提交 79b17097 编写于 作者: T tensor-tang

cal FPS of inference result

上级 aef63944
......@@ -23,7 +23,7 @@ def initHook(settings, height, width, color, num_class, **kwargs):
@provider(
init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_list):
for i in xrange(1024):
for i in xrange(2560 if settings.is_infer else 1024):
img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten()
if settings.is_infer:
yield img.astype('float32')
......
set -e
function clock_to_seconds() {
hours=`echo $1 | awk -F ':' '{print $1}'`
mins=`echo $1 | awk -F ':' '{print $2}'`
secs=`echo $1 | awk -F ':' '{print $3}'`
echo `bc -l <<< "$secs + $mins * 60 + $hours * 3600"`
}
function infer() {
unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY
topology=$1
......@@ -34,15 +41,26 @@ function infer() {
> /dev/null 2>&1
echo "Done"
fi
log_period=$((256 / bs))
paddle train --job=test \
--config="${topology}.py" \
--use_mkldnn=$use_mkldnn \
--use_gpu=False \
--trainer_count=$thread \
--log_period=32 \
--log_period=$log_period \
--config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True" \
--init_model_path=$models_in \
2>&1 | tee ${log}
# calculate the last 5 logs period time of 1280 samples,
# the time before are burning time.
start=`tail ${log} -n 7 | head -n 1 | awk -F ' ' '{print $2}' | xargs`
end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs`
start_sec=`clock_to_seconds $start`
end_sec=`clock_to_seconds $end`
fps=`bc <<< "scale = 2; 1280 / ($end_sec - $start_sec)"`
echo "Last 1280 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log}
echo "FPS: $fps images/sec" >> ${log}
}
if [ ! -f "train.list" ]; then
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册