Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7e0d21de
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7e0d21de
编写于
1月 30, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix scale and bias dim
上级
87b5559c
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
16 addition
and
15 deletion
+16
-15
paddle/operators/layer_norm_op.cc
paddle/operators/layer_norm_op.cc
+16
-15
未找到文件。
paddle/operators/layer_norm_op.cc
浏览文件 @
7e0d21de
...
...
@@ -123,8 +123,8 @@ class LayerNormKernel<platform::CPUDeviceContext, T>
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
input_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
left
,
1
);
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
left
,
1
);
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
1
,
right
);
auto
mean_map
=
EigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
EigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
auto
output_map
=
EigenMatrixMapRowMajor
<
T
>
(
output
->
data
<
T
>
(),
left
,
right
);
...
...
@@ -143,11 +143,11 @@ class LayerNormKernel<platform::CPUDeviceContext, T>
// TODO(zcd): Some thinking about output_map, is it appropriate that
// `output_map` and `input_map` point to the same memory.
auto
inv_std_scale
=
var_map
.
unaryExpr
(
inv_std_func
).
cwiseProduct
(
scale_map
);
output_map
=
inv_std_scale
.
replicate
(
1
,
right
).
cwiseProduct
(
input_map
)
+
(
bias_map
-
inv_std_scale
.
cwiseProduct
(
mean_map
)).
replicate
(
1
,
right
);
auto
inv_std_scale
=
var_map
.
unaryExpr
(
inv_std_func
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std_scale
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
-
bias_map
.
replicate
(
left
,
1
);
}
};
...
...
@@ -221,7 +221,7 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
left
,
1
);
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
auto
x_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
d_y_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
d_y
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
...
...
@@ -229,12 +229,13 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_bias_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_bias
->
data
<
T
>
(),
left
,
1
);
auto
d_bias_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_bias
->
data
<
T
>
(),
1
,
right
);
d_bias_map
=
d_y_map
.
colwise
().
mean
();
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_scale_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_scale
->
data
<
T
>
(),
left
,
1
);
auto
d_scale_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_scale
->
data
<
T
>
(),
1
,
right
);
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// There are two equation to compute d_scale. One uses "Y" and the other
// does not use "Y"
...
...
@@ -254,15 +255,15 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// dy_dx
auto
dx_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
cwiseProduct
(
scale_map
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
);
.
cwiseProduct
(
d_y_map
)
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
));
// dy_dmean_dx
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
var_map
.
unaryExpr
(
inv_std_func
)
.
cwiseProduct
(
scale_map
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
)
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
.
rowwise
()
.
sum
()
.
replicate
(
1
,
right
);
...
...
@@ -274,8 +275,8 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
auto
dvar_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_part
)
.
cwiseProduct
(
scale_map
)
.
replicate
(
1
,
right
);
.
replicate
(
1
,
right
)
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
)
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
)).
cwiseProduct
(
dvar_end
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录