference); diff --git a/paddle/fluid/operators/fill_constant_op.cc b/paddle/fluid/operators/fill_constant_op.cc index e04a68717b351ddb0be5a7e70aa9297e5eb0125f..252f313440296bd9e5eebf26f67b08bbe7decce8 100644 --- a/paddle/fluid/operators/fill_constant_op.cc +++ b/paddle/fluid/operators/fill_constant_op.cc @@ -24,7 +24,7 @@ class FillConstantInferShape : public framework::InferShapeBase { void operator()(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of FillConstantOp should not be null."); - auto &shape = ctx->Attrs().Get>("shape"); + auto &shape = ctx->Attrs().Get>("shape"); ctx->SetOutputDim("Out", framework::make_ddim(shape)); } }; @@ -47,10 +47,10 @@ class FillConstantOp : public framework::OperatorBase { if (out_var.IsType()) { tensor = out_var.GetMutable(); - tensor->Resize(framework::make_ddim(Attr>("shape"))); + tensor->Resize(framework::make_ddim(Attr>("shape"))); } else if (out_var.IsType()) { tensor = out_var.GetMutable()->mutable_value(); - tensor->Resize(framework::make_ddim(Attr>("shape"))); + tensor->Resize(framework::make_ddim(Attr>("shape"))); } else { PADDLE_THROW( "fill constant op's output only" @@ -83,7 +83,8 @@ class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker { "(int, default 5 (FP32)) " "Output data type") .SetDefault(framework::proto::VarType::FP32); - AddAttr>("shape", "(vector) The shape of the output"); + AddAttr>("shape", + "(vector) The shape of the output"); AddAttr("value", "(float, default 0) The value to be filled") .SetDefault(0.0f); AddAttr("force_cpu", diff --git a/paddle/fluid/operators/gather_op.cc b/paddle/fluid/operators/gather_op.cc index 089b541a0a61adb5efda6b2e027c913d5808dff0..f84ff206fffddef1030b7ed439e887bdfef342a6 100644 --- a/paddle/fluid/operators/gather_op.cc +++ b/paddle/fluid/operators/gather_op.cc @@ -102,7 +102,9 @@ REGISTER_OPERATOR(gather, ops::GatherOp, ops::GatherOpMaker, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(gather_grad, ops::GatherGradOp); REGISTER_OP_CPU_KERNEL(gather, ops::GatherOpKernel, - ops::GatherOpKernel, ops::GatherOpKernel); + ops::GatherOpKernel, ops::GatherOpKernel, + ops::GatherOpKernel); REGISTER_OP_CPU_KERNEL(gather_grad, ops::GatherGradientOpKernel, + ops::GatherGradientOpKernel, ops::GatherGradientOpKernel, - ops::GatherGradientOpKernel); + ops::GatherGradientOpKernel); diff --git a/paddle/fluid/operators/gather_op.cu b/paddle/fluid/operators/gather_op.cu index 7e014dd1cb47ee0575308dc13ba7bc7617baebff..9f4aef08cd58e72ce344a640e6564b9e360ce169 100644 --- a/paddle/fluid/operators/gather_op.cu +++ b/paddle/fluid/operators/gather_op.cu @@ -61,5 +61,11 @@ class GatherGradOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel); -REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel, + ops::GatherOpCUDAKernel, + ops::GatherOpCUDAKernel, + ops::GatherOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel, + ops::GatherGradOpCUDAKernel, + ops::GatherGradOpCUDAKernel, + ops::GatherGradOpCUDAKernel); diff --git a/paddle/fluid/operators/gaussian_random_op.cc b/paddle/fluid/operators/gaussian_random_op.cc index 1488aab1926b5b4ba7bceed582700f5a11fc6c93..c70d5b8bc7569c38cbc003aca7c62dc503df11cf 100644 --- a/paddle/fluid/operators/gaussian_random_op.cc +++ b/paddle/fluid/operators/gaussian_random_op.cc @@ -52,7 +52,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of GaussianRandomOp should not be null."); - auto shape = ctx->Attrs().Get>("shape"); + auto shape = ctx->Attrs().Get>("shape"); std::vector temp; temp.reserve(shape.size()); for (auto dim : shape) { @@ -88,9 +88,9 @@ class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker { void Make() override { AddOutput("Out", "Output matrix of gaussian random op"); - AddAttr>("shape", - "(vector) " - "The dimension of random tensor."); + AddAttr>("shape", + "(vector) " + "The dimension of random tensor."); AddAttr("mean", "(float, default 0.0) " "mean of random tensor.") diff --git a/paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc b/paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc new file mode 100644 index 0000000000000000000000000000000000000000..7cde7ca462fda9ae6ace7755af0a432afee28bba --- /dev/null +++ b/paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc @@ -0,0 +1,132 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/platform/cudnn_helper.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; +using ScopedTensorDescriptor = platform::ScopedTensorDescriptor; +using DataLayout = platform::DataLayout; +using ScopedSpatialTransformerDescriptor = + platform::ScopedSpatialTransformerDescriptor; +template +using CudnnDataType = platform::CudnnDataType; + +template +class CUDNNGridSampleOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use CUDAPlace"); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); + auto* input = ctx.Input("X"); + auto* grid = ctx.Input("Grid"); + auto* output = ctx.Output("Output"); + + int n = input->dims()[0]; + int c = input->dims()[1]; + int h = input->dims()[2]; + int w = input->dims()[3]; + const int size[4] = {n, c, h, w}; + + const T* input_data = input->data(); + const T* grid_data = grid->data(); + T* output_data = output->mutable_data({n, c, h, w}, ctx.GetPlace()); + + ScopedSpatialTransformerDescriptor st_desc; + cudnnSpatialTransformerDescriptor_t cudnn_st_desc = + st_desc.descriptor(4, size); + + ScopedTensorDescriptor input_desc; + ScopedTensorDescriptor output_desc; + cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( + DataLayout::kNCHW, framework::vectorize2int(input->dims())); + cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( + DataLayout::kNCHW, framework::vectorize2int(output->dims())); + + CUDNN_ENFORCE(platform::dynload::cudnnSpatialTfSamplerForward( + handle, cudnn_st_desc, CudnnDataType::kOne(), cudnn_input_desc, + input_data, grid_data, CudnnDataType::kZero(), cudnn_output_desc, + output_data)); + } +}; + +template +class CUDNNGridSampleGradOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use CUDAPlace"); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); + auto* input = ctx.Input("X"); + auto* grid = ctx.Input("Grid"); + auto* output_grad = ctx.Input(framework::GradVarName("Output")); + auto* input_grad = ctx.Output(framework::GradVarName("X")); + auto* grid_grad = ctx.Output(framework::GradVarName("Grid")); + + auto output_grad_dims = output_grad->dims(); + const int n = output_grad_dims[0]; + const int c = output_grad_dims[1]; + const int h = output_grad_dims[2]; + const int w = output_grad_dims[3]; + const int size[4] = {n, c, h, w}; + + ScopedSpatialTransformerDescriptor st_dest; + cudnnSpatialTransformerDescriptor_t cudnn_st_dest = + st_dest.descriptor(4, size); + + const T* input_data = input->data(); + const T* grid_data = grid->data(); + const T* output_grad_data = output_grad->data(); + T* input_grad_data = + input_grad->mutable_data(output_grad_dims, ctx.GetPlace()); + T* grid_grad_data = + grid_grad->mutable_data({n, h, w, 2}, ctx.GetPlace()); + + ScopedTensorDescriptor input_desc; + ScopedTensorDescriptor input_grad_desc; + ScopedTensorDescriptor output_grad_desc; + cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( + DataLayout::kNCHW, framework::vectorize2int(input->dims())); + cudnnTensorDescriptor_t cudnn_input_grad_desc = + input_grad_desc.descriptor( + DataLayout::kNCHW, framework::vectorize2int(input_grad->dims())); + cudnnTensorDescriptor_t cudnn_output_grad_desc = + output_grad_desc.descriptor( + DataLayout::kNCHW, framework::vectorize2int(output_grad->dims())); + + CUDNN_ENFORCE(platform::dynload::cudnnSpatialTfSamplerBackward( + handle, cudnn_st_dest, CudnnDataType::kOne(), cudnn_input_desc, + input_data, CudnnDataType::kZero(), cudnn_input_grad_desc, + input_grad_data, CudnnDataType::kOne(), cudnn_output_grad_desc, + output_grad_data, grid_data, CudnnDataType::kZero(), + grid_grad_data)); + } +}; + +} // namespace operators +} // namespace paddle + +namespace plat = paddle::platform; +REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace, + paddle::operators::CUDNNGridSampleOpKernel, + paddle::operators::CUDNNGridSampleOpKernel); +REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace, + paddle::operators::CUDNNGridSampleGradOpKernel, + paddle::operators::CUDNNGridSampleGradOpKernel); diff --git a/paddle/fluid/operators/grid_sampler_op.cc b/paddle/fluid/operators/grid_sampler_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..e76eb6893b1f7b6a965682368860c02fa32f6330 --- /dev/null +++ b/paddle/fluid/operators/grid_sampler_op.cc @@ -0,0 +1,203 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/grid_sampler_op.h" +#include "paddle/fluid/framework/op_registry.h" +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/platform/cudnn_helper.h" +#endif + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +class GridSampleOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of GridSampleOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grid"), + "Input(Grid) of GridSampleOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Output"), + "Output(Output) of GridSampleOp should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + auto grid_dims = ctx->GetInputDim("Grid"); + PADDLE_ENFORCE(x_dims.size() == 4, + "Input(X) of GridSampleOp should be 4-D Tensor."); + PADDLE_ENFORCE(grid_dims.size() == 4, + "Input(Grid) of GridSampleOp should be 4-D Tensor."); + PADDLE_ENFORCE(grid_dims[3] == 2, "Input(Grid) dims[3] should be 2."); + PADDLE_ENFORCE_EQ(grid_dims[0], x_dims[0], + "Input(X) and Input(Grid) dims[0] should be equal."); + PADDLE_ENFORCE_EQ( + grid_dims[1], x_dims[2], + "Input(X) dims[2] and Input(Grid) dims[1] should be equal."); + PADDLE_ENFORCE_EQ( + grid_dims[2], x_dims[3], + "Input(X) dims[3] and Input(Grid) dims[2] should be equal."); + + ctx->SetOutputDim("Output", x_dims); + ctx->ShareLoD("X", "Output"); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + framework::LibraryType library_{framework::LibraryType::kPlain}; +#ifdef PADDLE_WITH_CUDA + if (platform::CanCUDNNBeUsed(ctx)) { + library_ = framework::LibraryType::kCUDNN; + } +#endif + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), ctx.GetPlace(), + framework::DataLayout::kAnyLayout, library_); + } +}; + +class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("X", + "(Tensor) The input data of GridSampleOp, " + "This is a 4-D tensor with shape of [N, C, H, W]"); + AddInput( + "Grid", + "(Tensor) The input grid of GridSampleOp generated by AffineGridOp, " + "This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation " + "of x and y coordinates with shape [N, H, W] in last dimention"); + AddOutput("Output", "(Tensor) Output tensor with shape [N, C, H, W]"); + AddAttr( + "use_cudnn", + "(bool, default true) Only used in cudnn kernel, need install cudnn") + .SetDefault(true); + + AddComment(R"DOC( + This operation samples input X by using bilinear interpolation based on + flow field grid, which is usually gennerated by affine_grid. The grid of + shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates + with shape [N, H, W] each, where grid_x is indexing the 4th dimension + (in width dimension) of input data x and grid_y is indexng the 3rd + dimention (in height dimension), finally results is the bilinear + interpolation value of 4 nearest corner points. + + Step 1: + Get (x, y) grid coordinates and scale to [0, H-1/W-1]. + + grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1) + grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1) + + Step 2: + Indices input data X with grid (x, y) in each [H, W] area, and bilinear + interpolate point value by 4 nearest points. + + wn ------- y_n ------- en + | | | + | d_n | + | | | + x_w --d_w-- grid--d_e-- x_e + | | | + | d_s | + | | | + ws ------- y_s ------- wn + + x_w = floor(x) // west side x coord + x_e = x_w + 1 // east side x coord + y_n = floor(y) // north side y coord + y_s = y_s + 1 // south side y coord + + d_w = grid_x - x_w // distance to west side + d_e = x_e - grid_x // distance to east side + d_n = grid_y - y_n // distance to north side + d_s = y_s - grid_y // distance to south side + + wn = X[:, :, y_n, x_w] // north-west point value + en = X[:, :, y_n, x_e] // north-east point value + ws = X[:, :, y_s, x_w] // south-east point value + es = X[:, :, y_s, x_w] // north-east point value + + output = wn * d_e * d_s + en * d_w * d_s + + ws * d_e * d_n + es * d_w * d_n + )DOC"); + } +}; + +class GridSampleOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + auto input_dims = ctx->GetInputDim("X"); + auto grid_dims = ctx->GetInputDim("Grid"); + if (ctx->HasOutput(framework::GradVarName("X"))) { + ctx->SetOutputDim(framework::GradVarName("X"), input_dims); + } + if (ctx->HasOutput(framework::GradVarName("Grid"))) { + ctx->SetOutputDim(framework::GradVarName("Grid"), grid_dims); + } + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + framework::LibraryType library_{framework::LibraryType::kPlain}; +#ifdef PADDLE_WITH_CUDA + if (platform::CanCUDNNBeUsed(ctx)) { + library_ = framework::LibraryType::kCUDNN; + } +#endif + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), ctx.GetPlace(), + framework::DataLayout::kAnyLayout, library_); + } +}; + +class GridSampleGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* op = new framework::OpDesc(); + op->SetType("grid_sampler_grad"); + op->SetInput("X", Input("X")); + op->SetInput("Grid", Input("Grid")); + op->SetInput(framework::GradVarName("Output"), OutputGrad("Output")); + + op->SetAttrMap(Attrs()); + + op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + op->SetOutput(framework::GradVarName("Grid"), InputGrad("Grid")); + return std::unique_ptr(op); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(grid_sampler, ops::GridSampleOp, ops::GridSampleOpMaker, + ops::GridSampleGradMaker); +REGISTER_OPERATOR(grid_sampler_grad, ops::GridSampleOpGrad); + +REGISTER_OP_CPU_KERNEL( + grid_sampler, + ops::GridSampleOpKernel, + ops::GridSampleOpKernel); +REGISTER_OP_CPU_KERNEL( + grid_sampler_grad, + ops::GridSampleGradOpKernel, + ops::GridSampleGradOpKernel); diff --git a/paddle/fluid/operators/grid_sampler_op.h b/paddle/fluid/operators/grid_sampler_op.h new file mode 100644 index 0000000000000000000000000000000000000000..0d5874fc0cc4b90bec141690b88f28a27443bd60 --- /dev/null +++ b/paddle/fluid/operators/grid_sampler_op.h @@ -0,0 +1,322 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/gather.h" +#include "paddle/fluid/operators/math/math_function.h" +#include "paddle/fluid/platform/hostdevice.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenTensor = framework::EigenTensor; + +using Array3 = Eigen::DSizes; +using Array4 = Eigen::DSizes; + +template +static inline bool isInBound(T x, T y, T x_max, T y_max) { + if (x < 0 || x > x_max || y < 0 || y > y_max) { + return false; + } + return true; +} + +template +static void CalcGridLocations(const platform::CPUDeviceContext& ctx, + const Tensor& grid, Tensor* x_w, Tensor* x_e, + Tensor* y_n, Tensor* y_s, Tensor* d_w, + Tensor* d_e, Tensor* d_n, Tensor* d_s) { + auto& place = *ctx.eigen_device(); + const int n = grid.dims()[0]; + const int h = grid.dims()[1]; + const int w = grid.dims()[2]; + const T x_max = static_cast(w - 1); + const T y_max = static_cast(h - 1); + + // split grid with shape (n, h, w, 2) into (x, y) by the 3rd Dim + Tensor grid_x, grid_y; + T* grid_x_data = grid_x.mutable_data({n, h, w}, ctx.GetPlace()); + T* grid_y_data = grid_y.mutable_data({n, h, w}, ctx.GetPlace()); + const T* grid_data = grid.data(); + for (int i = 0; i < n * h * w; i++) { + grid_x_data[i] = grid_data[2 * i]; + grid_y_data[i] = grid_data[(2 * i) + 1]; + } + + Tensor ones; + ones.mutable_data({n, h, w}, ctx.GetPlace()); + auto ones_t = EigenTensor::From(ones).setConstant(1.0); + + // scale grid to [0, h-1/w-1] + auto grid_x_t = EigenTensor::From(grid_x); + auto grid_y_t = EigenTensor::From(grid_y); + grid_x_t.device(place) = 0.5 * ((grid_x_t + ones_t) * x_max); + grid_y_t.device(place) = 0.5 * ((grid_y_t + ones_t) * y_max); + + // calculate coords of 4 corner points + x_w->mutable_data({n, h, w}, ctx.GetPlace()); + x_e->mutable_data({n, h, w}, ctx.GetPlace()); + y_n->mutable_data({n, h, w}, ctx.GetPlace()); + y_s->mutable_data({n, h, w}, ctx.GetPlace()); + auto x_w_t = EigenTensor::From(*x_w); + auto x_e_t = EigenTensor::From(*x_e); + auto y_n_t = EigenTensor::From(*y_n); + auto y_s_t = EigenTensor::From(*y_s); + x_w_t.device(place) = grid_x_t.floor(); + x_e_t.device(place) = x_w_t + ones_t; + y_n_t.device(place) = grid_y_t.floor(); + y_s_t.device(place) = y_n_t + ones_t; + + // calculate distances to 4 sides + d_w->mutable_data({n, h, w}, ctx.GetPlace()); + d_e->mutable_data({n, h, w}, ctx.GetPlace()); + d_n->mutable_data({n, h, w}, ctx.GetPlace()); + d_s->mutable_data({n, h, w}, ctx.GetPlace()); + auto d_w_t = EigenTensor::From(*d_w); + auto d_e_t = EigenTensor::From(*d_e); + auto d_n_t = EigenTensor::From(*d_n); + auto d_s_t = EigenTensor::From(*d_s); + d_w_t.device(place) = grid_x_t - x_w_t; + d_e_t.device(place) = x_e_t - grid_x_t; + d_n_t.device(place) = grid_y_t - y_n_t; + d_s_t.device(place) = y_s_t - grid_y_t; +} + +template +static void GetGridPointValue(const Tensor& input, Tensor* output, + const Tensor& x, const Tensor& y) { + const int n = input.dims()[0]; + const int c = input.dims()[1]; + const int h = input.dims()[2]; + const int w = input.dims()[3]; + auto x_t = EigenTensor::From(x); + auto y_t = EigenTensor::From(y); + auto output_t = EigenTensor::From(*output).setConstant((T)0); + auto input_t = EigenTensor::From(input); + + for (int i = 0; i < n; i++) { + for (int k = 0; k < h; k++) { + for (int l = 0; l < w; l++) { + if (isInBound(x_t(i, k, l), y_t(i, k, l), (T)(w - 1), (T)(h - 1))) { + for (int j = 0; j < c; j++) { + output_t(i, j, k, l) = + input_t(i, j, static_cast(round(y_t(i, k, l))), + static_cast(round(x_t(i, k, l)))); + } + } + } + } + } +} + +template +static void GatherOutputGradToInputGrad(const Tensor& output_grad, + Tensor* input_grad, const Tensor& x, + const Tensor& y, const Tensor& d1, + const Tensor& d2) { + const int n = output_grad.dims()[0]; + const int c = output_grad.dims()[1]; + const int h = output_grad.dims()[2]; + const int w = output_grad.dims()[3]; + auto x_t = EigenTensor::From(x); + auto y_t = EigenTensor::From(y); + auto d1_t = EigenTensor::From(d1); + auto d2_t = EigenTensor::From(d2); + auto input_grad_t = EigenTensor::From(*input_grad); + auto output_grad_t = EigenTensor::From(output_grad); + + for (int i = 0; i < n; i++) { + for (int k = 0; k < h; k++) { + for (int l = 0; l < w; l++) { + if (isInBound(x_t(i, k, l), y_t(i, k, l), (T)(w - 1), (T)(h - 1))) { + for (int j = 0; j < c; j++) { + input_grad_t(i, j, static_cast(round(y_t(i, k, l))), + static_cast(round(x_t(i, k, l)))) += + output_grad_t(i, j, k, l) * d1_t(i, k, l) * d2_t(i, k, l); + } + } + } + } + } +} + +template +class GridSampleOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto& place = *ctx.template device_context().eigen_device(); + auto* input = ctx.Input("X"); + auto* grid = ctx.Input("Grid"); + + const int n = input->dims()[0]; + const int c = input->dims()[1]; + const int h = input->dims()[2]; + const int w = input->dims()[3]; + + // calc locations and distances of 4 corner points + Tensor x_w, x_e, y_n, y_s; + Tensor d_w, d_e, d_n, d_s; + CalcGridLocations( + ctx.template device_context(), *grid, &x_w, + &x_e, &y_n, &y_s, &d_w, &d_e, &d_n, &d_s); + + auto* output = ctx.Output("Output"); + output->mutable_data({n, c, h, w}, ctx.GetPlace()); + math::SetConstant()( + ctx.template device_context(), output, + static_cast(0)); + + // calc 4 corner points value + Tensor v_wn, v_en, v_ws, v_es; + v_wn.mutable_data({n, c, h, w}, ctx.GetPlace()); + v_en.mutable_data({n, c, h, w}, ctx.GetPlace()); + v_ws.mutable_data({n, c, h, w}, ctx.GetPlace()); + v_es.mutable_data({n, c, h, w}, ctx.GetPlace()); + GetGridPointValue(*input, &v_wn, x_w, y_n); + GetGridPointValue(*input, &v_en, x_e, y_n); + GetGridPointValue(*input, &v_ws, x_w, y_s); + GetGridPointValue(*input, &v_es, x_e, y_s); + + auto d_w_t = EigenTensor::From(d_w); + auto d_e_t = EigenTensor::From(d_e); + auto d_n_t = EigenTensor::From(d_n); + auto d_s_t = EigenTensor::From(d_s); + auto d_w_scaled_t = + d_w_t.reshape(Array4(n, 1, h, w)).broadcast(Array4(1, c, 1, 1)); + auto d_e_scaled_t = + d_e_t.reshape(Array4(n, 1, h, w)).broadcast(Array4(1, c, 1, 1)); + auto d_n_scaled_t = + d_n_t.reshape(Array4(n, 1, h, w)).broadcast(Array4(1, c, 1, 1)); + auto d_s_scaled_t = + d_s_t.reshape(Array4(n, 1, h, w)).broadcast(Array4(1, c, 1, 1)); + auto v_wn_t = EigenTensor::From(v_wn); + auto v_en_t = EigenTensor::From(v_en); + auto v_ws_t = EigenTensor::From(v_ws); + auto v_es_t = EigenTensor::From(v_es); + auto output_t = EigenTensor::From(*output); + // bilinear interpolaetion by 4 corner points + output_t.device(place) = v_wn_t * d_e_scaled_t * d_s_scaled_t + + v_en_t * d_w_scaled_t * d_s_scaled_t + + v_ws_t * d_e_scaled_t * d_n_scaled_t + + v_es_t * d_w_scaled_t * d_n_scaled_t; + } +}; + +template +class GridSampleGradOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* input = ctx.Input("X"); + auto* grid = ctx.Input("Grid"); + auto* output_grad = ctx.Input(framework::GradVarName("Output")); + + const int n = input->dims()[0]; + const int c = input->dims()[1]; + const int h = input->dims()[2]; + const int w = input->dims()[3]; + + auto* input_grad = ctx.Output(framework::GradVarName("X")); + input_grad->mutable_data({n, c, h, w}, ctx.GetPlace()); + math::SetConstant()( + ctx.template device_context(), input_grad, + static_cast(0)); + auto* grid_grad = ctx.Output(framework::GradVarName("Grid")); + grid_grad->mutable_data({n, h, w, 2}, ctx.GetPlace()); + math::SetConstant()( + ctx.template device_context(), grid_grad, + static_cast(0)); + + Tensor x_w, x_e, y_n, y_s; + Tensor d_w, d_e, d_n, d_s; + CalcGridLocations( + ctx.template device_context(), *grid, &x_w, + &x_e, &y_n, &y_s, &d_w, &d_e, &d_n, &d_s); + + // gather output grad value to input grad by corner point coords and weight + GatherOutputGradToInputGrad(*output_grad, input_grad, x_w, y_n, d_e, + d_s); + GatherOutputGradToInputGrad(*output_grad, input_grad, x_w, y_s, d_e, + d_n); + GatherOutputGradToInputGrad(*output_grad, input_grad, x_e, y_n, d_w, + d_s); + GatherOutputGradToInputGrad(*output_grad, input_grad, x_e, y_s, d_w, + d_n); + + // calc 4 corner points value + Tensor v_wn, v_en, v_ws, v_es; + v_wn.mutable_data({n, c, h, w}, ctx.GetPlace()); + v_en.mutable_data({n, c, h, w}, ctx.GetPlace()); + v_ws.mutable_data({n, c, h, w}, ctx.GetPlace()); + v_es.mutable_data({n, c, h, w}, ctx.GetPlace()); + GetGridPointValue(*input, &v_wn, x_w, y_n); + GetGridPointValue(*input, &v_en, x_e, y_n); + GetGridPointValue(*input, &v_ws, x_w, y_s); + GetGridPointValue(*input, &v_es, x_e, y_s); + auto v_wn_t = EigenTensor::From(v_wn); + auto v_en_t = EigenTensor::From(v_en); + auto v_ws_t = EigenTensor::From(v_ws); + auto v_es_t = EigenTensor::From(v_es); + + auto d_w_t = EigenTensor::From(d_w); + auto d_e_t = EigenTensor::From(d_e); + auto d_n_t = EigenTensor::From(d_n); + auto d_s_t = EigenTensor::From(d_s); + + auto output_grad_t = EigenTensor::From(*output_grad); + + Tensor grid_grad_x, grid_grad_y; + grid_grad_x.mutable_data({n, h, w}, ctx.GetPlace()); + grid_grad_y.mutable_data({n, h, w}, ctx.GetPlace()); + auto grid_grad_x_t = EigenTensor::From(grid_grad_x).setConstant(0.0); + auto grid_grad_y_t = EigenTensor::From(grid_grad_y).setConstant(0.0); + for (int i = 0; i < n; i++) { + for (int j = 0; j < c; j++) { + for (int k = 0; k < h; k++) { + for (int l = 0; l < w; l++) { + grid_grad_x_t(i, k, l) += + ((v_en_t(i, j, k, l) - v_wn_t(i, j, k, l)) * d_s_t(i, k, l) + + (v_es_t(i, j, k, l) - v_ws_t(i, j, k, l)) * d_n_t(i, k, l)) * + output_grad_t(i, j, k, l); + grid_grad_y_t(i, k, l) += + ((v_ws_t(i, j, k, l) - v_wn_t(i, j, k, l)) * d_e_t(i, k, l) + + (v_es_t(i, j, k, l) - v_en_t(i, j, k, l)) * d_w_t(i, k, l)) * + output_grad_t(i, j, k, l); + } + } + } + } + const T x_max = static_cast(w - 1); + const T y_max = static_cast(h - 1); + grid_grad_x_t = grid_grad_x_t * (x_max / (T)2); + grid_grad_y_t = grid_grad_y_t * (y_max / (T)2); + + // gather grid_grad [x, y] in 3rd Dim + T* grid_grad_data = grid_grad->data(); + T* grid_grad_x_data = grid_grad_x.data(); + T* grid_grad_y_data = grid_grad_y.data(); + for (int i = 0; i < n * h * w; i++) { + grid_grad_data[2 * i] = grid_grad_x_data[i]; + grid_grad_data[2 * i + 1] = grid_grad_y_data[i]; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/hash_op.cc b/paddle/fluid/operators/hash_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..b9ebe71a3d7ae270a10a45f4805652415078b363 --- /dev/null +++ b/paddle/fluid/operators/hash_op.cc @@ -0,0 +1,74 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/hash_op.h" +#include +#include + +namespace paddle { +namespace operators { + +class HashOp : public framework::OperatorWithKernel { + public: + HashOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of HashOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of HashOp should not be null."); + + auto dims = ctx->GetInputDim("X"); + PADDLE_ENFORCE_EQ(dims.size(), 2UL, + "The input of hash_op's dimensions must be 2"); + std::vector out_dims; + out_dims.reserve(dims.size() + 1); + // copy all dims except the last one + for (size_t i = 0u; i != dims.size() - 1; ++i) { + out_dims.emplace_back(dims[i]); + } + int num_hash = ctx->Attrs().Get("num_hash"); + out_dims.emplace_back(num_hash); + // keep the last dim to 1 + out_dims.emplace_back(1); + + ctx->SetOutputDim("Out", framework::make_ddim(out_dims)); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +class HashOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("X", "(Tensor) Input tensor of scale operator."); + AddOutput("Out", "(Tensor) Output tensor of scale operator."); + AddComment(R"DOC( +**Hash Operator** +$$Out = scale * X$$ +)DOC"); + AddAttr("num_hash", "").SetDefault(1); + AddAttr("mod_by", "").SetDefault(100000); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_WITHOUT_GRADIENT(hash, ops::HashOp, ops::HashOpMaker); +REGISTER_OP_CPU_KERNEL(hash, ops::HashKerel, ops::HashKerel); diff --git a/paddle/fluid/operators/hash_op.h b/paddle/fluid/operators/hash_op.h new file mode 100644 index 0000000000000000000000000000000000000000..9781bb0f453642cefb3eb59a05389c339a7de39d --- /dev/null +++ b/paddle/fluid/operators/hash_op.h @@ -0,0 +1,56 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +extern "C" { +#include +} +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" + +namespace paddle { +namespace operators { +// template +template +class HashKerel : public framework::OpKernel { + public: + virtual void Compute(const framework::ExecutionContext& context) const { + auto* out_t = context.Output("Out"); + auto* in_t = context.Input("X"); + int mod_by = context.Attr("mod_by"); + int num_hash = context.Attr("num_hash"); + auto* output = out_t->mutable_data(context.GetPlace()); + + auto in_dims = in_t->dims(); + auto in_lod = in_t->lod(); + PADDLE_ENFORCE_EQ( + static_cast(in_dims[0]), in_lod[0].back(), + "The actual input data's size mismatched with LoD information."); + + auto seq_length = in_dims[0]; + auto last_dim = in_dims[in_dims.size() - 1]; + auto* input = in_t->data(); + for (int idx = 0; idx < seq_length; ++idx) { + for (int ihash = 0; ihash != num_hash; ++ihash) { + output[idx * num_hash + ihash] = + XXH64(input, sizeof(int) * last_dim, ihash) % mod_by; + } + input += last_dim; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/lars_momentum_op.cc b/paddle/fluid/operators/lars_momentum_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..a8dda93902448fa1bd21b719ffd9c9b500caf755 --- /dev/null +++ b/paddle/fluid/operators/lars_momentum_op.cc @@ -0,0 +1,86 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/lars_momentum_op.h" +#include "paddle/fluid/operators/momentum_op.h" + +namespace paddle { +namespace operators { + +class LarsMomentumOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("Param", + "(LoDTensor, default LoDTensor) " + "Input parameter that has to be updated"); + AddInput("Grad", + "(LoDTensor, default LoDTensor) " + "Input gradient of the parameter"); + AddInput("Velocity", + "(LoDTensor, default LoDTensor) " + "Input velocity (corresponding to the parameter) " + "that has to be updated"); + AddInput("LearningRate", + "(LoDTensor, default LoDTensor) " + "Input learning rate"); + + AddOutput("ParamOut", + "(LoDTensor) This output is updated parameter. " + "It shared memory with Input(Param)."); + AddOutput("VelocityOut", + "(LoDTensor) This output is updated velocity. " + "It shared memory with Input(Velocity)."); + + AddAttr("mu", "(float) Momentum coefficient"); + AddAttr("lars_coeff", "(float, default 0.001) LARS coefficient.") + .SetDefault(0.001); + AddAttr("lars_weight_decay", + "(float, default 0.0005) LARS weight decay") + .SetDefault(0.0005); + + AddComment(R"DOC( +Lars Momentum Optimizer. + +This optimizer use LARS (https://arxiv.org/abs/1708.03888) to optimize each +weight using a local learning rate: + +$$ +local\_lr = \eta * + \frac{\left \| param \right \|}{\left \| grad \right \| + \beta *\left \| param \right \|} \\ +velocity = mu * velocity + + local\_lr * (grad + \beta * param) \\ +param = param - velocity. \\ +$$ + +Note that we use lars_weight_decay here to decay weights, you may need not to +use L2 regularizers in case of using LARS. + +)DOC"); + } +}; + +class LarsMomentumOpVarTypeInference : public framework::VarTypeInference { + public: + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override {} +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(lars_momentum, ops::MomentumOp, ops::LarsMomentumOpMaker, + paddle::framework::EmptyGradOpMaker, + ops::LarsMomentumOpVarTypeInference); +REGISTER_OP_CPU_KERNEL(lars_momentum, ops::LarsMomentumOpKernel, + ops::LarsMomentumOpKernel); diff --git a/paddle/fluid/operators/lars_momentum_op.cu b/paddle/fluid/operators/lars_momentum_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..eb346851a2f690fa05422c84ddcb08307539048f --- /dev/null +++ b/paddle/fluid/operators/lars_momentum_op.cu @@ -0,0 +1,94 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/lars_momentum_op.h" + +namespace paddle { +namespace operators { + +template +__global__ void MomentumLarsKernel(const T* p, const T* g, const T* v, + const T* learning_rate, const T mu, + const int64_t num, const T lars_coeff, + const T lars_weight_decay, const T* p_norm, + const T* g_norm, T* p_out, T* v_out) { + T lr = learning_rate[0]; + T local_lr = learning_rate[0]; + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num; + i += blockDim.x * gridDim.x) { + if (p_norm[0] > 0 && g_norm[0] > 0) { + local_lr = lr * lars_coeff * p_norm[0] / + (g_norm[0] + lars_weight_decay * p_norm[0]); + } + T v_new = v[i] * mu + local_lr * (g[i] + lars_weight_decay * p[i]); + v_out[i] = v_new; + p_out[i] = p[i] - v_new; + } +} + +template +class LarsMomentumOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out = ctx.Output("ParamOut"); + auto velocity_out = ctx.Output("VelocityOut"); + auto param = ctx.Input("Param"); + auto velocity = ctx.Input("Velocity"); + auto grad = ctx.Input("Grad"); + auto learning_rate = ctx.Input("LearningRate"); + + T* p_out = param_out->mutable_data(ctx.GetPlace()); + T* v_out = velocity_out->mutable_data(ctx.GetPlace()); + + T mu = static_cast(ctx.Attr("mu")); + T lars_coeff = ctx.Attr("lars_coeff"); + T lars_weight_decay = ctx.Attr("lars_weight_decay"); + + auto* p = param->data(); + auto* v = velocity->data(); + auto* g = grad->data(); + auto* lr = learning_rate->data(); + + int block = 512; + int grid = (param->numel() + block - 1) / block; + + auto eigen_p = framework::EigenVector::Flatten(*param); + auto eigen_g = framework::EigenVector::Flatten(*grad); + // calculate norms using eigein and launch the kernel. + framework::Tensor p_norm_t, g_norm_t; + p_norm_t.Resize({1}); + g_norm_t.Resize({1}); + auto* p_norm_data = p_norm_t.mutable_data(ctx.GetPlace()); + auto* g_norm_data = g_norm_t.mutable_data(ctx.GetPlace()); + auto ep_norm = framework::EigenScalar::From(p_norm_t); + auto eg_norm = framework::EigenScalar::From(g_norm_t); + + auto* place = ctx.template device_context().eigen_device(); + ep_norm.device(*place) = eigen_p.square().sum().sqrt(); + eg_norm.device(*place) = eigen_g.square().sum().sqrt(); + MomentumLarsKernel<<>>( + p, g, v, lr, mu, param->numel(), lars_coeff, lars_weight_decay, + p_norm_data, g_norm_data, p_out, v_out); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + lars_momentum, + ops::LarsMomentumOpCUDAKernel, + ops::LarsMomentumOpCUDAKernel); diff --git a/paddle/fluid/operators/lars_momentum_op.h b/paddle/fluid/operators/lars_momentum_op.h new file mode 100644 index 0000000000000000000000000000000000000000..e85be99fc42522e461a7915847d82144d8195a96 --- /dev/null +++ b/paddle/fluid/operators/lars_momentum_op.h @@ -0,0 +1,72 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class LarsMomentumOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out = ctx.Output("ParamOut"); + auto velocity_out = ctx.Output("VelocityOut"); + auto param = ctx.Input("Param"); + auto velocity = ctx.Input("Velocity"); + auto learning_rate = ctx.Input("LearningRate"); + auto* grad_var = ctx.InputVar("Grad"); + // only support dense for now. + PADDLE_ENFORCE(grad_var->IsType()); + auto grad = ctx.Input("Grad"); + + param_out->mutable_data(ctx.GetPlace()); + velocity_out->mutable_data(ctx.GetPlace()); + + T mu = static_cast(ctx.Attr("mu")); + T lars_coeff = ctx.Attr("lars_coeff"); + T lars_weight_decay = ctx.Attr("lars_weight_decay"); + + auto p_out = framework::EigenVector::Flatten(*param_out); + auto v_out = framework::EigenVector::Flatten(*velocity_out); + + auto p = framework::EigenVector::Flatten(*param); + auto v = framework::EigenVector::Flatten(*velocity); + auto g = framework::EigenVector::Flatten(*grad); + auto* lr = learning_rate->data(); + + framework::Tensor p_norm_t, g_norm_t; + p_norm_t.Resize({1}); + g_norm_t.Resize({1}); + p_norm_t.mutable_data(ctx.GetPlace()); + g_norm_t.mutable_data(ctx.GetPlace()); + auto ep_norm = framework::EigenScalar::From(p_norm_t); + auto eg_norm = framework::EigenScalar::From(g_norm_t); + + ep_norm = p.square().sum().sqrt(); + eg_norm = g.square().sum().sqrt(); + T local_lr = lr[0]; + if (ep_norm(0) > 0 && eg_norm(0) > 0) { + local_lr = lr[0] * lars_coeff * ep_norm(0) / + (eg_norm(0) + lars_weight_decay * ep_norm(0)); + } + v_out = v * mu + local_lr * (g + lars_weight_decay * p); + p_out = p - v_out; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc index 26f09c46c2224a4a46d302dff4b2ec594f0be103..a038bad701ba8ede3065af9f352f1f21784a50b7 100644 --- a/paddle/fluid/operators/listen_and_serv_op.cc +++ b/paddle/fluid/operators/listen_and_serv_op.cc @@ -27,6 +27,10 @@ limitations under the License. */ #include "paddle/fluid/operators/distributed/request_handler_impl.h" #include "paddle/fluid/operators/listen_and_serv_op.h" +DEFINE_int32(rpc_send_thread_num, 5, "number of threads for rpc send"); +DEFINE_int32(rpc_get_thread_num, 5, "number of threads for rpc get"); +DEFINE_int32(rpc_prefetch_thread_num, 5, "number of threads for rpc prefetch"); + namespace paddle { namespace operators { @@ -332,11 +336,14 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope, sync_mode, checkpoint_block_id)); rpc_service_->RegisterRPC(distributed::kRequestSend, - request_send_handler_.get()); + request_send_handler_.get(), + FLAGS_rpc_send_thread_num); rpc_service_->RegisterRPC(distributed::kRequestGet, - request_get_handler_.get()); + request_get_handler_.get(), + FLAGS_rpc_get_thread_num); rpc_service_->RegisterRPC(distributed::kRequestPrefetch, - request_prefetch_handler_.get()); + request_prefetch_handler_.get(), + FLAGS_rpc_prefetch_thread_num); rpc_service_->RegisterRPC(distributed::kRequestCheckpoint, request_checkpoint_handler_.get()); diff --git a/paddle/fluid/operators/lookup_table_op.cc b/paddle/fluid/operators/lookup_table_op.cc index b9ac54e446811889b647397ae1fbb11c28f46777..3226a727b1f5f6de9e97ce2068381be7c9b69ff3 100644 --- a/paddle/fluid/operators/lookup_table_op.cc +++ b/paddle/fluid/operators/lookup_table_op.cc @@ -81,6 +81,12 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { "Otherwise the given value indicates padding the output " "with zeros whenever lookup encounters it in Ids.") .SetDefault(kNoPadding); + // NOTE(minqiyang): grad_inplace is an temporal attribute, + // please do NOT set this attribute in python layer. + AddAttr("grad_inplace", + "(boolean, default false) " + "If the grad op reuse the input's variable.") + .SetDefault(false); AddComment(R"DOC( Lookup Table Operator. @@ -115,7 +121,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { - auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W")); + auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Out")); return framework::OpKernelType(data_type, ctx.device_context()); } }; diff --git a/paddle/fluid/operators/lookup_table_op.h b/paddle/fluid/operators/lookup_table_op.h index 58463dc4d6fd7cc3454de766814a947fee161070..e504c4f0cd5c0feaef4a251fad57b389a10a2ce7 100644 --- a/paddle/fluid/operators/lookup_table_op.h +++ b/paddle/fluid/operators/lookup_table_op.h @@ -21,6 +21,7 @@ limitations under the License. */ #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/selected_rows.h" +#include "paddle/fluid/operators/math/blas.h" namespace paddle { namespace operators { @@ -68,6 +69,7 @@ class LookupTableKernel : public framework::OpKernel { const auto *table = table_t.value().data(); auto *output = output_t->mutable_data(context.GetPlace()); + auto blas = math::GetBlas(context); for (int64_t i = 0; i < ids_numel; ++i) { if (padding_idx != kNoPadding && ids[i] == padding_idx) { memset(output + i * row_width, 0, row_width * sizeof(T)); @@ -75,8 +77,8 @@ class LookupTableKernel : public framework::OpKernel { PADDLE_ENFORCE_GE(ids[i], 0); auto id_index = table_t.Index(ids[i]); PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists."); - memcpy(output + i * row_width, table + id_index * row_width, - row_width * sizeof(T)); + blas.VCOPY(row_width, table + id_index * row_width, + output + i * row_width); } } } @@ -111,27 +113,37 @@ class LookupTableGradKernel : public framework::OpKernel { auto *ids_data = ids->data(); int64_t ids_num = ids->numel(); - framework::Vector new_rows; - new_rows.reserve(ids_num); - for (int64_t i = 0; i < ids_num; i++) { - new_rows.push_back(ids_data[i]); - } + std::vector new_rows; + new_rows.resize(ids_num); + std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t)); d_table->set_rows(new_rows); auto *d_table_value = d_table->mutable_value(); d_table_value->Resize({ids_num, table_dim[1]}); - d_table_value->mutable_data(context.GetPlace()); - - d_table->set_height(table_dim[0]); - - auto *d_output_data = d_output->data(); - auto *d_table_data = d_table_value->data(); - - auto d_output_dims = d_output->dims(); - PADDLE_ENFORCE_EQ( - d_table_value->dims(), - framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1)); - memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel()); + // FIXME(minqiyang): + // memory optimization will NOT reuse Tensor with SelectedRows + // so we could just share the tensor here directly. + // However, the InferVarType method will infer the output SelectedRows + // to Tensor sometimes, which is a bug, so we will add an attribute + // here to indicate the inplace and remove this attribute after + // the InferVarType's bug was fixed + bool grad_inplace = context.Attr("grad_inplace"); + if (grad_inplace) { + d_table_value->ShareDataWith(*d_output); + } else { + d_table_value->mutable_data(context.GetPlace()); + + d_table->set_height(table_dim[0]); + + auto *d_output_data = d_output->data(); + auto *d_table_data = d_table_value->data(); + + auto d_output_dims = d_output->dims(); + PADDLE_ENFORCE_EQ( + d_table_value->dims(), + framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1)); + memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel()); + } } else { auto *ids = context.Input("Ids"); auto *d_output = context.Input(framework::GradVarName("Out")); diff --git a/paddle/fluid/operators/math/CMakeLists.txt b/paddle/fluid/operators/math/CMakeLists.txt index 55e2ea760158cda631ec07e2c7d318ec1cf79b77..17b675fba8067851f6149edafcc9096690a3fd34 100644 --- a/paddle/fluid/operators/math/CMakeLists.txt +++ b/paddle/fluid/operators/math/CMakeLists.txt @@ -76,6 +76,6 @@ endif() cc_test(concat_test SRCS concat_test.cc DEPS concat_and_split) cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info) cc_library(jit_kernel - SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc + SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc DEPS cpu_info cblas) cc_test(jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel) diff --git a/paddle/fluid/operators/math/algorithm.h b/paddle/fluid/operators/math/algorithm.h index 262469beea7449eb5820b86de1ac4f790a833e79..2e75b6abce5e1f43742ee15bff1dac4801186cd4 100644 --- a/paddle/fluid/operators/math/algorithm.h +++ b/paddle/fluid/operators/math/algorithm.h @@ -39,6 +39,52 @@ HOSTDEVICE inline int64_t BinarySearch(const T *x, int64_t num, const T &val) { return -1; } +template +HOSTDEVICE inline size_t LowerBound(const T *x, size_t num, const T &val) { +#ifdef __CUDA_ARCH__ + // The following code is from + // https://en.cppreference.com/w/cpp/algorithm/lower_bound + auto *first = x; + int64_t count = static_cast(num); + while (count > 0) { + int64_t step = (count >> 1); + auto *it = first + step; + if (*it < val) { + first = ++it; + count -= (step + 1); + } else { + count = step; + } + } + return static_cast(first - x); +#else + return static_cast(std::lower_bound(x, x + num, val) - x); +#endif +} + +template +HOSTDEVICE inline size_t UpperBound(const T *x, size_t num, const T &val) { +#ifdef __CUDA_ARCH__ + // The following code is from + // https://en.cppreference.com/w/cpp/algorithm/upper_bound + auto *first = x; + int64_t count = static_cast(num); + while (count > 0) { + auto step = (count >> 1); + auto *it = first + step; + if (val < *it) { + count = step; + } else { + first = ++it; + count -= (step + 1); + } + } + return static_cast(first - x); +#else + return static_cast(std::upper_bound(x, x + num, val) - x); +#endif +} + } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/fluid/operators/math/jit_kernel.h b/paddle/fluid/operators/math/jit_kernel.h index 9088d0c7a6307c3fbd9707c719ec9e6f6c85fbdb..48e180b1fd43b06cc13f7a4b00c73aff2eb940ac 100644 --- a/paddle/fluid/operators/math/jit_kernel.h +++ b/paddle/fluid/operators/math/jit_kernel.h @@ -151,6 +151,13 @@ class GRUKernel : public Kernel { virtual void ComputeHtPart2(T *gates, const T *ht_1, T *ht) const = 0; }; +template +class CRFDecodeKernel : public Kernel { + public: + virtual void Compute(const int seq_len, const T *x, const T *w, T *alpha, + int *track) const = 0; +}; + } // namespace jitkernel } // namespace math } // namespace operators diff --git a/paddle/fluid/operators/math/jit_kernel_crf_decode.cc b/paddle/fluid/operators/math/jit_kernel_crf_decode.cc new file mode 100644 index 0000000000000000000000000000000000000000..e481d1921a7dc4fd6da3fffbc3959eafa7b4b461 --- /dev/null +++ b/paddle/fluid/operators/math/jit_kernel_crf_decode.cc @@ -0,0 +1,296 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/math/jit_kernel.h" +#include +#include +#include "paddle/fluid/operators/math/jit_kernel_macro.h" +#ifdef __AVX__ +#include +#endif + +namespace paddle { +namespace operators { +namespace math { +namespace jitkernel { + +namespace jit = platform::jit; + +/* CRF Decode JitKernel */ +template +class CRFDecodeKernelImpl : public CRFDecodeKernel { + public: + explicit CRFDecodeKernelImpl(int tag_num) : CRFDecodeKernel() { + this->num_ = tag_num; + } + void Compute(const int seq_len, const T* x, const T* w, T* alpha, + int* track) const override { + constexpr int state_trans_base_idx = 2; + for (int i = 0; i < this->num_; ++i) { + alpha[i] = w[i] + x[i]; + } + for (int k = 1; k < seq_len; ++k) { + for (int i = 0; i < this->num_; ++i) { + T max_score = -std::numeric_limits::max(); + int max_j = 0; + for (int j = 0; j < this->num_; ++j) { + T score = alpha[(k - 1) * this->num_ + j] + + w[(j + state_trans_base_idx) * this->num_ + i]; + if (score > max_score) { + max_score = score; + max_j = j; + } + } + alpha[k * this->num_ + i] = max_score + x[k * this->num_ + i]; + track[k * this->num_ + i] = max_j; + } + } + } +}; + +#define INIT_ALPHA(step_size) \ + /* Setup the alpha initial value.*/ \ + int i_offset = 0; \ + int last_offset = this->rest_ - step_size; \ + for (int i = 0; i <= this->end_; ++i) { \ + /* weights, input and alpha values. */ \ + __m256 w_content, x_content, alpha_content; \ + /* Load the relevant data into the variables from un-aligned address.*/ \ + w_content = _mm256_loadu_ps(w + i_offset); \ + x_content = _mm256_loadu_ps(x + i_offset); \ + alpha_content = _mm256_add_ps(w_content, x_content); \ + _mm256_storeu_ps(alpha + i_offset, alpha_content); \ + i_offset += step_size; \ + if (i == this->end_ - 1) { \ + if (this->rest_ > 0) { \ + i_offset += last_offset; \ + } else { \ + break; \ + } \ + } \ + } + +#define UPDATE_ALPHA(step_size) \ + /* Update the alpha and track values. */ \ + __m256 x_content = _mm256_loadu_ps(x + seq_offset + this->num_ + j_offset); \ + max_score = _mm256_add_ps(max_score, x_content); \ + _mm256_storeu_ps(alpha + seq_offset + this->num_ + j_offset, max_score); \ + _mm256_storeu_si256( \ + reinterpret_cast<__m256i*>(track + seq_offset + this->num_ + j_offset), \ + max_j); \ + /* Calculate the offset of next step*/ \ + j_offset += step_size; \ + if (j == this->end_ - 1) { \ + if (this->rest_ > 0) { \ + j_offset += last_offset; \ + } else { \ + break; \ + } \ + } + +#define INTRIAVX_FLOAT(block) \ + template <> \ + CRFDecodeKernelImpl::CRFDecodeKernelImpl( \ + int tag_num) \ + : CRFDecodeKernel() { \ + this->num_ = tag_num; \ + this->end_ = this->num_ / AVX_FLOAT_BLOCK; \ + this->rest_ = this->num_ % AVX_FLOAT_BLOCK; \ + } \ + template <> \ + void CRFDecodeKernelImpl::Compute( \ + const int seq_len, const float* x, const float* w, float* alpha, \ + int* track) const { \ + INIT_ALPHA(AVX_FLOAT_BLOCK) \ + /* Use the column-major strategy to get the location of maximum score.*/ \ + int seq_offset = 0; \ + constexpr int state_trans_base_idx = 2; \ + for (int k = 1; k < seq_len; ++k) { \ + int j_offset = 0; \ + for (int j = 0; j <= this->end_; ++j) { \ + /* Initialize the variables of maximum score and location.*/ \ + __m256 max_score = _mm256_set1_ps(-std::numeric_limits::max()); \ + __m256i max_j = _mm256_set1_epi32(0); \ + /* Calculate the offset of transition_weights.*/ \ + int trans_offset = state_trans_base_idx * this->num_ + j_offset; \ + for (int i = 0; i < this->num_; ++i) { \ + /* Initalize the content of alpha variable with related offset.*/ \ + __m256 alpha_content = _mm256_broadcast_ss(alpha + seq_offset + i); \ + /* Obtain the content of weights from un-aligned address.*/ \ + __m256 w_content = _mm256_loadu_ps(w + trans_offset); \ + __m256 score_v = _mm256_add_ps(alpha_content, w_content); \ + __m256 mask = _mm256_cmp_ps(score_v, max_score, _CMP_GT_OS); \ + /* According to the mask value, update the index of the max_score.*/ \ + /* AVX instructions.*/ \ + __m128i lo_max_j = _mm256_extractf128_si256(max_j, 0); \ + __m128i hi_max_j = _mm256_extractf128_si256(max_j, 1); \ + __m128i lo_mask = _mm256_extractf128_si256((__m256i)mask, 0); \ + __m128i hi_mask = _mm256_extractf128_si256((__m256i)mask, 1); \ + lo_max_j = _mm_andnot_si128(lo_mask, lo_max_j); \ + hi_max_j = _mm_andnot_si128(hi_mask, hi_max_j); \ + lo_mask = _mm_and_si128(lo_mask, _mm_set1_epi32(i)); \ + hi_mask = _mm_and_si128(hi_mask, _mm_set1_epi32(i)); \ + lo_max_j = _mm_or_si128(lo_mask, lo_max_j); \ + hi_max_j = _mm_or_si128(hi_mask, hi_max_j); \ + max_j = _mm256_insertf128_si256(max_j, lo_max_j, 0); \ + max_j = _mm256_insertf128_si256(max_j, hi_max_j, 1); \ + /* AVX done*/ \ + /* Update the max_score value.*/ \ + max_score = _mm256_max_ps(max_score, score_v); \ + trans_offset += this->num_; \ + } \ + UPDATE_ALPHA(AVX_FLOAT_BLOCK) \ + } \ + seq_offset += this->num_; \ + } \ + } + +#define INTRIAVX2_FLOAT(isa, block) \ + template <> \ + CRFDecodeKernelImpl::CRFDecodeKernelImpl(int tag_num) \ + : CRFDecodeKernel() { \ + this->num_ = tag_num; \ + this->end_ = this->num_ / AVX2_FLOAT_BLOCK; \ + this->rest_ = this->num_ % AVX2_FLOAT_BLOCK; \ + } \ + template <> \ + void CRFDecodeKernelImpl::Compute( \ + const int seq_len, const float* x, const float* w, float* alpha, \ + int* track) const { \ + INIT_ALPHA(AVX2_FLOAT_BLOCK) \ + /* Use the column-major strategy to get the location of maximum score.*/ \ + int seq_offset = 0; \ + constexpr int state_trans_base_idx = 2; \ + for (int k = 1; k < seq_len; ++k) { \ + int j_offset = 0; \ + for (int j = 0; j <= this->end_; ++j) { \ + /* Initialize the variables of maximum score and location.*/ \ + __m256 max_score = _mm256_set1_ps(-std::numeric_limits::max()); \ + __m256i max_j = _mm256_set1_epi32(0); \ + /* Calculate the offset of transition_weights.*/ \ + int trans_offset = state_trans_base_idx * this->num_ + j_offset; \ + for (int i = 0; i < this->num_; ++i) { \ + /* Initalize the content of alpha variable with related offset.*/ \ + __m256 alpha_content = _mm256_broadcast_ss(alpha + seq_offset + i); \ + /* Obtain the content of weights from un-aligned address.*/ \ + __m256 w_content = _mm256_loadu_ps(w + trans_offset); \ + __m256 score_v = _mm256_add_ps(alpha_content, w_content); \ + __m256 mask = _mm256_cmp_ps(score_v, max_score, _CMP_GT_OS); \ + /* According to the mask value, update the index of the max_score.*/ \ + /* AVX2 instructions.*/ \ + max_j = _mm256_or_si256( \ + _mm256_andnot_si256((__m256i)mask, max_j), \ + _mm256_and_si256((__m256i)mask, _mm256_set1_epi32(i))); \ + /* Update the max_score value.*/ \ + max_score = _mm256_max_ps(max_score, score_v); \ + trans_offset += this->num_; \ + } \ + UPDATE_ALPHA(AVX2_FLOAT_BLOCK) \ + } \ + seq_offset += this->num_; \ + } \ + } + +#define INTRIAVX512_FLOAT(block) \ + template <> \ + CRFDecodeKernelImpl::CRFDecodeKernelImpl( \ + int tag_num) \ + : CRFDecodeKernel() { \ + this->num_ = tag_num; \ + this->end_ = this->num_ / AVX512_FLOAT_BLOCK; \ + this->rest_ = this->num_ % AVX512_FLOAT_BLOCK; \ + } \ + template <> \ + void CRFDecodeKernelImpl::Compute( \ + const int seq_len, const float* x, const float* w, float* alpha, \ + int* track) const { \ + INIT_ALPHA(AVX512_FLOAT_BLOCK) \ + /* Use the column-major strategy to get the location of maximum score.*/ \ + int seq_offset = 0; \ + constexpr int state_trans_base_idx = 2; \ + for (int k = 1; k < seq_len; ++k) { \ + int j_offset = 0; \ + for (int j = 0; j <= this->end_; ++j) { \ + /* Initialize the variables of maximum score and location.*/ \ + __m512 max_score = _mm512_set1_ps(-std::numeric_limits::max()); \ + __m512i max_j = _mm512_setzero_si512(); \ + /* Calculate the offset of transition_weights.*/ \ + int trans_offset = state_trans_base_idx * this->num_ + j_offset; \ + for (int i = 0; i < this->num_; ++i) { \ + /* Initalize the content of alpha variable with related offset.*/ \ + __m512 alpha_content = _mm512_set1_ps(*(alpha + seq_offset + i)); \ + /* Obtain the content of weights from un-aligned address.*/ \ + __m512 w_content = _mm512_loadu_ps(w + trans_offset); \ + __m512 score_v = _mm512_add_ps(alpha_content, w_content); \ + __mmask16 mask = _mm512_cmp_ps_mask(score_v, max_score, _CMP_GT_OS); \ + /* AVX512 instructions.*/ \ + max_j = _mm512_mask_set1_epi32(max_j, mask, i); \ + /* Update the max_score value.*/ \ + max_score = _mm512_max_ps(max_score, score_v); \ + trans_offset += this->num_; \ + } \ + /* Update the alpha and track values.*/ \ + __m512 x_content = \ + _mm512_loadu_ps(x + seq_offset + this->num_ + j_offset); \ + max_score = _mm512_add_ps(max_score, x_content); \ + _mm512_storeu_ps(alpha + seq_offset + this->num_ + j_offset, \ + max_score); \ + _mm512_storeu_si512(reinterpret_cast<__m512i*>(track + seq_offset + \ + this->num_ + j_offset), \ + max_j); \ + /* Calculate the offset of next step*/ \ + j_offset += AVX512_FLOAT_BLOCK; \ + if (j == this->end_ - 1) { \ + if (this->rest_ > 0) { \ + j_offset += last_offset; \ + } else { \ + break; \ + } \ + } \ + } \ + seq_offset += this->num_; \ + } \ + } + +#ifdef __AVX__ +INTRIAVX_FLOAT(kEQ8); +INTRIAVX_FLOAT(kGT8LT16); +INTRIAVX_FLOAT(kEQ16); +INTRIAVX_FLOAT(kGT16); +#endif +#ifdef __AVX2__ +INTRIAVX2_FLOAT(jit::avx2, kEQ8); +INTRIAVX2_FLOAT(jit::avx2, kGT8LT16); +INTRIAVX2_FLOAT(jit::avx2, kEQ16); +INTRIAVX2_FLOAT(jit::avx2, kGT16); +#endif +#ifdef __AVX512F__ +INTRIAVX2_FLOAT(jit::avx512f, kEQ8); +INTRIAVX2_FLOAT(jit::avx512f, kGT8LT16); +INTRIAVX512_FLOAT(kEQ16); +INTRIAVX512_FLOAT(kGT16); +#endif + +#undef INTRIAVX512_FLOAT +#undef INTRIAVX2_FLOAT +#undef INTRIAVX_FLOAT +#undef INIT_ALPHA +#undef UPDATE_ALPHA + +REGISTER_JITKERNEL(crf_decode, CRFDecodeKernel); + +} // namespace jitkernel +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/math/pooling.cc b/paddle/fluid/operators/math/pooling.cc index b871851798e48e6b598cb4ab8e2e42db478a3820..8df43bb616179e2487534e0acabb71b09b87e1af 100644 --- a/paddle/fluid/operators/math/pooling.cc +++ b/paddle/fluid/operators/math/pooling.cc @@ -31,7 +31,7 @@ class Pool2dFunctor { const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_process, - framework::Tensor* output) { + bool exclusive, framework::Tensor* output) { const int batch_size = input.dims()[0]; const int input_height = input.dims()[2]; const int input_width = input.dims()[3]; @@ -68,7 +68,8 @@ class Pool2dFunctor { pool_process.compute(input_data[h * input_width + w], &ele); } } - int pool_size = (hend - hstart) * (wend - wstart); + int pool_size = exclusive ? (hend - hstart) * (wend - wstart) + : ksize_height * ksize_width; pool_process.finalize(static_cast(pool_size), &ele); output_data[ph * output_width + pw] = ele; } @@ -93,7 +94,7 @@ class Pool2dGradFunctor { const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_grad_process, - framework::Tensor* input_grad) { + bool exclusive, framework::Tensor* input_grad) { const int batch_size = input.dims()[0]; const int input_height = input.dims()[2]; const int input_width = input.dims()[3]; @@ -124,7 +125,8 @@ class Pool2dGradFunctor { int wstart = pw * stride_width - padding_width; int wend = std::min(wstart + ksize_width, input_width); wstart = std::max(wstart, 0); - int pool_size = (hend - hstart) * (wend - wstart); + int pool_size = exclusive ? (hend - hstart) * (wend - wstart) + : ksize_height * ksize_width; float scale = 1.0 / pool_size; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { @@ -249,7 +251,7 @@ class Pool3dFunctor { const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_process, - framework::Tensor* output) { + bool exclusive, framework::Tensor* output) { const int batch_size = input.dims()[0]; const int input_depth = input.dims()[2]; const int input_height = input.dims()[3]; @@ -300,7 +302,9 @@ class Pool3dFunctor { } } int pool_size = - (dend - dstart) * (hend - hstart) * (wend - wstart); + exclusive + ? (dend - dstart) * (hend - hstart) * (wend - wstart) + : ksize_depth * ksize_height * ksize_width; pool_process.finalize(static_cast(pool_size), &ele); output_data[output_idx] = ele; } @@ -326,7 +330,7 @@ class Pool3dGradFunctor { const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_grad_process, - framework::Tensor* input_grad) { + bool exclusive, framework::Tensor* input_grad) { const int batch_size = input.dims()[0]; const int input_depth = input.dims()[2]; const int input_height = input.dims()[3]; @@ -369,7 +373,9 @@ class Pool3dGradFunctor { wstart = std::max(wstart, 0); int pool_size = - (dend - dstart) * (hend - hstart) * (wend - wstart); + exclusive + ? (dend - dstart) * (hend - hstart) * (wend - wstart) + : ksize_depth * ksize_height * ksize_width; float scale = 1.0 / pool_size; for (int d = dstart; d < dend; ++d) { for (int h = hstart; h < hend; ++h) { diff --git a/paddle/fluid/operators/math/pooling.cu b/paddle/fluid/operators/math/pooling.cu index b1c76350d1724629bae175abf47e6671a1532242..a689eb42242e551caa3470f34f7e8d7e80b6dfbe 100644 --- a/paddle/fluid/operators/math/pooling.cu +++ b/paddle/fluid/operators/math/pooling.cu @@ -29,7 +29,7 @@ __global__ void KernelPool2D(const int nthreads, const T* input_data, const int ksize_width, const int stride_height, const int stride_width, const int padding_height, const int padding_width, PoolProcess pool_process, - T* output_data) { + bool exclusive, T* output_data) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; index += blockDim.x * gridDim.x) { int pw = index % output_width; @@ -52,7 +52,8 @@ __global__ void KernelPool2D(const int nthreads, const T* input_data, pool_process.compute(input_data[h * input_width + w], &ele); } } - int pool_size = (hend - hstart) * (wend - wstart); + int pool_size = exclusive ? (hend - hstart) * (wend - wstart) + : ksize_height * ksize_width; pool_process.finalize(static_cast(pool_size), &ele); output_data[index] = ele; } @@ -65,7 +66,7 @@ __global__ void KernelPool2DGrad( const int input_width, const int output_height, const int output_width, const int ksize_height, const int ksize_width, const int stride_height, const int stride_width, const int padding_height, const int padding_width, - PoolProcess pool_process, T* input_grad) { + PoolProcess pool_process, bool exclusive, T* input_grad) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; index += blockDim.x * gridDim.x) { int offsetW = index % input_width + padding_width; @@ -95,7 +96,8 @@ __global__ void KernelPool2DGrad( int wend = min(wstart + ksize_width, input_width); hstart = max(hstart, 0); wstart = max(wstart, 0); - int pool_size = (hend - hstart) * (wend - wstart); + int pool_size = exclusive ? (hend - hstart) * (wend - wstart) + : ksize_height * ksize_width; int output_sub_idx = ph * output_width + pw; pool_process.compute(input, output_data[output_sub_idx], output_grad[output_sub_idx], @@ -163,7 +165,7 @@ class Pool2dFunctor { const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_process, - framework::Tensor* output) { + bool exclusive, framework::Tensor* output) { const int batch_size = input.dims()[0]; const int input_channels = input.dims()[1]; const int input_height = input.dims()[2]; @@ -189,7 +191,8 @@ class Pool2dFunctor { KernelPool2D<<>>( nthreads, input_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, - stride_width, padding_height, padding_width, pool_process, output_data); + stride_width, padding_height, padding_width, pool_process, exclusive, + output_data); } }; @@ -208,7 +211,7 @@ class Pool2dGradFunctor { const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_process, - framework::Tensor* input_grad) { + bool exclusive, framework::Tensor* input_grad) { const int batch_size = input.dims()[0]; const int input_channels = input.dims()[1]; const int input_height = input.dims()[2]; @@ -236,7 +239,7 @@ class Pool2dGradFunctor { nthreads, input_data, output_data, output_grad_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, - pool_process, input_grad_data); + pool_process, exclusive, input_grad_data); } }; @@ -313,16 +316,14 @@ template class Pool2dGradFunctor; template -__global__ void KernelPool3D(const int nthreads, const T* input_data, - const int channels, const int input_depth, - const int input_height, const int input_width, - const int output_depth, const int output_height, - const int output_width, const int ksize_depth, - const int ksize_height, const int ksize_width, - const int stride_depth, const int stride_height, - const int stride_width, const int padding_depth, - const int padding_height, const int padding_width, - PoolProcess pool_process, T* output_data) { +__global__ void KernelPool3D( + const int nthreads, const T* input_data, const int channels, + const int input_depth, const int input_height, const int input_width, + const int output_depth, const int output_height, const int output_width, + const int ksize_depth, const int ksize_height, const int ksize_width, + const int stride_depth, const int stride_height, const int stride_width, + const int padding_depth, const int padding_height, const int padding_width, + PoolProcess pool_process, bool exclusive, T* output_data) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; index += blockDim.x * gridDim.x) { int pw = index % output_width; @@ -351,7 +352,9 @@ __global__ void KernelPool3D(const int nthreads, const T* input_data, } } } - int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); + int pool_size = exclusive + ? (dend - dstart) * (hend - hstart) * (wend - wstart) + : ksize_depth * ksize_height * ksize_width; pool_process.finalize(static_cast(pool_size), &ele); output_data[index] = ele; } @@ -366,7 +369,7 @@ __global__ void KernelPool3DGrad( const int ksize_height, const int ksize_width, const int stride_depth, const int stride_height, const int stride_width, const int padding_depth, const int padding_height, const int padding_width, PoolProcess pool_process, - T* input_grad) { + bool exclusive, T* input_grad) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; index += blockDim.x * gridDim.x) { int offsetW = index % input_width + padding_width; @@ -409,7 +412,9 @@ __global__ void KernelPool3DGrad( dstart = max(dstart, 0); hstart = max(hstart, 0); wstart = max(wstart, 0); - int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); + int pool_size = + exclusive ? (dend - dstart) * (hend - hstart) * (wend - wstart) + : ksize_depth * ksize_height * ksize_width; int output_sub_idx = (pd * output_height + ph) * output_width + pw; pool_process.compute(input, output_data[output_sub_idx], output_grad[output_sub_idx], @@ -484,7 +489,7 @@ class Pool3dFunctor { const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_process, - framework::Tensor* output) { + bool exclusive, framework::Tensor* output) { const int batch_size = input.dims()[0]; const int input_channels = input.dims()[1]; const int input_depth = input.dims()[2]; @@ -517,7 +522,7 @@ class Pool3dFunctor { nthreads, input_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, - padding_depth, padding_height, padding_width, pool_process, + padding_depth, padding_height, padding_width, pool_process, exclusive, output_data); } }; @@ -537,7 +542,7 @@ class Pool3dGradFunctor { const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_process, - framework::Tensor* input_grad) { + bool exclusive, framework::Tensor* input_grad) { const int batch_size = input.dims()[0]; const int input_channels = input.dims()[1]; const int input_depth = input.dims()[2]; @@ -573,7 +578,7 @@ class Pool3dGradFunctor { input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, padding_depth, padding_height, - padding_width, pool_process, input_grad_data); + padding_width, pool_process, exclusive, input_grad_data); } }; diff --git a/paddle/fluid/operators/math/pooling.h b/paddle/fluid/operators/math/pooling.h index 120f5919803806e0d3b7dc8eaf530ae89819b84d..0f64e321bf01eea69767af020ed8c1a75e31acb5 100644 --- a/paddle/fluid/operators/math/pooling.h +++ b/paddle/fluid/operators/math/pooling.h @@ -89,7 +89,7 @@ class Pool2dFunctor { const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_compute, - framework::Tensor* output); + bool exclusive, framework::Tensor* output); }; template @@ -101,7 +101,7 @@ class Pool2dGradFunctor { const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_compute, - framework::Tensor* input_grad); + bool exclusive, framework::Tensor* input_grad); }; template @@ -123,7 +123,7 @@ class Pool3dFunctor { const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_compute, - framework::Tensor* output); + bool exclusive, framework::Tensor* output); }; template @@ -135,7 +135,7 @@ class Pool3dGradFunctor { const std::vector& ksize, const std::vector& strides, const std::vector& paddings, PoolProcess pool_compute, - framework::Tensor* input_grad); + bool exclusive, framework::Tensor* input_grad); }; template diff --git a/paddle/fluid/operators/math/selected_rows_functor.cc b/paddle/fluid/operators/math/selected_rows_functor.cc index 08f57dd45ad76946cbcafb98a3414003ed9d67a9..75946740375d74043960b68e94eb048b3bab4b79 100644 --- a/paddle/fluid/operators/math/selected_rows_functor.cc +++ b/paddle/fluid/operators/math/selected_rows_functor.cc @@ -12,9 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include #include -#include +#include #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/selected_rows_functor.h" @@ -230,8 +229,24 @@ template struct SelectedRowsAddToTensor; // add or mul. namespace scatter { -size_t FindPos(const std::vector& rows, int64_t value) { - return std::find(rows.begin(), rows.end(), value) - rows.begin(); +template +typename std::enable_if< + std::is_floating_point::value && + std::is_same::value>::type +elementwise_add_to(const DeviceContext& ctx, BlasT* blas, + size_t data_len, const T* in, T* out) { + blas->AXPY(data_len, 1., in, out); +} + +template +typename std::enable_if< + !std::is_floating_point::value && + std::is_same::value>::type +elementwise_add_to(const DeviceContext& ctx, BlasT* blas, + size_t data_len, const T* in, T* out) { + for (int64_t i = 0; i < data_len; i++) { + out[i] += in[i]; + } } template @@ -246,48 +261,84 @@ struct MergeAdd { void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input, framework::SelectedRows* output) { - framework::SelectedRows& out = *output; - std::vector input_rows(input.rows()); + std::vector inputs; + inputs.push_back(&input); + (*this)(context, inputs, output); + } - std::map> merge_row_map; - for (size_t i = 0; i < input_rows.size(); ++i) { - merge_row_map[input_rows[i]].push_back(i); + void operator()(const platform::CPUDeviceContext& context, + const std::vector& inputs, + framework::SelectedRows* output) { + if (inputs.size() == 0) { + VLOG(3) << "no input! return"; + return; } - - std::vector merge_rows(merge_row_map.size()); - size_t idx = 0; - int64_t input_width = input.value().dims()[1]; - out.set_height(input.height()); - - T* out_data = out.mutable_value()->mutable_data( + const framework::SelectedRows* has_value_input = nullptr; + for (auto* in : inputs) { + if (in->rows().size() > 0) { + has_value_input = in; + break; + } + } + if (has_value_input == nullptr) { + VLOG(3) << "no input has value! just return" << std::endl; + return; + } + auto input_width = has_value_input->value().dims()[1]; + auto input_height = has_value_input->height(); + framework::SelectedRows& out = *output; + std::set merged_row_set; + for (auto* input : inputs) { + if (input->rows().size() == 0) { + continue; + } + PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1], + "all input should have same " + "dimension except for the first one"); + PADDLE_ENFORCE_EQ(input_height, input->height(), + "all input should have same height"); + merged_row_set.insert(input->rows().begin(), input->rows().end()); + } + std::vector merge_rows(merged_row_set.begin(), + merged_row_set.end()); + std::unordered_map rows_to_id; + for (size_t i = 0; i < merge_rows.size(); ++i) { + rows_to_id[merge_rows[i]] = i; + } + out.set_rows(merge_rows); + out.set_height(input_height); + out.mutable_value()->mutable_data( framework::make_ddim( {static_cast(merge_rows.size()), input_width}), context.GetPlace()); - const T* in_data = input.value().data(); - - for (auto& row_pair : merge_row_map) { - auto* out_ptr = out_data + idx * input_width; - auto& rows = row_pair.second; - merge_rows[idx] = row_pair.first; - ++idx; - // rows.size() is always larger than 0 - std::memcpy(out_ptr, in_data + rows[0] * input_width, - sizeof(T) * input_width); - - for (size_t i = 1; i < rows.size(); ++i) { - auto* in_ptr = in_data + rows[i] * input_width; - for (int64_t j = 0; j < input_width; ++j) { - out_ptr[j] += in_ptr[j]; - } + + math::SetConstant constant_functor; + constant_functor(context, out.mutable_value(), 0.0); + + auto* out_data = out.mutable_value()->data(); + + auto blas = math::GetBlas(context); + for (auto* input : inputs) { + if (input->rows().size() == 0) { + continue; + } + auto* input_data = input->value().data(); + auto& input_rows = input->rows(); + + for (size_t i = 0; i < input_rows.size(); i++) { + size_t out_i = rows_to_id[input_rows[i]]; + elementwise_add_to( + context, &blas, static_cast(input_width), + &input_data[i * input_width], &out_data[out_i * input_width]); } } - - out.set_rows(merge_rows); } }; template struct MergeAdd; template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; template struct UpdateToTensor { diff --git a/paddle/fluid/operators/math/selected_rows_functor.cu b/paddle/fluid/operators/math/selected_rows_functor.cu index ba8eccf82042b679f69a32f9d053f05ac8fb9a99..10f39822b9c904ce236a1a2a3806d70693bd2e63 100644 --- a/paddle/fluid/operators/math/selected_rows_functor.cu +++ b/paddle/fluid/operators/math/selected_rows_functor.cu @@ -267,10 +267,15 @@ struct MergeAdd { void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input, framework::SelectedRows* output) { - framework::SelectedRows& out = *output; framework::Vector input_rows(input.rows()); + if (input_rows.size() == 0) { + return; + } + + framework::SelectedRows& out = *output; std::set row_set(input_rows.begin(), input_rows.end()); - std::vector merge_rows(row_set.begin(), row_set.end()); + std::vector merge_rows_cpu(row_set.begin(), row_set.end()); + framework::Vector merge_rows(merge_rows_cpu); auto input_width = input.value().dims()[1]; @@ -296,6 +301,73 @@ struct MergeAdd { out.mutable_rows()->CUDAMutableData(context.GetPlace()), out.rows().size(), input_width); } + + void operator()(const platform::CUDADeviceContext& context, + const std::vector& inputs, + framework::SelectedRows* output) { + if (inputs.size() == 0) { + VLOG(3) << "no input! return"; + return; + } + const framework::SelectedRows* has_value_input = nullptr; + for (auto* in : inputs) { + if (in->rows().size() > 0) { + has_value_input = in; + break; + } + } + if (has_value_input == nullptr) { + VLOG(3) << "no input has value! just return" << std::endl; + return; + } + auto input_width = has_value_input->value().dims()[1]; + auto input_height = has_value_input->height(); + framework::SelectedRows& out = *output; + std::set merged_row_set; + for (auto* input : inputs) { + if (input->rows().size() == 0) { + continue; + } + PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1], + "all input should have same " + "dimension except for the first one"); + PADDLE_ENFORCE_EQ(input_height, input->height(), + "all input should have same height"); + merged_row_set.insert(input->rows().begin(), input->rows().end()); + } + std::vector merge_rows_cpu(merged_row_set.begin(), + merged_row_set.end()); + framework::Vector merge_rows(merge_rows_cpu); + + out.set_rows(merge_rows); + out.set_height(input_height); + out.mutable_value()->mutable_data( + framework::make_ddim( + {static_cast(merge_rows.size()), input_width}), + context.GetPlace()); + + math::SetConstant constant_functor; + constant_functor(context, out.mutable_value(), 0.0); + + auto* out_data = out.mutable_value()->data(); + + const int block_size = 256; + dim3 threads(block_size, 1); + + for (auto* input : inputs) { + if (input->rows().size() == 0) { + continue; + } + auto* input_data = input->value().data(); + auto& input_rows = input->rows(); + dim3 grid1(input_rows.size(), 1); + + MergeAddKernel<<>>( + input_data, input_rows.CUDAData(context.GetPlace()), out_data, + out.mutable_rows()->CUDAMutableData(context.GetPlace()), + out.rows().size(), input_width); + } + } }; template struct MergeAdd; diff --git a/paddle/fluid/operators/math/selected_rows_functor.h b/paddle/fluid/operators/math/selected_rows_functor.h index 900be86f91c6658a5265189a6745316c6471209e..521c53dd0d71707c13c4364c5ee59943a03d4a2d 100644 --- a/paddle/fluid/operators/math/selected_rows_functor.h +++ b/paddle/fluid/operators/math/selected_rows_functor.h @@ -83,104 +83,9 @@ struct MergeAdd { void operator()(const DeviceContext& context, const framework::SelectedRows& input, framework::SelectedRows* output); -}; - -template <> -struct MergeAdd { - framework::SelectedRows operator()(const platform::CPUDeviceContext& context, - const framework::SelectedRows& input) { - framework::SelectedRows out; - (*this)(context, input, &out); - return out; - } - - void operator()(const platform::CPUDeviceContext& context, - const framework::SelectedRows& input, - framework::SelectedRows* output) { - framework::SelectedRows& out = *output; - std::vector input_rows(input.rows()); - - std::map> merge_row_map; - for (size_t i = 0; i < input_rows.size(); ++i) { - merge_row_map[input_rows[i]].push_back(i); - } - - std::vector merge_rows(merge_row_map.size()); - size_t idx = 0; - int64_t input_width = input.value().dims()[1]; - out.set_height(input.height()); - - auto* out_data = out.mutable_value()->mutable_data( - framework::make_ddim( - {static_cast(merge_rows.size()), input_width}), - context.GetPlace()); - auto* in_data = input.value().data(); - - auto blas = GetBlas(context); - for (auto& row_pair : merge_row_map) { - auto* out_ptr = out_data + idx * input_width; - auto& rows = row_pair.second; - merge_rows[idx] = row_pair.first; - ++idx; - // rows.size() is always larger than 0 - blas.VCOPY(input_width, in_data + rows[0] * input_width, out_ptr); - - for (size_t i = 1; i < rows.size(); ++i) { - blas.AXPY(input_width, 1., in_data + rows[i] * input_width, out_ptr); - } - } - - out.set_rows(merge_rows); - } -}; - -template <> -struct MergeAdd { - framework::SelectedRows operator()(const platform::CPUDeviceContext& context, - const framework::SelectedRows& input) { - framework::SelectedRows out; - (*this)(context, input, &out); - return out; - } - - void operator()(const platform::CPUDeviceContext& context, - const framework::SelectedRows& input, - framework::SelectedRows* output) { - framework::SelectedRows& out = *output; - std::vector input_rows(input.rows()); - - std::map> merge_row_map; - for (size_t i = 0; i < input_rows.size(); ++i) { - merge_row_map[input_rows[i]].push_back(i); - } - - std::vector merge_rows(merge_row_map.size()); - size_t idx = 0; - int64_t input_width = input.value().dims()[1]; - out.set_height(input.height()); - - auto* out_data = out.mutable_value()->mutable_data( - framework::make_ddim( - {static_cast(merge_rows.size()), input_width}), - context.GetPlace()); - auto* in_data = input.value().data(); - - auto blas = GetBlas(context); - for (auto& row_pair : merge_row_map) { - auto* out_ptr = out_data + idx * input_width; - auto& rows = row_pair.second; - merge_rows[idx] = row_pair.first; - ++idx; - // rows.size() is always larger than 0 - blas.VCOPY(input_width, in_data + rows[0] * input_width, out_ptr); - - for (size_t i = 1; i < rows.size(); ++i) { - blas.AXPY(input_width, 1., in_data + rows[i] * input_width, out_ptr); - } - } - - out.set_rows(merge_rows); - } + void operator()(const DeviceContext& context, + const std::vector& inputs, + framework::SelectedRows* output); }; template diff --git a/paddle/fluid/operators/math/selected_rows_functor_test.cc b/paddle/fluid/operators/math/selected_rows_functor_test.cc index 835589356042b44c9fa5988aed726434fd66910a..f15b37a1e3f0ae9c7612c4f74470472393ff4ad6 100644 --- a/paddle/fluid/operators/math/selected_rows_functor_test.cc +++ b/paddle/fluid/operators/math/selected_rows_functor_test.cc @@ -302,6 +302,64 @@ TEST(selected_rows_functor, cpu_merge_add_int) { EXPECT_EQ(out_data[1 * row_numel], 2); EXPECT_EQ(out_data[2 * row_numel], 1); } + +TEST(selected_rows_functor, cpu_merge_add_multi) { + paddle::platform::CPUPlace cpu_place; + paddle::platform::CPUDeviceContext ctx(cpu_place); + paddle::operators::math::SetConstant + set_const; + + int64_t height = 10; + int64_t row_numel = 8; + + std::vector rows1{5, 2, 5, 3, 5}; + std::unique_ptr selected_rows1{ + new paddle::framework::SelectedRows(rows1, height)}; + auto* in1_value = selected_rows1->mutable_value(); + in1_value->mutable_data( + paddle::framework::make_ddim( + {static_cast(rows1.size()), row_numel}), + cpu_place); + set_const(ctx, in1_value, 1.0); + + std::vector rows2{2, 5, 3, 5, 3}; + std::unique_ptr selected_rows2{ + new paddle::framework::SelectedRows(rows2, height)}; + auto* in2_value = selected_rows2->mutable_value(); + in2_value->mutable_data( + paddle::framework::make_ddim( + {static_cast(rows2.size()), row_numel}), + cpu_place); + set_const(ctx, in2_value, 1.0); + + std::unique_ptr output{ + new paddle::framework::SelectedRows()}; + output->set_height(height); + paddle::operators::math::scatter::MergeAdd + merge_add_functor; + + std::vector inputs; + inputs.push_back(selected_rows1.get()); + inputs.push_back(selected_rows2.get()); + merge_add_functor(ctx, inputs, output.get()); + + EXPECT_EQ(output->height(), height); + EXPECT_EQ(output->value().dims(), + paddle::framework::make_ddim({3, row_numel})); + + std::vector ret_rows{2, 3, 5}; + EXPECT_EQ(output->rows(), ret_rows); + + auto* out_data = output->value().data(); + for (size_t i = 0; i < ret_rows.size(); ++i) { + for (size_t j = 0; j < row_numel; ++j) { + EXPECT_EQ(out_data[i * row_numel + j], ret_rows[i]); + } + } +} + TEST(selected_rows_functor, cpu_sum_to) { paddle::platform::CPUPlace cpu_place; paddle::platform::CPUDeviceContext ctx(cpu_place); @@ -318,6 +376,7 @@ TEST(selected_rows_functor, cpu_sum_to) { paddle::framework::make_ddim( {static_cast(rows1.size()), row_numel}), cpu_place); + functor(ctx, in1_value, 1.0); std::vector rows2{0, 5, 7, 9}; std::unique_ptr selected_rows2{ @@ -327,6 +386,7 @@ TEST(selected_rows_functor, cpu_sum_to) { paddle::framework::make_ddim( {static_cast(rows2.size()), row_numel}), cpu_place); + functor(ctx, in2_value, 2.0); std::unique_ptr output{ new paddle::framework::SelectedRows()}; diff --git a/paddle/fluid/operators/math/selected_rows_functor_test.cu b/paddle/fluid/operators/math/selected_rows_functor_test.cu index 5fc50aba25d8e69480a17f0f80877b0d03e17276..17af3e3999ca688c584f636f4c00386f886f9bbf 100644 --- a/paddle/fluid/operators/math/selected_rows_functor_test.cu +++ b/paddle/fluid/operators/math/selected_rows_functor_test.cu @@ -241,3 +241,67 @@ TEST(selected_rows_functor, gpu_add_to) { // row9: 2.0 + 3.0 EXPECT_EQ(tensor1_cpu_data[9 * row_numel + 6], 5.0); } + +TEST(selected_rows_functor, gpu_merge_add) { + paddle::platform::CUDAPlace gpu_place(0); + paddle::platform::CPUPlace cpu_place; + paddle::platform::CUDADeviceContext& ctx = + *reinterpret_cast( + paddle::platform::DeviceContextPool::Instance().Get(gpu_place)); + paddle::operators::math::SetConstant + set_const; + + int64_t height = 10; + int64_t row_numel = 8; + + std::vector rows1{5, 2, 5, 3, 5}; + std::unique_ptr selected_rows1{ + new paddle::framework::SelectedRows(rows1, height)}; + auto* in1_value = selected_rows1->mutable_value(); + in1_value->mutable_data( + paddle::framework::make_ddim( + {static_cast(rows1.size()), row_numel}), + gpu_place); + set_const(ctx, in1_value, 1.0); + + std::vector rows2{2, 5, 3, 5, 3}; + std::unique_ptr selected_rows2{ + new paddle::framework::SelectedRows(rows2, height)}; + auto* in2_value = selected_rows2->mutable_value(); + in2_value->mutable_data( + paddle::framework::make_ddim( + {static_cast(rows2.size()), row_numel}), + gpu_place); + set_const(ctx, in2_value, 1.0); + + std::unique_ptr output{ + new paddle::framework::SelectedRows()}; + output->set_height(height); + paddle::operators::math::scatter::MergeAdd< + paddle::platform::CUDADeviceContext, float> + merge_add_functor; + + std::vector inputs; + inputs.push_back(selected_rows1.get()); + inputs.push_back(selected_rows2.get()); + merge_add_functor(ctx, inputs, output.get()); + + paddle::framework::Tensor output_cpu; + paddle::framework::TensorCopy(output->value(), cpu_place, ctx, &output_cpu); + ctx.Wait(); + + EXPECT_EQ(output->height(), height); + EXPECT_EQ(output->value().dims(), + paddle::framework::make_ddim({3, row_numel})); + + std::vector ret_rows{2, 3, 5}; + EXPECT_EQ(output->rows(), ret_rows); + + auto* out_data = output_cpu.data(); + for (size_t i = 0; i < ret_rows.size(); ++i) { + for (size_t j = 0; j < row_numel; ++j) { + EXPECT_EQ(out_data[i * row_numel + j], ret_rows[i]); + } + } +} diff --git a/paddle/fluid/operators/math/sequence_pooling.cc b/paddle/fluid/operators/math/sequence_pooling.cc index 7be8539a7b0f1890898fd386a3056601fda8a7c3..6d491dbf1ed162ef07fda4c07e95cc57108486fd 100644 --- a/paddle/fluid/operators/math/sequence_pooling.cc +++ b/paddle/fluid/operators/math/sequence_pooling.cc @@ -31,7 +31,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class MaxSeqPoolFunctor { public: void operator()(const platform::CPUDeviceContext& context, @@ -70,7 +70,41 @@ class MaxSeqPoolFunctor { } } }; +// Instantisation of Max Sequence Pooling for test phase eg. no need to fill +// index buffer +template +class MaxSeqPoolFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + const framework::LoDTensor& input, framework::Tensor* output, + framework::Tensor* index) { + auto in_dims = input.dims(); + auto out_dims = output->dims(); + PADDLE_ENFORCE_GT(in_dims.size(), 1); + PADDLE_ENFORCE_GT(out_dims.size(), 1); + for (int64_t i = 1; i < in_dims.size(); ++i) { + PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]); + } + + auto starts = input.lod()[0]; + const T* in_data = input.data(); + T* out_data = output->data(); + int64_t num_seq = out_dims[0]; + int64_t dim = output->numel() / num_seq; + for (int64_t i = 0; i < num_seq; ++i) { + std::memcpy(&out_data[i * dim], &in_data[starts[i] * dim], + dim * sizeof(T)); + for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) { + for (int64_t k = 0; k < dim; ++k) { + if (in_data[j * dim + k] > out_data[i * dim + k]) { + out_data[i * dim + k] = in_data[j * dim + k]; + } + } + } + } + } +}; template class MaxSeqPoolGradFunctor { public: @@ -188,11 +222,16 @@ class SequencePoolFunctor { /* max pool has index output */ void operator()(const platform::CPUDeviceContext& context, const std::string pooltype, const framework::LoDTensor& input, - framework::Tensor* output, + framework::Tensor* output, bool is_test, framework::Tensor* index = nullptr) { if (pooltype == "MAX") { - math::MaxSeqPoolFunctor max_pool; - max_pool(context, input, output, index); + if (is_test) { + math::MaxSeqPoolFunctor max_pool; + max_pool(context, input, output, index); + } else { + math::MaxSeqPoolFunctor max_pool; + max_pool(context, input, output, index); + } return; } if (pooltype == "LAST") { @@ -200,6 +239,7 @@ class SequencePoolFunctor { last_pool(context, input, output); return; } + if (pooltype == "FIRST") { math::FirstSeqPoolFunctor first_pool; first_pool(context, input, output); diff --git a/paddle/fluid/operators/math/sequence_pooling.cu b/paddle/fluid/operators/math/sequence_pooling.cu index a92aef805a0434f2ebcbc62d4e5eaef0cfb21bfa..0015fafbc892912424dfa6dbd1778438d384ca19 100644 --- a/paddle/fluid/operators/math/sequence_pooling.cu +++ b/paddle/fluid/operators/math/sequence_pooling.cu @@ -133,7 +133,7 @@ class SequencePoolFunctor { public: void operator()(const platform::CUDADeviceContext& context, const std::string pooltype, const framework::LoDTensor& input, - framework::Tensor* output, + framework::Tensor* output, bool is_test, framework::Tensor* index = nullptr) { auto& lod = input.lod()[0]; const size_t item_dim = output->numel() / output->dims()[0]; diff --git a/paddle/fluid/operators/math/sequence_pooling.h b/paddle/fluid/operators/math/sequence_pooling.h index 8dcbee65d0b63a137e5f422ec8667cc950641b4a..a1046ea2160d0ae9c2251612c97d3f2640b0aad1 100644 --- a/paddle/fluid/operators/math/sequence_pooling.h +++ b/paddle/fluid/operators/math/sequence_pooling.h @@ -28,7 +28,7 @@ class SequencePoolFunctor { /* max pool has index output */ void operator()(const DeviceContext& context, const std::string pooltype, const framework::LoDTensor& input, framework::Tensor* output, - framework::Tensor* index = nullptr); + bool is_test = false, framework::Tensor* index = nullptr); }; template diff --git a/paddle/fluid/operators/merge_ids_op.cc b/paddle/fluid/operators/merge_ids_op.cc index c6ec4ab047d5e91625e646fd26108d2e477cdce5..6e0e13698097ade36449f2e8ff6ab981a1b24311 100644 --- a/paddle/fluid/operators/merge_ids_op.cc +++ b/paddle/fluid/operators/merge_ids_op.cc @@ -20,13 +20,16 @@ namespace operators { class MergeIdsOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { - AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}"); - AddInput( - "X", - "(LoDTensors) multi input tensor with shape{batch_num, N}, N is the " - "size of embedding table") + AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}") + .AsDuplicable(); + AddInput("Rows", "(LoDTensor) the input ids with shape{row_size, 1}, ") + .AsDuplicable(); + AddInput("X", + "(LoDTensors) multi input tensor with shape{Rows, N}, N is the " + "size of embedding table") + .AsDuplicable(); + AddOutput("Out", "(LoDTensor) The merged outputs of the input tensors.") .AsDuplicable(); - AddOutput("Out", "(LoDTensor) The merged outputs of the input tensors."); AddComment(R"DOC( Merge multi LoDTensor's into one according to Ids's shard num. @@ -79,15 +82,19 @@ class MergeIdsOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("Ids"), "MergeIdsOp must has input Ids."); - PADDLE_ENFORCE(ctx->HasInputs("X"), "MergeIdsOp must has input X."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), "MergeIdsOp must has output Out."); + PADDLE_ENFORCE(ctx->HasInputs("Ids"), + "MergeIdsOp must has multi input Ids."); + PADDLE_ENFORCE(ctx->HasInputs("Rows"), + "MergeIdsOp must has multi input Rows."); + PADDLE_ENFORCE(ctx->HasInputs("X"), "MergeIdsOp must has multi input X."); + PADDLE_ENFORCE(ctx->HasOutputs("Out"), + "MergeIdsOp must has multi output Out."); auto ids_var_type = ctx->GetInputsVarType("Ids").front(); - auto ids_dims = ctx->GetInputDim("Ids"); + auto ids_dims = ctx->GetInputsDim("Ids"); if (ids_var_type == framework::proto::VarType::LOD_TENSOR) { - PADDLE_ENFORCE_EQ(ids_dims.size(), 2); - PADDLE_ENFORCE_EQ(ids_dims[1], 1); + PADDLE_ENFORCE_EQ(ids_dims[0].size(), 2); + PADDLE_ENFORCE_EQ(ids_dims[0][1], 1); } auto x_var_type = ctx->GetInputsVarType("X"); for (auto &var_type : x_var_type) { diff --git a/paddle/fluid/operators/merge_ids_op.h b/paddle/fluid/operators/merge_ids_op.h index 83712a8519c6817151e1922c606c0fdd4682a2db..fef9e023d02f45e21ec409ad398ba7d9bdd36880 100644 --- a/paddle/fluid/operators/merge_ids_op.h +++ b/paddle/fluid/operators/merge_ids_op.h @@ -14,6 +14,8 @@ limitations under the License. */ #pragma once +#include +#include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/tensor_util.h" @@ -30,59 +32,70 @@ class MergeIdsOpKernel : public framework::OpKernel { if (!platform::is_cpu_place(place)) { PADDLE_THROW("MergeIds do not support GPU kernel"); } - VLOG(3) << "run in MergeIdsOpKernel"; - const auto *ids_var = ctx.InputVar("Ids"); - PADDLE_ENFORCE(ids_var->IsType(), - "only support to merge Ids of LoDTensor"); + const auto ids = ctx.MultiInput("Ids"); + const auto row_ids = ctx.MultiInput("Rows"); + const auto x_tensors = ctx.MultiInput("X"); + auto outs = ctx.MultiOutput("Out"); - const auto &ids_tensor = ids_var->Get(); - const auto &ids_dims = ids_tensor.dims(); - const int64_t *ids = ids_tensor.data(); + PADDLE_ENFORCE_EQ(row_ids.size(), x_tensors.size(), + "the number of Rows and X should be the same"); + PADDLE_ENFORCE_EQ(ids.size(), outs.size(), + "the number of Ids and Out should be the same"); - auto x_tensors = ctx.MultiInput("X"); + int row_ids_size = 0; + int row_size = 0; + int embedding_size = 0; - auto *out = ctx.Output("Out"); + for (int i = 0; i < x_tensors.size(); ++i) { + const auto *x_tensor = x_tensors[i]; + const auto *row_id = row_ids[i]; - int batch_size = 0; - int embedding_size = 0; - for (auto &input : x_tensors) { - if (framework::product(input->dims()) != 0) { - if (embedding_size == 0) { - embedding_size = input->dims()[1]; - } - PADDLE_ENFORCE_EQ(embedding_size, input->dims()[1], - "embedding size of all input should be the same"); - batch_size += input->dims()[0]; + if (embedding_size == 0) { + embedding_size = x_tensor->dims()[1]; } + PADDLE_ENFORCE_EQ(embedding_size, x_tensor->dims()[1], + "embedding size of all input should be the same"); + row_size += x_tensor->dims()[0]; + row_ids_size += row_id->dims()[0]; } + PADDLE_ENFORCE_EQ( - batch_size, ids_dims[0], - "the batch size of ids and merged embedding value should be the same"); + row_size, row_ids_size, + "the merged X dim[0] and merged Rows dim[0] should be the same"); + + std::unordered_map> + selected_rows_idx_map; + for (int i = 0; i < x_tensors.size(); ++i) { + const auto *row_id = row_ids[i]; + + for (int j = 0; j < row_id->numel(); ++j) { + int64_t key = row_id->data()[j]; + std::tuple val = std::make_tuple(i, j); + selected_rows_idx_map.insert(std::make_pair(key, val)); + } + } + PADDLE_ENFORCE_EQ(row_ids_size, selected_rows_idx_map.size(), + "the rows and tensor map size should be the same"); + + for (int i = 0; i < outs.size(); ++i) { + auto *out_ids = ids[i]; + auto *out = outs[i]; - const size_t shard_num = x_tensors.size(); + out->set_lod(out_ids->lod()); - if (shard_num == 1) { - VLOG(3) << "only one shard, we can copy the data directly"; - TensorCopy(*x_tensors[0], place, out); - } else { - std::vector in_indexs(shard_num, 0); + int nums = static_cast(out_ids->dims()[0]); auto *out_data = out->mutable_data( - framework::make_ddim({batch_size, embedding_size}), place); - // copy data from ins[shard_num] to out. - for (int i = 0; i < ids_dims[0]; ++i) { - int64_t id = ids[i]; - size_t shard_id = static_cast(id) % shard_num; - int index = in_indexs[shard_id]; - memcpy(out_data + embedding_size * i, - x_tensors[shard_id]->data() + index * embedding_size, + framework::make_ddim({nums, embedding_size}), place); + for (int j = 0; j < nums; ++j) { + int id = out_ids->data()[j]; + auto row_tuple = selected_rows_idx_map[id]; + int64_t row_idx = std::get<1>(row_tuple); + const auto *x_tensor = x_tensors[std::get<0>(row_tuple)]; + + memcpy(out_data + embedding_size * j, + x_tensor->data() + row_idx * embedding_size, sizeof(T) * embedding_size); - in_indexs[shard_id] += 1; - } - - for (size_t i = 0; i < shard_num; ++i) { - PADDLE_ENFORCE_EQ(in_indexs[i], x_tensors[i]->dims()[0], - "after merge, all data in x_tensor should be used"); } } } diff --git a/paddle/fluid/operators/momentum_op.cc b/paddle/fluid/operators/momentum_op.cc index 12b916fcebd425bd4a03d920f947829098a924a1..7f0b51580aa2591ac7338ad7c29ee4756d909925 100644 --- a/paddle/fluid/operators/momentum_op.cc +++ b/paddle/fluid/operators/momentum_op.cc @@ -19,54 +19,6 @@ namespace operators { using Tensor = framework::Tensor; -class MomentumOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("Param"), - "Input(param) of Momentum should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Grad"), - "Input(grad) of Momentum should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Velocity"), - "Input(velocity) of Momentum should not be null."); - PADDLE_ENFORCE(ctx->HasInput("LearningRate"), - "Input(LearningRate) of Momentum should not be null."); - PADDLE_ENFORCE( - ctx->GetInputsVarType("Param").front() == - framework::proto::VarType::LOD_TENSOR, - "The input var's type should be LoDTensor, but the received is %s", - ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front()); - - PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), - "Output(ParamOut) of Momentum should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"), - "Output(VelocityOut) of Momentum should not be null."); - - auto param_dim = ctx->GetInputDim("Param"); - if (ctx->GetInputsVarType("Grad")[0] == - framework::proto::VarType::LOD_TENSOR) { - PADDLE_ENFORCE_EQ( - param_dim, ctx->GetInputDim("Grad"), - "Param and Grad input of MomentumOp should have the same dimension."); - PADDLE_ENFORCE_EQ( - param_dim, ctx->GetInputDim("Velocity"), - "Param and Velocity of MomentumOp should have the same dimension."); - } - PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1, - "Learning_rate should be a scalar"); - - ctx->SetOutputDim("ParamOut", param_dim); - ctx->SetOutputDim("VelocityOut", param_dim); - } - framework::OpKernelType GetExpectedKernelType( - const framework::ExecutionContext& ctx) const override { - auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("Param")); - return framework::OpKernelType(input_data_type, ctx.GetPlace()); - } -}; - class MomentumOpInferVarType : public framework::VarTypeInference { public: void operator()(const framework::OpDesc& op_desc, diff --git a/paddle/fluid/operators/momentum_op.h b/paddle/fluid/operators/momentum_op.h index 6b4d00f56ca06c402c07ecf770a390e88ae3edf1..71f079e4d97f5259359ee6572f584894551452ca 100644 --- a/paddle/fluid/operators/momentum_op.h +++ b/paddle/fluid/operators/momentum_op.h @@ -28,6 +28,54 @@ using framework::SelectedRows; struct NoNesterov; struct UseNesterov; +class MomentumOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(param) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(grad) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Velocity"), + "Input(velocity) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of Momentum should not be null."); + PADDLE_ENFORCE( + ctx->GetInputsVarType("Param").front() == + framework::proto::VarType::LOD_TENSOR, + "The input var's type should be LoDTensor, but the received is %s", + ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front()); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"), + "Output(VelocityOut) of Momentum should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + if (ctx->GetInputsVarType("Grad")[0] == + framework::proto::VarType::LOD_TENSOR) { + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Grad"), + "Param and Grad input of MomentumOp should have the same dimension."); + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Velocity"), + "Param and Velocity of MomentumOp should have the same dimension."); + } + PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1, + "Learning_rate should be a scalar"); + + ctx->SetOutputDim("ParamOut", param_dim); + ctx->SetOutputDim("VelocityOut", param_dim); + } + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("Param")); + return framework::OpKernelType(input_data_type, ctx.GetPlace()); + } +}; + template class CPUDenseMomentumFunctor { private: diff --git a/paddle/fluid/operators/pool_cudnn_op.cu.cc b/paddle/fluid/operators/pool_cudnn_op.cu.cc index 31f083565fddee66aea1485ed71f41b6199f4502..1f090dc3d5439117d3b1a32bbdf5e66d33d4d133 100644 --- a/paddle/fluid/operators/pool_cudnn_op.cu.cc +++ b/paddle/fluid/operators/pool_cudnn_op.cu.cc @@ -41,6 +41,7 @@ class PoolCUDNNOpKernel : public framework::OpKernel { T *output_data = output->mutable_data(ctx.GetPlace()); std::string pooling_type = ctx.Attr("pooling_type"); + bool exclusive = ctx.Attr("exclusive"); std::vector ksize = ctx.Attr>("ksize"); std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); @@ -72,7 +73,8 @@ class PoolCUDNNOpKernel : public framework::OpKernel { if (pooling_type == "max") { pooling_mode = PoolingMode::kMaximum; } else { - pooling_mode = PoolingMode::kAverage; + pooling_mode = exclusive ? PoolingMode::kAverageExclusive + : PoolingMode::kAverageInclusive; } cudnnPoolingDescriptor_t cudnn_pool_desc = @@ -101,6 +103,7 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel { Tensor *input_grad = ctx.Output(framework::GradVarName("X")); std::string pooling_type = ctx.Attr("pooling_type"); + bool exclusive = ctx.Attr("exclusive"); std::vector ksize = ctx.Attr>("ksize"); std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); @@ -141,7 +144,8 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel { pooling_mode = PoolingMode::kMaximum; } } else { - pooling_mode = PoolingMode::kAverage; + pooling_mode = exclusive ? PoolingMode::kAverageExclusive + : PoolingMode::kAverageInclusive; } cudnnPoolingDescriptor_t cudnn_pool_desc = diff --git a/paddle/fluid/operators/pool_op.cc b/paddle/fluid/operators/pool_op.cc index 24a5346b031008531fcefff0e6f1c31da33d1c3b..484cb65746612343fafc49fe61b607f2e919cf4f 100644 --- a/paddle/fluid/operators/pool_op.cc +++ b/paddle/fluid/operators/pool_op.cc @@ -180,6 +180,12 @@ void Pool2dOpMaker::Make() { "operator." "If global_pooling = true, paddings and ksize will be ignored.") .SetDefault({0, 0}); + AddAttr( + "exclusive", + "(bool, default True) When true, will exclude the zero-padding in the " + "averaging calculating, otherwise, include the zero-padding. Note, it " + "is only used when pooling_type is avg. The defalut is True.") + .SetDefault(true); AddAttr( "use_cudnn", "(bool, default false) Only used in cudnn kernel, need install cudnn") @@ -236,6 +242,23 @@ Example: W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1 $$ + For exclusive = true: + $$ + hstart = i * strides[0] - paddings[0] + hend = hstart + ksize[0] + wstart = j * strides[1] - paddings[1] + wend = wstart + ksize[1] + Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]} + $$ + For exclusive = false: + $$ + hstart = max(0, i * strides[0] - paddings[0]) + hend = min(H, hstart + ksize[0]) + wstart = max(0, j * strides[1] - paddings[1]) + wend = min(W, wstart + ksize[1]) + Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)} + $$ + )DOC"); } @@ -283,6 +306,12 @@ void Pool3dOpMaker::Make() { "If global_pooling = true, ksize and paddings will be ignored.") .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, // TypedAttrChecker don't support vector type.) + AddAttr( + "exclusive", + "(bool, default True) When true, will exclude the zero-padding in the " + "averaging calculating, otherwise, include the zero-padding. Note, it " + "is only used when pooling_type is avg. The defalut is True.") + .SetDefault(true); AddAttr( "use_cudnn", diff --git a/paddle/fluid/operators/pool_op.h b/paddle/fluid/operators/pool_op.h index a63963ca926bb94ff99e5cfe6dbcb2b15075bcb8..c0594b7e3cc5602a44bb01951a22c2135ba5c7ce 100644 --- a/paddle/fluid/operators/pool_op.h +++ b/paddle/fluid/operators/pool_op.h @@ -69,6 +69,7 @@ class PoolKernel : public framework::OpKernel { std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); + bool exclusive = context.Attr("exclusive"); if (context.Attr("global_pooling")) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[i] = 0; @@ -84,7 +85,7 @@ class PoolKernel : public framework::OpKernel { pool2d_forward; paddle::operators::math::MaxPool pool_process; pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, - out); + true, out); } else if (pooling_type == "avg") { paddle::operators::math::Pool2dFunctor< @@ -92,7 +93,7 @@ class PoolKernel : public framework::OpKernel { pool2d_forward; paddle::operators::math::AvgPool pool_process; pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, - out); + exclusive, out); } } break; case 3: { @@ -102,14 +103,14 @@ class PoolKernel : public framework::OpKernel { pool3d_forward; paddle::operators::math::MaxPool pool_process; pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, - out); + true, out); } else if (pooling_type == "avg") { paddle::operators::math::Pool3dFunctor< DeviceContext, paddle::operators::math::AvgPool, T> pool3d_forward; paddle::operators::math::AvgPool pool_process; pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, - out); + exclusive, out); } } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } @@ -131,6 +132,7 @@ class PoolGradKernel : public framework::OpKernel { std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); + bool exclusive = context.Attr("exclusive"); if (context.Attr("global_pooling")) { for (size_t i = 0; i < ksize.size(); ++i) { @@ -157,7 +159,7 @@ class PoolGradKernel : public framework::OpKernel { pool2d_backward; paddle::operators::math::AvgPoolGrad pool_process; pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, - paddings, pool_process, in_x_grad); + paddings, pool_process, exclusive, in_x_grad); } } break; case 3: { @@ -172,7 +174,7 @@ class PoolGradKernel : public framework::OpKernel { pool3d_backward; paddle::operators::math::AvgPoolGrad pool_process; pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, - paddings, pool_process, in_x_grad); + paddings, pool_process, exclusive, in_x_grad); } } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } diff --git a/paddle/fluid/operators/sequence_pool_op.cc b/paddle/fluid/operators/sequence_pool_op.cc index 15d3f064eb7b025dc9a85b2aabad24186061cbd4..217bb1610fd3f02f0f72d3b7750ebcdfad243f48 100644 --- a/paddle/fluid/operators/sequence_pool_op.cc +++ b/paddle/fluid/operators/sequence_pool_op.cc @@ -47,6 +47,7 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker { "(Tensor) This tensor is used for the sequence max-pooling " "to record the max indexes.") .AsIntermediate(); + AddAttr("is_test", "").SetDefault(false); AddAttr( "pooltype", "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.") diff --git a/paddle/fluid/operators/sequence_pool_op.h b/paddle/fluid/operators/sequence_pool_op.h index 2aa20792f24305a106c500a3d7a6e3d363bc31d8..f2e4a55dee49664b2fc09813f6dba5f68aaf11d5 100644 --- a/paddle/fluid/operators/sequence_pool_op.h +++ b/paddle/fluid/operators/sequence_pool_op.h @@ -32,10 +32,6 @@ class SequencePoolKernel : public framework::OpKernel { auto* in = context.Input("X"); auto* out = context.Output("Out"); std::string pooltype = context.Attr("pooltype"); - Tensor* index = nullptr; - if (pooltype == "MAX") { - index = context.Output("MaxIndex"); - } auto dims = in->dims(); auto lod = in->lod(); @@ -48,13 +44,22 @@ class SequencePoolKernel : public framework::OpKernel { dims[0] = lod[0].size() - 1; out->Resize({dims}); out->mutable_data(context.GetPlace()); - if (pooltype == "MAX") { + Tensor* index = nullptr; + + const bool is_test = context.Attr("is_test"); + + // Do not create index buffer for inference (is_test) mode + // TODO(jczaja): Skip index buffer creation for other devices eg. GPU + if (pooltype == "MAX" && + (is_test == false || + platform::is_cpu_place(context.GetPlace()) == false)) { + index = context.Output("MaxIndex"); index->Resize({dims}); index->mutable_data(context.GetPlace()); } math::SequencePoolFunctor pool; pool(context.template device_context(), pooltype, *in, out, - index); + is_test, index); } }; diff --git a/paddle/fluid/operators/sequence_reverse_op.cc b/paddle/fluid/operators/sequence_reverse_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..1428cca1a6bf6150594f9cb72dbf00cd0eff7df5 --- /dev/null +++ b/paddle/fluid/operators/sequence_reverse_op.cc @@ -0,0 +1,29 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/sequence_reverse_op.h" + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(sequence_reverse, ops::SequenceReverseOp, + ops::SequenceReverseOpMaker, + ops::SequenceReverseGradOpDescMaker); + +REGISTER_OP_CPU_KERNEL( + sequence_reverse, + ops::SequenceReverseOpKernel, + ops::SequenceReverseOpKernel, + ops::SequenceReverseOpKernel, + ops::SequenceReverseOpKernel, + ops::SequenceReverseOpKernel); diff --git a/paddle/fluid/operators/sequence_reverse_op.cu b/paddle/fluid/operators/sequence_reverse_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..ce65f4799e8661adca60d212eaa9c3f0f92c4c29 --- /dev/null +++ b/paddle/fluid/operators/sequence_reverse_op.cu @@ -0,0 +1,25 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/sequence_reverse_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_CUDA_KERNEL( + sequence_reverse, + ops::SequenceReverseOpKernel, + ops::SequenceReverseOpKernel, + ops::SequenceReverseOpKernel, + ops::SequenceReverseOpKernel, + ops::SequenceReverseOpKernel); diff --git a/paddle/fluid/operators/sequence_reverse_op.h b/paddle/fluid/operators/sequence_reverse_op.h new file mode 100644 index 0000000000000000000000000000000000000000..39dad2311b2bcf29f808723caf7bfaef4c88cef2 --- /dev/null +++ b/paddle/fluid/operators/sequence_reverse_op.h @@ -0,0 +1,157 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/math/algorithm.h" +#include "paddle/fluid/platform/for_range.h" + +namespace paddle { +namespace operators { + +class SequenceReverseOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist"); + PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist"); + + auto x_dim = ctx->GetInputDim("X"); + PADDLE_ENFORCE_GE(x_dim.size(), 2, + "Rank of Input(X) must be not less than 2."); + + ctx->SetOutputDim("Y", x_dim); + ctx->ShareLoD("X", "Y"); + } +}; + +class SequenceReverseOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("X", "The input LoDTensor of sequence_reverse op."); + AddOutput("Y", "The output LoDTensor of sequence_reverse op."); + AddComment(R"DOC( +SequenceReverse Operator. + +Reverse each sequence in input X along dim 0. + +Assuming X is a LoDTensor with dims [5, 4] and lod [[0, 2, 5]], where: + +X.data() = [ + [1, 2, 3, 4], + [5, 6, 7, 8], # the 0-th sequence with length 2 + [9, 10, 11, 12], + [13, 14, 15, 16], + [17, 18, 19, 20] # the 1-st sequence with length 3 +] + +The output Y would be a LoDTensor sharing the same dims and lod with input X, +and: + +Y.data() = [ + [5, 6, 7, 8], + [1, 2, 3, 4], # the reversed 0-th sequence with length 2 + [17, 18, 19, 20], + [13, 14, 15, 16], + [9, 10, 11, 12] # the reversed 1-st sequence with length 3 +] + +This Operator is useful to build a reverse dynamic RNN network. + +This Operator only supports one-level lod currently. + )DOC"); + } +}; + +template +struct SequenceReverseFunctor { + SequenceReverseFunctor(const T *x, T *y, const size_t *lod, size_t lod_count, + size_t row_numel) + : x_(x), y_(y), lod_(lod), lod_count_(lod_count), row_numel_(row_numel) {} + + HOSTDEVICE void operator()(size_t idx_x) const { + auto row_idx_x = idx_x / row_numel_; + auto lod_idx = math::UpperBound(lod_, lod_count_, row_idx_x); + auto row_idx_y = lod_[lod_idx - 1] + (lod_[lod_idx] - 1 - row_idx_x); + auto idx_y = row_idx_y * row_numel_ + idx_x % row_numel_; + y_[idx_y] = x_[idx_x]; + } + + const T *x_; + T *y_; + const size_t *lod_; + size_t lod_count_; + size_t row_numel_; +}; + +template +class SequenceReverseOpKernel : public framework::OpKernel { + using LoDTensor = framework::LoDTensor; + + public: + void Compute(const framework::ExecutionContext &ctx) const override { + auto &x = *ctx.Input("X"); + auto *y = ctx.Output("Y"); + + PADDLE_ENFORCE_EQ(x.lod().size(), 1, + "SequenceReverse Op only support one level lod."); + + auto &dev_ctx = ctx.template device_context(); + const size_t *lod; + size_t lod_count = x.lod()[0].size(); + +#ifdef PADDLE_WITH_CUDA + if (platform::is_gpu_place(ctx.GetPlace())) { + lod = x.lod()[0].CUDAData(ctx.GetPlace()); + } else { +#endif + lod = x.lod()[0].data(); +#ifdef PADDLE_WITH_CUDA + } +#endif + + size_t limit = static_cast(x.numel()); + size_t row_numel = static_cast(limit / x.dims()[0]); + auto *x_data = x.data(); + auto *y_data = y->mutable_data(ctx.GetPlace()); + + PADDLE_ENFORCE_NE(x_data, y_data, + "SequenceReverse Op does not support in-place operation"); + + SequenceReverseFunctor functor(x_data, y_data, lod, lod_count, + row_numel); + platform::ForRange for_range(dev_ctx, limit); + for_range(functor); + } +}; + +class SequenceReverseGradOpDescMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + std::unique_ptr op(new framework::OpDesc()); + op->SetType("sequence_reverse"); + op->SetInput("X", OutputGrad("Y")); + op->SetOutput("Y", InputGrad("X")); + op->SetAttrMap(Attrs()); + return op; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/softmax_cudnn_op.cu.cc b/paddle/fluid/operators/softmax_cudnn_op.cu.cc index 2bdb23e999621b10799b5163f326bc4b66a437e6..f6e241af0634650f4a32be6a4547617f8ec3ee60 100644 --- a/paddle/fluid/operators/softmax_cudnn_op.cu.cc +++ b/paddle/fluid/operators/softmax_cudnn_op.cu.cc @@ -76,6 +76,8 @@ namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace, ops::SoftmaxCUDNNKernel, + ops::SoftmaxCUDNNKernel, ops::SoftmaxCUDNNKernel); REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace, - ops::SoftmaxGradCUDNNKernel); + ops::SoftmaxGradCUDNNKernel, + ops::SoftmaxGradCUDNNKernel); diff --git a/paddle/fluid/operators/softmax_with_cross_entropy_op.cc b/paddle/fluid/operators/softmax_with_cross_entropy_op.cc index 1a9324ec862fc3dd7ce669c5fed94527cac22b8f..2900221485e6ec097796ac38936ce31f8382c86a 100644 --- a/paddle/fluid/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/fluid/operators/softmax_with_cross_entropy_op.cc @@ -44,6 +44,12 @@ class SoftmaxWithCrossEntropyOpMaker "(bool, default: false), A flag to indicate whether to interpretate " "the given labels as soft labels.") .SetDefault(false); + AddAttr( + "numeric_stable_mode", + "(bool, default: false), A flag to indicate whether to use more " + "numerically stable algorithm. This flag is only valid when " + "soft_label is false and GPU is used.") + .SetDefault(false); AddAttr( "ignore_index", "(int, default -100), Specifies a target value that is ignored and" diff --git a/paddle/fluid/operators/softmax_with_cross_entropy_op.cu b/paddle/fluid/operators/softmax_with_cross_entropy_op.cu index a07c17348ebb3f768d1c8be65c2d31e3c130bd23..6d48796191dd13a45f0c7267bfaf05489f528a9d 100644 --- a/paddle/fluid/operators/softmax_with_cross_entropy_op.cu +++ b/paddle/fluid/operators/softmax_with_cross_entropy_op.cu @@ -17,6 +17,7 @@ limitations under the License. */ #include #include "paddle/fluid/operators/math/cross_entropy.h" #include "paddle/fluid/operators/softmax_with_cross_entropy_op.h" +#include "paddle/fluid/platform/for_range.h" namespace paddle { namespace operators { @@ -117,8 +118,8 @@ using BlockReduceTempStorage = typename BlockReduce::TempStorage; // Make sure that BlockDim <= feature_size // This kernel is used to calculate the max element of each row template -__global__ void RowReductionForMax(const T* logits_data, T* max_data, - int feature_size) { +static __global__ void RowReductionForMax(const T* logits_data, T* max_data, + int feature_size) { __shared__ BlockReduceTempStorage temp_storage; auto beg_idx = feature_size * blockIdx.x + threadIdx.x; @@ -141,9 +142,10 @@ __global__ void RowReductionForMax(const T* logits_data, T* max_data, } // Make sure that BlockDim <= feature_size -template -__global__ void RowReductionForDiffMaxSum(const T* logits_data, T* max_data, - T* softmax, int feature_size) { +template +static __global__ void RowReductionForDiffMaxSum(const T* logits_data, + T* max_data, T* softmax, + int feature_size) { __shared__ BlockReduceTempStorage temp_storage; auto beg_idx = feature_size * blockIdx.x + threadIdx.x; @@ -153,24 +155,34 @@ __global__ void RowReductionForDiffMaxSum(const T* logits_data, T* max_data, softmax[beg_idx] = logits_data[beg_idx] - block_max; T diff_max_sum = real_exp(softmax[beg_idx]); - beg_idx += BlockDim; - while (beg_idx < end_idx) { - softmax[beg_idx] = logits_data[beg_idx] - block_max; - diff_max_sum += real_exp(softmax[beg_idx]); - beg_idx += BlockDim; + auto idx = beg_idx + BlockDim; + while (idx < end_idx) { + softmax[idx] = logits_data[idx] - block_max; + diff_max_sum += real_exp(softmax[idx]); + idx += BlockDim; } diff_max_sum = BlockReduce(temp_storage).Reduce(diff_max_sum, cub::Sum()); if (threadIdx.x == 0) max_data[blockIdx.x] = real_log(diff_max_sum); + + if (!CalculateLogSoftmax) return; + __syncthreads(); + diff_max_sum = max_data[blockIdx.x]; + softmax[beg_idx] -= diff_max_sum; + beg_idx += BlockDim; + while (beg_idx < end_idx) { + softmax[beg_idx] -= diff_max_sum; + beg_idx += BlockDim; + } + if (threadIdx.x == 0) max_data[blockIdx.x] = 0; } // Make sure that BlockDim <= feature_size template -__global__ void RowReductionForSoftmaxAndCrossEntropy(const T* logits_data, - const T* labels_data, - T* loss_data, T* softmax, - int feature_size) { +static __global__ void RowReductionForSoftmaxAndCrossEntropy( + const T* logits_data, const T* labels_data, T* loss_data, T* softmax, + int feature_size) { __shared__ BlockReduceTempStorage temp_storage; auto beg_idx = feature_size * blockIdx.x + threadIdx.x; @@ -194,11 +206,134 @@ __global__ void RowReductionForSoftmaxAndCrossEntropy(const T* logits_data, } template -__global__ void SetSoftmaxToOneWhenFeatureSizeIsOne(T* out, int batch_size) { +struct HardLabelSoftmaxWithCrossEntropyFunctor { + public: + HardLabelSoftmaxWithCrossEntropyFunctor(const T* logits, + const int64_t* labels, T* loss, + T* log_softmax, int feature_size) + : logits_(logits), + labels_(labels), + loss_(loss), + log_softmax_(log_softmax), + feature_size_(feature_size) {} + + __device__ void operator()(int idx) const { + auto row_idx = idx / feature_size_; + auto col_idx = idx % feature_size_; + if (col_idx != labels_[row_idx]) { + log_softmax_[idx] = real_exp(log_softmax_[idx]); + } else { + auto softmax = log_softmax_[idx]; + log_softmax_[idx] = real_exp(softmax); + loss_[row_idx] = -softmax; + } + } + + private: + const T* logits_; + const int64_t* labels_; + T* loss_; + T* log_softmax_; + int feature_size_; +}; + +template +struct HardLabelSoftmaxWithCrossEntropyFunctorWithIgnoreIdx { + public: + HardLabelSoftmaxWithCrossEntropyFunctorWithIgnoreIdx(const T* logits, + const int64_t* labels, + T* loss, T* log_softmax, + int feature_size, + int ignore_idx) + : logits_(logits), + labels_(labels), + loss_(loss), + log_softmax_(log_softmax), + feature_size_(feature_size), + ignore_idx_(ignore_idx) {} + + __device__ void operator()(int idx) const { + auto row_idx = idx / feature_size_; + auto col_idx = idx % feature_size_; + if (col_idx != labels_[row_idx] || col_idx == ignore_idx_) { + log_softmax_[idx] = real_exp(log_softmax_[idx]); + } else { + auto softmax = log_softmax_[idx]; + log_softmax_[idx] = real_exp(softmax); + loss_[row_idx] = -softmax; + } + } + + private: + const T* logits_; + const int64_t* labels_; + T* loss_; + T* log_softmax_; + int feature_size_; + int ignore_idx_; +}; + +template +static __global__ void SetSoftmaxToOneWhenFeatureSizeIsOne(T* out, + int batch_size) { auto idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < batch_size) out[idx] = static_cast(1); } +template +static void HardLabelSoftmaxWithCrossEntropy( + const platform::CUDADeviceContext& ctx, const T* logits_data, + const int64_t* labels_data, T* loss_data, T* softmax_data, int batch_size, + int feature_size, int ignore_idx) { + constexpr int kMaxBlockDim = 512; + int block_dim = feature_size >= kMaxBlockDim + ? kMaxBlockDim + : (1 << static_cast(std::log2(feature_size))); + auto stream = ctx.stream(); + +#define CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim) \ + case BlockDim: { \ + RowReductionForMax<<>>( \ + logits_data, loss_data, feature_size); \ + RowReductionForDiffMaxSum<<>>( \ + logits_data, loss_data, softmax_data, feature_size); \ + platform::ForRange for_range( \ + ctx, batch_size* feature_size); \ + if (ignore_idx >= 0 && ignore_idx < feature_size) { \ + for_range(HardLabelSoftmaxWithCrossEntropyFunctorWithIgnoreIdx( \ + logits_data, labels_data, loss_data, softmax_data, feature_size, \ + ignore_idx)); \ + } else { \ + for_range(HardLabelSoftmaxWithCrossEntropyFunctor( \ + logits_data, labels_data, loss_data, softmax_data, feature_size)); \ + } \ + } break + + switch (block_dim) { + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512); + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256); + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128); + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64); + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32); + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16); + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8); + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4); + CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2); + case 1: + SetSoftmaxToOneWhenFeatureSizeIsOne<<<(batch_size + kMaxBlockDim - 1) / + kMaxBlockDim, + kMaxBlockDim, 0, stream>>>( + softmax_data, batch_size); + cudaMemsetAsync(loss_data, 0, batch_size * sizeof(T), stream); + break; + default: + PADDLE_THROW("BlockDim must be 2^n in softmax_with_cross_entropy_op"); + break; + } +#undef CALL_HARD_LABEL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL +} + template static void SoftmaxWithCrossEntropyFusedKernel(const T* logits_data, const T* labels_data, @@ -237,7 +372,7 @@ static void SoftmaxWithCrossEntropyFusedKernel(const T* logits_data, kMaxBlockDim, kMaxBlockDim, 0, stream>>>( softmax_data, batch_size); - cudaMemsetAsync(loss_data, 0, batch_size, stream); + cudaMemsetAsync(loss_data, 0, batch_size * sizeof(T), stream); break; default: PADDLE_THROW("BlockDim must be 2^n in softmax_with_cross_entropy_op"); @@ -272,11 +407,21 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel { logits_data, labels_data, softmax_data, loss_data, batch_size, feature_size, context.cuda_device_context().stream()); } else { - math::SoftmaxCUDNNFunctor()(context.cuda_device_context(), logits, - softmax); - math::CrossEntropyFunctor()( - context.cuda_device_context(), loss, softmax, labels, false, - ignore_index); + if (!context.Attr("numeric_stable_mode")) { + math::SoftmaxCUDNNFunctor()(context.cuda_device_context(), logits, + softmax); + math::CrossEntropyFunctor()( + context.cuda_device_context(), loss, softmax, labels, false, + ignore_index); + } else { + int batch_size = logits->dims()[0]; + int feature_size = logits->dims()[1]; + auto* logits_data = logits->data(); + auto* labels_data = labels->data(); + HardLabelSoftmaxWithCrossEntropy( + context.cuda_device_context(), logits_data, labels_data, loss_data, + softmax_data, batch_size, feature_size, ignore_index); + } } } }; diff --git a/paddle/fluid/operators/split_ids_op.cc b/paddle/fluid/operators/split_ids_op.cc index c867c46873ae7ddbdbda280351e4ab28235bcc08..243f81e296fb95a2c7e9f717950b8a958ad98852 100644 --- a/paddle/fluid/operators/split_ids_op.cc +++ b/paddle/fluid/operators/split_ids_op.cc @@ -20,20 +20,27 @@ namespace operators { class SplitIdsOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { - AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}"); - AddOutput("Out", "(LoDTensor) The outputs of the input Ids.") + AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}") + .AsDuplicable(); + + AddOutput("Out", "(LoDTensors) The outputs of the input Ids.") .AsDuplicable(); AddComment(R"DOC( Split a LoDTensor of Ids into multi LoDTensors, the number is pserver's number Example: Input: - X = [1,2,3,4,5,6] + X = [[1,2,3,4,5,6],[2,3]] Out(3 output): - out0 = [3, 6] - out1 = [1, 4] - out2 = [2, 5] + if compress is True: + out0 = [3, 3, 6] + out1 = [1, 4] + out2 = [2, 2, 5] + else: + out0 = [3, 6] + out1 = [1, 4] + out2 = [2, 5] )DOC"); } }; @@ -43,16 +50,24 @@ class SplitIdsOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("Ids"), "SplitIdsOp must has input Ids."); + PADDLE_ENFORCE(ctx->HasInputs("Ids"), "SplitIdsOp must has input Ids."); PADDLE_ENFORCE(ctx->HasOutputs("Out"), "SplitIdsOp must has output Out."); auto ids_var_type = ctx->GetInputsVarType("Ids").front(); - auto ids_dims = ctx->GetInputDim("Ids"); + auto ids_dims = ctx->GetInputsDim("Ids"); if (ids_var_type == framework::proto::VarType::LOD_TENSOR) { - PADDLE_ENFORCE_EQ(ids_dims.size(), 2); - PADDLE_ENFORCE_EQ(ids_dims[1], 1); + PADDLE_ENFORCE_EQ(ids_dims[0].size(), 2); } } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType( + ctx.MultiInput("Ids").front()->type()), + ctx.GetPlace()); + } }; class SplitIdsOpInferVarType : public framework::VarTypeInference { @@ -66,12 +81,28 @@ class SplitIdsOpInferVarType : public framework::VarTypeInference { } }; +class SplitIdsOpGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto grad = new framework::OpDesc(); + grad->SetType("concat"); + grad->SetInput("X", OutputGrad("Out")); + grad->SetOutput("Out", InputGrad("Ids")); + grad->SetAttr("axis", 0); + return std::unique_ptr(grad); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(split_ids, ops::SplitIdsOp, ops::SplitIdsOpMaker, - ops::SplitIdsOpInferVarType); + ops::SplitIdsOpGradMaker, ops::SplitIdsOpInferVarType); + REGISTER_OP_CPU_KERNEL( split_ids, ops::SplitIdsOpKernel, ops::SplitIdsOpKernel); diff --git a/paddle/fluid/operators/split_ids_op.h b/paddle/fluid/operators/split_ids_op.h index c4af5a65fc5f81c1af7c1fdcca637ca37c940637..69ac6c5a6b9a8b318520eb9a3ff89a3a6be48339 100644 --- a/paddle/fluid/operators/split_ids_op.h +++ b/paddle/fluid/operators/split_ids_op.h @@ -14,6 +14,8 @@ limitations under the License. */ #pragma once +#include +#include #include #include #include "paddle/fluid/framework/op_registry.h" @@ -31,19 +33,39 @@ class SplitIdsOpKernel : public framework::OpKernel { PADDLE_THROW("SplitIds do not support GPU kernel"); } - const auto *ids_var = ctx.InputVar("Ids"); + const auto ids_vars = ctx.MultiInputVar("Ids"); + + PADDLE_ENFORCE_GT(ids_vars.size(), 0, "The number of Ids should > 0"); + auto *ids_var = ids_vars[0]; + if (ids_var->IsType()) { - const auto &ids_dims = ctx.Input("Ids")->dims(); - const T *ids = ctx.Input("Ids")->data(); + int batch_size = 0; + const auto ids_tensors = ctx.MultiInput("Ids"); + for (size_t i = 0; i < ids_tensors.size(); ++i) { + batch_size += ids_tensors[i]->dims()[0]; + } + VLOG(4) << "Get Total BatchSize is: " << batch_size; + + std::vector all_ids(batch_size); + int offset = 0; + for (size_t i = 0; i < ids_tensors.size(); ++i) { + const auto *ids = ids_tensors[i]; + std::memcpy(all_ids.data() + offset, ids->data(), + ids->numel() * sizeof(T)); + offset += ids->numel(); + } + + std::set st(all_ids.begin(), all_ids.end()); + all_ids.assign(st.begin(), st.end()); + auto outs = ctx.MultiOutput("Out"); const size_t shard_num = outs.size(); - std::vector> out_ids; out_ids.resize(outs.size()); // split id by their shard_num. - for (int i = 0; i < ids_dims[0]; ++i) { - T id = ids[i]; + for (int i = 0; i < all_ids.size(); ++i) { + T id = all_ids[i]; size_t shard_id = static_cast(id) % shard_num; out_ids[shard_id].push_back(id); } @@ -64,7 +86,7 @@ class SplitIdsOpKernel : public framework::OpKernel { PADDLE_ENFORCE_EQ(ids_dims[0], static_cast(ids_selected_rows->rows().size()), ""); - const T *ids = ids_selected_rows->value().data(); + const T *ids_data = ids_selected_rows->value().data(); const auto &ids_rows = ids_selected_rows->rows(); auto outs = ctx.MultiOutput("Out"); const size_t shard_num = outs.size(); @@ -87,7 +109,7 @@ class SplitIdsOpKernel : public framework::OpKernel { T *output = out->mutable_value()->mutable_data(ddim, place); for (int64_t i = 0; i < ddim[0]; ++i) { memcpy(output + i * row_width, - ids + id_to_index[out->rows()[i]] * row_width, + ids_data + id_to_index[out->rows()[i]] * row_width, row_width * sizeof(T)); } } diff --git a/paddle/fluid/operators/split_selected_rows_op.cc b/paddle/fluid/operators/split_selected_rows_op.cc index 76615a9405d7a8e3fa9dba8d01a956209e02ae8f..0e7b1463d1ba81aed53e0e3f3a90d2a1fbf0ffbc 100644 --- a/paddle/fluid/operators/split_selected_rows_op.cc +++ b/paddle/fluid/operators/split_selected_rows_op.cc @@ -22,9 +22,9 @@ class SplitSelectedRowsOpMaker : public framework::OpProtoAndCheckerMaker { void Make() override { AddInput("X", "The input SelectedRows."); AddOutput("Out", "The outputs of the input SelectedRows.").AsDuplicable(); - AddAttr>("height_sections", - "Height for each output SelectedRows.") - .SetDefault(std::vector({})); + AddAttr>("height_sections", + "Height for each output SelectedRows.") + .SetDefault(std::vector({})); AddComment(R"DOC( Split a SelectedRows with a specified rows section. diff --git a/paddle/fluid/operators/split_selected_rows_op.h b/paddle/fluid/operators/split_selected_rows_op.h index 0e9ce165b98845f4745ee70b028513ea31cc6657..af64607fafc6544047714e731846a2440be219b8 100644 --- a/paddle/fluid/operators/split_selected_rows_op.h +++ b/paddle/fluid/operators/split_selected_rows_op.h @@ -21,7 +21,7 @@ limitations under the License. */ namespace paddle { namespace operators { -static int FindOutIdx(int row, const std::vector& abs_sections) { +static int FindOutIdx(int row, const std::vector& abs_sections) { for (size_t i = 1; i < abs_sections.size(); ++i) { if (row < abs_sections[i]) { return i - 1; @@ -30,9 +30,9 @@ static int FindOutIdx(int row, const std::vector& abs_sections) { return abs_sections.size() - 1; } -static std::vector ToAbsoluteSection( - const std::vector& height_sections) { - std::vector abs_sections; +static std::vector ToAbsoluteSection( + const std::vector& height_sections) { + std::vector abs_sections; abs_sections.resize(height_sections.size()); abs_sections[0] = 0; for (size_t i = 1; i < height_sections.size(); ++i) { @@ -47,7 +47,7 @@ class SplitSelectedRowsOpKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto outs = ctx.MultiOutput("Out"); - auto height_sections = ctx.Attr>("height_sections"); + auto height_sections = ctx.Attr>("height_sections"); auto abs_sections = ToAbsoluteSection(height_sections); diff --git a/paddle/fluid/operators/spp_op.h b/paddle/fluid/operators/spp_op.h index 08cb7849d20443862b66ea6096c095b294c7242c..35d9737ee01fe1505cbe30e8ed735e6b92cb8df2 100644 --- a/paddle/fluid/operators/spp_op.h +++ b/paddle/fluid/operators/spp_op.h @@ -56,12 +56,14 @@ class SppKernel : public framework::OpKernel { math::Pool2dFunctor, T> pool_forward; math::MaxPool max_process; pool_forward(context.template device_context(), *in_x, - kernel_size, strides, paddings, max_process, &out_level); + kernel_size, strides, paddings, max_process, true, + &out_level); } else if (pooling_type == "avg") { math::Pool2dFunctor, T> pool_forward; math::AvgPool avg_process; pool_forward(context.template device_context(), *in_x, - kernel_size, strides, paddings, avg_process, &out_level); + kernel_size, strides, paddings, avg_process, true, + &out_level); } // flatten pooling output shape int output_flatten_w = in_x->dims()[1] * bins * bins; @@ -154,7 +156,7 @@ class SppGradKernel : public framework::OpKernel { math::AvgPoolGrad avg_process; pool_backward(context.template device_context(), *in_x, *&out_level, *&outgrad_level, kernel_size, strides, - paddings, avg_process, in_x_grad); + paddings, avg_process, true, in_x_grad); } } } diff --git a/paddle/fluid/operators/sum_op.cc b/paddle/fluid/operators/sum_op.cc index 34dbac2ab8dcc9bd2b91e2daa2f42806057f5f56..d19ac9839c90a116265b761e3b1b3f855e2d95e8 100644 --- a/paddle/fluid/operators/sum_op.cc +++ b/paddle/fluid/operators/sum_op.cc @@ -67,6 +67,7 @@ class SumOp : public framework::OperatorWithKernel { framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto x_vars = ctx.MultiInputVar("X"); + auto x_vars_name = ctx.Inputs("X"); framework::LibraryType library{framework::LibraryType::kPlain}; framework::DataLayout layout{framework::DataLayout::kAnyLayout}; @@ -81,15 +82,18 @@ class SumOp : public framework::OperatorWithKernel { if (x_vars[0]->IsType()) { int dtype = -1; - for (auto& x_var : x_vars) { - auto& lod_tensor = x_var->Get(); - if (lod_tensor.numel() == 0) { + for (size_t idx = 0; idx < x_vars.size(); ++idx) { + PADDLE_ENFORCE(x_vars[idx] != nullptr, + "Input var[%s] should not be nullptr", x_vars_name[idx]); + // FIXME(zcd): The input x_var may be SelectedRows or LoDTensor. + auto tensor = framework::GetTensorFromVar(*x_vars[idx]); + if (tensor->numel() == 0) { continue; } if (dtype == -1) { - dtype = framework::ToDataType(lod_tensor.type()); + dtype = framework::ToDataType(tensor->type()); } else { - PADDLE_ENFORCE_EQ(dtype, framework::ToDataType(lod_tensor.type())); + PADDLE_ENFORCE_EQ(dtype, framework::ToDataType(tensor->type())); } } PADDLE_ENFORCE_NE(dtype, -1, diff --git a/paddle/fluid/operators/sum_op.h b/paddle/fluid/operators/sum_op.h index 11987c61aebaad00f8a71f1b909c83c44ddc8b0e..f6e12dfc76c6ce73f10e707387f6a9cedacde3c8 100644 --- a/paddle/fluid/operators/sum_op.h +++ b/paddle/fluid/operators/sum_op.h @@ -83,79 +83,54 @@ class SumKernel : public framework::OpKernel { } } } else if (out_var->IsType()) { - std::unique_ptr in0; - if (in_place) { - // If is in_place, we store the input[0] to in0 - auto &in_sel0 = in_vars[0]->Get(); - auto &rows = in_sel0.rows(); -#ifdef PADDLE_WITH_CUDA - std::vector rows_in_cpu; - rows_in_cpu.reserve(rows.size()); - for (auto item : rows) { - rows_in_cpu.push_back(item); - } - in0.reset(new framework::SelectedRows(rows_in_cpu, in_sel0.height())); -#else - in0.reset(new framework::SelectedRows(rows, in_sel0.height())); -#endif - in0->mutable_value()->ShareDataWith(in_sel0.value()); + if (in_place && in_vars.size() < 2) { + return; } - auto get_selected_row = [&](size_t i) -> const SelectedRows & { - if (i == 0 && in0) { - return *in0.get(); - } else { - return in_vars[i]->Get(); + std::vector inputs; + SelectedRows temp_in0; + + if (in_place) { + auto &in0 = in_vars[0]->Get(); + temp_in0.set_height(in0.height()); + temp_in0.set_rows(in0.rows()); + framework::TensorCopy(in0.value(), in0.place(), + context.device_context(), + temp_in0.mutable_value()); + inputs.push_back(&temp_in0); + for (size_t i = 1; i < in_vars.size(); ++i) { + auto &in = in_vars[i]->Get(); + if (in.rows().size() > 0) { + inputs.push_back(&in); + } + } + } else { + for (auto &in_var : in_vars) { + auto &in = in_var->Get(); + if (in.rows().size() > 0) { + inputs.push_back(&in_var->Get()); + } } - }; + } auto *out = context.Output("Out"); out->mutable_rows()->clear(); - auto *out_value = out->mutable_value(); - - // Runtime InferShape - size_t first_dim = 0; - for (size_t i = 0; i < in_num; i++) { - auto &sel_row = get_selected_row(i); - first_dim += sel_row.rows().size(); - } - std::vector in_dim; - for (size_t i = 0; i < in_num; i++) { - auto &sel_row = get_selected_row(i); - if (sel_row.rows().size() > 0) { - in_dim = framework::vectorize(sel_row.value().dims()); + bool has_data = false; + for (auto &in : inputs) { + if (in->rows().size() > 0) { + has_data = true; break; } } - if (in_dim.empty()) { - VLOG(3) << "WARNING: all the inputs are empty"; - in_dim = - framework::vectorize(get_selected_row(in_num - 1).value().dims()); + if (has_data) { + math::scatter::MergeAdd merge_add; + merge_add(context.template device_context(), inputs, + out); } else { - in_dim[0] = static_cast(first_dim); - } - - out_value->Resize(framework::make_ddim(in_dim)); - out_value->mutable_data(context.GetPlace()); - // if all the input sparse vars are empty, no need to - // merge these vars. - if (first_dim == 0UL) { - return; - } - - math::SelectedRowsAddTo functor; - - int64_t offset = 0; - for (size_t i = 0; i < in_num; i++) { - auto &sel_row = get_selected_row(i); - if (sel_row.rows().size() == 0) { - continue; - } - PADDLE_ENFORCE_EQ(out->height(), sel_row.height()); - functor(context.template device_context(), sel_row, - offset, out); - offset += sel_row.value().numel(); + // no data, just set a empty out tensor. + out->mutable_value()->mutable_data(framework::make_ddim({0}), + context.GetPlace()); } } else if (out_var->IsType()) { auto &out_array = *out_var->GetMutable(); diff --git a/paddle/fluid/operators/transpose_op.cc b/paddle/fluid/operators/transpose_op.cc index 6a9fc6611a8f8eaa6749aefac0673ccabaebbcfe..bbd71db6062107f6ba40343c84d942b54b3958e6 100644 --- a/paddle/fluid/operators/transpose_op.cc +++ b/paddle/fluid/operators/transpose_op.cc @@ -210,18 +210,21 @@ REGISTER_OPERATOR(transpose, ops::TransposeOp, ops::TransposeOpMaker, REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad); REGISTER_OP_CPU_KERNEL( - transpose, ops::TransposeKernel); + transpose, ops::TransposeKernel, + ops::TransposeKernel); REGISTER_OP_CPU_KERNEL( transpose_grad, - ops::TransposeGradKernel); + ops::TransposeGradKernel, + ops::TransposeGradKernel); REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker, ops::Transpose2GradMaker); REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad); REGISTER_OP_CPU_KERNEL( - transpose2, - ops::TransposeKernel); + transpose2, ops::TransposeKernel, + ops::TransposeKernel); REGISTER_OP_CPU_KERNEL( transpose2_grad, - ops::TransposeGradKernel); + ops::TransposeGradKernel, + ops::TransposeGradKernel); diff --git a/paddle/fluid/operators/transpose_op.cu.cc b/paddle/fluid/operators/transpose_op.cu.cc index c1b5a8b31be243fab3af06a18c8e51986c953700..b4025350fa9f3610bde43eee91cd059f3063813f 100644 --- a/paddle/fluid/operators/transpose_op.cu.cc +++ b/paddle/fluid/operators/transpose_op.cu.cc @@ -16,15 +16,18 @@ limitations under the License. */ namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( - transpose, - ops::TransposeKernel); + transpose, ops::TransposeKernel, + ops::TransposeKernel); REGISTER_OP_CUDA_KERNEL( transpose_grad, - ops::TransposeGradKernel); + ops::TransposeGradKernel, + ops::TransposeGradKernel); REGISTER_OP_CUDA_KERNEL( transpose2, - ops::TransposeKernel); + ops::TransposeKernel, + ops::TransposeKernel); REGISTER_OP_CUDA_KERNEL( transpose2_grad, - ops::TransposeGradKernel); + ops::TransposeGradKernel, + ops::TransposeGradKernel); diff --git a/paddle/fluid/operators/uniform_random_op.cc b/paddle/fluid/operators/uniform_random_op.cc index aa907595cb7cf165974caa69fe8eb0370471732d..e3132ae76f624f3338d749e4fcebbd0ecd7ffe79 100644 --- a/paddle/fluid/operators/uniform_random_op.cc +++ b/paddle/fluid/operators/uniform_random_op.cc @@ -29,7 +29,7 @@ class CPUUniformRandomKernel : public framework::OpKernel { if (out_var->IsType()) { tensor = out_var->GetMutable(); } else if (out_var->IsType()) { - auto shape = ctx.Attr>("shape"); + auto shape = ctx.Attr>("shape"); auto *selected_rows = out_var->GetMutable(); tensor = selected_rows->mutable_value(); tensor->Resize(framework::make_ddim(shape)); @@ -67,7 +67,7 @@ class UniformRandomOp : public framework::OperatorWithKernel { PADDLE_ENFORCE( ctx->Attrs().Get("min") < ctx->Attrs().Get("max"), "uniform_random's min must less then max"); - auto &shape = ctx->Attrs().Get>("shape"); + auto &shape = ctx->Attrs().Get>("shape"); std::vector temp; temp.reserve(shape.size()); for (auto dim : shape) { @@ -94,7 +94,7 @@ This operator initializes a tensor with random values sampled from a uniform distribution. The random result is in set [min, max]. )DOC"); - AddAttr>("shape", "The shape of the output tensor"); + AddAttr>("shape", "The shape of the output tensor"); AddAttr("min", "Minimum value of uniform random. [default -1.0].") .SetDefault(-1.0f); AddAttr("max", "Maximun value of uniform random. [default 1.0].") diff --git a/paddle/fluid/operators/uniform_random_op.cu b/paddle/fluid/operators/uniform_random_op.cu index bbb692b0ddfc18e8a62c0d2a6bac88f9932f6704..2bb0ecc139f7096d1b61150e0a2d4fb095338749 100644 --- a/paddle/fluid/operators/uniform_random_op.cu +++ b/paddle/fluid/operators/uniform_random_op.cu @@ -48,7 +48,7 @@ class GPUUniformRandomKernel : public framework::OpKernel { if (out_var->IsType()) { tensor = out_var->GetMutable(); } else if (out_var->IsType()) { - auto shape = context.Attr>("shape"); + auto shape = context.Attr>("shape"); tensor = out_var->GetMutable()->mutable_value(); tensor->Resize(framework::make_ddim(shape)); } else { diff --git a/paddle/fluid/platform/cudnn_helper.h b/paddle/fluid/platform/cudnn_helper.h index bb8b14bb9fa41942c3aa653ca224c0842fbf9a00..07bb02be1962f758e50cab1f27de43e89f3953c3 100644 --- a/paddle/fluid/platform/cudnn_helper.h +++ b/paddle/fluid/platform/cudnn_helper.h @@ -76,8 +76,9 @@ enum class DataLayout { // Not use enum class PoolingMode { kMaximum, - kAverage, kMaximumDeterministic, + kAverageExclusive, + kAverageInclusive, }; #if CUDNN_VERSION < 6000 @@ -91,8 +92,10 @@ inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) { switch (mode) { case PoolingMode::kMaximumDeterministic: return CUDNN_POOLING_MAX; - case PoolingMode::kAverage: + case PoolingMode::kAverageExclusive: return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING; + case PoolingMode::kAverageInclusive: + return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING; case PoolingMode::kMaximum: return CUDNN_POOLING_MAX; default: @@ -105,8 +108,10 @@ inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) { switch (mode) { case PoolingMode::kMaximumDeterministic: return CUDNN_POOLING_MAX_DETERMINISTIC; - case PoolingMode::kAverage: + case PoolingMode::kAverageExclusive: return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING; + case PoolingMode::kAverageInclusive: + return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING; case PoolingMode::kMaximum: return CUDNN_POOLING_MAX; default: @@ -341,6 +346,28 @@ class ScopedPoolingDescriptor { DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor); }; +class ScopedSpatialTransformerDescriptor { + public: + ScopedSpatialTransformerDescriptor() { + PADDLE_ENFORCE(dynload::cudnnCreateSpatialTransformerDescriptor(&desc_)); + } + ~ScopedSpatialTransformerDescriptor() { + PADDLE_ENFORCE(dynload::cudnnDestroySpatialTransformerDescriptor(desc_)); + } + + template + inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims, + const int dimA[]) { + PADDLE_ENFORCE(dynload::cudnnSetSpatialTransformerNdDescriptor( + desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType::type, nbDims, dimA)); + return desc_; + } + + private: + cudnnSpatialTransformerDescriptor_t desc_; + DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor); +}; + inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) { bool use_cudnn = ctx.Attr("use_cudnn"); use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace()); diff --git a/paddle/fluid/platform/device_context.cc b/paddle/fluid/platform/device_context.cc index 25540c71e0a6588f8ea6ba3bd754ddd67cf5f1b0..ae18c4310bc8aac9b1f6f0087ccfc999264d2aac 100644 --- a/paddle/fluid/platform/device_context.cc +++ b/paddle/fluid/platform/device_context.cc @@ -32,23 +32,25 @@ platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) { "'Place' is not supported, Please re-compile with WITH_GPU " "option"); } - return it->second.get(); + return it->second.get().get(); } -const std::vector -DeviceContextPool::GetAllDeviceContexts() const { - std::vector all_device_ctx; - all_device_ctx.reserve(device_contexts_.size()); - for (auto& dev_ctx : device_contexts_) { - all_device_ctx.emplace_back(dev_ctx.second.get()); - } - return all_device_ctx; +template +inline void EmplaceDeviceContext( + std::map>>* + map_ptr, + platform::Place p) { + using PtrType = std::unique_ptr; + map_ptr->emplace(p, std::async(std::launch::deferred, [=] { + // lazy evaluation. i.e., only create device context at + // first `Get` + return PtrType(new DevCtx(boost::get(p))); + })); } DeviceContextPool::DeviceContextPool( const std::vector& places) { PADDLE_ENFORCE_GT(places.size(), 0); - using PtrType = std::unique_ptr; std::set set; for (auto& p : places) { set.insert(p); @@ -57,16 +59,13 @@ DeviceContextPool::DeviceContextPool( for (auto& p : set) { if (platform::is_cpu_place(p)) { #ifdef PADDLE_WITH_MKLDNN - device_contexts_.emplace( - p, PtrType(new MKLDNNDeviceContext(boost::get(p)))); + EmplaceDeviceContext(&device_contexts_, p); #else - device_contexts_.emplace( - p, PtrType(new CPUDeviceContext(boost::get(p)))); + EmplaceDeviceContext(&device_contexts_, p); #endif } else if (platform::is_gpu_place(p)) { #ifdef PADDLE_WITH_CUDA - device_contexts_.emplace( - p, PtrType(new CUDADeviceContext(boost::get(p)))); + EmplaceDeviceContext(&device_contexts_, p); #else PADDLE_THROW( "'CUDAPlace' is not supported, Please re-compile with WITH_GPU " @@ -74,9 +73,8 @@ DeviceContextPool::DeviceContextPool( #endif } else if (platform::is_cuda_pinned_place(p)) { #ifdef PADDLE_WITH_CUDA - device_contexts_.emplace( - p, - PtrType(new CUDAPinnedDeviceContext(boost::get(p)))); + EmplaceDeviceContext( + &device_contexts_, p); #else PADDLE_THROW( "'CUDAPlace' is not supported, Please re-compile with WITH_GPU " @@ -327,38 +325,73 @@ Place CUDAPinnedDeviceContext::GetPlace() const { return place_; } #ifdef PADDLE_WITH_MKLDNN MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place) - : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobs_() { - p_blobs_.reset(new std::unordered_map>()); + : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() { + p_blobmap_.reset(new BlobMap()); + p_mutex_.reset(new std::mutex()); +} + +namespace { +// Current thread's id. +thread_local int cur_thread_id = 0; } +void set_cur_thread_id(int tid) { cur_thread_id = tid; } +int get_cur_thread_id(void) { return cur_thread_id; } + void MKLDNNDeviceContext::SetBlob(const std::string& name, std::shared_ptr data) const { - std::unordered_map>* p; - p = p_blobs_.get(); + BlobMap* pMap = p_blobmap_.get(); + std::shared_ptr pBlob = nullptr; + + int tid = platform::get_cur_thread_id(); + + std::lock_guard lock(*p_mutex_.get()); - auto it = p->find(name); + // Find KeyBlob for current thread + auto map_it = pMap->find(tid); - if (it == p->end()) { - (*p)[name] = data; // create new blob + if (map_it == pMap->end()) { + // 1st time to set blob in current thread + pBlob = std::shared_ptr(new KeyBlob()); + (*pMap)[tid] = pBlob; } else { - it->second = data; // set data to existing blob + pBlob = map_it->second; } + // Find Key in found (or newly created) KeyBlob + auto key_it = pBlob->find(name); + + if (key_it == pBlob->end()) { + (*pBlob)[name] = data; // create new blob + } else { + key_it->second = data; // set data to existing blob + } + + // lock will be automatically released when out of scope return; } std::shared_ptr MKLDNNDeviceContext::GetBlob( const std::string& name) const { - std::unordered_map>* p; - p = p_blobs_.get(); + BlobMap* pMap = p_blobmap_.get(); + std::shared_ptr pBlob = nullptr; - auto it = p->find(name); + int tid = platform::get_cur_thread_id(); - if (it != p->end()) { - return it->second; - } + std::lock_guard lock(*p_mutex_.get()); + + // Find KeyBlob for current thread firstly + auto map_it = pMap->find(tid); + if (map_it == pMap->end()) return nullptr; + pBlob = map_it->second; + + // Find Blob via name + auto key_it = pBlob->find(name); + + if (key_it == pBlob->end()) return nullptr; - return nullptr; + // lock will be automatically released when out of scope + return key_it->second; } #endif diff --git a/paddle/fluid/platform/device_context.h b/paddle/fluid/platform/device_context.h index 0631a098c7561c790f61a3391b23b1644b257a96..b54cb61064ccd4d930eea5205045ed54661ebb90 100644 --- a/paddle/fluid/platform/device_context.h +++ b/paddle/fluid/platform/device_context.h @@ -10,6 +10,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include // NOLINT #include #include // NOLINT #include @@ -212,6 +213,12 @@ struct DefaultDeviceContextType { #endif #ifdef PADDLE_WITH_MKLDNN +using KeyBlob = std::unordered_map>; +using BlobMap = std::unordered_map>; + +void set_cur_thread_id(int); +int get_cur_thread_id(void); + class MKLDNNDeviceContext : public CPUDeviceContext { public: explicit MKLDNNDeviceContext(CPUPlace place); @@ -227,8 +234,8 @@ class MKLDNNDeviceContext : public CPUDeviceContext { private: mkldnn::engine engine_; - std::shared_ptr>> - p_blobs_; + std::shared_ptr p_blobmap_; + std::shared_ptr p_mutex_; }; #endif @@ -253,9 +260,6 @@ class DeviceContextPool { /*! \brief Return handle of single device context. */ platform::DeviceContext* Get(const platform::Place& place); - /*! \brief Return all the device contexts. */ - const std::vector GetAllDeviceContexts() const; - template const typename DefaultDeviceContextType::TYPE* GetByPlace( const Place& place) { @@ -267,7 +271,8 @@ class DeviceContextPool { private: static DeviceContextPool* pool; - std::map> device_contexts_; + std::map>> + device_contexts_; DISABLE_COPY_AND_ASSIGN(DeviceContextPool); }; diff --git a/paddle/fluid/platform/dynload/cudnn.h b/paddle/fluid/platform/dynload/cudnn.h index e6353f67ef118072a2d8e49111e8ecc486589998..d3d754b6f58d25a9dfacafaf55d50b353a71ee6d 100644 --- a/paddle/fluid/platform/dynload/cudnn.h +++ b/paddle/fluid/platform/dynload/cudnn.h @@ -65,44 +65,51 @@ extern void EnforceCUDNNLoaded(const char* fn_name); * include all needed cudnn functions in HPPL * different cudnn version has different interfaces **/ -#define CUDNN_DNN_ROUTINE_EACH(__macro) \ - __macro(cudnnSetTensor4dDescriptor); \ - __macro(cudnnSetTensor4dDescriptorEx); \ - __macro(cudnnSetTensorNdDescriptor); \ - __macro(cudnnGetTensorNdDescriptor); \ - __macro(cudnnGetConvolutionNdForwardOutputDim); \ - __macro(cudnnGetConvolutionForwardAlgorithm); \ - __macro(cudnnCreateTensorDescriptor); \ - __macro(cudnnDestroyTensorDescriptor); \ - __macro(cudnnCreateFilterDescriptor); \ - __macro(cudnnSetFilter4dDescriptor); \ - __macro(cudnnSetFilterNdDescriptor); \ - __macro(cudnnGetFilterNdDescriptor); \ - __macro(cudnnSetPooling2dDescriptor); \ - __macro(cudnnSetPoolingNdDescriptor); \ - __macro(cudnnGetPoolingNdDescriptor); \ - __macro(cudnnDestroyFilterDescriptor); \ - __macro(cudnnCreateConvolutionDescriptor); \ - __macro(cudnnCreatePoolingDescriptor); \ - __macro(cudnnDestroyPoolingDescriptor); \ - __macro(cudnnSetConvolution2dDescriptor); \ - __macro(cudnnDestroyConvolutionDescriptor); \ - __macro(cudnnSetConvolutionNdDescriptor); \ - __macro(cudnnGetConvolutionNdDescriptor); \ - __macro(cudnnDeriveBNTensorDescriptor); \ - __macro(cudnnCreate); \ - __macro(cudnnDestroy); \ - __macro(cudnnSetStream); \ - __macro(cudnnActivationForward); \ - __macro(cudnnConvolutionForward); \ - __macro(cudnnConvolutionBackwardBias); \ - __macro(cudnnGetConvolutionForwardWorkspaceSize); \ - __macro(cudnnTransformTensor); \ - __macro(cudnnPoolingForward); \ - __macro(cudnnPoolingBackward); \ - __macro(cudnnSoftmaxBackward); \ - __macro(cudnnSoftmaxForward); \ - __macro(cudnnGetVersion); \ +#define CUDNN_DNN_ROUTINE_EACH(__macro) \ + __macro(cudnnSetTensor4dDescriptor); \ + __macro(cudnnSetTensor4dDescriptorEx); \ + __macro(cudnnSetTensorNdDescriptor); \ + __macro(cudnnGetTensorNdDescriptor); \ + __macro(cudnnGetConvolutionNdForwardOutputDim); \ + __macro(cudnnGetConvolutionForwardAlgorithm); \ + __macro(cudnnCreateTensorDescriptor); \ + __macro(cudnnDestroyTensorDescriptor); \ + __macro(cudnnCreateFilterDescriptor); \ + __macro(cudnnSetFilter4dDescriptor); \ + __macro(cudnnSetFilterNdDescriptor); \ + __macro(cudnnGetFilterNdDescriptor); \ + __macro(cudnnSetPooling2dDescriptor); \ + __macro(cudnnSetPoolingNdDescriptor); \ + __macro(cudnnGetPoolingNdDescriptor); \ + __macro(cudnnDestroyFilterDescriptor); \ + __macro(cudnnCreateConvolutionDescriptor); \ + __macro(cudnnCreatePoolingDescriptor); \ + __macro(cudnnDestroyPoolingDescriptor); \ + __macro(cudnnSetConvolution2dDescriptor); \ + __macro(cudnnDestroyConvolutionDescriptor); \ + __macro(cudnnSetConvolutionNdDescriptor); \ + __macro(cudnnGetConvolutionNdDescriptor); \ + __macro(cudnnDeriveBNTensorDescriptor); \ + __macro(cudnnCreateSpatialTransformerDescriptor); \ + __macro(cudnnSetSpatialTransformerNdDescriptor); \ + __macro(cudnnDestroySpatialTransformerDescriptor); \ + __macro(cudnnSpatialTfGridGeneratorForward); \ + __macro(cudnnSpatialTfGridGeneratorBackward); \ + __macro(cudnnSpatialTfSamplerForward); \ + __macro(cudnnSpatialTfSamplerBackward); \ + __macro(cudnnCreate); \ + __macro(cudnnDestroy); \ + __macro(cudnnSetStream); \ + __macro(cudnnActivationForward); \ + __macro(cudnnConvolutionForward); \ + __macro(cudnnConvolutionBackwardBias); \ + __macro(cudnnGetConvolutionForwardWorkspaceSize); \ + __macro(cudnnTransformTensor); \ + __macro(cudnnPoolingForward); \ + __macro(cudnnPoolingBackward); \ + __macro(cudnnSoftmaxBackward); \ + __macro(cudnnSoftmaxForward); \ + __macro(cudnnGetVersion); \ __macro(cudnnGetErrorString); CUDNN_DNN_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP) diff --git a/paddle/fluid/pybind/protobuf.cc b/paddle/fluid/pybind/protobuf.cc index 3b22718a8c6f994dbc2dc3e7aaa19a7163f716ba..d3b0d4a22954c1d67dc9551b997dcffa0625cbeb 100644 --- a/paddle/fluid/pybind/protobuf.cc +++ b/paddle/fluid/pybind/protobuf.cc @@ -57,6 +57,18 @@ struct variant_caster> { auto caster = make_caster(); if (!load_success_ && caster.load(src, convert)) { load_success_ = true; + + if (std::is_same>::value) { + auto caster_ints = make_caster>(); + if (caster_ints.load(src, convert)) { + VLOG(4) << "This value are floats and int64_ts satisfy " + "simultaneously, will set it's type to " + "std::vector"; + value = cast_op>(caster_ints); + return true; + } + } + value = cast_op(caster); return true; } @@ -259,6 +271,8 @@ void BindOpDesc(pybind11::module *m) { pybind11::enum_(*m, "AttrType", "") .value("INT", pd::proto::AttrType::INT) .value("INTS", pd::proto::AttrType::INTS) + .value("LONG", pd::proto::AttrType::LONG) + .value("LONGS", pd::proto::AttrType::LONGS) .value("FLOAT", pd::proto::AttrType::FLOAT) .value("FLOATS", pd::proto::AttrType::FLOATS) .value("STRING", pd::proto::AttrType::STRING) diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index 339a7c98c6a2bba2cd46790cecc169ef447c63ce..7c7b14df6618bd636f3636612486884b573309fb 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -645,9 +645,13 @@ All parameter, weight, gradient are variables in Paddle. py::class_> pass(m, "Pass"); pass.def(py::init()) - .def("set_str", [](ir::Pass &self, const std::string &name, - const std::string &attr) { - self.Set(name, new std::string(attr)); + .def( + "set_str", + [](ir::Pass &self, const std::string &name, const std::string &attr) { + self.Set(name, new std::string(attr)); + }) + .def("set_int", [](ir::Pass &self, const std::string &name, int val) { + self.Set(name, new int(val)); }); py::class_> pb( @@ -817,6 +821,13 @@ All parameter, weight, gradient are variables in Paddle. [](BuildStrategy &self, bool b) { self.enable_data_balance_ = b; }) // FIXME(chengudo): enable_data_balance seems not important + .def_property("enable_sequential_execution", + [](const BuildStrategy &self) { + return self.enable_sequential_execution_; + }, + [](BuildStrategy &self, bool b) { + self.enable_sequential_execution_ = b; + }) .def_property( "fuse_elewise_add_act_ops", [](const BuildStrategy &self) { diff --git a/paddle/fluid/train/demo/CMakeLists.txt b/paddle/fluid/train/demo/CMakeLists.txt index 78d6e5ff554b9cd9facae85be166a697e0b75337..eabb51d370aff709e289e1fc727aa2dbb551d82e 100644 --- a/paddle/fluid/train/demo/CMakeLists.txt +++ b/paddle/fluid/train/demo/CMakeLists.txt @@ -15,6 +15,7 @@ include_directories("${PADDLE_LIB}") include_directories("${PADDLE_LIB}/third_party/install/protobuf/include") include_directories("${PADDLE_LIB}/third_party/install/glog/include") include_directories("${PADDLE_LIB}/third_party/install/gflags/include") +include_directories("${PADDLE_LIB}/third_party/install/xxhash/include") include_directories("${PADDLE_LIB}/third_party/install/snappy/include") include_directories("${PADDLE_LIB}/third_party/install/snappystream/include") include_directories("${PADDLE_LIB}/third_party/install/zlib/include") @@ -27,6 +28,7 @@ link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib") link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib") link_directories("${PADDLE_LIB}/third_party/install/glog/lib") link_directories("${PADDLE_LIB}/third_party/install/gflags/lib") +link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib") link_directories("${PADDLE_LIB}/third_party/install/zlib/lib") add_executable(demo_trainer demo_trainer.cc) @@ -62,5 +64,5 @@ target_link_libraries(demo_trainer ${ARCHIVE_END} ${MATH_LIB} ${MKLDNN_LIB} - glog gflags protobuf snappystream snappy z + glog gflags protobuf snappystream snappy z xxhash ${EXTERNAL_LIB}) diff --git a/paddle/scripts/paddle_build.sh b/paddle/scripts/paddle_build.sh index 85493c10549c290330ed09b9f28accb7a980de6a..d7676f89ab5e781f910f98d03e72d5f7c1023a9a 100755 --- a/paddle/scripts/paddle_build.sh +++ b/paddle/scripts/paddle_build.sh @@ -95,9 +95,9 @@ function cmake_gen() { exit 1 fi fi - else + else if [ "$1" != "" ]; then - echo "using python abi: $1" + echo "using python abi: $1" if [ "$1" == "cp27-cp27m" ]; then export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs4/lib:} export PATH=/opt/python/cp27-cp27m/bin/:${PATH} @@ -119,7 +119,7 @@ function cmake_gen() { fi fi fi - + if [ "$SYSTEM" == "Darwin" ]; then WITH_DISTRIBUTE=${WITH_DISTRIBUTE:-ON} WITH_AVX=${WITH_AVX:-ON} @@ -127,7 +127,7 @@ function cmake_gen() { else INFERENCE_DEMO_INSTALL_DIR=${INFERENCE_DEMO_INSTALL_DIR:-/root/.cache/inference_demo} fi - + cat <>> with program._optimized_guard([p,g]): >>> p = p - 0.001 * g """ + tmp_role = self._current_role + tmp_var = self._op_role_var + OpRole = core.op_proto_and_checker_maker.OpRole self._current_role = OpRole.Optimize self._op_role_var = [ @@ -1503,11 +1506,11 @@ class Program(object): for var in param_and_grads ] yield - self._op_role_var = [] - self._current_role = OpRole.Forward + self._op_role_var = tmp_var + self._current_role = tmp_role @contextlib.contextmanager - def _lr_schedule_guard(self): + def _lr_schedule_guard(self, is_with_opt=False): """ A with guard to set :code:`LRSched` :code:`OpRole` and :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is @@ -1515,6 +1518,10 @@ class Program(object): Notes: This is a very low level API. Users should not use it directly. + Args: + is_with_opt: Only set to true if these ops a in the middle + of a bunch of optimize ops so that it can be treated + correctly. For example, sgd->lr_op->sgd->lr_op->sgd. Examples: @@ -1528,6 +1535,8 @@ class Program(object): OpRole = core.op_proto_and_checker_maker.OpRole self._current_role = OpRole.LRSched + if is_with_opt: + self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize) # TODO(typhoonzero): how to set target learning rate var self._op_role_var = [] yield diff --git a/python/paddle/fluid/io.py b/python/paddle/fluid/io.py index 604f3eacd75beff306915b224b30c369dd3a486f..22c60c1cbe4faa8577fa655766e42694652e498d 100644 --- a/python/paddle/fluid/io.py +++ b/python/paddle/fluid/io.py @@ -884,12 +884,13 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs): load_prog = Program() load_block = load_prog.global_block() + need_delete_vars = [] for var_tuple in slice_vars_and_attrs: orig_var = var_tuple[0] start = var_tuple[1] slice_var = var_tuple[2] - end = start + reduce(lambda x, y: x * y, slice_var.shape) + end = start + slice_var.shape[0] clone_orig_var = load_block.create_var( name=orig_var.name, @@ -917,5 +918,8 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs): attrs={'axes': [0], 'starts': [start], 'ends': [end]}) - + need_delete_vars.append(clone_orig_var) + load_block.append_op( + type='delete_var', + inputs={'X': need_delete_vars}, ) executor.run(load_prog) diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 459be4339b01228ba1b8f18e17e472ed72928511..9730fbf510cbe8c323b761b29821710f2c14a81d 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -1586,8 +1586,7 @@ class DynamicRNN(object): self.lod_rank_table = None self.max_seq_len = None self.step_idx = None - self.zero_idx = fill_constant( - shape=[1], value=0, dtype='int64', force_cpu=True) + self.zero_idx = None self.mem_dict = dict() self.output_array = [] self.outputs = [] @@ -1792,6 +1791,7 @@ class DynamicRNN(object): """ self._assert_in_rnn_block_('memory') + self._init_zero_idx_() if init is not None: if not isinstance(init, Variable): raise TypeError( @@ -1905,6 +1905,22 @@ class DynamicRNN(object): array_write(x=each, i=self.step_idx, array=outside_array) self.output_array.append(outside_array) + def _init_zero_idx_(self): + if self.zero_idx is None: + parent_block = self._parent_block_() + self.zero_idx = parent_block.create_var( + name=unique_name.generate('zero_idx'), dtype='int64') + parent_block.append_op( + type='fill_constant', + inputs={}, + outputs={'Out': [self.zero_idx]}, + attrs={ + 'shape': [1], + 'dtype': self.zero_idx.dtype, + 'value': float(0), + 'force_cpu': True + }) + def _parent_block_(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index ece22d0b7ed4cac6618c7be14939c770bcf1176d..4ac94981a7a47530fe6ae4d968212c62dd3e0a93 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -1424,7 +1424,36 @@ def generate_proposal_labels(rpn_rois, use_random=True): """ ** Generate proposal labels Faster-RCNN ** - TODO(buxingyuan): Add Document + This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth, + to sample foreground boxes and background boxes, and compute loss target. + + RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes + were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction, + If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample. + If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi, + then it was considered as a background sample. + After all foreground and background boxes are chosen (so called Rois), + then we apply random sampling to make sure + the number of foreground boxes is no more than batch_size_per_im * fg_fraction. + + For each box in Rois, we assign the classification (class label) and regression targets (box label) to it. + Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss. + + Args: + rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. + gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. + is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. + gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format. + im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale. + + batch_size_per_im(int): Batch size of rois per images. + fg_fraction(float): Foreground fraction in total batch_size_per_im. + fg_thresh(float): Overlap threshold which is used to chose foreground sample. + bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. + bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. + bbox_reg_weights(list|tuple): Box regression weights. + class_nums(int): Class number. + use_random(bool): Use random sampling to choose foreground and background boxes. """ helper = LayerHelper('generate_proposal_labels', **locals()) @@ -1487,7 +1516,7 @@ def generate_proposals(scores, eta=1.0, name=None): """ - ** Generate proposal labels Faster-RCNN ** + ** Generate proposal Faster-RCNN ** This operation proposes RoIs according to each box with their probability to be a foreground object and the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals diff --git a/python/paddle/fluid/layers/learning_rate_scheduler.py b/python/paddle/fluid/layers/learning_rate_scheduler.py index dfd801a098d6451dbdb20d9ba44187d1e3f8a91a..149224bb68ac869dec14ac9f953f0072bd24c7e2 100644 --- a/python/paddle/fluid/layers/learning_rate_scheduler.py +++ b/python/paddle/fluid/layers/learning_rate_scheduler.py @@ -27,7 +27,7 @@ from . import nn from . import ops from . import tensor from ..initializer import init_on_cpu -from ..framework import default_main_program, Parameter, unique_name +from ..framework import default_main_program, Parameter, unique_name, name_scope __all__ = [ 'exponential_decay', 'natural_exp_decay', 'inverse_time_decay', @@ -332,14 +332,16 @@ def append_LARS(params_grads, learning_rate, weight_decay): return grad_norm + weight_decay * param_norm for param, grad in params_grads: - param_lr = param.optimize_attr['learning_rate'] - param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param))) - grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad))) - if type(param_lr) == float and param_lr == 1.0: - decayed_lr = learning_rate * param_norm \ - / _balanced_weight(param_norm, grad_norm) - else: - decayed_lr = learning_rate * param_lr * param_norm \ - / _balanced_weight(param_norm, grad_norm) - # set back param local learning rate - param.optimize_attr['learning_rate'] = decayed_lr + with param.block.program.optimized_guard( + [param, grad]), name_scope("optimizer"): + param_lr = param.optimize_attr['learning_rate'] + param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param))) + grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad))) + if type(param_lr) == float and param_lr == 1.0: + decayed_lr = learning_rate * param_norm \ + / _balanced_weight(param_norm, grad_norm) + else: + decayed_lr = learning_rate * param_lr * param_norm \ + / _balanced_weight(param_norm, grad_norm) + # set back param local learning rate + param.optimize_attr['learning_rate'] = decayed_lr diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index cca618b9ad2fef9bf4870f0f94d17fbc529fb83c..a87f123117491f27c7f024a758200e3a8e41fbc2 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -154,7 +154,13 @@ __all__ = [ 'mul', 'sigmoid_cross_entropy_with_logits', 'maxout', + 'affine_grid', + 'sequence_reverse', 'affine_channel', + 'hash', + 'grid_sampler', + 'log_loss', + 'add_position_encoding', ] @@ -706,8 +712,18 @@ def dynamic_gru(input, The first part are weights of the update gate and reset gate with shape :math:`(D \\times 2D)`, and the second part are weights for candidate hidden state with shape :math:`(D \\times D)`. - bias_attr(ParamAttr): The parameter attribute for learnable the - hidden-hidden bias. + + If it is set to None or one attribute of ParamAttr, dynamic_gru will + create ParamAttr as param_attr. If the Initializer of the param_attr + is not set, the parameter is initialized with Xavier. Default: None. + bias_attr (ParamAttr|bool|None): The parameter attribute for the bias + of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates + the bias in the update gate, reset gate and candidate calculations. + If it is set to False, no bias will be applied to the update gate, + reset gate and candidate calculations. If it is set to None or one + attribute of ParamAttr, dynamic_gru will create ParamAttr as + bias_attr. If the Initializer of the bias_attr is not set, the bias + is initialized zero. Default: None. is_reverse(bool): Whether to compute reversed GRU, default :attr:`False`. gate_activation(str): The activation for update gate and reset gate. @@ -745,7 +761,7 @@ def dynamic_gru(input, attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True) batch_size = input.shape[0] inputs = {'Input': input, 'Weight': weight, 'Bias': bias} - if h_0 != None: + if h_0: assert h_0.shape == ( batch_size, size ), 'The shape of h0 should be(batch_size, %d)' % size @@ -806,10 +822,29 @@ def gru_unit(input, Args: input (Variable): The fc transformed input value of current step. - hidden (Variable): The hidden value of lstm unit from previous step. + hidden (Variable): The hidden value of gru unit from previous step. size (integer): The input dimension value. - param_attr (ParamAttr): The weight parameters for gru unit. Default: None - bias_attr (ParamAttr): The bias parameters for gru unit. Default: None + param_attr(ParamAttr|None): The parameter attribute for the learnable + hidden-hidden weight matrix. Note: + + - The shape of the weight matrix is :math:`(T \\times 3D)`, where + :math:`D` is the hidden size. + - All elements in the weight matrix can be divided into two parts. + The first part are weights of the update gate and reset gate with + shape :math:`(D \\times 2D)`, and the second part are weights for + candidate hidden state with shape :math:`(D \\times D)`. + + If it is set to None or one attribute of ParamAttr, gru_unit will + create ParamAttr as param_attr. If the Initializer of the param_attr + is not set, the parameter is initialized with Xavier. Default: None. + bias_attr (ParamAttr|bool|None): The parameter attribute for the bias + of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates + the bias in the update gate, reset gate and candidate calculations. + If it is set to False, no bias will be applied to the update gate, + reset gate and candidate calculations. If it is set to None or one + attribute of ParamAttr, gru_unit will create ParamAttr as + bias_attr. If the Initializer of the bias_attr is not set, the bias + is initialized zero. Default: None. activation (string): The activation type for cell (actNode). Default: 'tanh' gate_activation (string): The activation type for gates (actGate). @@ -980,7 +1015,12 @@ def cos_sim(X, Y): return out -def dropout(x, dropout_prob, is_test=False, seed=None, name=None): +def dropout(x, + dropout_prob, + is_test=False, + seed=None, + name=None, + dropout_implementation="downgrade_in_infer"): """ Computes dropout. @@ -1000,6 +1040,21 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None): units will be dropped. DO NOT use a fixed seed in training. name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. + dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train'] + 1. downgrade_in_infer(default), downgrade the outcome at inference + train: out = input * mask + inference: out = input * dropout_prob + (make is a tensor same shape with input, value is 0 or 1 + ratio of 0 is dropout_prob) + 2. upscale_in_train, upscale the outcome at training time + train: out = input * mask / ( 1.0 - dropout_prob ) + inference: out = input + (make is a tensor same shape with input, value is 0 or 1 + ratio of 0 is dropout_prob) + dropout op can be removed from the program. + the program will be efficient + + Returns: Variable: A tensor variable is the shape with `x`. @@ -1029,7 +1084,8 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None): 'dropout_prob': dropout_prob, 'is_test': is_test, 'fix_seed': seed is not None, - 'seed': seed if seed is not None else 0 + 'seed': seed if seed is not None else 0, + 'dropout_implementation': dropout_implementation, }) return out @@ -1800,7 +1856,7 @@ def conv3d(input, return helper.append_activation(pre_act) -def sequence_pool(input, pool_type): +def sequence_pool(input, pool_type, is_test=False): """ This function add the operator for sequence pooling. It pools features of all time-steps of each instance, and is applied @@ -1837,6 +1893,7 @@ def sequence_pool(input, pool_type): input(variable): The input variable which is a LoDTensor. pool_type (string): The pooling type of sequence_pool. It supports average, sum, sqrt and max. + is_test(bool, Default False): Used distinguish training from scoring mode. Returns: The sequence pooling variable which is a Tensor. @@ -1864,7 +1921,8 @@ def sequence_pool(input, pool_type): inputs={"X": input}, outputs={"Out": pool_out, "MaxIndex": max_index}, - attrs={"pooltype": pool_type.upper()}) + attrs={"pooltype": pool_type.upper(), + "is_test": is_test}) # when pool_type is max, variable max_index is initialized, # so we stop the gradient explicitly here @@ -1969,17 +2027,17 @@ def sequence_slice(input, offset, length, name=None): """ **Sequence Slice Layer** - The layer crops a subsequence from given sequence with given start + The layer crops a subsequence from given sequence with given start offset and subsequence length. It only supports sequence data (LoDTensor with lod_level equal to 1). .. code-block:: text - + - Case: Given the input Variable **input**: - + input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]], input.lod = [[3, 2]], input.dims = (5, 2), @@ -1987,16 +2045,16 @@ def sequence_slice(input, offset, length, name=None): with offset.data = [[0], [1]] and length.data = [[2], [1]], the output Variable will be - + out.data = [[a1, a2], [b1, b2], [e1, e2]], out.lod = [[2, 1]], out.dims = (3, 2). - - NOTE: The first dimension size of **input**, **offset** and **length** + + NOTE: The first dimension size of **input**, **offset** and **length** should be equal. The **offset** should start from 0. - + Args: - input(Variable): The input Variable which consists of the complete + input(Variable): The input Variable which consists of the complete sequences. offset(Variable): The offset to slice each sequence. length(Variable): The length of each subsequence. @@ -2015,7 +2073,7 @@ def sequence_slice(input, offset, length, name=None): dtype='float32', lod_level=1) offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32")) length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32")) - subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, + subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, length=length) """ helper = LayerHelper("sequence_slice", **locals()) @@ -2044,7 +2102,8 @@ def pool2d(input, global_pooling=False, use_cudnn=True, ceil_mode=False, - name=None): + name=None, + exclusive=True): """ ${comment} @@ -2058,11 +2117,13 @@ def pool2d(input, pool_type: ${pooling_type_comment} pool_stride (int): stride of the pooling layer. pool_padding (int): padding size. - global_pooling: ${global_pooling_comment} - use_cudnn: ${use_cudnn_comment} - ceil_mode: ${ceil_mode_comment} + global_pooling (bool): ${global_pooling_comment} + use_cudnn (bool): ${use_cudnn_comment} + ceil_mode (bool): ${ceil_mode_comment} name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. + exclusive (bool): Whether to exclude padding points in average pooling + mode, default is true Returns: Variable: The pooling result. @@ -2120,7 +2181,8 @@ def pool2d(input, "paddings": pool_padding, "use_cudnn": use_cudnn, "ceil_mode": ceil_mode, - "use_mkldnn": False + "use_mkldnn": False, + "exclusive": exclusive, }) return pool_out @@ -2134,7 +2196,8 @@ def pool3d(input, global_pooling=False, use_cudnn=True, ceil_mode=False, - name=None): + name=None, + exclusive=True): """ This function adds the operator for pooling in 3-dimensions, using the pooling configurations mentioned in input parameters. @@ -2150,6 +2213,8 @@ def pool3d(input, ceil_mode (bool): ${ceil_mode_comment} name (str): A name for this layer(optional). If set None, the layer will be named automatically. + exclusive (bool): Whether to exclude padding points in average pooling + mode, default is true Returns: Variable: output of pool3d layer. @@ -2188,7 +2253,8 @@ def pool3d(input, "paddings": pool_padding, "use_cudnn": use_cudnn, "ceil_mode": ceil_mode, - "use_mkldnn": False + "use_mkldnn": False, + "exclusive": exclusive, }) return pool_out @@ -2398,12 +2464,12 @@ def layer_norm(input, param_attr(ParamAttr|None): The parameter attribute for the learnable gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is omitted. If :attr:`scale` is True and :attr:`param_attr` is None, - a default :code:`ParamAttr` would be added as scale. The - :attr:`param_attr` is initialized as 1 if it is added. Default None. + a default :code:`ParamAttr` would be added as scale. The + :attr:`param_attr` is initialized as 1 if it is added. Default None. bias_attr(ParamAttr|None): The parameter attribute for the learnable bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is omitted. If :attr:`shift` is True and :attr:`param_attr` is None, - a default :code:`ParamAttr` would be added as bias. The + a default :code:`ParamAttr` would be added as bias. The :attr:`bias_attr` is initialized as 0 if it is added. Default None. act(str): Activation to be applied to the output of layer normalizaiton. Default None. @@ -2993,7 +3059,8 @@ def sequence_pad(x, pad_value, maxlen=None, name=None): x = fluid.layers.data(name='y', shape=[10, 5], dtype='float32', lod_level=1) - pad_value = fluid.layers.assign(input=numpy.array([0])) + pad_value = fluid.layers.assign( + input=numpy.array([0], dtype=numpy.float32)) out = fluid.layers.sequence_pad(x=x, pad_value=pad_value) """ @@ -3021,8 +3088,8 @@ def sequence_unpad(x, length, name=None): """ **Sequence Unpad Layer** - This layer removes the padding data in the input sequences and convert - them into sequences with actual length as output, identitied by lod + This layer removes the padding data in the input sequences and convert + them into sequences with actual length as output, identitied by lod information. .. code-block:: text @@ -3032,9 +3099,9 @@ def sequence_unpad(x, length, name=None): Given input Variable **x**: x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0], [ 6.0, 7.0, 8.0, 9.0, 10.0], - [11.0, 12.0, 13.0, 14.0, 15.0]], - - in which there are 3 sequences padded to length 5, and the acutal length + [11.0, 12.0, 13.0, 14.0, 15.0]], + + in which there are 3 sequences padded to length 5, and the acutal length specified by input Variable **length**: length.data = [[2], [3], [4]], @@ -3042,7 +3109,7 @@ def sequence_unpad(x, length, name=None): after unpadding, the output Variable will be: out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]] - out.lod = [[2, 3, 4]] + out.lod = [[2, 3, 4]] Args: x(Variable): Input Variable which contains the padded sequences with @@ -4415,7 +4482,10 @@ def transpose(x, perm, name=None): Examples: .. code-block:: python - x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32') + # use append_batch_size=False to avoid prepending extra + # batch size in shape + x = fluid.layers.data(name='x', shape=[5, 10, 15], + dtype='float32', append_batch_size=False) x_transposed = layers.transpose(x, perm=[1, 0, 2]) """ @@ -4652,7 +4722,8 @@ def multiplex(inputs, index): def softmax_with_cross_entropy(logits, label, soft_label=False, - ignore_index=-100): + ignore_index=-100, + numeric_stable_mode=False): """ **Softmax With Cross Entropy Operator.** @@ -4686,6 +4757,18 @@ def softmax_with_cross_entropy(logits, \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K} \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K + 3) If numeric_stable_mode is True, softmax is calculated first by: + + .. math:: + + max_j = \\max_{i=0}^{K}{\\text{logit}_i} + + log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j) + + softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j) + + and then cross entropy loss is calculated by softmax and label. + Args: logits (Variable): The unscaled log probabilities, which is a 2-D tensor with shape [N x K]. N is the batch_size, and K is the class number. @@ -4697,6 +4780,13 @@ def softmax_with_cross_entropy(logits, ignore_index (int): Specifies a target value that is ignored and does not contribute to the input gradient. Only valid if soft_label is set to False. Default: -100 + numeric_stable_mode (bool): A flag to indicate whether to use a more + numerically stable algorithm. Only valid + when soft_label is False and GPU is used. + When soft_label is True or CPU is used, + the algorithm is always numerically stable. + Note that the speed may be slower when use + stable algorithm. Default: False Returns: Variable: The cross entropy loss is a 2-D tensor with shape [N x 1]. @@ -4719,8 +4809,11 @@ def softmax_with_cross_entropy(logits, 'Label': label}, outputs={'Softmax': softmax, 'Loss': loss}, - attrs={'soft_label': soft_label, - 'ignore_index': ignore_index}) + attrs={ + 'soft_label': soft_label, + 'ignore_index': ignore_index, + 'numeric_stable_mode': numeric_stable_mode + }) return loss @@ -4844,7 +4937,7 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1): return counter -def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): +def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): """ Gives a new shape to the input Tensor without changing its data. @@ -4892,15 +4985,22 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): :attr:`shape` specifying shape. That is to say :attr:`actual_shape` has a higher priority than :attr:`shape`. - act (str): The non-linear activation to be applied to output variable. - inplace(bool): If this flag is set true, the output - shares data with input without copying, otherwise - a new output tensor is created - whose data is copied from input x. + act (str): The non-linear activation to be applied to the reshaped tensor + variable. + inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple + operators. If this flag is set :attr:`True`, reuse input + :attr:`x` to reshape, which will change the shape of + tensor variable :attr:`x` and might cause errors when + :attr:`x` is used in multiple operators. If :attr:`False`, + preserve the shape :attr:`x` and create a new output tensor + variable whose data is copied from input x but reshaped. name (str): The name of this layer. It is optional. Returns: - Variable: The output tensor. + Variable: The reshaped tensor variable if :attr:`act` is None. It is a \ + new tensor variable if :attr:`inplace` is :attr:`False`, \ + otherwise it is :attr:`x`. If :attr:`act` is not None, return \ + the activated tensor variable. Raises: TypeError: if actual_shape is neither Variable nor None. @@ -4911,7 +5011,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): data = fluid.layers.data( name='data', shape=[2, 4, 6], dtype='float32') reshaped = fluid.layers.reshape( - x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True) + x=data, shape=[-1, 0, 3, 2], inplace=True) """ if not (isinstance(shape, list) or isinstance(shape, tuple)): @@ -4938,7 +5038,8 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): "except one unknown dimension.") helper = LayerHelper("reshape2", **locals()) - out = helper.create_variable_for_type_inference(dtype=x.dtype) + out = x if inplace else helper.create_variable_for_type_inference( + dtype=x.dtype) x_shape = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="reshape2", @@ -5469,9 +5570,9 @@ def roi_align(input, Examples: .. code-block:: python - align_out = fluid.layers.roi_align(input=x, - rois=rois, - pooled_height=7, + align_out = fluid.layers.roi_align(input=x, + rois=rois, + pooled_height=7, pooled_width=7, spatial_scale=0.5, sampling_ratio=-1) @@ -6072,6 +6173,124 @@ def crop(x, shape=None, offsets=None, name=None): return out +def affine_grid(theta, out_shape, name=None): + """ + It generates a grid of (x,y) coordinates using the parameters of + the affine transformation that correspond to a set of points where + the input feature map should be sampled to produce the transformed + output feature map. + + .. code-block:: text + + * Case 1: + + Given: + + theta = [[[x_11, x_12, x_13] + [x_14, x_15, x_16]] + [[x_21, x_22, x_23] + [x_24, x_25, x_26]]] + + out_shape = [2, 3, 5, 5] + + Step 1: + + Generate normalized coordinates according to out_shape. + The values of the normalized coordinates are in the interval between -1 and 1. + The shape of the normalized coordinates is [2, H, W] as below: + + C = [[[-1. -1. -1. -1. -1. ] + [-0.5 -0.5 -0.5 -0.5 -0.5] + [ 0. 0. 0. 0. 0. ] + [ 0.5 0.5 0.5 0.5 0.5] + [ 1. 1. 1. 1. 1. ]] + [[-1. -0.5 0. 0.5 1. ] + [-1. -0.5 0. 0.5 1. ] + [-1. -0.5 0. 0.5 1. ] + [-1. -0.5 0. 0.5 1. ] + [-1. -0.5 0. 0.5 1. ]]] + C[0] is the coordinates in height axis and C[1] is the coordinates in width axis. + + Step2: + + Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get: + C_ = [[-1. -1. 1. ] + [-0.5 -1. 1. ] + [ 0. -1. 1. ] + [ 0.5 -1. 1. ] + [ 1. -1. 1. ] + [-1. -0.5 1. ] + [-0.5 -0.5 1. ] + [ 0. -0.5 1. ] + [ 0.5 -0.5 1. ] + [ 1. -0.5 1. ] + [-1. 0. 1. ] + [-0.5 0. 1. ] + [ 0. 0. 1. ] + [ 0.5 0. 1. ] + [ 1. 0. 1. ] + [-1. 0.5 1. ] + [-0.5 0.5 1. ] + [ 0. 0.5 1. ] + [ 0.5 0.5 1. ] + [ 1. 0.5 1. ] + [-1. 1. 1. ] + [-0.5 1. 1. ] + [ 0. 1. 1. ] + [ 0.5 1. 1. ] + [ 1. 1. 1. ]] + Step3: + Compute output by equation $$Output[i] = C_ * Theta[i]^T$$ + + Args: + theta (Variable): A batch of affine transform parameters with shape [N, 2, 3]. + out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W]. + out_shape can be a Variable or a list or tuple. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The output with shape [N, H, W, 2]. + + Raises: + ValueError: If the type of arguments is not supported. + + Examples: + + .. code-block:: python + theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32") + out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32") + data = fluid.layers.affine_grid(theta, out_shape) + + # or + data = fluid.layers.affine_grid(theta, [5, 3, 28, 28]) + + """ + helper = LayerHelper('affine_grid') + + if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \ + isinstance(out_shape, Variable)): + raise ValueError("The out_shape should be a list, tuple or Variable.") + + if not isinstance(theta, Variable): + raise ValueError("The theta should be a Variable.") + + out = helper.create_variable_for_type_inference(theta.dtype) + ipts = {'Theta': theta} + attrs = {} + if isinstance(out_shape, Variable): + ipts['OutputShape'] = out_shape + else: + attrs['output_shape'] = out_shape + + helper.append_op( + type='affine_grid', + inputs=ipts, + outputs={'Output': out}, + attrs=None if len(attrs) == 0 else attrs) + return out + + def rank_loss(label, left, right, name=None): """ **Rank loss layer for RankNet** @@ -7286,10 +7505,10 @@ def clip(x, min, max, name=None): helper = LayerHelper("clip", **locals()) if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + name = unique_name.generate(".".join([helper.name, 'tmp'])) + + out = helper.create_variable( + type=x.type, name=name, dtype=x.dtype, persistable=False) helper.append_op( type="clip", @@ -7318,10 +7537,10 @@ def clip_by_norm(x, max_norm, name=None): helper = LayerHelper("clip_by_norm", **locals()) if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + name = unique_name.generate(".".join([helper.name, 'tmp'])) + + out = helper.create_variable( + type=x.type, name=name, dtype=x.dtype, persistable=False) helper.append_op( type="clip_by_norm", @@ -7455,13 +7674,40 @@ def maxout(x, groups, name=None): return out +@templatedoc() +def sequence_reverse(x, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + name(basestring|None): Name of the output. + + Returns: + out(${y_type}): ${y_comment} + """ + helper = LayerHelper("sequence_reverse", **locals()) + if name is None: + out = helper.create_variable_for_type_inference(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="sequence_reverse", + inputs={"X": x}, + outputs={"Y": out}, + attrs=dict()) + return out + + def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None): """ Applies a separate affine transformation to each channel of the input. Useful for replacing spatial batch norm with its equivalent fixed transformation. The input also can be 2D tensor and applies a affine transformation in second dimension. - + Args: x (Variable): Feature map input can be a 4D tensor with order NCHW or NHWC. It also can be a 2D tensor and the affine transformation @@ -7494,3 +7740,248 @@ def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None): attrs={"data_layout": data_layout}, outputs={"Out": out}) return out + + +def hash(input, hash_size, num_hash=1, name=None): + """ + Hash the input to an integer whose value is less than the given hash size. + + The hash algorithm we used was xxHash - Extremely fast hash algorithm + (https://github.com/Cyan4973/xxHash/tree/v0.6.5) + + A simple example as below: + + .. code-block:: text + + Given: + + # shape [2, 2] + input.data = [ + [[1], [2]], + [[3], [4]], + ] + + input.lod = [[0, 2]] + + hash_size = 10000 + + num_hash = 4 + + Then: + + Hash op will take all number in input's 2nd dimension as hash algorithm's + input for each time. Each input will be hashed for 4 times, and get an + array whose length is 4. Each value in the array ranges from 0 to 9999. + + # shape [2, 4] + output.data = [ + [[9662], [9217], [1129], [8487]], + [[8310], [1327], [1654], [4567]], + ] + + output.lod = [[0, 2]] + + Args: + input (Variable): The input variable which is a one-hot word. The + dimensions of the input variable must be 2. + hash_size (int): The space size for hash algorithm. The output value + will keep in the range:math:`[0, hash_size - 1]`. + num_hash (int): The times of hash, default 1. + name (str, default None): The name of this layer. + + Returns: + Variable: The hash result variable which is a LoDTensor. + + Examples: + .. code-block:: python + word_dict = paddle.dataset.imdb.word_dict() + x = fluid.layers.data(shape[1], dtype='int32', lod_level=1) + out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000) + """ + helper = LayerHelper('hash', **locals()) + out = helper.create_variable_for_type_inference( + helper.input_dtype(), stop_gradient=True) + helper.append_op( + type='hash', + inputs={'X': input}, + outputs={'Out': out}, + attrs={'num_hash': num_hash, + 'mod_by': hash_size}) + return out + + +@templatedoc() +def grid_sampler(x, grid, name=None): + """ + This operation samples input X by using bilinear interpolation based on + flow field grid, which is usually gennerated by affine_grid. The grid of + shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates + with shape [N, H, W] each, where grid_x is indexing the 4th dimension + (in width dimension) of input data x and grid_y is indexng the 3rd + dimention (in height dimension), finally results is the bilinear + interpolation value of 4 nearest corner points. + + Step 1: + Get (x, y) grid coordinates and scale to [0, H-1/W-1]. + + grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1) + grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1) + + Step 2: + Indices input data X with grid (x, y) in each [H, W] area, and bilinear + interpolate point value by 4 nearest points. + + wn ------- y_n ------- en + | | | + | d_n | + | | | + x_w --d_w-- grid--d_e-- x_e + | | | + | d_s | + | | | + ws ------- y_s ------- wn + + x_w = floor(x) // west side x coord + x_e = x_w + 1 // east side x coord + y_n = floor(y) // north side y coord + y_s = y_s + 1 // south side y coord + + d_w = grid_x - x_w // distance to west side + d_e = x_e - grid_x // distance to east side + d_n = grid_y - y_n // distance to north side + d_s = y_s - grid_y // distance to south side + + wn = X[:, :, y_n, x_w] // north-west point value + en = X[:, :, y_n, x_e] // north-east point value + ws = X[:, :, y_s, x_w] // south-east point value + es = X[:, :, y_s, x_w] // north-east point value + + output = wn * d_e * d_s + en * d_w * d_s + + ws * d_e * d_n + es * d_w * d_n + + Args: + x(Variable): Input data of shape [N, C, H, W]. + grid(Variable): Input grid tensor of shape [N, H, W, 2]. + name (str, default None): The name of this layer. + + Returns: + out(Variable): Output of shape [N, C, H, W] data samples input X + using bilnear interpolation based on input grid. + + Exmples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32') + theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32') + grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]}) + out = fluid.layers.grid_sampler(x=x, grid=grid) + """ + helper = LayerHelper("grid_sampler", **locals()) + + if not isinstance(x, Variable): + return ValueError("The x should be a Variable") + + if not isinstance(grid, Variable): + return ValueError("The grid should be a Variable") + + out = helper.create_variable_for_type_inference(x.dtype) + ipts = {'X': x, 'Grid': grid} + + helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out}) + return out + + +def log_loss(input, label, epsilon=1e-4, name=None): + """ + **Negative Log Loss Layer** + + This layer accepts input predictions and target label and returns the + negative log loss. + + .. math:: + + Out = -label * \\log{(input + \\epsilon)} + - (1 - label) * \\log{(1 - input + \\epsilon)} + + Args: + input (Variable|list): a 2-D tensor with shape [N x 1], where N is the + batch size. This input is a probability computed + by the previous operator. + label (Variable|list): the ground truth which is a 2-D tensor with + shape [N x 1], where N is the batch size. + epsilon (float): epsilon + name (string): the name of log_loss + + Returns: + Variable: A 2-D tensor with shape [N x 1], the negative log loss. + + Examples: + .. code-block:: python + + prob = fluid.layers.sigmoid(net) + cost = fluid.layers.log_loss(input=prob, label=label) + """ + helper = LayerHelper('log_loss', **locals()) + + if name is None: + loss = helper.create_variable_for_type_inference(dtype=input.dtype) + else: + loss = helper.create_variable( + name=name, dtype=input.dtype, persistable=False) + + helper.append_op( + type='log_loss', + inputs={'Predicted': [input], + 'Labels': [label]}, + outputs={'Loss': [loss]}, + attrs={'epsilon': epsilon}) + return loss + + +def add_position_encoding(input, alpha, beta, name=None): + """ + **Add Position Encoding Layer** + + This layer accepts an input 3D-Tensor of shape [N x M x P], and return an + output Tensor of shape [N x M x P] with positional encoding value. + + Refer to `Attention Is All You Need`_ . + + .. math:: + PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})} \\\\ + PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})} \\\\ + Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i) + + Where: + * PE(pos, 2i): the increment for the number at even position + * PE(pos, 2i + 1): the increment for the number at odd position + + Args: + input (Variable): 3-D input tensor with shape [N x M x P] + alpha (float): multiple of Input Tensor + beta (float): multiple of Positional Encoding Tensor + name (string): the name of position encoding layer + + Returns: + Variable: A 3-D Tensor of shape [N x M x P] with positional encoding. + + Examples: + .. code-block:: python + + position_tensor = fluid.layers.add_position_encoding(input=tensor) + """ + helper = LayerHelper('add_position_encoding', **locals()) + dtype = helper.input_dtype() + + if name is None: + out = helper.create_variable_for_type_inference(dtype=dtype) + else: + out = helper.create_variable(name=name, dtype=dtype, persistable=False) + + helper.append_op( + type="add_position_encoding", + inputs={"X": input}, + outputs={"Out": out}, + attrs={"alpha": alpha, + "beta": beta}) + return out diff --git a/python/paddle/fluid/metrics.py b/python/paddle/fluid/metrics.py index 0c2800dcf35ed156b71625babea2724f520575e5..f65b37903a35fa2bf9f2c2b2f169ce6fd4c478db 100644 --- a/python/paddle/fluid/metrics.py +++ b/python/paddle/fluid/metrics.py @@ -13,8 +13,6 @@ # limitations under the License. """ Fluid Metrics - -The metrics are accomplished via Python natively. """ from __future__ import print_function @@ -24,6 +22,12 @@ import copy import warnings import six +from .layer_helper import LayerHelper +from .initializer import Constant +from . import unique_name +from .framework import Program, Variable, program_guard +from . import layers + __all__ = [ 'MetricBase', 'CompositeMetric', @@ -190,7 +194,7 @@ class CompositeMetric(MetricBase): or soft-label, should custom the corresponding update rule. """ for m in self._metrics: - ans.append(m.update(preds, labels)) + m.update(preds, labels) def eval(self): """ @@ -474,71 +478,10 @@ class EditDistance(MetricBase): "There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance." ) avg_distance = self.total_distance / self.seq_num - avg_instance_error = self.instance_error / self.seq_num + avg_instance_error = self.instance_error / float(self.seq_num) return avg_distance, avg_instance_error -class DetectionMAP(MetricBase): - """ - Calculate the detection mean average precision (mAP). - mAP is the metric to measure the accuracy of object detectors - like Faster R-CNN, SSD, etc. - It is the average of the maximum precisions at different recall values. - Please get more information from the following articles: - https://sanchom.wordpress.com/tag/average-precision/ - - https://arxiv.org/abs/1512.02325 - - The general steps are as follows: - - 1. calculate the true positive and false positive according to the input - of detection and labels. - 2. calculate mAP value, support two versions: '11 point' and 'integral'. - - Examples: - .. code-block:: python - - pred = fluid.layers.fc(input=data, size=1000, act="tanh") - batch_map = layers.detection_map( - input, - label, - class_num, - background_label, - overlap_threshold=overlap_threshold, - evaluate_difficult=evaluate_difficult, - ap_version=ap_version) - metric = fluid.metrics.DetectionMAP() - for data in train_reader(): - loss, preds, labels = exe.run(fetch_list=[cost, batch_map]) - batch_size = data[0] - metric.update(value=batch_map, weight=batch_size) - numpy_map = metric.eval() - """ - - def __init__(self, name=None): - super(DetectionMAP, self).__init__(name) - # the current map value - self.value = .0 - self.weight = .0 - - def update(self, value, weight): - if not _is_number_or_matrix_(value): - raise ValueError( - "The 'value' must be a number(int, float) or a numpy ndarray.") - if not _is_number_(weight): - raise ValueError("The 'weight' must be a number(int, float).") - self.value += value - self.weight += weight - - def eval(self): - if self.weight == 0: - raise ValueError( - "There is no data in DetectionMAP Metrics. " - "Please check layers.detection_map output has added to DetectionMAP." - ) - return self.value / self.weight - - class Auc(MetricBase): """ Auc metric adapts to the binary classification. @@ -616,3 +559,179 @@ class Auc(MetricBase): idx -= 1 return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0 + + +class DetectionMAP(object): + """ + Calculate the detection mean average precision (mAP). + + The general steps are as follows: + 1. calculate the true positive and false positive according to the input + of detection and labels. + 2. calculate mAP value, support two versions: '11 point' and 'integral'. + + Please get more information from the following articles: + https://sanchom.wordpress.com/tag/average-precision/ + https://arxiv.org/abs/1512.02325 + + Args: + input (Variable): The detection results, which is a LoDTensor with shape + [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax]. + gt_label (Variable): The ground truth label index, which is a LoDTensor + with shape [N, 1]. + gt_box (Variable): The ground truth bounding box (bbox), which is a + LoDTensor with shape [N, 4]. The layout is [xmin, ymin, xmax, ymax]. + gt_difficult (Variable|None): Whether this ground truth is a difficult + bounding bbox, which can be a LoDTensor [N, 1] or not set. If None, + it means all the ground truth labels are not difficult bbox. + class_num (int): The class number. + background_label (int): The index of background label, the background + label will be ignored. If set to -1, then all categories will be + considered, 0 by defalut. + overlap_threshold (float): The threshold for deciding true/false + positive, 0.5 by defalut. + evaluate_difficult (bool): Whether to consider difficult ground truth + for evaluation, True by defalut. This argument does not work when + gt_difficult is None. + ap_version (string): The average precision calculation ways, it must be + 'integral' or '11point'. Please check + https://sanchom.wordpress.com/tag/average-precision/ for details. + - 11point: the 11-point interpolated average precision. + - integral: the natural integral of the precision-recall curve. + + Examples: + .. code-block:: python + + exe = fluid.Executor(place) + map_evaluator = fluid.Evaluator.DetectionMAP(input, + gt_label, gt_box, gt_difficult) + cur_map, accum_map = map_evaluator.get_map_var() + fetch = [cost, cur_map, accum_map] + for epoch in PASS_NUM: + map_evaluator.reset(exe) + for data in batches: + loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch) + + In the above example: + + 'cur_map_v' is the mAP of current mini-batch. + 'accum_map_v' is the accumulative mAP of one pass. + """ + + def __init__(self, + input, + gt_label, + gt_box, + gt_difficult=None, + class_num=None, + background_label=0, + overlap_threshold=0.5, + evaluate_difficult=True, + ap_version='integral'): + + self.helper = LayerHelper('map_eval') + gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype) + if gt_difficult: + gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype) + label = layers.concat([gt_label, gt_difficult, gt_box], axis=1) + else: + label = layers.concat([gt_label, gt_box], axis=1) + + # calculate mean average precision (mAP) of current mini-batch + map = layers.detection_map( + input, + label, + class_num, + background_label, + overlap_threshold=overlap_threshold, + evaluate_difficult=evaluate_difficult, + ap_version=ap_version) + + states = [] + states.append( + self._create_state( + dtype='int32', shape=None, suffix='accum_pos_count')) + states.append( + self._create_state( + dtype='float32', shape=None, suffix='accum_true_pos')) + states.append( + self._create_state( + dtype='float32', shape=None, suffix='accum_false_pos')) + var = self._create_state(dtype='int32', shape=[1], suffix='has_state') + self.helper.set_variable_initializer( + var, initializer=Constant(value=int(0))) + self.has_state = var + + # calculate accumulative mAP + accum_map = layers.detection_map( + input, + label, + class_num, + background_label, + overlap_threshold=overlap_threshold, + evaluate_difficult=evaluate_difficult, + has_state=self.has_state, + input_states=states, + out_states=states, + ap_version=ap_version) + + layers.fill_constant( + shape=self.has_state.shape, + value=1, + dtype=self.has_state.dtype, + out=self.has_state) + + self.cur_map = map + self.accum_map = accum_map + + def _create_state(self, suffix, dtype, shape): + """ + Create state variable. + Args: + suffix(str): the state suffix. + dtype(str|core.VarDesc.VarType): the state data type + shape(tuple|list): the shape of state + Returns: State variable + """ + state = self.helper.create_variable( + name="_".join([unique_name.generate(self.helper.name), suffix]), + persistable=True, + dtype=dtype, + shape=shape) + return state + + def get_map_var(self): + """ + Returns: mAP variable of current mini-batch and + accumulative mAP variable cross mini-batches. + """ + return self.cur_map, self.accum_map + + def reset(self, executor, reset_program=None): + """ + Reset metric states at the begin of each pass/user specified batch. + + Args: + executor(Executor): a executor for executing + the reset_program. + reset_program(Program|None): a single Program for reset process. + If None, will create a Program. + """ + + def _clone_var_(block, var): + assert isinstance(var, Variable) + return block.create_var( + name=var.name, + shape=var.shape, + dtype=var.dtype, + type=var.type, + lod_level=var.lod_level, + persistable=var.persistable) + + if reset_program is None: + reset_program = Program() + with program_guard(main_program=reset_program): + var = _clone_var_(reset_program.current_block(), self.has_state) + layers.fill_constant( + shape=var.shape, value=0, dtype=var.dtype, out=var) + executor.run(reset_program) diff --git a/python/paddle/fluid/op.py b/python/paddle/fluid/op.py index 667db10d3ebdd24ddd9efbe2310ebb331e268ee2..4e1d1450dea85fe4eb3e68713250836e4beac992 100644 --- a/python/paddle/fluid/op.py +++ b/python/paddle/fluid/op.py @@ -120,6 +120,8 @@ class OpDescCreationMethod(object): new_attr.strings.extend(user_defined_attr) elif attr.type == framework_pb2.BOOLEANS: new_attr.bools.extend(user_defined_attr) + elif attr.type == framework_pb2.LONGS: + new_attr.longs.extend(user_defined_attr) elif attr.type == framework_pb2.INT_PAIRS: for p in user_defined_attr: pair = new_attr.int_pairs.add() diff --git a/python/paddle/fluid/optimizer.py b/python/paddle/fluid/optimizer.py index 17af44afdde5cdbec082d473457ef01974695bc6..7e2364a5a872cdd8cf590438cc081ab070db767d 100644 --- a/python/paddle/fluid/optimizer.py +++ b/python/paddle/fluid/optimizer.py @@ -14,6 +14,7 @@ from __future__ import print_function import re +import sys from collections import defaultdict from paddle.fluid.framework import Program, Variable, name_scope, default_main_program from . import framework @@ -32,7 +33,8 @@ __all__ = [ 'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer', 'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer', - 'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'RMSPropOptimizer' + 'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum', + 'LarsMomentumOptimizer' ] @@ -105,13 +107,14 @@ class Optimizer(object): param = param_and_grad[0] param_lr = param.optimize_attr['learning_rate'] if type(param_lr) == Variable: - print("returns updated param lr ", param_lr) return param_lr else: if param_lr == 1.0: return self._global_learning_rate() else: - with default_main_program()._lr_schedule_guard(): + with default_main_program()._lr_schedule_guard( + is_with_opt=True), framework.name_scope( + 'scale_with_param_lr'): return self._global_learning_rate() * param_lr def _create_accumulators(self, block, parameters): @@ -398,6 +401,91 @@ class MomentumOptimizer(Optimizer): return momentum_op +class LarsMomentumOptimizer(Optimizer): + """ + Momentum optimizer with LARS support + + The update equations are as follows: + + .. math:: + + & local\_learning\_rate = learning\_rate * lars\_coeff * \\ + \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||} + + & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param) + + & param = param - velocity + + Args: + learning_rate (float|Variable): the learning rate used to update parameters. \ + Can be a float value or a Variable with one float value as data element. + momentum (float): momentum factor + lars_coeff (float): defines how much we trust the layer to change its weights. + lars_weight_decay (float): weight decay coefficient for decaying using LARS. + regularization: A Regularizer, such as + fluid.regularizer.L2DecayRegularizer. + name: A optional name prefix. + + + Examples: + .. code-block:: python + + optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001) + optimizer.minimize(cost) + """ + _velocity_acc_str = "velocity" + + def __init__(self, + learning_rate, + momentum, + lars_coeff=0.001, + lars_weight_decay=0.0005, + regularization=None, + name=None): + assert learning_rate is not None + assert momentum is not None + super(LarsMomentumOptimizer, self).__init__( + learning_rate=learning_rate, + regularization=regularization, + name=name) + self.type = "lars_momentum" + self._momentum = momentum + self._lars_coeff = float(lars_coeff) + self._lars_weight_decay = float(lars_weight_decay) + + def _create_accumulators(self, block, parameters): + assert isinstance(block, framework.Block) + + for p in parameters: + self._add_accumulator(self._velocity_acc_str, p) + + def _append_optimize_op(self, block, param_and_grad): + assert isinstance(block, framework.Block) + + velocity_acc = self._get_accumulator(self._velocity_acc_str, + param_and_grad[0]) + # create the momentum optimize op + momentum_op = block.append_op( + type=self.type, + inputs={ + "Param": param_and_grad[0], + "Grad": param_and_grad[1], + "Velocity": velocity_acc, + "LearningRate": self._create_param_lr(param_and_grad) + }, + outputs={ + "ParamOut": param_and_grad[0], + "VelocityOut": velocity_acc + }, + attrs={ + "mu": self._momentum, + "lars_coeff": self._lars_coeff, + "lars_weight_decay": self._lars_weight_decay + }) + + return momentum_op + + class AdagradOptimizer(Optimizer): """ **Adaptive Gradient Algorithm (Adagrad)** @@ -602,7 +690,8 @@ class AdamOptimizer(Optimizer): for param, grad in param_and_grads: if grad is None: continue - with param.block.program._optimized_guard([param, grad]): + with param.block.program._optimized_guard( + [param, grad]), name_scope("optimizer"): beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str, param) beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str, @@ -740,7 +829,8 @@ class AdamaxOptimizer(Optimizer): for param, grad in parameters_and_grads: if grad is None: continue - with param.block.program._optimized_guard([param, grad]): + with param.block.program._optimized_guard( + [param, grad]), name_scope('adamx'): beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str, param) main_block.append_op( @@ -1217,6 +1307,7 @@ DecayedAdagrad = DecayedAdagradOptimizer Adadelta = AdadeltaOptimizer RMSProp = RMSPropOptimizer Ftrl = FtrlOptimizer +LarsMomentum = LarsMomentumOptimizer class ModelAverage(Optimizer): @@ -1279,7 +1370,8 @@ class ModelAverage(Optimizer): for param, grad in self.params_grads: if grad is None: continue - with param.block.program._optimized_guard([param, grad]): + with param.block.program._optimized_guard( + [param, grad]), name_scope('move_average'): self._append_average_accumulate_op(param) self.apply_program = Program() diff --git a/python/paddle/fluid/regularizer.py b/python/paddle/fluid/regularizer.py index c151fbd17208bb6e3104e8d0f6590392c6095987..57185da4d1d38f3848994aae105411cf2844843a 100644 --- a/python/paddle/fluid/regularizer.py +++ b/python/paddle/fluid/regularizer.py @@ -47,7 +47,8 @@ def append_regularization_ops(parameters_and_grads, regularization=None): if grad is None: params_and_grads.append((param, grad)) continue - with param.block.program._optimized_guard([param, grad]): + with param.block.program._optimized_guard( + [param, grad]), framework.name_scope('regularization'): regularization_term = None if param.regularizer is not None: # Add variable for regularization term in grad block diff --git a/python/paddle/fluid/tests/CMakeLists.txt b/python/paddle/fluid/tests/CMakeLists.txt index 7ad923d3321ec8a88b60d7f4f7777e12fad8faa6..d24417bbacb503d9ea70e68e7e0edb59e7dddbde 100644 --- a/python/paddle/fluid/tests/CMakeLists.txt +++ b/python/paddle/fluid/tests/CMakeLists.txt @@ -1,5 +1,3 @@ -set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests CACHE INTERNAL "python tests directory") - file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") diff --git a/python/paddle/fluid/tests/book/high-level-api/image_classification/CMakeLists.txt b/python/paddle/fluid/tests/book/high-level-api/image_classification/CMakeLists.txt index 673c965b662a022739f8d489c331f4de9455a926..91c1d17eb5391ea37a41a886594cc71c6e6c56bd 100644 --- a/python/paddle/fluid/tests/book/high-level-api/image_classification/CMakeLists.txt +++ b/python/paddle/fluid/tests/book/high-level-api/image_classification/CMakeLists.txt @@ -1,7 +1,19 @@ file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") -# default test -foreach(src ${TEST_OPS}) - py_test(${src} SRCS ${src}.py) -endforeach() +if(NOT APPLE) + # default test + foreach(src ${TEST_OPS}) + py_test(${src} SRCS ${src}.py) + endforeach() +else() + foreach(src ${TEST_OPS}) + if(${src} STREQUAL "test_image_classification_vgg") + message(WARNING "These tests has been disabled in OSX for random fail: \n" ${src}) + elseif(${src} STREQUAL "test_image_classification_resnet") + message(WARNING "These tests has been disabled in OSX for random fail: \n" ${src}) + elseif() + py_test(${src} SRCS ${src}.py) + endif() + endforeach() +endif() diff --git a/python/paddle/fluid/tests/unittests/CMakeLists.txt b/python/paddle/fluid/tests/unittests/CMakeLists.txt index cf54bc2dbe788f3757a7ef93f26156d118a0cd02..2e87d8f4b4fa07773f205fd0a2151095a2353fc6 100644 --- a/python/paddle/fluid/tests/unittests/CMakeLists.txt +++ b/python/paddle/fluid/tests/unittests/CMakeLists.txt @@ -17,6 +17,10 @@ if(NOT WITH_DISTRIBUTE) list(REMOVE_ITEM TEST_OPS test_listen_and_serv_op) LIST(REMOVE_ITEM TEST_OPS test_dist_mnist) LIST(REMOVE_ITEM TEST_OPS test_dist_word2vec) + LIST(REMOVE_ITEM TEST_OPS test_dist_ctr) + LIST(REMOVE_ITEM TEST_OPS test_dist_simnet_bow) + LIST(REMOVE_ITEM TEST_OPS test_dist_mnist_batch_merge) + LIST(REMOVE_ITEM TEST_OPS test_dist_text_classification) endif(NOT WITH_DISTRIBUTE) list(REMOVE_ITEM TEST_OPS test_seq_concat_op) # FIXME(helin): https://github.com/PaddlePaddle/Paddle/issues/8290 @@ -55,6 +59,7 @@ function(py_test_modules TARGET_NAME) if (py_test_modules_SERIAL) set_property(TEST ${TARGET_NAME} PROPERTY RUN_SERIAL 1) endif() + set_tests_properties(${TARGET_NAME} PROPERTIES TIMEOUT 600) endif() endfunction() list(REMOVE_ITEM TEST_OPS test_warpctc_op) @@ -88,4 +93,6 @@ py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf SE py_test_modules(test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL) set_tests_properties(test_parallel_executor_fetch_feed PROPERTIES TIMEOUT 150) py_test_modules(test_parallel_executor_transformer MODULES test_parallel_executor_transformer SERIAL) -py_test_modules(test_image_classification_resnet MODULES test_image_classification_resnet SERIAL) +if(NOT APPLE) + py_test_modules(test_image_classification_resnet MODULES test_image_classification_resnet SERIAL) +endif() diff --git a/python/paddle/fluid/tests/unittests/dist_mnist.py b/python/paddle/fluid/tests/unittests/dist_mnist.py index 877d21ae882ab4efb49beb6a846ab71a22c2aab7..1cda2711f765622b0bda6f4c688f69352bbd2a6f 100644 --- a/python/paddle/fluid/tests/unittests/dist_mnist.py +++ b/python/paddle/fluid/tests/unittests/dist_mnist.py @@ -90,12 +90,14 @@ class TestDistMnist2x2(TestDistRunnerBase): inference_program = fluid.default_main_program().clone() # Optimization - opt = fluid.optimizer.AdamOptimizer( - learning_rate=0.001, beta1=0.9, beta2=0.999) + # TODO(typhoonzero): fix distributed adam optimizer + # opt = fluid.optimizer.AdamOptimizer( + # learning_rate=0.001, beta1=0.9, beta2=0.999) + opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9) # Reader train_reader = paddle.batch( - paddle.dataset.mnist.train(), batch_size=batch_size) + paddle.dataset.mnist.test(), batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) opt.minimize(avg_cost) diff --git a/python/paddle/fluid/tests/unittests/dist_mnist_batch_merge.py b/python/paddle/fluid/tests/unittests/dist_mnist_batch_merge.py new file mode 100644 index 0000000000000000000000000000000000000000..d386e75fd887a898f5a13e48e378e08ff6c99ea0 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_mnist_batch_merge.py @@ -0,0 +1,80 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import argparse +import time +import math + +import paddle +import paddle.fluid as fluid +import paddle.fluid.profiler as profiler +from paddle.fluid import core +import unittest +from multiprocessing import Process +import os +import signal +from functools import reduce +from test_dist_base import TestDistRunnerBase, runtime_main +from dist_mnist import cnn_model + +DTYPE = "float32" + + +def test_merge_reader(repeat_batch_size=8): + orig_reader = paddle.dataset.mnist.test() + record_batch = [] + b = 0 + for d in orig_reader(): + if b >= repeat_batch_size: + break + record_batch.append(d) + b += 1 + while True: + for d in record_batch: + yield d + + +class TestDistMnist2x2(TestDistRunnerBase): + def get_model(self, batch_size=2): + # Input data + images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + # Train program + predict = cnn_model(images) + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + + # Evaluator + batch_size_tensor = fluid.layers.create_tensor(dtype='int64') + batch_acc = fluid.layers.accuracy( + input=predict, label=label, total=batch_size_tensor) + + inference_program = fluid.default_main_program().clone() + # Optimization + opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9) + + # Reader + train_reader = paddle.batch(test_merge_reader, batch_size=batch_size) + test_reader = paddle.batch( + paddle.dataset.mnist.test(), batch_size=batch_size) + opt.minimize(avg_cost) + return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict + + +if __name__ == "__main__": + runtime_main(TestDistMnist2x2) diff --git a/python/paddle/fluid/tests/unittests/dist_mnist_lars.py b/python/paddle/fluid/tests/unittests/dist_mnist_lars.py new file mode 100644 index 0000000000000000000000000000000000000000..977e17c37f7676ae81d9ab29b6b36089ccbeeacf --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_mnist_lars.py @@ -0,0 +1,73 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import argparse +import time +import math + +import paddle +import paddle.fluid as fluid +import paddle.fluid.profiler as profiler +from paddle.fluid import core +import unittest +from multiprocessing import Process +import os +import signal +from functools import reduce +from test_dist_base import TestDistRunnerBase, runtime_main +from dist_mnist import cnn_model + +DTYPE = "float32" +paddle.dataset.mnist.fetch() + +# Fix seed for test +fluid.default_startup_program().random_seed = 1 +fluid.default_main_program().random_seed = 1 + + +class TestDistMnist2x2(TestDistRunnerBase): + def get_model(self, batch_size=2): + # Input data + images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + # Train program + predict = cnn_model(images) + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + + # Evaluator + batch_size_tensor = fluid.layers.create_tensor(dtype='int64') + batch_acc = fluid.layers.accuracy( + input=predict, label=label, total=batch_size_tensor) + + inference_program = fluid.default_main_program().clone() + # Optimization + opt = fluid.optimizer.LarsMomentumOptimizer( + learning_rate=0.001, momentum=0.9) + + # Reader + train_reader = paddle.batch( + paddle.dataset.mnist.test(), batch_size=batch_size) + test_reader = paddle.batch( + paddle.dataset.mnist.test(), batch_size=batch_size) + opt.minimize(avg_cost) + return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict + + +if __name__ == "__main__": + runtime_main(TestDistMnist2x2) diff --git a/python/paddle/fluid/tests/unittests/dist_save_load.py b/python/paddle/fluid/tests/unittests/dist_save_load.py new file mode 100644 index 0000000000000000000000000000000000000000..edc60550058f53da456c21de4b41142b907743df --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_save_load.py @@ -0,0 +1,174 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import os +import sys +import signal +import subprocess +import argparse +import time +import math +import random +from multiprocessing import Process +from functools import reduce + +import numpy as np +import unittest +import six + +import paddle +import paddle.fluid as fluid +from paddle.fluid import core +from paddle.fluid import io + +from test_dist_base import TestDistRunnerBase, runtime_main, RUN_STEP +from dist_simnet_bow import TestDistSimnetBow2x2, DATA_URL, DATA_MD5 + + +class TestDistSaveLoad2x2(TestDistSimnetBow2x2): + def _load_persistable_vars(self, executor, dirname, program): + def _is_checkpoint_var(var): + """ + the checkpoint will not save or load all the variables. + var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded. + + : param var(Variable) + """ + if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ + var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ + var.desc.type() == core.VarDesc.VarType.RAW: + return False + # @GRAD are named for gradient variables, checkpoint will not save it. + if "@GRAD" in var.name: + return False + # .trainer_ are named for distribute train variables, checkpoint will not save it. + if ".trainer_" in var.name: + return False + + # .block is named for distribute train variables, checkpoint will not save it. + if ".block" in var.name: + return False + + if "tmp_" in var.name: + return False + + return var.persistable + + io.load_vars( + executor, + dirname=dirname, + main_program=program, + predicate=_is_checkpoint_var, + filename=None) + + def run_pserver(self, args): + self.get_model(batch_size=2) + # NOTE: pserver should not call memory optimize + t = self.get_transpiler(args.trainer_id, + fluid.default_main_program(), args.endpoints, + args.trainers, args.sync_mode) + pserver_prog = t.get_pserver_program(args.current_endpoint) + startup_prog = t.get_startup_program(args.current_endpoint, + pserver_prog) + + need_load = bool(int(os.getenv("LOAD", "0"))) + model_dir = os.getenv("MODEL_DIR", "") + + place = fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(startup_prog) + + if need_load and model_dir: + self._load_persistable_vars(exe, model_dir, startup_prog) + exe.run(pserver_prog) + + def run_trainer(self, args): + test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ + self.get_model(batch_size=2) + + if args.mem_opt: + fluid.memory_optimize(fluid.default_main_program(), skip_grads=True) + if args.is_dist: + t = self.get_transpiler(args.trainer_id, + fluid.default_main_program(), + args.endpoints, args.trainers, + args.sync_mode) + + trainer_prog = t.get_trainer_program() + else: + trainer_prog = fluid.default_main_program() + + if args.use_cuda: + place = fluid.CUDAPlace(0) + else: + place = fluid.CPUPlace() + + startup_exe = fluid.Executor(place) + startup_exe.run(fluid.default_startup_program()) + + strategy = fluid.ExecutionStrategy() + strategy.num_threads = 1 + strategy.allow_op_delay = False + + build_stra = fluid.BuildStrategy() + + if args.use_reduce: + build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce + else: + build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce + + exe = fluid.ParallelExecutor( + args.use_cuda, + loss_name=avg_cost.name, + exec_strategy=strategy, + build_strategy=build_stra) + + feed_var_list = [ + var for var in trainer_prog.global_block().vars.values() + if var.is_data + ] + + feeder = fluid.DataFeeder(feed_var_list, place) + reader_generator = train_reader() + + def get_data(): + origin_batch = next(reader_generator) + if args.is_dist and args.use_reader_alloc: + new_batch = [] + for offset, item in enumerate(origin_batch): + if offset % 2 == args.trainer_id: + new_batch.append(item) + return new_batch + else: + return origin_batch + + need_save = bool(int(os.getenv("SAVE", "0"))) + model_dir = os.getenv("MODEL_DIR", "") + + if need_save: + for _ in six.moves.xrange(RUN_STEP): + loss, = exe.run(fetch_list=[avg_cost.name], + feed=feeder.feed(get_data())) + if need_save and model_dir: + io.save_persistables(startup_exe, model_dir, trainer_prog) + + var = np.array(fluid.global_scope().find_var('__fc_b__').get_tensor()) + print(np.ravel(var).tolist()) + + +if __name__ == "__main__": + paddle.dataset.common.download(DATA_URL, 'simnet', DATA_MD5, "train") + runtime_main(TestDistSaveLoad2x2) diff --git a/python/paddle/fluid/tests/unittests/dist_transformer.py b/python/paddle/fluid/tests/unittests/dist_transformer.py index ab44954811562b8f74e368a551e855948f90af87..27c67edf4f62dd3c5d396826348f8da4513667ba 100644 --- a/python/paddle/fluid/tests/unittests/dist_transformer.py +++ b/python/paddle/fluid/tests/unittests/dist_transformer.py @@ -1159,6 +1159,7 @@ def prepare_encoder(src_word, name=pos_enc_param_name, trainable=False, initializer=fluid.initializer.ConstantInitializer(0.001))) + src_pos_enc.stop_gradient = True enc_input = src_word_emb + src_pos_enc return layers.dropout( enc_input, diff --git a/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py b/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py index ee291fe746f3a1b6ce18df9fb6aa174a89e2eadd..a3fe5e0a0591c8da787e3c2fdb030f3912548316 100644 --- a/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py +++ b/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py @@ -40,7 +40,8 @@ class TestParallelExecutorBase(unittest.TestCase): use_reduce=False, fuse_elewise_add_act_ops=False, optimizer=fluid.optimizer.Adam, - use_fast_executor=False): + use_fast_executor=False, + enable_sequential_execution=False): def run_executor(exe, feed, fetch_list, program=None): if isinstance(exe, fluid.ParallelExecutor): res = exe.run(fetch_list=fetch_list, feed=feed) @@ -80,6 +81,7 @@ class TestParallelExecutorBase(unittest.TestCase): build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce \ if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce build_strategy.fuse_elewise_add_act_ops = fuse_elewise_add_act_ops + build_strategy.enable_sequential_execution = enable_sequential_execution if use_parallel_executor: exe = fluid.ParallelExecutor( diff --git a/python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py b/python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py new file mode 100644 index 0000000000000000000000000000000000000000..3f2a33793028f0883ffe94dd8a32626ad5c0351c --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py @@ -0,0 +1,134 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import unittest +import numpy as np +import math +import paddle.fluid.core as core +from op_test import OpTest + + +class TestAddPositionEncodingTensorOp(OpTest): + """ + This class is to test the AddPositionEncodingOp + """ + + def setUp(self): + """ + the prepared section for add position encoding op + """ + self.op_type = "add_position_encoding" + self.dtype = np.float32 + self.init_input_output() + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x), } + self.outputs = {'Out': self.out} + self.attrs = {'alpha': self.alpha, 'beta': self.beta} + + def test_check_output(self): + """ + check the correctness of output + """ + self.check_output() + + def test_check_grad(self): + """ + check the correctness of grad + """ + self.check_grad(['X'], 'Out', max_relative_error=0.005) + + def init_input_output(self): + """ + init the input and output for test cases + """ + self.alpha = 0.6 + self.beta = 0.5 + self.x = np.random.uniform(0.1, 1, [2, 4, 4]).astype(self.dtype) + self.out = np.copy(self.x) + + batch_size = self.x.shape[0] + max_length = self.x.shape[1] + enc_size = self.x.shape[2] + + half_shape = int(enc_size / 2) + for i in range(batch_size): + for j in range(max_length): + for k in range(half_shape): + val = j / pow(10000.0, k / ( + half_shape - 1)) if half_shape > 1 else j / 10000.0 + self.out[i, j, k] = \ + self.x[i, j, k] * self.alpha + math.sin(val) * self.beta + self.out[i, j, half_shape + k] = \ + self.x[i, j, half_shape + k] * self.alpha + math.cos(val) * self.beta + + +class TestAddPositionEncodingLoDTensorOp(OpTest): + """ + This class is to test the AddPositionEncodingLoDTensorOp + """ + + def setUp(self): + """ + the prepared section for add position encoding LoDTensor op + """ + self.op_type = "add_position_encoding" + self.dtype = np.float32 + self.init_input_output() + + self.inputs = {'X': (self.x, self.lod), } + self.outputs = {'Out': (self.out, self.lod)} + self.attrs = {'alpha': self.alpha, 'beta': self.beta} + + def test_check_output(self): + """ + check the correctness of output + """ + self.check_output() + + def test_check_grad(self): + """ + check the correctness of grad + """ + self.check_grad(['X'], 'Out', max_relative_error=0.005) + + def init_input_output(self): + """ + init the input and output for test cases + """ + self.alpha = 0.6 + self.beta = 0.5 + self.x = np.random.uniform(0.1, 1, [10, 4]).astype(self.dtype) + self.lod = [[3, 7]] + self.out = np.copy(self.x) + + batch_size = len(self.lod[0]) + enc_size = self.x.shape[1] + + start = 0 + half_shape = int(enc_size / 2) + for i in range(batch_size): + max_length = self.lod[0][i] + for j in range(max_length): + for k in range(half_shape): + val = j / pow(10000.0, k / ( + half_shape - 1)) if half_shape > 1 else j / 10000.0 + pos = start + j + self.out[pos, k] = \ + self.x[pos, k] * self.alpha + math.sin(val) * self.beta + self.out[pos, half_shape + k] = \ + self.x[pos, half_shape + k] * self.alpha + math.cos(val) * self.beta + start += max_length + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_affine_grid_op.py b/python/paddle/fluid/tests/unittests/test_affine_grid_op.py new file mode 100644 index 0000000000000000000000000000000000000000..576d00940c4c7a5e30af5550e14b674a73e7df11 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_affine_grid_op.py @@ -0,0 +1,79 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +from op_test import OpTest + + +def AffineGrid(theta, size): + n = size[0] + w = size[3] + h = size[2] + h_idx = np.repeat( + np.linspace(-1, 1, h)[np.newaxis, :], w, axis=0).T[:, :, np.newaxis] + w_idx = np.repeat( + np.linspace(-1, 1, w)[np.newaxis, :], h, axis=0)[:, :, np.newaxis] + grid = np.concatenate( + [w_idx, h_idx, np.ones([h, w, 1])], axis=2) # h * w * 3 + grid = np.repeat(grid[np.newaxis, :], size[0], axis=0) # n * h * w *3 + + ret = np.zeros([n, h * w, 2]) + theta = theta.transpose([0, 2, 1]) + for i in range(len(theta)): + ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i]) + +# print ret.reshape([h * w, 2]).astype("float32") + return ret.reshape([n, h, w, 2]).astype("float32") + + +class TestAffineGridOp(OpTest): + def setUp(self): + self.initTestCase() + self.op_type = "affine_grid" + theta = np.random.randint(1, 3, self.theta_shape).astype("float32") + theta = np.ones(self.theta_shape).astype("float32") + self.inputs = {'Theta': theta} + self.attrs = {"use_cudnn": True} + if self.dynamic_shape: + self.inputs['OutputShape'] = self.output_shape + else: + self.attrs['output_shape'] = self.output_shape + self.outputs = {'Output': AffineGrid(theta, self.output_shape)} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad( + ['Theta'], + 'Output', + no_grad_set=['OutputShape'], + max_relative_error=0.006) + + def initTestCase(self): + self.theta_shape = (3, 2, 3) + self.output_shape = np.array([3, 2, 5, 7]).astype("int32") + self.dynamic_shape = False + + +class TestAffineGridOpCase1(TestAffineGridOp): + def initTestCase(self): + self.theta_shape = (3, 2, 3) + self.output_shape = np.array([3, 2, 5, 7]).astype("int32") + self.dynamic_shape = True + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_base.py b/python/paddle/fluid/tests/unittests/test_dist_base.py index 04924bec057e301bfb342a62bb4c1e0b3c3aff4c..07814bc2571b380ec24c825615e3ef3d16e694be 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_base.py +++ b/python/paddle/fluid/tests/unittests/test_dist_base.py @@ -22,14 +22,17 @@ import signal import subprocess import six import argparse +import pickle +import numpy as np import paddle.fluid as fluid RUN_STEP = 10 +DEFAULT_BATCH_SIZE = 2 class TestDistRunnerBase(object): - def get_model(self, batch_size=2): + def get_model(self, batch_size=DEFAULT_BATCH_SIZE): raise NotImplementedError( "get_model should be implemented by child classes.") @@ -48,8 +51,7 @@ class TestDistRunnerBase(object): return t def run_pserver(self, args): - - self.get_model(batch_size=2) + self.get_model(batch_size=args.batch_size) # NOTE: pserver should not call memory optimize t = self.get_transpiler(args.trainer_id, fluid.default_main_program(), args.endpoints, @@ -65,7 +67,7 @@ class TestDistRunnerBase(object): def run_trainer(self, args): test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ - self.get_model(batch_size=2) + self.get_model(batch_size=args.batch_size) if args.mem_opt: fluid.memory_optimize(fluid.default_main_program(), skip_grads=True) @@ -92,6 +94,11 @@ class TestDistRunnerBase(object): strategy.allow_op_delay = False build_stra = fluid.BuildStrategy() + if args.batch_merge_repeat > 1: + pass_builder = build_stra._create_passes_from_strategy() + mypass = pass_builder.insert_pass( + len(pass_builder.all_passes()) - 2, "multi_batch_merge_pass") + mypass.set_int("num_repeats", args.batch_merge_repeat) if args.use_reduce: build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce @@ -123,10 +130,15 @@ class TestDistRunnerBase(object): else: return origin_batch + out_losses = [] for _ in six.moves.xrange(RUN_STEP): loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(get_data())) - print(loss) + out_losses.append(loss[0]) + if six.PY2: + print(pickle.dumps(out_losses)) + else: + sys.stdout.buffer.write(pickle.dumps(out_losses)) def runtime_main(test_class): @@ -144,7 +156,10 @@ def runtime_main(test_class): parser.add_argument('--use_cuda', action='store_true') parser.add_argument('--use_reduce', action='store_true') parser.add_argument( - '--use_reader_alloc', action='store_true', required=False, default=True) + '--use_reader_alloc', action='store_true', required=False) + parser.add_argument('--batch_size', required=False, type=int, default=2) + parser.add_argument( + '--batch_merge_repeat', required=False, type=int, default=1) args = parser.parse_args() @@ -180,7 +195,7 @@ class TestDistBase(unittest.TestCase): self._pservers = 2 self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % ( self._find_free_port(), self._find_free_port()) - self._python_interp = "python" + self._python_interp = sys.executable self._sync_mode = True self._enforce_place = None self._mem_opt = False @@ -229,24 +244,18 @@ class TestDistBase(unittest.TestCase): return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe - def _wait_ps_ready(self, pid): - retry_times = 50 - while True: - assert retry_times >= 0, "wait ps ready failed" - time.sleep(3) - try: - # the listen_and_serv_op would touch a file which contains the listen port - # on the /tmp directory until it was ready to process all the RPC call. - os.stat("/tmp/paddle.%d.port" % pid) - return - except os.error as e: - sys.stderr.write('waiting for pserver: %s, left retry %d\n' % - (e, retry_times)) - retry_times -= 1 - - def _run_local(self, model, envs, check_error_log): + def _run_local(self, + model, + envs, + check_error_log=False, + batch_size=DEFAULT_BATCH_SIZE, + batch_merge_repeat=1): cmd = "%s %s --role trainer" % (self._python_interp, model) + if batch_size != DEFAULT_BATCH_SIZE: + cmd += " --batch_size %d" % batch_size + if batch_merge_repeat > 1: + cmd += " --batch_merge_repeat %d" % batch_merge_repeat if self.__use_cuda: cmd += " --use_cuda" @@ -271,23 +280,20 @@ class TestDistBase(unittest.TestCase): env=envs) local_out, local_err = local_proc.communicate() - local_ret = cpt.to_text(local_out) if check_error_log: err_log.close() - sys.stderr.write('local_stdout: %s\n' % local_ret) + sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out)) sys.stderr.write('local_stderr: %s\n' % local_err) - local_losses = local_ret.split("\n") - return local_losses + return pickle.loads(local_out) def _run_cluster(self, model, envs, check_error_log): # Run dist train to compare with local results ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model, check_error_log, envs) - self._wait_ps_ready(ps0.pid) - self._wait_ps_ready(ps1.pid) + ps0_ep, ps1_ep = self._ps_endpoints.split(",") tr_cmd = "%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --is_dist" @@ -322,8 +328,8 @@ class TestDistBase(unittest.TestCase): env0.update(envs) env1.update(envs) - print("tr0_cmd:{}, env0: {}".format(tr0_cmd, env0)) - print("tr1_cmd:{}, env1: {}".format(tr1_cmd, env1)) + print("tr0_cmd:{}".format(tr0_cmd)) + print("tr1_cmd:{}".format(tr1_cmd)) tr0_pipe = open("/tmp/tr0_err.log", "wb") tr1_pipe = open("/tmp/tr1_err.log", "wb") @@ -339,9 +345,7 @@ class TestDistBase(unittest.TestCase): env=env1) tr0_out, tr0_err = tr0_proc.communicate() - tr0_loss_text = cpt.to_text(tr0_out) tr1_out, tr1_err = tr1_proc.communicate() - tr1_loss_text = cpt.to_text(tr1_out) # close trainer file tr0_pipe.close() @@ -356,15 +360,13 @@ class TestDistBase(unittest.TestCase): ps1.terminate() # print log - sys.stderr.write('trainer 0 stdout:\n %s\n' % tr0_loss_text) - sys.stderr.write('trainer 0 stderr:\n %s\n' % tr0_err) - sys.stderr.write('trainer 1 stdout: %s\n' % tr1_loss_text) + sys.stderr.write('trainer 0 stdout: %s\n' % pickle.loads(tr0_out)) + sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err) + sys.stderr.write('trainer 1 stdout: %s\n' % pickle.loads(tr1_out)) sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err) - tr0_losses = tr0_loss_text.split("\n") - tr1_losses = tr1_loss_text.split("\n") - - return tr0_losses, tr1_losses + # return tr0_losses, tr1_losses + return pickle.loads(tr0_out), pickle.loads(tr1_out) def check_with_place(self, model_file, @@ -394,9 +396,9 @@ class TestDistBase(unittest.TestCase): check_error_log) for step_id in range(RUN_STEP): - local_loss = eval(local_losses[step_id])[0] - tr0_loss = eval(tr0_losses[step_id])[0] - tr1_loss = eval(tr1_losses[step_id])[0] - dist_loss = (tr0_loss + tr1_loss) / 2 - print(str(local_loss) + ":" + str(dist_loss)) - self.assertAlmostEqual(local_loss, dist_loss, delta=delta) + local_loss = local_losses[step_id] + tr0_loss = tr0_losses[step_id] + tr1_loss = tr1_losses[step_id] + dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2 + print("=======", local_loss, ":", dist_loss[0], "=======") + self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta) diff --git a/python/paddle/fluid/tests/unittests/test_dist_ctr.py b/python/paddle/fluid/tests/unittests/test_dist_ctr.py index 3575fd07fc727bd6c6b07a19a60b1df6656ae9e2..b2d979729bc9b2546375cb657f78abe0d8c2dcc7 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_ctr.py +++ b/python/paddle/fluid/tests/unittests/test_dist_ctr.py @@ -18,14 +18,14 @@ import unittest from test_dist_base import TestDistBase +# FIXME(tangwei): sum op can not handle when inputs is empty. class TestDistCTR2x2(TestDistBase): def _setup_config(self): self._sync_mode = True self._enforce_place = "CPU" - -def test_dist_ctr(self): - self.check_with_place("dist_ctr.py", delta=1e-7, check_error_log=False) + def test_dist_ctr(self): + self.check_with_place("dist_ctr.py", delta=1e-7, check_error_log=False) if __name__ == "__main__": diff --git a/python/paddle/fluid/tests/unittests/test_dist_mnist.py b/python/paddle/fluid/tests/unittests/test_dist_mnist.py index 94b66a40233be4378e1a003f01d9375d00794743..922dd838f8996adfc15afffcd44c1acca2bc14a9 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_mnist.py +++ b/python/paddle/fluid/tests/unittests/test_dist_mnist.py @@ -26,6 +26,15 @@ class TestDistMnist2x2(TestDistBase): self.check_with_place("dist_mnist.py", delta=1e-5) +class TestDistMnist2x2Lars(TestDistBase): + def _setup_config(self): + self._sync_mode = True + self._use_reduce = False + + def test_se_resnext(self): + self.check_with_place("dist_mnist_lars.py", delta=1e-5) + + class TestDistMnist2x2WithMemopt(TestDistBase): def _setup_config(self): self._sync_mode = True @@ -40,8 +49,7 @@ class TestDistMnistAsync(TestDistBase): self._sync_mode = False self._use_reduce = False - # FIXME(typhoonzero): fix async mode test later - def no_test_dist_train(self): + def test_dist_train(self): self.check_with_place("dist_mnist.py", delta=200) diff --git a/python/paddle/fluid/tests/unittests/test_dist_mnist_batch_merge.py b/python/paddle/fluid/tests/unittests/test_dist_mnist_batch_merge.py new file mode 100644 index 0000000000000000000000000000000000000000..22d4b7929033529c5cea60064e6d9de57eddeb8e --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_dist_mnist_batch_merge.py @@ -0,0 +1,67 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import unittest +from test_dist_base import TestDistBase +import os + + +class TestDistMnist2x2(TestDistBase): + def _setup_config(self): + self._sync_mode = True + self._use_reduce = False + + def test_dist_train(self): + self.check_with_place("dist_mnist_batch_merge.py", delta=1e-5) + + def check_with_place(self, + model_file, + delta=1e-3, + check_error_log=False, + need_envs={}): + # TODO(typhoonzero): should auto adapt GPU count on the machine. + required_envs = { + "PATH": os.getenv("PATH", ""), + "PYTHONPATH": os.getenv("PYTHONPATH", ""), + "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""), + "FLAGS_fraction_of_gpu_memory_to_use": "0.15", + "FLAGS_cudnn_deterministic": "1", + } + + required_envs.update(need_envs) + + if check_error_log: + required_envs["GLOG_v"] = "7" + required_envs["GLOG_logtostderr"] = "1" + + no_merge_losses = self._run_local( + model_file, + required_envs, + check_error_log=check_error_log, + batch_size=4) + + batch_merge_losses = self._run_local( + model_file, + required_envs, + check_error_log=check_error_log, + batch_size=2, + batch_merge_repeat=2) + # Ensure both result have values. + self.assertGreater(len(no_merge_losses), 1) + self.assertEqual(len(no_merge_losses), len(batch_merge_losses)) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_save_load.py b/python/paddle/fluid/tests/unittests/test_dist_save_load.py new file mode 100644 index 0000000000000000000000000000000000000000..03066fee48b703f8b55bd4ae6a9c4bb8deecab1e --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_dist_save_load.py @@ -0,0 +1,90 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import print_function + +import os +import shutil +import unittest +import tempfile + +import numpy as np + +from test_dist_base import TestDistBase, RUN_STEP + + +class TestDistSaveLoadDense2x2(TestDistBase): + def _setup_config(self): + self._sync_mode = True + self._enforce_place = "CPU" + + def check_with_place(self, + model_file, + delta=1e-3, + check_error_log=False, + need_envs={}): + + required_envs = { + "PATH": os.getenv("PATH", ""), + "PYTHONPATH": os.getenv("PYTHONPATH", ""), + "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""), + "http_proxy": "" + } + + required_envs.update(need_envs) + + if check_error_log: + required_envs["GLOG_v"] = "7" + required_envs["GLOG_logtostderr"] = "1" + + model_dir = tempfile.mkdtemp() + + local_env = {} + local_env["SAVE"] = "1" + local_env["MODEL_DIR"] = model_dir + local_env.update(required_envs) + + cluster_env = {} + cluster_env["LOAD"] = "1" + cluster_env["MODEL_DIR"] = model_dir + cluster_env.update(required_envs) + + local_var = self._run_local(model_file, local_env, check_error_log) + tr0_var, tr1_var = self._run_cluster(model_file, cluster_env, + check_error_log) + + shutil.rmtree(model_dir) + + local_np = np.array(eval(local_var[0])) + train0_np = np.array(eval(tr0_var[0])) + train1_np = np.array(eval(tr1_var[0])) + self.assertAlmostEqual(local_np.all(), train0_np.all(), delta=delta) + self.assertAlmostEqual(local_np.all(), train1_np.all(), delta=delta) + self.assertAlmostEqual(train0_np.all(), train1_np.all(), delta=delta) + + @unittest.skip(reason="CI fail") + def test_dist(self): + need_envs = { + "IS_DISTRIBUTED": '0', + "IS_SPARSE": '0', + 'IS_SELF_CONTAINED_LR': '1' + } + self.check_with_place( + "dist_save_load.py", + delta=0, + check_error_log=False, + need_envs=need_envs) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_se_resnext.py b/python/paddle/fluid/tests/unittests/test_dist_se_resnext.py index c1e60dc9e420d11677468e0c62357437ecdf9e35..c2a4e5ca0c050813785f602c5d2088466e616971 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_se_resnext.py +++ b/python/paddle/fluid/tests/unittests/test_dist_se_resnext.py @@ -23,16 +23,17 @@ class TestDistSeResneXt2x2(TestDistBase): self._use_reader_alloc = False def test_dist_train(self): - self.check_with_place("dist_se_resnext.py", delta=100) + self.check_with_place("dist_se_resnext.py", delta=1e-7) class TestDistseResnXt2x2WithMemopt(TestDistBase): def _setup_config(self): self._sync_mode = True self._mem_opt = True + self._use_reader_alloc = False def test_dist_train(self): - self.check_with_place("dist_se_resnext.py", delta=100) + self.check_with_place("dist_se_resnext.py", delta=1e-7) class TestDistSeResneXt2x2Async(TestDistBase): @@ -40,8 +41,7 @@ class TestDistSeResneXt2x2Async(TestDistBase): self._sync_mode = False self._use_reader_alloc = False - #FIXME(typhoonzero): fix async mode later - def no_test_dist_train(self): + def test_dist_train(self): self.check_with_place("dist_se_resnext.py", delta=100) diff --git a/python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py b/python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py index e1e6ef61090dfb439a3b43c4baf5ba88f61310ba..102a4dab05fe1adc6a503920714f50415b29dc19 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py +++ b/python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py @@ -42,7 +42,6 @@ class TestDistSimnetBow2x2DenseAsync(TestDistBase): self._sync_mode = False self._enforce_place = "CPU" - #FIXME(typhoonzero): fix async tests later def no_test_simnet_bow(self): need_envs = { "IS_DISTRIBUTED": '0', @@ -79,8 +78,7 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase): self._sync_mode = False self._enforce_place = "CPU" - #FIXME(typhoonzero): fix async tests later - def no_test_simnet_bow(self): + def test_simnet_bow(self): need_envs = { "IS_DISTRIBUTED": '0', "IS_SPARSE": '1', @@ -94,7 +92,6 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase): # FIXME(tangwei): Learningrate variable is not created on pserver. -""" class TestDistSimnetBow2x2LookupTableSync(TestDistBase): def _setup_config(self): self._sync_mode = True @@ -147,7 +144,7 @@ class TestDistSimnetBow2x2LookupTableNotContainLRSync(TestDistBase): delta=1e-5, check_error_log=False, need_envs=need_envs) -""" + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py index 54a1c68a37f6929890aab697b48d621e6effb7d8..986fdd9ff27fe2be54ce97f330028b4ae2358714 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py +++ b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py @@ -283,6 +283,25 @@ class TestDecayedAdagrad(TranspilerTest): trainer, _ = self.get_trainer() +class TestFtrl(TranspilerTest): + def net_conf(self): + x = fluid.layers.data(name='x', shape=[1000], dtype='float32') + y_predict = fluid.layers.fc(input=x, + size=1000, + act=None, + param_attr=fluid.ParamAttr(name='fc_w'), + bias_attr=fluid.ParamAttr(name='fc_b')) + y = fluid.layers.data(name='y', shape=[1], dtype='float32') + cost = fluid.layers.square_error_cost(input=y_predict, label=y) + avg_cost = fluid.layers.mean(cost) + opt = fluid.optimizer.Ftrl(learning_rate=0.1) + opt.minimize(avg_cost) + + def transpiler_test_impl(self): + pserver, startup = self.get_pserver(self.pserver1_ep) + trainer, _ = self.get_trainer() + + class TestLRDecayConditional(TranspilerTest): def net_conf(self): x = fluid.layers.data(name='x', shape=[1000], dtype='float32') @@ -405,18 +424,43 @@ class TestL2DecayWithPiecewise(TranspilerTest): ["sum", "scale", "scale", "elementwise_add", "momentum"]) +class TestEmptyPserverOptimizeBlocks(TranspilerTest): + def net_conf(self): + x = fluid.layers.data(name='x', shape=[1000], dtype='float32') + # only one parameter + y_predict = fluid.layers.fc(input=x, + size=1000, + act=None, + param_attr=fluid.ParamAttr(name='fc_w'), + bias_attr=False) + y = fluid.layers.data(name='y', shape=[1], dtype='float32') + cost = fluid.layers.square_error_cost(input=y_predict, label=y) + avg_cost = fluid.layers.mean(cost) + sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0) + sgd_optimizer.minimize(avg_cost) + + def transpiler_test_impl(self): + config = fluid.DistributeTranspilerConfig() + config.slice_var_up = False + + pserver, startup = self.get_pserver(ep=self.pserver2_ep, config=config) + + self.assertEqual(len(pserver.blocks), 2) + self.assertEqual(len(pserver.blocks[1].ops), 0) + + class TestDistLookupTableBase(TranspilerTest): def network_with_table(self, is_sparse, is_distributed): self.table_size = 1000 self.emb_size = 64 self.lookup_table_name = 'shared_w' - def emb_pool(ids): + def emb_pool(ids, table_name, is_distributed): emb = fluid.layers.embedding( input=ids, size=[self.table_size, self.emb_size], dtype='float32', - param_attr=self.lookup_table_name, # share parameter + param_attr=table_name, is_sparse=is_sparse, is_distributed=is_distributed) pool = fluid.layers.sequence_pool(input=emb, pool_type='average') @@ -426,9 +470,13 @@ class TestDistLookupTableBase(TranspilerTest): name='title_ids', shape=[1], dtype='int64', lod_level=1) brand_ids = fluid.layers.data( name='brand_ids', shape=[1], dtype='int64', lod_level=1) - title_emb = emb_pool(title_ids) - brand_emb = emb_pool(brand_ids) - fc0 = fluid.layers.concat(input=[title_emb, brand_emb], axis=1) + profile_ids = fluid.layers.data( + name='brand_ids', shape=[1], dtype='int64', lod_level=1) + title_emb = emb_pool(title_ids, self.lookup_table_name, is_distributed) + brand_emb = emb_pool(brand_ids, self.lookup_table_name, is_distributed) + profile_emb = emb_pool(profile_ids, "profile_emb", False) + fc0 = fluid.layers.concat( + input=[title_emb, brand_emb, profile_emb], axis=1) predict = fluid.layers.fc(input=fc0, size=2, act=None, @@ -449,7 +497,7 @@ class TestLocalLookupTable(TestDistLookupTableBase): def transpiler_test_impl(self): pserver1, startup1 = self.get_pserver(self.pserver1_ep) - self.assertEqual(len(pserver1.blocks), 3) + self.assertEqual(len(pserver1.blocks), 4) # 0 listen_and_serv # 1 optimize for fc_w or fc_b adam self.assertEqual([op.type for op in pserver1.blocks[1].ops], @@ -459,16 +507,23 @@ class TestLocalLookupTable(TestDistLookupTableBase): self.assertEqual([op.type for op in pserver1.blocks[2].ops], ["sum", "scale", "adam", "scale", "scale"]) + # 3 optimize for table 2 adam + # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num + self.assertEqual([op.type for op in pserver1.blocks[3].ops], + ["sum", "scale", "adam", "scale", "scale"]) + trainer, _ = self.get_trainer() self.assertEqual(len(trainer.blocks), 1) ops = [ 'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool', - 'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean', - 'fill_constant', 'mean_grad', 'cross_entropy_grad', - 'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad', - 'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad', - 'lookup_table_grad', 'sum', 'split_selected_rows', 'send', - 'send_barrier', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat' + 'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add', + 'cross_entropy', 'mean', 'fill_constant', 'mean_grad', + 'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad', + 'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad', + 'split_selected_rows', 'send', 'sequence_pool_grad', + 'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad', + 'sum', 'split_selected_rows', 'send', 'send_barrier', 'recv', + 'recv', 'recv', 'recv', 'fetch_barrier', 'concat', 'concat' ] self.assertEqual([op.type for op in trainer.blocks[0].ops], ops) @@ -485,31 +540,43 @@ class TestDistLookupTable(TestDistLookupTableBase): # 1 optimize for fc_w or fc_b adam self.assertEqual([op.type for op in pserver1.blocks[1].ops], ["sum", "scale", "adam", "scale", "scale"]) - # 2 optimize for table sgd + # 4 prefetch -> lookup_sparse_table for data0 self.assertEqual([op.type for op in pserver1.blocks[2].ops], + ["sum", "scale", "adam", "scale", "scale"]) + # 2 optimize for table sgd + self.assertEqual([op.type for op in pserver1.blocks[3].ops], ["sum", "sgd"]) # 3 prefetch -> lookup_sparse_table for data0 - self.assertEqual([op.type for op in pserver1.blocks[3].ops], - ["lookup_sparse_table"]) - # 4 prefetch -> lookup_sparse_table for data1 self.assertEqual([op.type for op in pserver1.blocks[4].ops], ["lookup_sparse_table"]) # 5 save table self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"]) - trainer, _ = self.get_trainer() + trainer, trainer_startup = self.get_trainer() self.assertEqual(len(trainer.blocks), 1) ops = [ - 'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', 'split_ids', - 'prefetch', 'merge_ids', 'sequence_pool', 'concat', 'mul', + 'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', + 'sequence_pool', 'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean', 'fill_constant', 'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad', - 'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad', - 'sum', 'split_ids', 'send', 'send_barrier', 'recv', 'recv', - 'fetch_barrier' + 'lookup_table_grad', 'split_selected_rows', 'send', + 'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad', + 'lookup_table_grad', 'sum', 'split_ids', 'send', 'send_barrier', + 'recv', 'recv', 'recv', 'fetch_barrier', 'concat' ] self.assertEqual([op.type for op in trainer.blocks[0].ops], ops) + startup_ops = [ + 'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant', + 'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant', + 'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant', + 'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant', + 'fill_constant', 'fill_constant', 'uniform_random', + 'uniform_random', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat', + 'fake_init' + ] + self.assertEqual([op.type for op in trainer_startup.blocks[0].ops], + startup_ops) class TestAsyncLocalLookupTable(TestDistLookupTableBase): @@ -520,7 +587,7 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase): config = fluid.DistributeTranspilerConfig() pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False) - self.assertEqual(len(pserver1.blocks), 3) + self.assertEqual(len(pserver1.blocks), 4) # 0 listen_and_serv # 1 optimize for fc_w or fc_b adam self.assertEqual([op.type for op in pserver1.blocks[1].ops], @@ -529,17 +596,23 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase): # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num self.assertEqual([op.type for op in pserver1.blocks[2].ops], ["adam", "scale", "scale"]) + # 3 optimize for table adam + # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num + self.assertEqual([op.type for op in pserver1.blocks[3].ops], + ["adam", "scale", "scale"]) trainer, _ = self.get_trainer(config) self.assertEqual(len(trainer.blocks), 1) ops = [ 'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool', - 'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean', - 'fill_constant', 'mean_grad', 'cross_entropy_grad', - 'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad', - 'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad', - 'lookup_table_grad', 'sum', 'split_selected_rows', 'send', 'recv', - 'recv', 'recv', 'concat' + 'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add', + 'cross_entropy', 'mean', 'fill_constant', 'mean_grad', + 'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad', + 'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad', + 'split_selected_rows', 'send', 'sequence_pool_grad', + 'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad', + 'sum', 'split_selected_rows', 'send', 'recv', 'recv', 'recv', + 'recv', 'concat', 'concat' ] self.assertEqual([op.type for op in trainer.blocks[0].ops], ops) @@ -558,12 +631,12 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase): # 1 optimize for fc_w or fc_b adam self.assertEqual([op.type for op in pserver1.blocks[1].ops], ["adam", "scale", "scale"]) - # 2 optimize for table sgd - self.assertEqual([op.type for op in pserver1.blocks[2].ops], ["sgd"]) - # 3 prefetch -> lookup_sparse_table for data0 - self.assertEqual([op.type for op in pserver1.blocks[3].ops], - ["lookup_sparse_table"]) - # 4 prefetch -> lookup_sparse_table for data1 + # 2 optimize for table adam + self.assertEqual([op.type for op in pserver1.blocks[2].ops], + ["adam", "scale", "scale"]) + # 3 optimize for table sgd + self.assertEqual([op.type for op in pserver1.blocks[3].ops], ["sgd"]) + # 4 prefetch -> lookup_sparse_table for data0 self.assertEqual([op.type for op in pserver1.blocks[4].ops], ["lookup_sparse_table"]) # 5 save table @@ -572,13 +645,15 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase): trainer, _ = self.get_trainer(config) self.assertEqual(len(trainer.blocks), 1) ops = [ - 'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', 'split_ids', - 'prefetch', 'merge_ids', 'sequence_pool', 'concat', 'mul', + 'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', + 'sequence_pool', 'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean', 'fill_constant', 'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad', - 'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad', - 'sum', 'split_ids', 'send', 'recv', 'recv' + 'lookup_table_grad', 'split_selected_rows', 'send', + 'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad', + 'lookup_table_grad', 'sum', 'split_ids', 'send', 'recv', 'recv', + 'recv', 'concat' ] self.assertEqual([op.type for op in trainer.blocks[0].ops], ops) diff --git a/python/paddle/fluid/tests/unittests/test_dropout_op.py b/python/paddle/fluid/tests/unittests/test_dropout_op.py index 0296bc2af4e0b79478c34b4cceab32b5a8a50f2f..be3c5f3b9558ec522803ed9a5acedea75cda6ccc 100644 --- a/python/paddle/fluid/tests/unittests/test_dropout_op.py +++ b/python/paddle/fluid/tests/unittests/test_dropout_op.py @@ -85,6 +85,69 @@ class TestDropoutOp5(OpTest): self.check_output() +class TestDropoutOp6(TestDropoutOp): + def setUp(self): + self.op_type = "dropout" + self.inputs = {'X': np.random.random((32, 64)).astype("float32")} + self.attrs = { + 'dropout_prob': 1.0, + 'fix_seed': True, + 'is_test': False, + 'dropout_implementation': 'upscale_in_train' + } + self.outputs = { + 'Out': np.zeros((32, 64)).astype('float32'), + 'Mask': np.zeros((32, 64)).astype('float32') + } + + +class TestDropoutOp7(TestDropoutOp): + def setUp(self): + self.op_type = "dropout" + self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")} + self.attrs = { + 'dropout_prob': 0.0, + 'fix_seed': True, + 'is_test': False, + 'dropout_implementation': 'upscale_in_train' + } + self.outputs = { + 'Out': self.inputs['X'], + 'Mask': np.ones((32, 64, 2)).astype('float32') + } + + +class TestDropoutOp8(OpTest): + def setUp(self): + self.op_type = "dropout" + self.inputs = {'X': np.random.random((32, 64)).astype("float32")} + self.attrs = { + 'dropout_prob': 0.35, + 'fix_seed': True, + 'is_test': True, + 'dropout_implementation': 'upscale_in_train' + } + self.outputs = {'Out': self.inputs['X']} + + def test_check_output(self): + self.check_output() + + +class TestDropoutOp9(OpTest): + def setUp(self): + self.op_type = "dropout" + self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")} + self.attrs = { + 'dropout_prob': 0.75, + 'is_test': True, + 'dropout_implementation': 'upscale_in_train' + } + self.outputs = {'Out': self.inputs['X']} + + def test_check_output(self): + self.check_output() + + class TestFP16DropoutOp(OpTest): def setUp(self): self.op_type = "dropout" diff --git a/python/paddle/fluid/tests/unittests/test_fake_init_op.py b/python/paddle/fluid/tests/unittests/test_fake_init_op.py new file mode 100644 index 0000000000000000000000000000000000000000..a62b7aed66b59940b4ba654d98479e3e35c7b78b --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_fake_init_op.py @@ -0,0 +1,52 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest + +import paddle.fluid.core as core +from paddle.fluid.op import Operator + + +class TestFakeInitOpSelectedRows(unittest.TestCase): + def check_with_place(self, place, is_selected_rows): + scope = core.Scope() + + out_var_name = 'Out' + if is_selected_rows: + out_tensor = scope.var(out_var_name).get_selected_rows().get_tensor( + ) + else: + out_tensor = scope.var(out_var_name).get_tensor() + + var_shape = [4, 784] + + # create and run fake_init_op + fake_init_op = Operator("fake_init", Out=out_var_name, shape=var_shape) + fake_init_op.run(scope, place) + + self.assertEqual(var_shape, out_tensor._get_dims()) + + def test_fake_init_selected_rows(self): + places = [core.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(core.CUDAPlace(0)) + for place in places: + for is_selected_rows in [True, False]: + self.check_with_place(place, is_selected_rows) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_grid_sampler_op.py b/python/paddle/fluid/tests/unittests/test_grid_sampler_op.py new file mode 100644 index 0000000000000000000000000000000000000000..c2529e0d70c9a359d2a44c671769d50a92650a73 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_grid_sampler_op.py @@ -0,0 +1,123 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +from op_test import OpTest + + +def AffineGrid(theta, size): + n = size[0] + h = size[2] + w = size[3] + h_idx = np.repeat( + np.linspace(-1, 1, h)[np.newaxis, :], w, axis=0).T[:, :, np.newaxis] + w_idx = np.repeat( + np.linspace(-1, 1, w)[np.newaxis, :], h, axis=0)[:, :, np.newaxis] + grid = np.concatenate( + [w_idx, h_idx, np.ones([h, w, 1])], axis=2) # h * w * 3 + grid = np.repeat(grid[np.newaxis, :], size[0], axis=0) # n * h * w *3 + + ret = np.zeros([n, h * w, 2]) + theta = theta.transpose([0, 2, 1]) + for i in range(len(theta)): + ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i]) + + return ret.reshape([n, h, w, 2]).astype("float32") + + +def getGridPointValue(data, x, y): + data_shape = data.shape + N = data_shape[0] + H = data_shape[2] + W = data_shape[3] + + out = np.zeros(data_shape, dtype='float') + for i in range(N): + for j in range(H): + for k in range(W): + if y[i, j, k] < 0 or y[i, j, k] > H - 1 or x[i, j, k] < 0 or x[ + i, j, k] > W - 1: + out[i, :, j, k] = 0 + else: + out[i, :, j, k] = data[i, :, y[i, j, k], x[i, j, k]] + + return out + + +def GridSampler(data, grid): + dims = data.shape + N = dims[0] + C = dims[1] + H = dims[2] + W = dims[3] + + x = grid[:, :, :, 0] + y = grid[:, :, :, 1] + y_max = H - 1 + x_max = W - 1 + + x = 0.5 * ((x.astype('float32') + 1.0) * x_max) + y = 0.5 * ((y.astype('float32') + 1.0) * y_max) + + x0 = np.floor(x).astype('int32') + x1 = x0 + 1 + y0 = np.floor(y).astype('int32') + y1 = y0 + 1 + + wa = np.tile(((x1 - x) * (y1 - y)).reshape((N, 1, H, W)), (1, C, 1, 1)) + wb = np.tile(((x1 - x) * (y - y0)).reshape((N, 1, H, W)), (1, C, 1, 1)) + wc = np.tile(((x - x0) * (y1 - y)).reshape((N, 1, H, W)), (1, C, 1, 1)) + wd = np.tile(((x - x0) * (y - y0)).reshape((N, 1, H, W)), (1, C, 1, 1)) + + va = getGridPointValue(data, x0, y0) + vb = getGridPointValue(data, x0, y1) + vc = getGridPointValue(data, x1, y0) + vd = getGridPointValue(data, x1, y1) + + out = (wa * va + wb * vb + wc * vc + wd * vd).astype('float32') + return out + + +class TestGridSamplerOp(OpTest): + def setUp(self): + self.initTestCase() + self.op_type = 'grid_sampler' + x = np.random.randint(0, 255, self.x_shape).astype('float32') + + theta = np.zeros(self.theta_shape).astype('float32') + for i in range(self.theta_shape[0]): + for j in range(2): + for k in range(3): + theta[i, j, k] = np.random.rand(1)[0] + grid = AffineGrid(theta, self.x_shape) + + self.inputs = {'X': x, 'Grid': grid} + self.attrs = {'use_cudnn': True} + self.outputs = {'Output': GridSampler(x, grid)} + + def test_check_output(self): + self.check_output(atol=1e-3) + + def test_check_grad_normal(self): + self.check_grad(['X', 'Grid'], 'Output', max_relative_error=0.61) + + def initTestCase(self): + self.x_shape = (2, 5, 7, 3) + self.grid_shape = (2, 7, 3, 2) + self.theta_shape = (2, 2, 3) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_hash_op.py b/python/paddle/fluid/tests/unittests/test_hash_op.py new file mode 100644 index 0000000000000000000000000000000000000000..1130ea39c42204283885ab1072a52db8c22f8b2e --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_hash_op.py @@ -0,0 +1,57 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +from op_test import OpTest + + +class TestScaleOp(OpTest): + def setUp(self): + self.op_type = "hash" + self.init_test_case() + self.inputs = {'X': (self.in_seq, self.lod)} + self.attrs = {'num_hash': 4, 'mod_by': 10000} + self.outputs = {'Out': (self.out_seq, self.lod)} + + def init_test_case(self): + np.random.seed = 1 + self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32") + self.lod = [[9, 4, 11, 6]] + # self.out_seq = np.ones([30, 4, 1], dtype=np.int32) + self.out_seq = [ + [[9662], [9217], [1129], [8487]], [[9662], [9217], [1129], [8487]], + [[8310], [1327], [1654], [4567]], [[6897], [3218], [2013], [1241]], + [[9407], [6715], [6949], [8094]], [[8473], [694], [5142], [2479]], + [[8310], [1327], [1654], [4567]], [[6897], [3218], [2013], [1241]], + [[4372], [9456], [8204], [6695]], [[6897], [3218], [2013], [1241]], + [[8473], [694], [5142], [2479]], [[4372], [9456], [8204], [6695]], + [[4372], [9456], [8204], [6695]], [[8473], [694], [5142], [2479]], + [[9407], [6715], [6949], [8094]], [[9369], [4525], [8935], [9210]], + [[4372], [9456], [8204], [6695]], [[4372], [9456], [8204], [6695]], + [[9369], [4525], [8935], [9210]], [[6897], [3218], [2013], [1241]], + [[9038], [7951], [5953], [8657]], [[9407], [6715], [6949], [8094]], + [[9662], [9217], [1129], [8487]], [[9369], [4525], [8935], [9210]], + [[9038], [7951], [5953], [8657]], [[9662], [9217], [1129], [8487]], + [[9369], [4525], [8935], [9210]], [[1719], [5986], [9919], [3421]], + [[4372], [9456], [8204], [6695]], [[9038], [7951], [5953], [8657]] + ] + self.out_seq = np.array(self.out_seq) + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 50de468dba803d0a2a0c129ad04aac8a3822cdbc..c4ecc2c2c2563fcad09821453ee73e41f81407d5 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -865,6 +865,31 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(out) print(str(program)) + def test_grid_sampler(self): + program = Program() + with program_guard(program): + x = layers.data(name='x', shape=[3, 5, 7], dtype='float32') + grid = layers.data(name='grid', shape=[5, 7, 2], dtype='float32') + out = layers.grid_sampler(x, grid) + self.assertIsNotNone(out) + print(str(program)) + + def test_affine_grid(self): + program = Program() + with program_guard(program): + data = layers.data(name='data', shape=[2, 3, 3], dtype="float32") + out, ids = layers.argsort(input=data, axis=1) + + theta = layers.data(name="theta", shape=[2, 3], dtype="float32") + out_shape = layers.data( + name="out_shape", shape=[-1], dtype="float32") + data_0 = layers.affine_grid(theta, out_shape) + data_1 = layers.affine_grid(theta, [5, 3, 28, 28]) + + self.assertIsNotNone(data_0) + self.assertIsNotNone(data_1) + print(str(program)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py b/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py index 48b52a5412eb99fbc7a5c8534a766ede4954e849..a0358f8b401e301312b5b9c0b18733d4275045e3 100644 --- a/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py +++ b/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py @@ -55,6 +55,46 @@ def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id): exe.run(pserver_prog) +def run_pserver_with_empty_block(use_cuda, sync_mode, ip, port, trainers, + trainer_id): + x = fluid.layers.data(name='x', shape=[1], dtype='float32') + y_predict = fluid.layers.fc(input=x, size=1, act=None, bias_attr=False) + y = fluid.layers.data(name='y', shape=[1], dtype='float32') + + # loss function + cost = fluid.layers.square_error_cost(input=y_predict, label=y) + avg_cost = fluid.layers.mean(cost) + + # optimizer + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) + sgd_optimizer.minimize(avg_cost) + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + + ps1 = ip + ":" + str(int(port) + 1) + ps2 = ip + ":" + port + pserver_endpoints = ps1 + "," + ps2 + + config = fluid.DistributeTranspilerConfig() + config.slice_var_up = False + t = fluid.DistributeTranspiler(config=config) + t.transpile( + trainer_id, + pservers=pserver_endpoints, + trainers=trainers, + sync_mode=sync_mode) + pserver_prog = t.get_pserver_program(ps2) + + # pserver2 have no parameter + assert (len(pserver_prog.blocks) == 2) + assert (len(pserver_prog.blocks[1].ops) == 0) + + pserver_startup = t.get_startup_program(ps2, pserver_prog) + exe.run(pserver_startup) + exe.run(pserver_prog) + + class TestListenAndServOp(OpTest): def setUp(self): self.ps_timeout = 5 @@ -63,9 +103,9 @@ class TestListenAndServOp(OpTest): self.trainers = 1 self.trainer_id = 0 - def _start_pserver(self, use_cuda, sync_mode): + def _start_pserver(self, use_cuda, sync_mode, pserver_func): p = Process( - target=run_pserver, + target=pserver_func, args=(use_cuda, sync_mode, self.ip, self.port, self.trainers, self.trainer_id)) p.daemon = True @@ -92,7 +132,24 @@ class TestListenAndServOp(OpTest): def test_handle_signal_in_serv_op(self): # run pserver on CPU in sync mode - p1 = self._start_pserver(False, True) + p1 = self._start_pserver(False, True, run_pserver) + self._wait_ps_ready(p1.pid) + + # raise SIGTERM to pserver + os.kill(p1.pid, signal.SIGINT) + p1.join() + + # run pserver on CPU in async mode + p2 = self._start_pserver(False, False, run_pserver) + self._wait_ps_ready(p2.pid) + + # raise SIGTERM to pserver + os.kill(p2.pid, signal.SIGTERM) + p2.join() + + def test_list_and_serv_run_empty_optimize_block(self): + # run pserver on CPU in sync mode + p1 = self._start_pserver(False, True, run_pserver_with_empty_block) self._wait_ps_ready(p1.pid) # raise SIGTERM to pserver @@ -100,7 +157,7 @@ class TestListenAndServOp(OpTest): p1.join() # run pserver on CPU in async mode - p2 = self._start_pserver(False, False) + p2 = self._start_pserver(False, False, run_pserver_with_empty_block) self._wait_ps_ready(p2.pid) # raise SIGTERM to pserver diff --git a/python/paddle/fluid/tests/unittests/test_merge_ids_op.py b/python/paddle/fluid/tests/unittests/test_merge_ids_op.py index 26ce7024117162e8bad403a9d8b8518c27578c83..b109e4ea62669c735128f4824eb9d02ad43900e0 100644 --- a/python/paddle/fluid/tests/unittests/test_merge_ids_op.py +++ b/python/paddle/fluid/tests/unittests/test_merge_ids_op.py @@ -22,15 +22,28 @@ from op_test import OpTest class TestMergeIdsOp(OpTest): def setUp(self): self.op_type = "merge_ids" - ids = np.array([[0], [2], [2], [3], [5], [5], [6]]).astype('int64') - x0 = np.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.4]]).astype('float32') - x1 = np.array([]).astype('float32') - x2 = np.array([[0.4, 0.5], [0.4, 0.5], [0.5, 0.6], - [0.5, 0.6]]).astype('float32') - out = np.array([[0.1, 0.2], [0.4, 0.5], [0.4, 0.5], [0.2, 0.3], - [0.5, 0.6], [0.5, 0.6], [0.3, 0.4]]).astype('float32') - self.inputs = {'Ids': ids, "X": [('x0', x0), ('x1', x1), ('x2', x2)]} - self.outputs = {'Out': out} + ids1 = np.array([[0], [2], [5], [6]]).astype('int64') + ids2 = np.array([[0], [2], [2], [3]]).astype('int64') + + rows1 = np.array([[0], [2]]).astype('int64') + rows2 = np.array([[3], [5]]).astype('int64') + rows3 = np.array([[6]]).astype('int64') + + x0 = np.array([[0.1, 0.2], [0.2, 0.3]]).astype('float32') + x1 = np.array([[0.3, 0.4], [0.4, 0.5]]).astype('float32') + x2 = np.array([[0.5, 0.6]]).astype('float32') + + out1 = np.array( + [[0.1, 0.2], [0.2, 0.3], [0.4, 0.5], [0.5, 0.6]]).astype('float32') + out2 = np.array( + [[0.1, 0.2], [0.2, 0.3], [0.2, 0.3], [0.3, 0.4]]).astype('float32') + + self.inputs = { + 'Ids': [('ids1', ids1), ('ids2', ids2)], + "Rows": [('rows1', rows1), ('rows2', rows2), ('rows3', rows3)], + "X": [('x0', x0), ('x1', x1), ('x2', x2)] + } + self.outputs = {'Out': [('out1', out1), ('out2', out2)]} def test_check_output(self): self.check_output() diff --git a/python/paddle/fluid/tests/unittests/test_metrics.py b/python/paddle/fluid/tests/unittests/test_metrics.py new file mode 100644 index 0000000000000000000000000000000000000000..ec27884cae2b0462951f6597b1b83e58d1c8af5d --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_metrics.py @@ -0,0 +1,49 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import paddle.fluid as fluid +from paddle.fluid.framework import Program, program_guard + + +class TestMetricsDetectionMap(unittest.TestCase): + def test_detection_map(self): + program = fluid.Program() + with program_guard(program): + detect_res = fluid.layers.data( + name='detect_res', + shape=[10, 6], + append_batch_size=False, + dtype='float32') + label = fluid.layers.data( + name='label', + shape=[10, 1], + append_batch_size=False, + dtype='float32') + box = fluid.layers.data( + name='bbox', + shape=[10, 4], + append_batch_size=False, + dtype='float32') + map_eval = fluid.metrics.DetectionMAP( + detect_res, label, box, class_num=21) + cur_map, accm_map = map_eval.get_map_var() + self.assertIsNotNone(cur_map) + self.assertIsNotNone(accm_map) + print(str(program)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_momentum_op.py b/python/paddle/fluid/tests/unittests/test_momentum_op.py index a3d89610b40ff9bd5002e843f8667ada87e67981..cf4346cf2e7a099334ec273546901a91d0ad925d 100644 --- a/python/paddle/fluid/tests/unittests/test_momentum_op.py +++ b/python/paddle/fluid/tests/unittests/test_momentum_op.py @@ -90,6 +90,45 @@ class TestMomentumOp2(OpTest): self.check_output() +class TestLarsMomentumOp(OpTest): + def setUp(self): + self.op_type = "lars_momentum" + + param = np.random.random((123, 321)).astype("float32") + grad = np.random.random((123, 321)).astype("float32") + velocity = np.zeros((123, 321)).astype("float32") + learning_rate = np.array([0.001]).astype("float32") + mu = 0.0001 + lars_coeff = 0.001 + lars_weight_decay = 0.0005 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Velocity': velocity, + 'LearningRate': learning_rate + } + + self.attrs = { + 'mu': mu, + 'lars_coeff': lars_coeff, + 'lars_weight_decay': lars_weight_decay + } + + pnorm = np.sqrt(np.square(param).sum()) + gnorm = np.sqrt(np.square(grad).sum()) + local_lr = learning_rate * lars_coeff * pnorm / ( + gnorm + lars_weight_decay * param) + velocity_out = mu * velocity + local_lr * (grad + lars_weight_decay * + param) + param_out = param - velocity_out + + self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out} + + def test_check_output(self): + self.check_output() + + class TestSparseMomentumOp(unittest.TestCase): def setUp(self): self.use_nesterov = False diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py index cc2d692e18430eb48e6e800106eab0c3739d3f53..e7a56bb6386a812e43e5c1b5c08cd0682aa9223a 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py @@ -232,6 +232,46 @@ class TestResnet(TestParallelExecutorBase): for loss in zip(all_reduce_last_loss, reduce_last_loss): self.assertAlmostEquals(loss[0], loss[1], delta=delta2) + if not use_cuda: + return + + all_reduce_first_loss_seq, all_reduce_last_loss_seq = self.check_network_convergence( + model, + feed_dict={"image": img, + "label": label}, + iter=iter, + batch_size=batch_size, + use_cuda=use_cuda, + use_reduce=False, + optimizer=optimizer, + enable_sequential_execution=True) + + reduce_first_loss_seq, reduce_last_loss_seq = self.check_network_convergence( + model, + feed_dict={"image": img, + "label": label}, + iter=iter, + batch_size=batch_size, + use_cuda=use_cuda, + use_reduce=True, + optimizer=optimizer, + enable_sequential_execution=True) + + for loss in zip(all_reduce_first_loss, all_reduce_first_loss_seq): + self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) + for loss in zip(all_reduce_last_loss, all_reduce_last_loss_seq): + self.assertAlmostEquals(loss[0], loss[1], delta=delta2) + + for loss in zip(reduce_first_loss, reduce_first_loss_seq): + self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) + for loss in zip(reduce_last_loss, reduce_last_loss_seq): + self.assertAlmostEquals(loss[0], loss[1], delta=delta2) + + for loss in zip(all_reduce_first_loss_seq, reduce_first_loss_seq): + self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) + for loss in zip(all_reduce_last_loss_seq, reduce_last_loss_seq): + self.assertAlmostEquals(loss[0], loss[1], delta=delta2) + def _check_resnet_convergence(self, model, use_cuda=True, diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py index a55b2002ed989d4588716202a37aa6f4139825ea..3827743908c1d76931572277323d1dd5ddd05523 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py @@ -173,6 +173,8 @@ class TestTransformer(TestParallelExecutorBase): def test_main(self): if core.is_compiled_with_cuda(): self.check_network_convergence(transformer, use_cuda=True) + self.check_network_convergence( + transformer, use_cuda=True, enable_sequential_execution=True) self.check_network_convergence(transformer, use_cuda=False, iter=5) diff --git a/python/paddle/fluid/tests/unittests/test_pool2d_op.py b/python/paddle/fluid/tests/unittests/test_pool2d_op.py index 26969bd5230afdac83a943d2dc21094a0972d60a..634df65bb5ad5ceab4ef4c019c1f243888351b12 100644 --- a/python/paddle/fluid/tests/unittests/test_pool2d_op.py +++ b/python/paddle/fluid/tests/unittests/test_pool2d_op.py @@ -26,7 +26,8 @@ def max_pool2D_forward_naive(x, strides, paddings, global_pool=0, - ceil_mode=False): + ceil_mode=False, + exclusive=True): N, C, H, W = x.shape if global_pool == 1: ksize = [H, W] @@ -54,7 +55,8 @@ def avg_pool2D_forward_naive(x, strides, paddings, global_pool=0, - ceil_mode=False): + ceil_mode=False, + exclusive=True): N, C, H, W = x.shape if global_pool == 1: ksize = [H, W] @@ -73,8 +75,9 @@ def avg_pool2D_forward_naive(x, c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) x_masked = x[:, :, r_start:r_end, c_start:c_end] - out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / ( - (r_end - r_start) * (c_end - c_start)) + field_size = ((r_end - r_start) * (c_end - c_start)) if exclusive \ + else (ksize[0] * ksize[1]) + out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size return out @@ -89,12 +92,13 @@ class TestPool2d_Op(OpTest): self.init_kernel_type() self.init_pool_type() self.init_ceil_mode() + self.init_exclusive() if self.global_pool: self.paddings = [0 for _ in range(len(self.paddings))] input = np.random.random(self.shape).astype(self.dtype) - output = self.pool2D_forward_naive(input, self.ksize, self.strides, - self.paddings, self.global_pool, - self.ceil_mode).astype(self.dtype) + output = self.pool2D_forward_naive( + input, self.ksize, self.strides, self.paddings, self.global_pool, + self.ceil_mode, self.exclusive).astype(self.dtype) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)} self.attrs = { @@ -106,7 +110,9 @@ class TestPool2d_Op(OpTest): 'use_cudnn': self.use_cudnn, 'use_mkldnn': self.use_mkldnn, 'ceil_mode': self.ceil_mode, - 'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter + 'data_format': + 'AnyLayout', # TODO(dzhwinter) : should be fix latter + 'exclusive': self.exclusive } self.outputs = {'Out': output} @@ -150,6 +156,9 @@ class TestPool2d_Op(OpTest): def init_ceil_mode(self): self.ceil_mode = False + def init_exclusive(self): + self.exclusive = True + class TestCase1(TestPool2d_Op): def init_test_case(self): @@ -322,5 +331,15 @@ class TestCeilModeCase4(TestCase2): self.ceil_mode = True +class TestAvgInclude(TestCase2): + def init_exclusive(self): + self.exclusive = False + + +class TestCUDNNAvgInclude(TestCUDNNCase3): + def init_exclusive(self): + self.exclusive = False + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_pool3d_op.py b/python/paddle/fluid/tests/unittests/test_pool3d_op.py index 77045c1307baead3711d58ed368dfa5f2acc3699..f05f8ccb3985be162d89da099496d5b2baf4afdc 100644 --- a/python/paddle/fluid/tests/unittests/test_pool3d_op.py +++ b/python/paddle/fluid/tests/unittests/test_pool3d_op.py @@ -26,7 +26,8 @@ def max_pool3D_forward_naive(x, strides, paddings, global_pool=0, - ceil_mode=False): + ceil_mode=False, + exclusive=True): N, C, D, H, W = x.shape if global_pool == 1: ksize = [D, H, W] @@ -60,7 +61,8 @@ def avg_pool3D_forward_naive(x, strides, paddings, global_pool=0, - ceil_mode=False): + ceil_mode=False, + exclusive=True): N, C, D, H, W = x.shape if global_pool == 1: ksize = [D, H, W] @@ -85,8 +87,10 @@ def avg_pool3D_forward_naive(x, w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end] - out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3, 4)) / ( - (d_end - d_start) * (h_end - h_start) * (w_end - w_start)) + field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \ + if exclusive else ksize[0] * ksize[1] * ksize[2] + out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3, + 4)) / field_size return out @@ -100,13 +104,14 @@ class TestPool3d_Op(OpTest): self.init_kernel_type() self.init_pool_type() self.init_ceil_mode() + self.init_exclusive() if self.global_pool: self.paddings = [0 for _ in range(len(self.paddings))] input = np.random.random(self.shape).astype(self.dtype) - output = self.pool3D_forward_naive(input, self.ksize, self.strides, - self.paddings, self.global_pool, - self.ceil_mode).astype(self.dtype) + output = self.pool3D_forward_naive( + input, self.ksize, self.strides, self.paddings, self.global_pool, + self.ceil_mode, self.exclusive).astype(self.dtype) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)} self.attrs = { @@ -117,7 +122,9 @@ class TestPool3d_Op(OpTest): 'global_pooling': self.global_pool, 'use_cudnn': self.use_cudnn, 'ceil_mode': self.ceil_mode, - 'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter + 'data_format': + 'AnyLayout', # TODO(dzhwinter) : should be fix latter + 'exclusive': self.exclusive } self.outputs = {'Out': output} @@ -161,6 +168,9 @@ class TestPool3d_Op(OpTest): def init_ceil_mode(self): self.ceil_mode = False + def init_exclusive(self): + self.exclusive = True + class TestCase1(TestPool3d_Op): def init_test_case(self): @@ -333,5 +343,15 @@ class TestCeilModeCase4(TestCase2): self.ceil_mode = True +class TestAvgInclude(TestCase2): + def init_exclusive(self): + self.exclusive = False + + +class TestCUDNNAvgInclude(TestCUDNNCase3): + def init_exclusive(self): + self.exclusive = False + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_py_reader_pin_memory.py b/python/paddle/fluid/tests/unittests/test_py_reader_pin_memory.py new file mode 100644 index 0000000000000000000000000000000000000000..b913127ad625eb25de3ec36edd2161019ed09749 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_py_reader_pin_memory.py @@ -0,0 +1,130 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import paddle +import paddle.fluid as fluid +import paddle.fluid.core as core +import numpy as np +from threading import Thread + + +def user_reader(inputs): + def _reader(): + for d in inputs: + yield d + + return _reader + + +def batch_feeder(batch_reader, pin_memory=False, img_dtype="float32"): + def _feeder(): + for batch_data in batch_reader(): + sample_batch = [] + label_batch = [] + for sample, label in batch_data: + sample_batch.append(sample) + label_batch.append([label]) + tensor = core.LoDTensor() + label = core.LoDTensor() + place = core.CUDAPinnedPlace() if pin_memory else core.CPUPlace() + tensor.set(np.array(sample_batch, dtype=img_dtype), place) + label.set(np.array(label_batch, dtype="int64"), place) + yield [tensor, label] + + return _feeder + + +class TestPyReader(unittest.TestCase): + def setUp(self): + self.capacity = 10 + self.shapes = [(-1, 3, 2, 1), (-1, 1)] + self.lod_levels = [0, 0] + self.dtypes = ['float32', 'int64'] + + def test_pin_memory_pyreader(self): + with fluid.program_guard(fluid.Program(), fluid.Program()): + place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( + ) else fluid.CPUPlace() + executor = fluid.Executor(place) + + data_file = fluid.layers.py_reader( + capacity=self.capacity, + dtypes=self.dtypes, + lod_levels=self.lod_levels, + shapes=self.shapes) + # feed_queue = data_file.queue + read_out_data = fluid.layers.read_file(data_file) + + self.inputs = [] + for _ in range(10): + sample = np.random.uniform( + low=0, high=1, size=[3, 2, 1]).astype("float32") + label = np.random.uniform( + low=0, high=10, size=[1]).astype("int64") + self.inputs.append((sample, label)) + + self.input_tensors = [] + for d, l in batch_feeder( + paddle.batch( + user_reader(self.inputs), batch_size=2), + pin_memory=True + if fluid.core.is_compiled_with_cuda() else False)(): + ta = fluid.LoDTensorArray() + ta.append(d) + ta.append(l) + self.input_tensors.append(ta) + + self.batched_inputs = [] + for batch in paddle.batch(user_reader(self.inputs), batch_size=2)(): + feed_d = [] + feed_l = [] + for d, l in batch: + feed_d.append(d) + feed_l.append([l]) + self.batched_inputs.append([feed_d, feed_l]) + + data_file.decorate_tensor_provider( + batch_feeder( + paddle.batch( + user_reader(self.inputs), batch_size=2), + pin_memory=True + if fluid.core.is_compiled_with_cuda() else False)) + + executor.run(fluid.default_startup_program()) + self.outputs = [] + + data_file.start() + for _ in self.input_tensors: + self.outputs.append( + executor.run(fetch_list=list(read_out_data))) + data_file.reset() + self.validate() + + def validate(self): + self.assertEqual(len(self.batched_inputs), len(self.outputs)) + for in_data_list, out_data_list in zip(self.batched_inputs, + self.outputs): + self.assertEqual(len(in_data_list), len(out_data_list)) + in_data_list_np = [ + np.array(in_lod_tensor) for in_lod_tensor in in_data_list + ] + for in_data, out_data in zip(in_data_list_np, out_data_list): + self.assertTrue((in_data == out_data).all()) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_seq_pool.py b/python/paddle/fluid/tests/unittests/test_seq_pool.py index 641eb03a5fbf1bb140b20cc3518cea83386fa577..a80ad5b079891efe1b0e1222b3c2455d4891d5f5 100644 --- a/python/paddle/fluid/tests/unittests/test_seq_pool.py +++ b/python/paddle/fluid/tests/unittests/test_seq_pool.py @@ -184,6 +184,20 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D): out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 11)) +class TestSeqMaxPool2DInference(TestSeqMaxPool2D): + def compute(self, x, offset, out): + self.attrs = {'pooltype': "MAX", 'is_test': True} + for i in range(len(offset[0]) - 1): + sub_x = np.reshape(x[offset[0][i]:offset[0][i + 1], :], + (-1, 3 * 11)) + out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 11)) + + def test_check_grad(self): + """Grad computation does not apply to Sequence MAX + Pool executed when is_test is true """ + return + + class TestSeqLastPool2D(TestSeqAvgPool2D): def compute(self, x, offset, out): self.attrs = {'pooltype': "LAST"} diff --git a/python/paddle/fluid/tests/unittests/test_sequence_reverse.py b/python/paddle/fluid/tests/unittests/test_sequence_reverse.py new file mode 100644 index 0000000000000000000000000000000000000000..eebd25e0975f1711ea86093f007212cadc6334f5 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_sequence_reverse.py @@ -0,0 +1,69 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import paddle.fluid as fluid +import paddle.fluid.core as core +from op_test import OpTest +import numpy as np + + +class TestSequenceReverseBase(OpTest): + def initParameters(self): + pass + + def setUp(self): + self.size = (10, 3, 4) + self.lod = [2, 3, 5] + self.dtype = 'float32' + self.initParameters() + self.op_type = 'sequence_reverse' + self.x = np.random.random(self.size).astype(self.dtype) + self.y = self.get_output() + + self.inputs = {'X': (self.x, [self.lod, ]), } + self.outputs = {'Y': (self.y, [self.lod, ]), } + + def get_output(self): + tmp_x = np.reshape(self.x, newshape=[self.x.shape[0], -1]) + tmp_y = np.ndarray(tmp_x.shape).astype(self.dtype) + prev_idx = 0 + for cur_len in self.lod: + idx_range = range(prev_idx, prev_idx + cur_len) + tmp_y[idx_range, :] = np.flip(tmp_x[idx_range, :], 0) + prev_idx += cur_len + + return np.reshape(tmp_y, newshape=self.x.shape).astype(self.dtype) + + def test_output(self): + self.check_output(0) + + def test_grad(self): + self.check_grad(['X'], 'Y') + + +class TestSequenceReserve1(TestSequenceReverseBase): + def initParameters(self): + self.size = (12, 10) + self.lod = [4, 5, 3] + + +class TestSequenceReverse2(TestSequenceReverseBase): + def initParameters(self): + self.size = (12, 10) + self.lod = [12] + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py b/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py index a18941dd3126ac027f022ddafbbaed8516166233..37ee880970cf7f6f235e7c43697b2b7872bed38b 100644 --- a/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py +++ b/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py @@ -26,7 +26,11 @@ class TestSoftmaxWithCrossEntropyOp(OpTest): Test softmax with cross entropy operator with discreate one-hot labels. """ + def initParams(self): + self.numeric_stable_mode = False + def setUp(self): + self.initParams() self.op_type = "softmax_with_cross_entropy" batch_size = 41 class_num = 37 @@ -46,6 +50,7 @@ class TestSoftmaxWithCrossEntropyOp(OpTest): "Softmax": softmax.astype("float64"), "Loss": cross_entropy.astype("float64") } + self.attrs = {"numeric_stable_mode": self.numeric_stable_mode} def test_check_output(self): self.check_output() @@ -54,6 +59,11 @@ class TestSoftmaxWithCrossEntropyOp(OpTest): self.check_grad(["Logits"], "Loss") +class TestSoftmaxWithCrossEntropyOpNoCudnn(TestSoftmaxWithCrossEntropyOp): + def initParams(self): + self.numeric_stable_mode = True + + class TestSoftmaxWithCrossEntropyOp2(OpTest): """ Test softmax with cross entropy operator with soft labels. @@ -93,7 +103,11 @@ class TestSoftmaxWithCrossEntropyOp3(OpTest): Test softmax with cross entropy operator with ignore_index. """ + def initParams(self): + self.numeric_stable_mode = False + def setUp(self): + self.initParams() self.op_type = "softmax_with_cross_entropy" batch_size = 41 class_num = 37 @@ -114,7 +128,10 @@ class TestSoftmaxWithCrossEntropyOp3(OpTest): "Softmax": softmax.astype("float64"), "Loss": cross_entropy.astype("float64") } - self.attrs = {"ignore_index": ignore_index} + self.attrs = { + "ignore_index": ignore_index, + "numeric_stable_mode": self.numeric_stable_mode + } def test_check_output(self): self.check_output() @@ -123,5 +140,10 @@ class TestSoftmaxWithCrossEntropyOp3(OpTest): self.check_grad(["Logits"], "Loss") +class TestSoftmaxWithCrossEntropyOp3NoCudnn(TestSoftmaxWithCrossEntropyOp3): + def initParams(self): + self.numeric_stable_mode = True + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_split_ids_op.py b/python/paddle/fluid/tests/unittests/test_split_ids_op.py index 4c3d0258980fd8595704a65219deb520b96e222e..d674dad2293921c06135b4ee528538d266cb2904 100644 --- a/python/paddle/fluid/tests/unittests/test_split_ids_op.py +++ b/python/paddle/fluid/tests/unittests/test_split_ids_op.py @@ -25,18 +25,21 @@ from paddle.fluid.op import Operator class TestSplitIdsOp(OpTest): def setUp(self): self.op_type = "split_ids" - ids = np.array([[0], [2], [2], [3], [5], [5], [6]]).astype('int64') + ids1 = np.array([[0], [2], [2], [3], [5], [5], [6]]).astype('int64') + ids2 = np.array([[6], [2], [3], [3], [5], [2], [6]]).astype('int64') + ids3 = np.array([[2], [2], [2], [3], [5], [5], [6]]).astype('int64') + out0 = np.array([[0], [3], [6]]).astype('int64') out1 = np.array([[]]).astype('int64') - out2 = np.array([[2], [2], [5], [5]]).astype('int64') - self.inputs = {'Ids': ids} + out2 = np.array([[2], [5]]).astype('int64') + self.inputs = {'Ids': [('ids1', ids1), ('ids2', ids2), ('ids3', ids3)]} self.outputs = {'Out': [('out0', out0), ('out1', out1), ('out2', out2)]} def test_check_output(self): self.check_output() -class TestSpliteIds(unittest.TestCase): +class TestSplitSelectedRows(unittest.TestCase): def get_places(self): places = [core.CPUPlace()] return places diff --git a/python/paddle/fluid/tests/unittests/test_split_selected_rows_op.py b/python/paddle/fluid/tests/unittests/test_split_selected_rows_op.py index 41a5ee59ea523b1f6c5015974a12c526e883fa35..50204b8a77c187aa695da83860960566448d290f 100644 --- a/python/paddle/fluid/tests/unittests/test_split_selected_rows_op.py +++ b/python/paddle/fluid/tests/unittests/test_split_selected_rows_op.py @@ -99,7 +99,6 @@ class TestSpliteSelectedRows(unittest.TestCase): out0_grad.set_height(height) out0_grad_tensor = out0_grad.get_tensor() np_array = np.ones((len(rows0), row_numel)).astype("float32") - np_array[0, 0] = 2.0 out0_grad_tensor.set(np_array, place) out1_grad = scope.var("out1@GRAD").get_selected_rows() @@ -108,7 +107,6 @@ class TestSpliteSelectedRows(unittest.TestCase): out1_grad.set_height(height) out1_grad_tensor = out1_grad.get_tensor() np_array = np.ones((len(rows1), row_numel)).astype("float32") - np_array[0, 1] = 4.0 out1_grad_tensor.set(np_array, place) x_grad = scope.var("X@GRAD").get_selected_rows() @@ -121,11 +119,13 @@ class TestSpliteSelectedRows(unittest.TestCase): grad_op.run(scope, place) - self.assertEqual(x_grad.rows(), rows0 + rows1) + merged_rows = set(rows0 + rows1) + self.assertEqual(set(x_grad.rows()), set(rows0 + rows1)) self.assertEqual(x_grad.height(), height) + print(np.array(x_grad.get_tensor())) self.assertAlmostEqual(2.0, np.array(x_grad.get_tensor())[0, 0]) - self.assertAlmostEqual(4.0, np.array(x_grad.get_tensor())[2, 1]) + self.assertAlmostEqual(1.0, np.array(x_grad.get_tensor())[2, 1]) if __name__ == "__main__": diff --git a/python/paddle/fluid/tests/unittests/test_sum_op.py b/python/paddle/fluid/tests/unittests/test_sum_op.py index 74797bb65678404b7b35d06eecc7f9a12b2a346e..e20418ff1c8d21f3a3e4ba15ff2aa9d54f37f4b2 100644 --- a/python/paddle/fluid/tests/unittests/test_sum_op.py +++ b/python/paddle/fluid/tests/unittests/test_sum_op.py @@ -45,16 +45,30 @@ class TestSumOp(OpTest): class TestSelectedRowsSumOp(OpTest): - def check_with_place(self, place): - scope = core.Scope() - self.check_input_and_optput(scope, place, True, True, True) - self.check_input_and_optput(scope, place, False, True, True) - self.check_input_and_optput(scope, place, False, False, True) - self.check_input_and_optput(scope, place, False, False, False) + def check_with_place(self, place, inplace): + self.height = 10 + self.row_numel = 12 + self.rows = [0, 1, 2, 3, 4, 5, 6] + + self.check_input_and_optput(core.Scope(), place, inplace, True, True, + True) + self.check_input_and_optput(core.Scope(), place, inplace, False, True, + True) + self.check_input_and_optput(core.Scope(), place, inplace, False, False, + True) + self.check_input_and_optput(core.Scope(), place, inplace, False, False, + False) + + def _get_array(self, row_num, row_numel): + array = np.ones((row_num, row_numel)).astype("float32") + for i in range(row_num): + array[i] *= i + return array def check_input_and_optput(self, scope, place, + inplace, w1_has_data=False, w2_has_data=False, w3_has_data=False): @@ -64,35 +78,43 @@ class TestSelectedRowsSumOp(OpTest): self.create_selected_rows(scope, place, "W3", w3_has_data) # create Out Variable - out = scope.var('Out').get_selected_rows() + if inplace: + out_var_name = "W1" + else: + out_var_name = "Out" + out = scope.var(out_var_name).get_selected_rows() # create and run sum operator - sum_op = Operator("sum", X=["W1", "W2", "W3"], Out='Out') + sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name) sum_op.run(scope, place) has_data_w_num = 0 - for w in [w1_has_data, w2_has_data, w3_has_data]: - if not w: + for has_data in [w1_has_data, w2_has_data, w3_has_data]: + if has_data: has_data_w_num += 1 - self.assertEqual(7 * has_data_w_num, len(out.rows())) + if has_data_w_num > 0: + self.assertEqual(len(out.rows()), 7) + self.assertTrue( + np.array_equal( + np.array(out.get_tensor()), + self._get_array(len(self.rows), self.row_numel) * + has_data_w_num)) + else: + self.assertEqual(len(out.rows()), 0) - def create_selected_rows(self, scope, place, var_name, isEmpty): + def create_selected_rows(self, scope, place, var_name, has_data): # create and initialize W Variable - if not isEmpty: - rows = [0, 1, 2, 3, 4, 5, 6] - row_numel = 12 + if has_data: + rows = self.rows else: rows = [] - row_numel = 12 var = scope.var(var_name) w_selected_rows = var.get_selected_rows() - w_selected_rows.set_height(len(rows)) + w_selected_rows.set_height(self.height) w_selected_rows.set_rows(rows) - w_array = np.ones((len(rows), row_numel)).astype("float32") - for i in range(len(rows)): - w_array[i] *= i + w_array = self._get_array(len(rows), self.row_numel) w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) @@ -100,9 +122,11 @@ class TestSelectedRowsSumOp(OpTest): def test_w_is_selected_rows(self): places = [core.CPUPlace()] - # currently only support CPU + if core.is_compiled_with_cuda(): + places.append(core.CUDAPlace(0)) for place in places: - self.check_with_place(place) + for inplace in [True, False]: + self.check_with_place(place, inplace) if __name__ == "__main__": diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index 2192139f8d5950286691a77333dd8ec35505b033..9066fc9d1bf13176862f6debf0ed0bedaaaf3eba 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -35,6 +35,7 @@ import sys import numpy as np import collections import six +import logging from .ps_dispatcher import RoundRobin, HashName, PSDispatcher from .. import core, framework @@ -49,6 +50,7 @@ LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad" OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName() RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName( ) +OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched @@ -474,6 +476,26 @@ class DistributeTranspiler(object): delete_ops(self.origin_program.global_block(), self.optimize_ops) delete_ops(self.origin_program.global_block(), lr_ops) + # delete table init op + if self.has_distributed_lookup_table: + table_var = self.startup_program.global_block().vars[ + self.table_name] + table_param_init_op = [] + for op in self.startup_program.global_block().ops: + if self.table_name in op.output_arg_names: + table_param_init_op.append(op) + init_op_num = len(table_param_init_op) + if init_op_num != 1: + raise ValueError("table init op num should be 1, now is " + str( + init_op_num)) + table_init_op = table_param_init_op[0] + self.startup_program.global_block().append_op( + type="fake_init", + inputs={}, + outputs={"Out": table_var}, + attrs={"shape": table_init_op.attr('shape')}) + delete_ops(self.startup_program.global_block(), table_param_init_op) + self.origin_program.__str__() if wait_port: @@ -712,7 +734,7 @@ in a single call.") for _, op in enumerate(self.optimize_ops): # optimizer is connected to itself if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \ - op not in global_ops: + op not in global_ops: log("append opt op: ", op.type, op.input_arg_names, merged_var) __append_optimize_op__(op, per_opt_block, @@ -746,6 +768,15 @@ in a single call.") prefetch_var_name_to_block_id.extend( lookup_table_var_name_to_block_id) + if len(optimize_blocks) == 0: + logging.warn("pserver [" + str(endpoint) + + "] has no optimize block!!") + pre_block_idx = pserver_program.num_blocks - 1 + empty_block = pserver_program._create_block(pre_block_idx) + optimize_blocks.append(empty_block) + + # In some case, some parameter server will have no parameter to optimize + # So we give an empty optimize block to parameter server. attrs = { "optimize_blocks": optimize_blocks, "endpoint": endpoint, @@ -889,11 +920,11 @@ to transpile() call.") block_idx = int(block_name.split(block_suffix)[1]) orig_var = self.origin_program.global_block().vars[orig_var_name] - skip_numel = 0 + skip_dim0 = 0 slice_vars = self.param_var_mapping[orig_var_name] for slice_var in slice_vars[:block_idx]: - skip_numel += reduce(lambda x, y: x * y, slice_var.shape) - slice_vars_and_attrs.append([orig_var, skip_numel, param]) + skip_dim0 += slice_var.shape[0] + slice_vars_and_attrs.append([orig_var, skip_dim0, param]) return slice_vars_and_attrs @@ -1033,90 +1064,87 @@ to transpile() call.") def _replace_lookup_table_op_with_prefetch(self, program, pserver_endpoints): # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op - # self.all_prefetch_input_vars = - # [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1] - # [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]] + self.all_in_ids_vars = [] self.all_prefetch_input_vars = [] - - # self.all_prefetch_input_vars = - # [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1] - # [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]] self.all_prefetch_output_vars = [] + self.all_out_emb_vars = [] + lookup_table_op_index = -1 continue_search_lookup_table_op = True while continue_search_lookup_table_op: continue_search_lookup_table_op = False all_ops = program.global_block().ops for op in all_ops: - if op.type == LOOKUP_TABLE_TYPE: + if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input( + "W")[0]: + if not op.attr('is_distributed'): + raise RuntimeError( + "lookup_table_op that lookup an distributed embedding table" + "should set is_distributed to true") continue_search_lookup_table_op = True - lookup_table_op_index = list(all_ops).index(op) + lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list( + all_ops).index(op) ids_name = op.input("Ids") out_name = op.output("Out") ids_var = program.global_block().vars[ids_name[0]] - prefetch_input_vars = self._create_splited_vars( - source_var=ids_var, - block=program.global_block(), - tag="_prefetch_in_") - self.all_prefetch_input_vars.append(prefetch_input_vars) + self.all_in_ids_vars.append(ids_var) out_var = program.global_block().vars[out_name[0]] - prefetch_output_vars = self._create_splited_vars( - source_var=out_var, - block=program.global_block(), - tag="_prefetch_out_") - self.all_prefetch_output_vars.append(prefetch_output_vars) - - # insert split_ids_op - program.global_block()._insert_op( - index=lookup_table_op_index, - type="split_ids", - inputs={ - 'Ids': [ - program.global_block().vars[varname] - for varname in ids_name - ] - }, - outputs={"Out": prefetch_input_vars}) - - # insert prefetch_op - program.global_block()._insert_op( - index=lookup_table_op_index + 1, - type="prefetch", - inputs={'X': prefetch_input_vars}, - outputs={"Out": prefetch_output_vars}, - attrs={ - "epmap": pserver_endpoints, - # FIXME(qiao) temporarily disable this config because prefetch - # is not act as other rpc op, it's more like a forward op - # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE - }) - - # insert concat_op - program.global_block()._insert_op( - index=lookup_table_op_index + 2, - type="merge_ids", - inputs={ - 'Ids': [ - program.global_block().vars[varname] - for varname in ids_name - ], - 'X': prefetch_output_vars - }, - outputs={ - "Out": [ - program.global_block().vars[varname] - for varname in out_name - ] - }) + self.all_out_emb_vars.append(out_var) # delete lookup_table_op delete_ops(program.global_block(), [op]) # break for loop break + for index in range(len(self.pserver_endpoints)): + in_var = program.global_block().create_var( + name=str("prefetch_compress_in_tmp_" + str(index)), + type=self.all_in_ids_vars[0].type, + shape=self.all_in_ids_vars[0].shape, + dtype=self.all_in_ids_vars[0].dtype) + self.all_prefetch_input_vars.append(in_var) + + out_var = program.global_block().create_var( + name=str("prefetch_compress_out_tmp_" + str(index)), + type=self.all_out_emb_vars[0].type, + shape=self.all_out_emb_vars[0].shape, + dtype=self.all_out_emb_vars[0].dtype) + self.all_prefetch_output_vars.append(out_var) + + # insert split_ids_op + program.global_block()._insert_op( + index=lookup_table_op_index, + type="split_ids", + inputs={'Ids': self.all_in_ids_vars}, + outputs={"Out": self.all_prefetch_input_vars}) + + # insert prefetch_op + program.global_block()._insert_op( + index=lookup_table_op_index + 1, + type="prefetch", + inputs={'X': self.all_prefetch_input_vars}, + outputs={"Out": self.all_prefetch_output_vars}, + attrs={ + "epmap": pserver_endpoints, + # FIXME(qiao) temporarily disable this config because prefetch + # is not act as other rpc op, it's more like a forward op + # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE + }) + + # insert concat_op + program.global_block()._insert_op( + index=lookup_table_op_index + 2, + type="merge_ids", + inputs={ + 'Ids': self.all_in_ids_vars, + 'Rows': self.all_prefetch_input_vars, + 'X': self.all_prefetch_output_vars + }, + outputs={"Out": self.all_out_emb_vars}) + def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints): # 2. add split_ids_op and send_op to send gradient to pservers @@ -1133,7 +1161,8 @@ to transpile() call.") inputs={ 'Ids': [program.global_block().vars[table_grad_name]] }, - outputs={"Out": self.trainer_side_table_grad_list}) + outputs={"Out": self.trainer_side_table_grad_list}, + attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE}) program.global_block()._insert_op( index=op_index + 2, type="send", @@ -1159,32 +1188,31 @@ to transpile() call.") # STEP: create prefetch block table_var = pserver_program.global_block().vars[self.table_name] prefetch_var_name_to_block_id = [] - for index in range(len(self.all_prefetch_input_vars)): - prefetch_block = pserver_program._create_block(optimize_block.idx) - trainer_ids = self.all_prefetch_input_vars[index][pserver_index] - pserver_ids = pserver_program.global_block().create_var( - name=trainer_ids.name, - type=trainer_ids.type, - shape=trainer_ids.shape, - dtype=trainer_ids.dtype) - trainer_out = self.all_prefetch_output_vars[index][pserver_index] - pserver_out = pserver_program.global_block().create_var( - name=trainer_out.name, - type=trainer_out.type, - shape=trainer_out.shape, - dtype=trainer_out.dtype) - prefetch_block.append_op( - type="lookup_sparse_table", - inputs={'Ids': pserver_ids, - "W": table_var}, - outputs={"Out": pserver_out}, - attrs={ - "is_sparse": True, # has no effect on lookup_table op - "is_distributed": True, - "padding_idx": -1 - }) - prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str( - prefetch_block.idx)) + prefetch_block = pserver_program._create_block(optimize_block.idx) + trainer_ids = self.all_prefetch_input_vars[pserver_index] + pserver_ids = pserver_program.global_block().create_var( + name=trainer_ids.name, + type=trainer_ids.type, + shape=trainer_ids.shape, + dtype=trainer_ids.dtype) + trainer_out = self.all_prefetch_output_vars[pserver_index] + pserver_out = pserver_program.global_block().create_var( + name=trainer_out.name, + type=trainer_out.type, + shape=trainer_out.shape, + dtype=trainer_out.dtype) + prefetch_block.append_op( + type="lookup_sparse_table", + inputs={'Ids': pserver_ids, + "W": table_var}, + outputs={"Out": pserver_out}, + attrs={ + "is_sparse": True, # has no effect on lookup_table op + "is_distributed": True, + "padding_idx": -1 + }) + prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str( + prefetch_block.idx)) return prefetch_var_name_to_block_id def _create_table_optimize_block(self, pserver_index, pserver_program, @@ -1262,7 +1290,6 @@ to transpile() call.") } outputs = {"ParamOut": [param_var]} # only support sgd now - import logging logging.warn( "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of " + table_opt_op.type) @@ -1363,16 +1390,6 @@ to transpile() call.") program.global_block()._sync_with_cpp() return var_mapping - def _create_splited_vars(self, source_var, block, tag): - return [ - block.create_var( - name=str(source_var.name + tag + str(index)), - type=source_var.type, - shape=source_var.shape, - dtype=source_var.dtype) - for index in range(len(self.pserver_endpoints)) - ] - def _clone_var(self, block, var, persistable=True): return block.create_var( name=var.name, @@ -1430,7 +1447,7 @@ to transpile() call.") elif op_type == "adamax": if varkey in ["Moment", "InfNorm"]: return param_shape - elif op_type == "momentum": + elif op_type in ["momentum", "lars_momentum"]: if varkey == "Velocity": return param_shape elif op_type == "rmsprop": @@ -1439,8 +1456,15 @@ to transpile() call.") elif op_type == "decayed_adagrad": if varkey == "Moment": return param_shape + elif op_type == "ftrl": + if varkey in ["SquaredAccumulator", "LinearAccumulator"]: + return param_shape elif op_type == "sgd": pass + else: + raise ValueError( + "Not supported optimizer for distributed training: %s" % + op_type) return orig_shape def _get_varname_parts(self, varname): @@ -1717,8 +1741,10 @@ to transpile() call.") lr_ops = [] block = self.origin_program.global_block() for op in block.ops: - if int(op.attr(RPC_OP_ROLE_ATTR_NAME)) == int( - LR_SCHED_OP_ROLE_ATTR_VALUE): + role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME)) + if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \ + role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \ + int(OPT_OP_ROLE_ATTR_VALUE): lr_ops.append(op) log("append lr op: ", op.type) return lr_ops diff --git a/python/paddle/fluid/transpiler/inference_transpiler.py b/python/paddle/fluid/transpiler/inference_transpiler.py index 5269bd94cec47a5262e2389c5b02f91edd5a7d17..9a13cecc646e8534a157fad882fd97836348deb4 100644 --- a/python/paddle/fluid/transpiler/inference_transpiler.py +++ b/python/paddle/fluid/transpiler/inference_transpiler.py @@ -61,6 +61,9 @@ class InferenceTranspiler(object): raise TypeError("scope should be as Scope type or None") use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False)) + if use_mkldnn: + self._depthwise_conv_mkldnn(program) + self._fuse_batch_norm(program, place, scope) if use_mkldnn: self._fuse_conv_bias_mkldnn(program) @@ -70,6 +73,31 @@ class InferenceTranspiler(object): program) # ResNet residual block merging self._fuse_bn_relu_mkldnn(program) + def _depthwise_conv_mkldnn(self, program): + ''' + Transpile the program by replacing depthwise_conv2d to conv2d for MKLDNN program. + The result is: + - before: + - any_other_op->depthwise_conv->any_other_op + - after: + - any_other_op->conv->any_other_op + :param program: program to transpile + :type program: Program + ''' + self.block = program.block(0) + + i = 0 + while i < len(self.block.ops): + current_op = self.block.ops[i] + if current_op.type == 'depthwise_conv2d': + current_op.desc.set_type("conv2d") + i = i + 1 + + # TODO(luotao): use clone() method to flush the program.desc in force, + # since some large program.desc will not be flushed immediately. + # And a better solution will be considered later. + program = program.clone() + def _fuse_conv_eltwise_mkldnn(self, program): ''' Transpile the program fusing elementwise_add into conv for MKLDNN diff --git a/python/paddle/fluid/transpiler/memory_optimization_transpiler.py b/python/paddle/fluid/transpiler/memory_optimization_transpiler.py index 861bb5fae5d7a8561ded1f547fbb86ae1e1a073e..c9f1be934773cc28f026f2b867b9e3a4f7aa8472 100755 --- a/python/paddle/fluid/transpiler/memory_optimization_transpiler.py +++ b/python/paddle/fluid/transpiler/memory_optimization_transpiler.py @@ -171,7 +171,7 @@ class ControlFlowGraph(object): self._live_out[i] |= self._live_in[s] self._live_in[i] = self._uses[i] | ( self._live_out[i] - self._defs[i]) - if live_in[i] != self._live_in[i]: + if live_in[i] != set(self._live_in[i]): for d in self._presuccessors[i]: worklist.append(d) @@ -321,8 +321,7 @@ class ControlFlowGraph(object): if not compare_shape(x_shape, cache_shape, level): continue - # TODO(qijun): actually, we should compare - # dtype_to_size[x_dtype] and dtype_to_size[cache_dtype] + # TODO(qijun): dtype_to_size[x_dtype] and dtype_to_size[cache_dtype] if x_dtype != cache_dtype: continue @@ -487,7 +486,6 @@ def memory_optimize(input_program, skip_opt_set = grad_set else: skip_opt_set.update(grad_set) - cfgs = _get_cfgs(input_program) for cfg in cfgs: cfg.memory_optimize(skip_opt_set=skip_opt_set, level=level) diff --git a/python/paddle/utils/__init__.py b/python/paddle/utils/__init__.py index 5de6f966a038543ffffdf955251f587e3eb15cad..db6fe2d5fff4ed1617d793faee23f01395841768 100644 --- a/python/paddle/utils/__init__.py +++ b/python/paddle/utils/__init__.py @@ -12,5 +12,5 @@ # See the License for the specific language governing permissions and # limitations under the License. -from plot import Ploter +from .plot import Ploter __all__ = ['dump_config', 'Ploter'] diff --git a/python/setup.py.in b/python/setup.py.in index b376be0ea373f089ef17f27435d979712fbdff72..ee19294ad5c884cf73a4f14290f61f0b345ea8c7 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -27,7 +27,7 @@ def _get_version_detail(idx): if re.match('@TAG_VERSION_REGEX@', '@PADDLE_VERSION@'): version_details = '@PADDLE_VERSION@'.split('.') - if len(version_details) == 3: + if len(version_details) >= 3: return version_details[idx] return 0