提交 790b9ce4 编写于 作者: Y Yu Yang 提交者: GitHub

Update design doc for Python Layer (#4698)

* Update design doc for Python Layer

* Update document
上级 186d1655
...@@ -179,40 +179,104 @@ init_attr={ ...@@ -179,40 +179,104 @@ init_attr={
`optimize_op_attrs` is not in the `VarDesc` message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator's `OpDesc`, and will be in the `OpDesc` message. `optimize_op_attrs` is not in the `VarDesc` message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator's `OpDesc`, and will be in the `OpDesc` message.
## Layer Functions ## Layer Function
A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers. A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.
### Data Layer Layer functions take `Variable` and configuration parameters as its input and return the output variable(s).
For example, `FullyConnected` take one or more variable as its input. The input could be input data or another layer's output. There are many configuration options for a `FullyConnected` layer, such as layer size, activation, parameter names, initialization strategies of parameters, and so on. The `FullyConnected` layer will return an output variable.
### Necessity for reusing code between layer functions
There are a lot of code that can be reused. Such as
* Give the default value of configuration. e.g., default initialize strategy for parameters is uniform random with `min = -1.0`, `max = 1.0`. and default initialize strategy for bias is to fill zero.
* Append the activation operator.
* Create a temporary variable.
* Create parameter.
* Generate a unique name.
* Add a bias.
* ...
A mechanism to reuse code between layer functions is necessary. It will be around [150 lines of code](https://github.com/PaddlePaddle/Paddle/pull/4724/files#diff-823b27e07e93914ada859232ae23f846R12) if we write a `FullyConnected` layer without any helper functions.
### Comparision between global functions and helper class
The `FullyConnected` layer will be as follow when we provide global functions:
```python ```python
def data_layer(name, type, column_name): def fc_layer(input, size, param_attr=None, bias_attr=None, act=None, name=None):
block = the_current_program.glolal_block() if name is None:
var = block.create_global_var( name = unique_name("fc")
name=name, input = multiple_input(input)
shape=[None] + type.dims(), param_attr = default_param_attr(param_attr)
dtype=type.dtype) param_attr = multiple_param_attr(param_attr, len(input))
block.prepend_operator(block,
type="Feed", # mul
inputs = None, mul_results = []
outputs = [var], for ipt, attr in zip(input, param_attr):
{column_name: column_name}) shape = ipt.shape[1:] + [size]
return var w = g_program.global_block().create_parameter(shape, ipt.dtype, name, attr)
tmp = create_tmp_var(name)
g_program.current_block().append_op("mul", {ipt, w}, {tmp})
mul_results.append(tmp)
# add sum
...
# add bias
...
# add activation
...
return out
``` ```
The input to the feed operator is a special variable in the global scope, which is the output of [Python readers](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md). We can provide many helpers functions for layer developers. However, there are several disadvantages for global helper functions:
1. We need a namespace for these methods, then layer developers can quickly figure out what method they can use.
2. Global functions will force layer developers to pass its parameter time by time.
### FC Layer So we provide a helper class, `LayerHelper`, to share code between layer functions. The `FullyConnected` Layer will be as follow.
```python ```python
def fc_layer(input, size, ...): def fc_layer(input, size, param_attr=None, bias_attr=None, act=None, name=None):
block = program.current_block() helper = LayerHelper(locals()) # pass all parameter to LayerHelper
w = block.create_parameter(...)
b = block.create_parameter(...) mul_results = []
out = block.create_var() for ipt, param in helper.iter_multiple_input_and_param():
op = block.append_operator("FC", X=input, W=w, b=b, out=out) w = helper.create_parameter(shape=ipt.shape[1:] + [size], dtype = ipt.dtype)
out.writer = op tmp = helper.create_tmp_variable()
return out helper.append_op('mul', {ipt, w}, {tmp})
mul_results.append(tmp)
pre_bias = helper.add_sum(mul_results)
pre_activation = helper.add_bias(pre_bias)
return helper.add_activation(pre_activation)
```
We not only use the fewer lines of code to write `fc_layer` but also make the code clearer to understand. At the same time, layer developers can figure out what function they can invoke by typing `helper.` in a python editor.
### Implementation of layer helper
We just keep all parameters of a layer function as a dictionary in layer helper as a private data member. Every method of layer helper will look up the dictionary after it is invoked. In that way, we can implement a layer helper for all layer functions even some layer does not contain some operator. For example, The `activation` is used by the FullyConnected layer or convolution layers, but a cross-entropy layer does not use it. The example code of `add_activation` are:
```python
class LayerHelper(object):
def __init__(self, **kwargs): # kwargs is short for `keyword arguments`
self.kwargs = kwargs
def add_activation(self, input_var):
act = self.kwargs.get("act", None) # default value is None
if act is None: # do nothing if no act
return input_var
tmp = self.create_tmp_var(self)
self.append_op(type=act, input=input_var, output=tmp)
return tmp
``` ```
## Optimizer ## Optimizer
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册