Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7f50bb7e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7f50bb7e
编写于
3月 17, 2021
作者:
Z
Zhang Ting
提交者:
GitHub
3月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support NHWC for temporal_shift op (#31642)
上级
402288ad
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
338 addition
and
126 deletion
+338
-126
paddle/fluid/operators/temporal_shift_op.cc
paddle/fluid/operators/temporal_shift_op.cc
+14
-5
paddle/fluid/operators/temporal_shift_op.cu
paddle/fluid/operators/temporal_shift_op.cu
+132
-47
paddle/fluid/operators/temporal_shift_op.h
paddle/fluid/operators/temporal_shift_op.h
+147
-64
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+15
-7
python/paddle/fluid/tests/unittests/test_temporal_shift_op.py
...on/paddle/fluid/tests/unittests/test_temporal_shift_op.py
+30
-3
未找到文件。
paddle/fluid/operators/temporal_shift_op.cc
浏览文件 @
7f50bb7e
...
@@ -80,7 +80,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -80,7 +80,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"The input tensor of temporal shift operator. "
"The input tensor of temporal shift operator. "
"This is a 4-D tensor with shape of [N*T, C, H, W]. "
"This is a 4-D tensor with shape of [N*T, C, H, W] "
"or [N*T, H, W, C]. "
"While N is the batch size, T is the temporal segment "
"While N is the batch size, T is the temporal segment "
"number, C is the channel number, H is the height of "
"number, C is the channel number, H is the height of "
"features and W is the width of features. "
"features and W is the width of features. "
...
@@ -100,15 +101,23 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -100,15 +101,23 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
"by 1 along the temporal dimension. :attr:`shift_ratio` should be in "
"by 1 along the temporal dimension. :attr:`shift_ratio` should be in "
"range [0, 0.5]. Default 0.25."
)
"range [0, 0.5]. Default 0.25."
)
.
SetDefault
(
0.25
);
.
SetDefault
(
0.25
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
"an optional string from:
\"
NHWC
\"
,
\"
NCHW
\"
. "
"Specify that the data format of the input and output data is "
"channel_first or channel_last."
)
.
SetDefault
(
"NCHW"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
This operator calculates the temporal shifting features for Input(X).
This operator calculates the temporal shifting features for Input(X).
Input(X) should be in shape of [N*T, C, H, W], while N is the batch
Input(X) should be in shape of [N*T, C, H, W] or [N*T, H, W, C], while
size, T is the temporal segment number specified by :attr:`seg_num`,
N is the batch size, T is the temporal segment number specified by
C is the channel number, H and W is the height and width of features.
:attr:`seg_num`, C is the channel number, H and W is the height and
width of features.
Temporal Shifting is calculated as follows:
Temporal Shifting is calculated as follows
when data format is NCHW
:
Step 1: Reshape Input(X) to [N, T, C, H, W].
Step 1: Reshape Input(X) to [N, T, C, H, W].
...
...
paddle/fluid/operators/temporal_shift_op.cu
浏览文件 @
7f50bb7e
...
@@ -19,22 +19,46 @@ namespace operators {
...
@@ -19,22 +19,46 @@ namespace operators {
using
framework
::
Tensor
;
using
framework
::
Tensor
;
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KeTemporalShiftFw
(
const
T
*
input
,
T
*
output
,
const
int
ntchw
,
__global__
void
KeTemporalShiftFw
NCHW
(
const
T
*
input
,
T
*
output
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
ntchw
,
const
int
tc
hw
,
const
int
w
,
const
int
t
,
const
int
c
,
const
int
chw
,
const
int
hw
,
const
int
t
,
const
float
shift_ratio
)
{
const
int
c1
,
const
int
c2
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
src_it
=
0
;
int
src_it
=
0
;
for
(;
tid
<
ntchw
;
tid
+=
stride
)
{
for
(;
tid
<
ntchw
;
tid
+=
stride
)
{
int
in
=
tid
/
tchw
;
int
it
=
(
tid
%
tchw
)
/
chw
;
int
it
=
(
tid
%
tchw
)
/
chw
;
int
ic
=
(
tid
%
chw
)
/
hw
;
int
ic
=
(
tid
%
chw
)
/
hw
;
int
ih
=
(
tid
%
hw
)
/
w
;
int
iw
=
tid
%
w
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
if
(
ic
<
c1
)
{
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
tid
]
=
0
;
}
else
{
output
[
tid
]
=
input
[
tid
+
(
src_it
-
it
)
*
chw
];
}
}
}
template
<
typename
T
>
__global__
void
KeTemporalShiftFwNHWC
(
const
T
*
input
,
T
*
output
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
src_it
=
0
;
for
(;
tid
<
nthwc
;
tid
+=
stride
)
{
int
it
=
(
tid
%
thwc
)
/
hwc
;
int
ic
=
tid
%
c
;
if
(
ic
<
c1
)
{
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
src_it
=
it
-
1
;
...
@@ -47,42 +71,65 @@ __global__ void KeTemporalShiftFw(const T* input, T* output, const int ntchw,
...
@@ -47,42 +71,65 @@ __global__ void KeTemporalShiftFw(const T* input, T* output, const int ntchw,
if
(
src_it
<
0
||
src_it
>=
t
)
{
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
tid
]
=
0
;
output
[
tid
]
=
0
;
}
else
{
}
else
{
int
src_idx
=
GetEntryIndex
(
in
,
src_it
,
ic
,
ih
,
iw
,
tchw
,
chw
,
hw
,
w
);
output
[
tid
]
=
input
[
tid
+
(
src_it
-
it
)
*
hwc
];
output
[
tid
]
=
input
[
src_idx
];
}
}
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KeTemporalShiftBw
(
const
T
*
output_grad
,
T
*
input_grad
,
__global__
void
KeTemporalShiftBw
NCHW
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
ntchw
,
const
int
tchw
,
const
int
ntchw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
w
,
const
int
chw
,
const
int
hw
,
const
int
t
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
const
float
shift_ratio
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
src_it
=
0
;
int
src_it
=
0
;
for
(;
tid
<
ntchw
;
tid
+=
stride
)
{
for
(;
tid
<
ntchw
;
tid
+=
stride
)
{
int
in
=
tid
/
tchw
;
int
it
=
(
tid
%
tchw
)
/
chw
;
int
it
=
(
tid
%
tchw
)
/
chw
;
int
ic
=
(
tid
%
chw
)
/
hw
;
int
ic
=
(
tid
%
chw
)
/
hw
;
int
ih
=
(
tid
%
hw
)
/
w
;
int
iw
=
tid
%
w
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
if
(
ic
<
c1
)
{
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
src_it
=
it
+
1
;
}
else
if
(
ic
<
c2
)
{
}
else
if
(
ic
<
c2
)
{
src_it
=
it
-
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
>=
0
&&
src_it
<
t
)
{
input_grad
[
tid
]
=
output_grad
[
tid
+
(
src_it
-
it
)
*
chw
];
}
else
{
input_grad
[
tid
]
=
0
;
}
}
}
template
<
typename
T
>
__global__
void
KeTemporalShiftBwNHWC
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
src_it
=
0
;
for
(;
tid
<
nthwc
;
tid
+=
stride
)
{
int
it
=
(
tid
%
thwc
)
/
hwc
;
int
ic
=
tid
%
c
;
if
(
ic
<
c1
)
{
src_it
=
it
+
1
;
src_it
=
it
+
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
-
1
;
}
else
{
}
else
{
src_it
=
it
;
src_it
=
it
;
}
}
if
(
src_it
>=
0
&&
src_it
<
t
)
{
if
(
src_it
>=
0
&&
src_it
<
t
)
{
int
src_idx
=
GetEntryIndex
(
in
,
src_it
,
ic
,
ih
,
iw
,
tchw
,
chw
,
hw
,
w
);
input_grad
[
tid
]
=
output_grad
[
tid
+
(
src_it
-
it
)
*
hwc
];
input_grad
[
src_idx
]
=
output_grad
[
tid
];
}
else
{
input_grad
[
tid
]
=
0
;
}
}
}
}
}
}
...
@@ -98,27 +145,48 @@ class TemporalShiftOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -98,27 +145,48 @@ class TemporalShiftOpCUDAKernel : public framework::OpKernel<T> {
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
const
std
::
string
data_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
input
->
dims
()[
0
];
const
int
nt
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
1
]
const
int
h
=
input
->
dims
()[
2
];
:
input
->
dims
()[
3
]);
const
int
w
=
input
->
dims
()[
3
];
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
2
]
:
input
->
dims
()[
1
]);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
3
]
:
input
->
dims
()[
2
]);
const
int
hw
=
h
*
w
;
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
framework
::
DDim
out_dims
=
(
data_layout
==
DataLayout
::
kNCHW
?
framework
::
make_ddim
({
nt
,
c
,
h
,
w
})
:
framework
::
make_ddim
({
nt
,
h
,
w
,
c
}));
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
{
nt
,
c
,
h
,
w
}
,
ctx
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
int
pixelNum
=
nt
*
chw
;
int
pixelNum
=
nt
*
chw
;
platform
::
GpuLaunchConfig
config
=
int
threads
=
1024
;
platform
::
GetGpuLaunchConfig1D
(
ctx
.
cuda_device_context
(),
pixelNum
);
int
grid
=
(
pixelNum
+
threads
-
1
)
/
threads
;
const
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
int
blocks_per_sm
=
dev_ctx
.
GetMaxPhysicalThreadCount
()
/
threads
;
grid
=
std
::
min
(
dev_ctx
.
GetSMCount
()
*
blocks_per_sm
,
grid
);
KeTemporalShiftFw
<
T
><<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
ctx
.
cuda_device_context
().
stream
()
>>>
(
KeTemporalShiftFwNCHW
<
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
hw
,
w
,
t
,
c
,
shift_ratio
);
T
><<<
grid
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
hw
,
t
,
c1
,
c2
);
}
else
{
KeTemporalShiftFwNHWC
<
T
><<<
grid
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
t
,
c
,
c1
,
c2
);
}
}
}
};
};
...
@@ -130,32 +198,49 @@ class TemporalShiftGradOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -130,32 +198,49 @@ class TemporalShiftGradOpCUDAKernel : public framework::OpKernel<T> {
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
const
std
::
string
data_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
output_grad
->
dims
()[
0
];
const
int
nt
=
output_grad
->
dims
()[
0
];
const
int
c
=
output_grad
->
dims
()[
1
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
1
]
const
int
h
=
output_grad
->
dims
()[
2
];
:
output_grad
->
dims
()[
3
]);
const
int
w
=
output_grad
->
dims
()[
3
];
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
2
]
:
output_grad
->
dims
()[
1
]);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
3
]
:
output_grad
->
dims
()[
2
]);
const
int
hw
=
h
*
w
;
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
framework
::
DDim
in_grad_dims
=
(
data_layout
==
DataLayout
::
kNCHW
?
framework
::
make_ddim
({
nt
,
c
,
h
,
w
})
:
framework
::
make_ddim
({
nt
,
h
,
w
,
c
}));
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
T
*
input_grad_data
=
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
({
nt
,
c
,
h
,
w
},
ctx
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
(
in_grad_dims
,
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
input_grad
,
static_cast
<
T
>
(
0
));
int
pixelNum
=
nt
*
chw
;
int
pixelNum
=
nt
*
chw
;
platform
::
GpuLaunchConfig
config
=
int
threads
=
1024
;
platform
::
GetGpuLaunchConfig1D
(
ctx
.
cuda_device_context
(),
pixelNum
);
int
grid
=
(
pixelNum
+
threads
-
1
)
/
threads
;
const
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
int
blocks_per_sm
=
dev_ctx
.
GetMaxPhysicalThreadCount
()
/
threads
;
grid
=
std
::
min
(
dev_ctx
.
GetSMCount
()
*
blocks_per_sm
,
grid
);
KeTemporalShiftBw
<
T
><<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
ctx
.
cuda_device_context
().
stream
()
>>>
(
KeTemporalShiftBwNCHW
<
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
chw
,
hw
,
w
,
t
,
c
,
T
><<<
grid
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
shift_ratio
);
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
chw
,
hw
,
t
,
c1
,
c2
);
}
else
{
KeTemporalShiftBwNHWC
<
T
><<<
grid
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
chw
,
t
,
c
,
c1
,
c2
);
}
}
}
};
};
...
...
paddle/fluid/operators/temporal_shift_op.h
浏览文件 @
7f50bb7e
...
@@ -17,12 +17,106 @@ namespace paddle {
...
@@ -17,12 +17,106 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
static
HOSTDEVICE
inline
int
GetEntryIndex
(
int
in
,
int
it
,
int
ic
,
int
ih
,
template
<
typename
T
>
int
iw
,
const
int
tchw
,
void
TemporalShiftFwNCHW
(
const
T
*
input
,
T
*
output
,
const
int
ntchw
,
const
int
chw
,
const
int
hw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
w
)
{
const
int
t
,
const
int
c1
,
const
int
c2
)
{
return
in
*
tchw
+
it
*
chw
+
ic
*
hw
+
ih
*
w
+
iw
;
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
ntchw
;
i
++
)
{
int
it
=
(
i
%
tchw
)
/
chw
;
int
ic
=
(
i
%
chw
)
/
hw
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
i
]
=
0
;
}
else
{
output
[
i
]
=
input
[
i
+
(
src_it
-
it
)
*
chw
];
}
}
}
template
<
typename
T
>
void
TemporalShiftFwNHWC
(
const
T
*
input
,
T
*
output
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
nthwc
;
i
++
)
{
int
it
=
(
i
%
thwc
)
/
hwc
;
int
ic
=
i
%
c
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
i
]
=
0
;
}
else
{
output
[
i
]
=
input
[
i
+
(
src_it
-
it
)
*
hwc
];
}
}
}
template
<
typename
T
>
void
TemporalShiftBwNCHW
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
ntchw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
t
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
ntchw
;
i
++
)
{
int
it
=
(
i
%
tchw
)
/
chw
;
int
ic
=
(
i
%
chw
)
/
hw
;
if
(
ic
<
c1
)
{
src_it
=
it
+
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
-
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
>=
0
&&
src_it
<
t
)
{
input_grad
[
i
]
=
output_grad
[
i
+
(
src_it
-
it
)
*
chw
];
}
else
{
input_grad
[
i
]
=
0
;
}
}
}
template
<
typename
T
>
void
TemporalShiftBwNHWC
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
nthwc
;
i
++
)
{
int
it
=
(
i
%
thwc
)
/
hwc
;
int
ic
=
i
%
c
;
if
(
ic
<
c1
)
{
src_it
=
it
+
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
-
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
>=
0
&&
src_it
<
t
)
{
input_grad
[
i
]
=
output_grad
[
i
+
(
src_it
-
it
)
*
hwc
];
}
else
{
input_grad
[
i
]
=
0
;
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
...
@@ -33,44 +127,38 @@ class TemporalShiftKernel : public framework::OpKernel<T> {
...
@@ -33,44 +127,38 @@ class TemporalShiftKernel : public framework::OpKernel<T> {
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
const
std
::
string
data_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
input
->
dims
()[
0
];
const
int
nt
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
1
]
const
int
h
=
input
->
dims
()[
2
]
;
:
input
->
dims
()[
3
])
;
const
int
w
=
input
->
dims
()[
3
];
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
2
]
:
input
->
dims
()[
1
]);
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
3
]
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
:
input
->
dims
()[
2
]
);
const
int
hw
=
h
*
w
;
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
T
*
output_data
=
output
->
mutable_data
<
T
>
({
nt
,
c
,
h
,
w
},
ctx
.
GetPlace
());
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
output
->
numel
();
i
++
)
{
int
in
=
i
/
tchw
;
int
it
=
(
i
%
tchw
)
/
chw
;
int
ic
=
(
i
%
chw
)
/
hw
;
int
ih
=
(
i
%
hw
)
/
w
;
int
iw
=
i
%
w
;
if
(
ic
<
c1
)
{
framework
::
DDim
out_dims
=
(
data_layout
==
DataLayout
::
kNCHW
src_it
=
it
-
1
;
?
framework
::
make_ddim
({
nt
,
c
,
h
,
w
})
}
else
if
(
ic
<
c2
)
{
:
framework
::
make_ddim
({
nt
,
h
,
w
,
c
}));
src_it
=
it
+
1
;
const
T
*
input_data
=
input
->
data
<
T
>
();
}
else
{
T
*
output_data
=
output
->
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
output_data
[
i
]
=
0
;
TemporalShiftFwNCHW
<
T
>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
hw
,
t
,
c1
,
c2
);
}
else
{
}
else
{
int
src_idx
=
GetEntryIndex
(
in
,
src_it
,
ic
,
ih
,
iw
,
tchw
,
chw
,
hw
,
w
);
TemporalShiftFwNHWC
<
T
>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
t
,
c
,
output_data
[
i
]
=
input_data
[
src_idx
];
c1
,
c2
);
}
}
}
}
}
};
};
...
@@ -83,44 +171,39 @@ class TemporalShiftGradKernel : public framework::OpKernel<T> {
...
@@ -83,44 +171,39 @@ class TemporalShiftGradKernel : public framework::OpKernel<T> {
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
const
std
::
string
data_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
output_grad
->
dims
()[
0
];
const
int
nt
=
output_grad
->
dims
()[
0
];
const
int
c
=
output_grad
->
dims
()[
1
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
1
]
const
int
h
=
output_grad
->
dims
()[
2
]
;
:
output_grad
->
dims
()[
3
])
;
const
int
w
=
output_grad
->
dims
()[
3
];
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
2
]
:
output_grad
->
dims
()[
1
]);
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
3
]
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
:
output_grad
->
dims
()[
2
]
);
const
int
hw
=
h
*
w
;
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
framework
::
DDim
in_grad_dims
=
(
data_layout
==
DataLayout
::
kNCHW
?
framework
::
make_ddim
({
nt
,
c
,
h
,
w
})
:
framework
::
make_ddim
({
nt
,
h
,
w
,
c
}));
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
T
*
input_grad_data
=
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
({
nt
,
c
,
h
,
w
},
ctx
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
(
in_grad_dims
,
ctx
.
GetPlace
());
memset
(
input_grad_data
,
0
,
input_grad
->
numel
()
*
sizeof
(
T
));
int
src_it
=
0
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
for
(
int
i
=
0
;
i
<
output_grad
->
numel
();
i
++
)
{
TemporalShiftBwNCHW
<
T
>
(
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
int
in
=
i
/
tchw
;
chw
,
hw
,
t
,
c1
,
c2
);
int
it
=
(
i
%
tchw
)
/
chw
;
int
ic
=
(
i
%
chw
)
/
hw
;
int
ih
=
(
i
%
hw
)
/
w
;
int
iw
=
i
%
w
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
}
else
{
src_it
=
it
;
TemporalShiftBwNHWC
<
T
>
(
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
}
chw
,
t
,
c
,
c1
,
c2
);
if
(
src_it
>=
0
&&
src_it
<
t
)
{
int
src_idx
=
GetEntryIndex
(
in
,
src_it
,
ic
,
ih
,
iw
,
tchw
,
chw
,
hw
,
w
);
input_grad_data
[
src_idx
]
=
output_grad_data
[
i
];
}
}
}
}
}
};
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
7f50bb7e
...
@@ -13334,7 +13334,7 @@ def shuffle_channel(x, group, name=None):
...
@@ -13334,7 +13334,7 @@ def shuffle_channel(x, group, name=None):
@templatedoc()
@templatedoc()
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None
, data_format="NCHW"
):
"""
"""
**Temporal Shift Operator**
**Temporal Shift Operator**
...
@@ -13348,6 +13348,8 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
...
@@ -13348,6 +13348,8 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
name(str, optional): For detailed information, please refer
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
None by default.
data_format(str, optional): Data format that specifies the layout of input.
It can be "NCHW" or "NHWC". Default: "NCHW".
Returns:
Returns:
out(Tensor): The temporal shifting result is a tensor with the
out(Tensor): The temporal shifting result is a tensor with the
...
@@ -13365,6 +13367,13 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
...
@@ -13365,6 +13367,13 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
input = paddle.randn([6, 4, 2, 2])
input = paddle.randn([6, 4, 2, 2])
out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
"""
"""
if data_format not in ["NCHW", "NHWC"]:
raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
"Received Attr(data_format): {}.".format(data_format))
if in_dygraph_mode():
return core.ops.temporal_shift(x, 'seg_num', seg_num, 'shift_ratio',
shift_ratio, 'data_format', data_format)
helper = LayerHelper("temporal_shift", **locals())
helper = LayerHelper("temporal_shift", **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift')
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift')
check_type(seg_num, 'seg_num', int, 'temporal_shift')
check_type(seg_num, 'seg_num', int, 'temporal_shift')
...
@@ -13375,16 +13384,15 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
...
@@ -13375,16 +13384,15 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
if not isinstance(seg_num, int):
if not isinstance(seg_num, int):
raise TypeError("seg_num must be int type.")
raise TypeError("seg_num must be int type.")
if in_dygraph_mode():
return core.ops.temporal_shift(x, 'seg_num', seg_num, 'shift_ratio',
shift_ratio)
helper.append_op(
helper.append_op(
type="temporal_shift",
type="temporal_shift",
inputs={"X": x},
inputs={"X": x},
outputs={"Out": out},
outputs={"Out": out},
attrs={"seg_num": seg_num,
attrs={
"shift_ratio": shift_ratio})
"seg_num": seg_num,
"shift_ratio": shift_ratio,
"data_format": data_format
})
return out
return out
...
...
python/paddle/fluid/tests/unittests/test_temporal_shift_op.py
浏览文件 @
7f50bb7e
...
@@ -22,7 +22,9 @@ import paddle
...
@@ -22,7 +22,9 @@ import paddle
from
paddle.fluid
import
core
from
paddle.fluid
import
core
def
temporal_shift
(
x
,
seg_num
,
shift_ratio
):
def
temporal_shift
(
x
,
seg_num
,
shift_ratio
,
data_format
):
if
data_format
==
"NHWC"
:
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
shape
=
x
.
shape
shape
=
x
.
shape
reshape_x
=
x
.
reshape
((
-
1
,
seg_num
,
shape
[
1
],
shape
[
2
],
shape
[
3
]))
reshape_x
=
x
.
reshape
((
-
1
,
seg_num
,
shape
[
1
],
shape
[
2
],
shape
[
3
]))
pad_x
=
np
.
pad
(
reshape_x
,
((
0
,
0
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
0
,
0
)),
pad_x
=
np
.
pad
(
reshape_x
,
((
0
,
0
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
0
,
0
)),
...
@@ -33,7 +35,10 @@ def temporal_shift(x, seg_num, shift_ratio):
...
@@ -33,7 +35,10 @@ def temporal_shift(x, seg_num, shift_ratio):
slice2
=
pad_x
[:,
2
:
seg_num
+
2
,
c1
:
c2
,
:,
:]
slice2
=
pad_x
[:,
2
:
seg_num
+
2
,
c1
:
c2
,
:,
:]
slice3
=
pad_x
[:,
1
:
seg_num
+
1
,
c2
:,
:,
:]
slice3
=
pad_x
[:,
1
:
seg_num
+
1
,
c2
:,
:,
:]
concat_x
=
np
.
concatenate
([
slice1
,
slice2
,
slice3
],
axis
=
2
)
concat_x
=
np
.
concatenate
([
slice1
,
slice2
,
slice3
],
axis
=
2
)
return
concat_x
.
reshape
(
shape
)
out
=
concat_x
.
reshape
(
shape
)
if
data_format
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
return
out
class
TestTemporalShift
(
OpTest
):
class
TestTemporalShift
(
OpTest
):
...
@@ -45,11 +50,13 @@ class TestTemporalShift(OpTest):
...
@@ -45,11 +50,13 @@ class TestTemporalShift(OpTest):
self
.
attrs
=
{
self
.
attrs
=
{
"seg_num"
:
self
.
seg_num
,
"seg_num"
:
self
.
seg_num
,
"shift_ratio"
:
self
.
shift_ratio
,
"shift_ratio"
:
self
.
shift_ratio
,
"data_format"
:
self
.
data_format
}
}
self
.
inputs
=
{
"X"
:
x
,
}
self
.
inputs
=
{
"X"
:
x
,
}
output
=
temporal_shift
(
x
,
self
.
seg_num
,
self
.
shift_ratio
)
output
=
temporal_shift
(
x
,
self
.
seg_num
,
self
.
shift_ratio
,
self
.
data_format
)
self
.
outputs
=
{
"Out"
:
output
}
self
.
outputs
=
{
"Out"
:
output
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
...
@@ -63,6 +70,7 @@ class TestTemporalShift(OpTest):
...
@@ -63,6 +70,7 @@ class TestTemporalShift(OpTest):
self
.
seg_num
=
3
self
.
seg_num
=
3
self
.
shift_ratio
=
0.25
self
.
shift_ratio
=
0.25
self
.
dtype
=
'float64'
self
.
dtype
=
'float64'
self
.
data_format
=
'NCHW'
class
TestTemporalShift2
(
TestTemporalShift
):
class
TestTemporalShift2
(
TestTemporalShift
):
...
@@ -70,6 +78,7 @@ class TestTemporalShift2(TestTemporalShift):
...
@@ -70,6 +78,7 @@ class TestTemporalShift2(TestTemporalShift):
self
.
x_shape
=
(
4
,
9
,
7
,
7
)
self
.
x_shape
=
(
4
,
9
,
7
,
7
)
self
.
seg_num
=
2
self
.
seg_num
=
2
self
.
shift_ratio
=
0.2
self
.
shift_ratio
=
0.2
self
.
data_format
=
'NCHW'
class
TestTemporalShift3
(
TestTemporalShift
):
class
TestTemporalShift3
(
TestTemporalShift
):
...
@@ -77,6 +86,15 @@ class TestTemporalShift3(TestTemporalShift):
...
@@ -77,6 +86,15 @@ class TestTemporalShift3(TestTemporalShift):
self
.
x_shape
=
(
3
,
10
,
5
,
5
)
self
.
x_shape
=
(
3
,
10
,
5
,
5
)
self
.
seg_num
=
1
self
.
seg_num
=
1
self
.
shift_ratio
=
0.3
self
.
shift_ratio
=
0.3
self
.
data_format
=
'NCHW'
class
TestTemporalShift4
(
TestTemporalShift
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
6
,
5
,
5
,
4
)
self
.
seg_num
=
3
self
.
shift_ratio
=
0.25
self
.
data_format
=
'NHWC'
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
...
@@ -87,6 +105,7 @@ class TestTemporalShiftFP16(TestTemporalShift):
...
@@ -87,6 +105,7 @@ class TestTemporalShiftFP16(TestTemporalShift):
self
.
seg_num
=
1
self
.
seg_num
=
1
self
.
shift_ratio
=
0.3
self
.
shift_ratio
=
0.3
self
.
dtype
=
'float16'
self
.
dtype
=
'float16'
self
.
data_format
=
'NCHW'
def
test_check_output
(
self
):
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
place
=
core
.
CUDAPlace
(
0
)
...
@@ -114,6 +133,14 @@ class TestTemporalShiftAPI(unittest.TestCase):
...
@@ -114,6 +133,14 @@ class TestTemporalShiftAPI(unittest.TestCase):
out
=
paddle
.
nn
.
functional
.
temporal_shift
(
out
=
paddle
.
nn
.
functional
.
temporal_shift
(
x
=
input
,
seg_num
=
2
,
shift_ratio
=
0.2
)
x
=
input
,
seg_num
=
2
,
shift_ratio
=
0.2
)
def
test_error
(
self
):
def
attr_data_format
():
input
=
paddle
.
randn
([
6
,
4
,
2
,
2
])
out
=
paddle
.
nn
.
functional
.
temporal_shift
(
x
=
input
,
seg_num
=
2
,
shift_ratio
=
0.2
,
data_format
=
"HWC"
)
self
.
assertRaises
(
ValueError
,
attr_data_format
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录