From 78cc1ca6164ecd2aa841068195c0e0ab0c3070c9 Mon Sep 17 00:00:00 2001 From: Tao Luo Date: Fri, 8 Nov 2019 22:35:17 +0800 Subject: [PATCH] Split some APIs from nn.py to rnn.py and sequence_lod.py (#21030) * split some APIs from nn.py to rnn.py * split some APIs from nn.py to sequence_lod.py test=develop * fix unit-test bug test=develop * fix test_layers unit-test bug test=develop --- python/paddle/fluid/layers/__init__.py | 2 + python/paddle/fluid/layers/nn.py | 2957 ++------------------ python/paddle/fluid/layers/rnn.py | 1206 +++++++- python/paddle/fluid/layers/sequence_lod.py | 1351 +++++++++ 4 files changed, 2772 insertions(+), 2744 deletions(-) create mode 100644 python/paddle/fluid/layers/sequence_lod.py diff --git a/python/paddle/fluid/layers/__init__.py b/python/paddle/fluid/layers/__init__.py index a1e560168f..6ca93f7313 100644 --- a/python/paddle/fluid/layers/__init__.py +++ b/python/paddle/fluid/layers/__init__.py @@ -35,6 +35,7 @@ from .metric_op import * from .learning_rate_scheduler import * from .collective import * from .distributions import * +from .sequence_lod import * from . import rnn __all__ = [] @@ -48,6 +49,7 @@ __all__ += detection.__all__ __all__ += metric_op.__all__ __all__ += learning_rate_scheduler.__all__ __all__ += distributions.__all__ +__all__ += sequence_lod.__all__ __all__ += rnn.__all__ from .rnn import * diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index df65e05747..ebc60c27c4 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -40,10 +40,6 @@ __all__ = [ 'fc', 'center_loss', 'embedding', - 'dynamic_lstm', - 'dynamic_lstmp', - 'dynamic_gru', - 'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', @@ -51,11 +47,8 @@ __all__ = [ 'bpr_loss', 'square_error_cost', 'chunk_eval', - 'sequence_conv', 'conv2d', 'conv3d', - 'sequence_pool', - 'sequence_softmax', 'softmax', 'pool2d', 'pool3d', @@ -64,14 +57,8 @@ __all__ = [ 'batch_norm', 'instance_norm', 'data_norm', - 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose', - 'sequence_expand', - 'sequence_expand_as', - 'sequence_pad', - 'sequence_unpad', - 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', @@ -79,9 +66,6 @@ __all__ = [ 'reduce_prod', 'reduce_all', 'reduce_any', - 'sequence_first_step', - 'sequence_last_step', - 'sequence_slice', 'dropout', 'split', 'ctc_greedy_decoder', @@ -90,13 +74,11 @@ __all__ = [ 'matmul', 'topk', 'warpctc', - 'sequence_reshape', 'transpose', 'im2sequence', 'nce', 'sampled_softmax_with_cross_entropy', 'hsigmoid', - 'beam_search', 'row_conv', 'multiplex', 'layer_norm', @@ -128,7 +110,6 @@ __all__ = [ 'scatter', 'scatter_nd_add', 'scatter_nd', - 'sequence_scatter', 'random_crop', 'mean_iou', 'relu', @@ -149,16 +130,13 @@ __all__ = [ 'leaky_relu', 'soft_relu', 'flatten', - 'sequence_mask', 'stack', 'pad2d', 'unstack', - 'sequence_enumerate', 'unique', 'unique_with_counts', 'expand', 'expand_as', - 'sequence_concat', 'scale', 'elementwise_add', 'elementwise_div', @@ -191,7 +169,6 @@ __all__ = [ 'maxout', 'space_to_depth', 'affine_grid', - 'sequence_reverse', 'affine_channel', 'similarity_focus', 'hash', @@ -201,7 +178,6 @@ __all__ = [ 'bilinear_tensor_product', 'merge_selected_rows', 'get_tensor_from_selected_rows', - 'lstm', 'shuffle_channel', 'temporal_shift', 'py_func', @@ -688,844 +664,6 @@ def _pull_box_sparse(input, size, dtype='float32'): return outs -def dynamic_lstm(input, - size, - h_0=None, - c_0=None, - param_attr=None, - bias_attr=None, - use_peepholes=True, - is_reverse=False, - gate_activation='sigmoid', - cell_activation='tanh', - candidate_activation='tanh', - dtype='float32', - name=None): - """ - **Note**: - 1. This OP only supports LoDTensor as inputs. If you need to deal with Tensor, please use :ref:`api_fluid_layers_lstm` . - 2. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP. - - The implementation of this OP include diagonal/peephole connections. - Please refer to `Gers, F. A., & Schmidhuber, J. (2000) `_ . - If you do not need peephole connections, please set use_peepholes to False . - - This OP computes each timestep as follows: - - .. math:: - i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i}) - .. math:: - f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f}) - .. math:: - o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o}) - .. math:: - \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c}) - .. math:: - c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t} - .. math:: - h_t = o_t \odot tanh(c_t) - - The symbolic meanings in the formula are as follows: - - - :math:`x_{t}` represents the input at timestep :math:`t` - - :math:`h_{t}` represents the hidden state at timestep :math:`t` - - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively - - :math:`\widetilde{c_t}` represents the candidate cell state - - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively - - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` ) - - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate) - - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid - - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension - - Parameters: - input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64. - size (int): must be 4 * hidden_size. - h_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` . - Data type is float32 or float64. If set to None, it will be a vector of all 0. Default: None. - c_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` . - Data type is float32 or float64. If set to None, it will be a vector of all 0. `h_0` and `c_0` can be None but only at the same time. Default: None. - param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' . - If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None. - - - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [hidden_size, 4*hidden_size]. - - bias_attr (ParamAttr, optional): The bias attribute for the learnable bias - weights, which contains two parts, input-hidden - bias weights and peephole connections weights if - setting `use_peepholes` to `True`. - Please refer to ref:`api_fluid_ParamAttr' . Default: None. - - 1. `use_peepholes = False` - - Biases = {:math:`b_c, b_i, b_f, b_o`}. - - The shape is [1, 4*hidden_size]. - 2. `use_peepholes = True` - - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \ - W_{fc}, W_{oc}`}. - - The shape is [1, 7*hidden_size]. - - use_peepholes (bool, optional): Whether to use peephole connection or not. Default: True. - is_reverse (bool, optional): Whether to calculate reverse LSTM. Default: False. - gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default: "sigmoid". - cell_activation (str, optional): The activation for cell output. Default: "tanh". - candidate_activation (str, optional): The activation for candidate hidden state. Default: "tanh". - dtype (str, optional): Data type, can be "float32" or "float64". Default: "float32". - name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None. - - Returns: - tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) : - - The hidden state and cell state of LSTM - - - hidden: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input. - - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - emb_dim = 256 - vocab_size = 10000 - hidden_dim = 512 - - data = fluid.data(name='x', shape=[None], dtype='int64', lod_level=1) - emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True) - - forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4, - bias_attr=False) - - forward, cell = fluid.layers.dynamic_lstm( - input=forward_proj, size=hidden_dim * 4, use_peepholes=False) - forward.shape # (-1, 512) - cell.shape # (-1, 512) - """ - assert in_dygraph_mode( - ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!" - assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." - helper = LayerHelper('lstm', **locals()) - size = size // 4 - weight = helper.create_parameter( - attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype) - bias_size = [1, 7 * size] - if not use_peepholes: - bias_size[1] = 4 * size - bias = helper.create_parameter( - attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) - - hidden = helper.create_variable_for_type_inference(dtype) - cell = helper.create_variable_for_type_inference(dtype) - batch_gate = helper.create_variable_for_type_inference(dtype) - batch_cell_pre_act = helper.create_variable_for_type_inference(dtype) - inputs = {'Input': input, 'Weight': weight, 'Bias': bias} - batch_size = input.shape[0] - if h_0: - assert h_0.shape == (batch_size, size), \ - 'The shape of h0 should be (batch_size, %d)' % size - inputs['H0'] = h_0 - if c_0: - assert c_0.shape == (batch_size, size), \ - 'The shape of c0 should be (batch_size, %d)' % size - inputs['C0'] = c_0 - - helper.append_op( - type='lstm', - inputs=inputs, - outputs={ - 'Hidden': hidden, - 'Cell': cell, - 'BatchGate': batch_gate, - 'BatchCellPreAct': batch_cell_pre_act - }, - attrs={ - 'use_peepholes': use_peepholes, - 'is_reverse': is_reverse, - 'gate_activation': gate_activation, - 'cell_activation': cell_activation, - 'candidate_activation': candidate_activation - }) - return hidden, cell - - -def lstm(input, - init_h, - init_c, - max_len, - hidden_size, - num_layers, - dropout_prob=0.0, - is_bidirec=False, - is_test=False, - name=None, - default_initializer=None, - seed=-1): - """ - **Note**: - This OP only supports running on GPU devices. - - This OP implements LSTM operation - `Hochreiter, S., & Schmidhuber, J. (1997) `_ . - - The implementation of this OP does not include diagonal/peephole connections. - Please refer to `Gers, F. A., & Schmidhuber, J. (2000) `_ . - If you need peephole connections, please use :ref:`api_fluid_layers_dynamic_lstm` . - - This OP computes each timestep as follows: - - .. math:: - i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i}) - .. math:: - f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f}) - .. math:: - o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o}) - .. math:: - \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c}) - .. math:: - c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t} - .. math:: - h_t = o_t \odot tanh(c_t) - - The symbolic meanings in the formula are as follows: - - - :math:`x_{t}` represents the input at timestep :math:`t` - - :math:`h_{t}` represents the hidden state at timestep :math:`t` - - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively - - :math:`\widetilde{c_t}` represents the candidate cell state - - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively - - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` ) - - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate) - - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid - - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension - - Parameters: - input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64 - init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` . - If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64. - init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` . - If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64. - max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len. - hidden_size (int): hidden size of the LSTM. - num_layers (int): total layers number of the LSTM. - dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps - There is NO dropout work on rnn output of the last RNN layers. - Default: 0.0. - is_bidirec (bool, optional): If it is bidirectional. Default: False. - is_test (bool, optional): If it is in test phrase. Default: False. - name (str, optional): A name for this layer. If set None, the layer - will be named automatically. Default: None. - default_initializer(Initializer, optional): Where use initializer to initialize the Weight - If set None, defaule initializer will be used. Default: None. - seed(int, optional): Seed for dropout in LSTM, If it's -1, dropout will use random seed. Default: 1. - - - Returns: - tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ) : - - Three tensors, rnn_out, last_h, last_c: - - - rnn_out is result of LSTM hidden, shape is :math:`[seq\_len, batch\_size, hidden\_size]` \ - if is_bidirec set to True, shape will be :math:`[seq\_len, batch\_size, hidden\_size*2]` - - last_h is the hidden state of the last step of LSTM \ - shape is :math:`[num\_layers, batch\_size, hidden\_size]` \ - if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]` - - last_c(Tensor): the cell state of the last step of LSTM \ - shape is :math:`[num\_layers, batch\_size, hidden\_size]` \ - if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]` - - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import paddle.fluid.layers as layers - - emb_dim = 256 - vocab_size = 10000 - data = fluid.data(name='x', shape=[None, 100], dtype='int64') - emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True) - batch_size = 20 - max_len = 100 - dropout_prob = 0.2 - input_size = 100 - hidden_size = 150 - num_layers = 1 - init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 ) - init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 ) - rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \ - max_len, hidden_size, num_layers, \ - dropout_prob=dropout_prob) - rnn_out.shape # (-1, 100, 150) - last_h.shape # (1, 20, 150) - last_c.shape # (1, 20, 150) - """ - - helper = LayerHelper('cudnn_lstm', **locals()) - - dtype = input.dtype - input_shape = list(input.shape) - input_size = input_shape[-1] - weight_size = 0 - for i in range(num_layers): - if i == 0: - input_weight_size = (input_size * hidden_size) * 4 - else: - if is_bidirec: - input_weight_size = (hidden_size * 2 * hidden_size) * 4 - else: - input_weight_size = (hidden_size * hidden_size) * 4 - - hidden_weight_size = (hidden_size * hidden_size) * 4 - - if is_bidirec: - weight_size += (input_weight_size + hidden_weight_size) * 2 - weight_size += hidden_size * 8 * 2 - else: - weight_size += input_weight_size + hidden_weight_size - weight_size += hidden_size * 8 - - weight = helper.create_parameter( - attr=helper.param_attr, - shape=[weight_size], - dtype=dtype, - default_initializer=default_initializer) - - out = helper.create_variable_for_type_inference(dtype) - last_h = helper.create_variable_for_type_inference(dtype) - last_c = helper.create_variable_for_type_inference(dtype) - - cache = helper.create_variable( - persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True) - - helper.append_op( - type='cudnn_lstm', - inputs={ - 'Input': input, - 'InitH': init_h, - 'InitC': init_c, - 'W': weight, - 'Cache': cache, - }, - outputs={ - 'Out': out, - 'last_h': last_h, - 'last_c': last_c, - }, - attrs={ - 'max_len': max_len, - 'is_bidirec': is_bidirec, - 'input_size': input_size, - 'hidden_size': hidden_size, - 'num_layers': num_layers, - 'is_test': is_test, - 'dropout_prob': dropout_prob, - 'seed': seed, - }) - return out, last_h, last_c - - -def dynamic_lstmp(input, - size, - proj_size, - param_attr=None, - bias_attr=None, - use_peepholes=True, - is_reverse=False, - gate_activation='sigmoid', - cell_activation='tanh', - candidate_activation='tanh', - proj_activation='tanh', - dtype='float32', - name=None, - h_0=None, - c_0=None, - cell_clip=None, - proj_clip=None): - """ - **Note**: - 1. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP. - - This OP implements the LSTMP (LSTM Projected) layer. - The LSTMP layer has a separate linear mapping layer behind the LSTM layer. -- `Sak, H., Senior, A., & Beaufays, F. (2014) `_ . - - Compared with the standard LSTM layer, LSTMP has an additional linear mapping layer, - which is used to map from the original hidden state :math:`h_t` to the lower dimensional state :math:`r_t` . - This reduces the total number of parameters and computational complexity, especially when the output unit is relatively large. - - The default implementation of the OP contains diagonal/peephole connections, - please refer to `Gers, F. A., & Schmidhuber, J. (2000) `_ . - If you need to disable the peephole connections, set use_peepholes to False. - - This OP computes each timestep as follows: - - .. math:: - i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i) - .. math:: - f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f) - .. math:: - o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_{t-1} + b_o) - .. math:: - \widetilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c) - .. math:: - c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t} - .. math:: - h_t = o_t \odot act_h(c_t) - .. math:: - r_t = \overline{act_h}(W_{rh}h_t) - - The symbolic meanings in the formula are as follows: - - - :math:`x_{t}` represents the input at timestep :math:`t` - - :math:`h_{t}` represents the hidden state at timestep :math:`t` - - :math:`r_{t}` : represents the state of the projected output of the hidden state :math:`h_{t}` - - :math:`h_{t-1}, c_{t-1}, r_{t-1}` represent the hidden state, cell state and projected output at timestep :math:`t-1` , respectively - - :math:`\widetilde{c_t}` represents the candidate cell state - - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively - - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` ) - - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate) - - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid - - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension - - Parameters: - input( :ref:`api_guide_Variable_en` ): The input of dynamic_lstmp layer, which supports - variable-time length input sequence. - It is a multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64. - size(int): must be 4 * hidden_size. - proj_size(int): The size of projection output. - param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' . - If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None. - - - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [P, 4*hidden_size] , where P is the projection size. - - Projection weight = :math:`\{ W_{rh} \}` , the shape is [hidden_size, P]. - - bias_attr (ParamAttr, optional): The bias attribute for the learnable bias - weights, which contains two parts, input-hidden - bias weights and peephole connections weights if - setting `use_peepholes` to `True`. - Please refer to ref:`api_fluid_ParamAttr' . Default: None. - - 1. `use_peepholes = False` - - Biases = {:math:`b_c, b_i, b_f, b_o`}. - - The shape is [1, 4*hidden_size]. - 2. `use_peepholes = True` - - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \ - W_{fc}, W_{oc}`}. - - The shape is [1, 7*hidden_size]. - - use_peepholes (bool, optional): Whether to use peephole connection or not. Default True. - is_reverse (bool, optional): Whether to calculate reverse LSTM. Default False. - gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default "sigmoid". - cell_activation (str, optional): The activation for cell output. Default "tanh". - candidate_activation (str, optional): The activation for candidate hidden state. Default "tanh". - proj_activation(str, optional): The activation for projection output. Default "tanh". - dtype (str, optional): Data type, can be "float32" or "float64". Default "float32". - name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None. - h_0( :ref:`api_guide_Variable` , optional): The initial hidden state is an optional input, default is zero. - This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. Default: None. - c_0( :ref:`api_guide_Variable` , optional): The initial cell state is an optional input, default is zero. - This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. - `h_0` and `c_0` can be None but only at the same time. Default: None. - cell_clip(float, optional): If not None, the cell state is clipped - by this value prior to the cell output activation. Default: None. - proj_clip(float, optional): If `num_proj > 0` and `proj_clip` is - provided, then the projected values are clipped elementwise to within - `[-proj_clip, proj_clip]`. Default: None. - - Returns: - tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) : - - The hidden state and cell state of LSTMP - - - hidden: LoDTensor with shape of :math:`[T, P]` , and its lod and dtype is the same as the input. - - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input. - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - dict_dim, emb_dim = 128, 64 - data = fluid.data(name='sequence', shape=[None], dtype='int64', lod_level=1) - emb = fluid.embedding(input=data, size=[dict_dim, emb_dim]) - hidden_dim, proj_dim = 512, 256 - fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4, - act=None, bias_attr=None) - proj_out, last_c = fluid.layers.dynamic_lstmp(input=fc_out, - size=hidden_dim * 4, - proj_size=proj_dim, - use_peepholes=False, - is_reverse=True, - cell_activation="tanh", - proj_activation="tanh") - proj_out.shape # (-1, 256) - last_c.shape # (-1, 512) - """ - - assert in_dygraph_mode( - ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!" - - assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." - helper = LayerHelper('lstmp', **locals()) - size = size // 4 - weight = helper.create_parameter( - attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype) - proj_weight = helper.create_parameter( - attr=helper.param_attr, shape=[size, proj_size], dtype=dtype) - bias_size = [1, 7 * size] - if not use_peepholes: - bias_size[1] = 4 * size - bias = helper.create_parameter( - attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) - - projection = helper.create_variable_for_type_inference(dtype) - cell = helper.create_variable_for_type_inference(dtype) - ordered_proj0 = helper.create_variable_for_type_inference(dtype) - batch_hidden = helper.create_variable_for_type_inference(dtype) - batch_gate = helper.create_variable_for_type_inference(dtype) - batch_cell_pre_act = helper.create_variable_for_type_inference(dtype) - inputs = { - 'Input': input, - 'Weight': weight, - 'ProjWeight': proj_weight, - 'Bias': bias - } - batch_size = input.shape[0] - if h_0: - assert h_0.shape == (batch_size, proj_size), \ - 'The shape of h0 should be (batch_size, %d)' % proj_size - inputs['H0'] = h_0 - if c_0: - assert c_0.shape == (batch_size, size), \ - 'The shape of c0 should be (batch_size, %d)' % size - inputs['C0'] = c_0 - - if cell_clip: - assert cell_clip >= 0, "cell_clip should not be negtive." - if proj_clip: - assert proj_clip >= 0, "proj_clip should not be negtive." - - helper.append_op( - type='lstmp', - inputs=inputs, - outputs={ - 'Projection': projection, - 'Cell': cell, - 'BatchHidden': batch_hidden, - 'BatchGate': batch_gate, - 'BatchCellPreAct': batch_cell_pre_act - }, - attrs={ - 'use_peepholes': use_peepholes, - 'cell_clip': cell_clip, - 'proj_clip': proj_clip, - 'is_reverse': is_reverse, - 'gate_activation': gate_activation, - 'cell_activation': cell_activation, - 'candidate_activation': candidate_activation, - 'proj_activation': proj_activation - }) - return projection, cell - - -def dynamic_gru(input, - size, - param_attr=None, - bias_attr=None, - is_reverse=False, - gate_activation='sigmoid', - candidate_activation='tanh', - h_0=None, - origin_mode=False): - """ - **Note: The input type of this must be LoDTensor. If the input type to be - processed is Tensor, use** :ref:`api_fluid_layers_StaticRNN` . - - This operator is used to perform the calculations for a single layer of - Gated Recurrent Unit (GRU) on full sequences step by step. The calculations - in one time step support these two modes: - - If ``origin_mode`` is True, then the formula used is from paper - `Learning Phrase Representations using RNN Encoder Decoder for Statistical - Machine Translation `_ . - - .. math:: - - u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) - - r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) - - \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) - - h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t} - - - if ``origin_mode`` is False, then the formula used is from paper - `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence - Modeling `_ - - .. math:: - - u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) - - r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) - - \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) - - h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t} - - :math:`x_t` is the input of current time step, but it is not from ``input`` . - This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` , - **Note** thus a fully-connect layer whose size is 3 times of ``size`` should - be used before this operator, and the output should be used as ``input`` here. - :math:`h_{t-1}` is the hidden state from previous time step. - :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for - update gate, reset gate, candidate hidden and hidden output separately. - :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for - the weight matrix and bias used in update gate, reset gate, candidate hidden - calculations. For implementation, the three weight matrix are merged into a - tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as - a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the - hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}` - are concatenated with shape :math:`[D, D \\times 2]` lying on the first part, - and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` . - - - Args: - input(Variable): A LoDTensor whose lod level is 1, representing the input - after linear projection. Its shape should be :math:`[T, D \\times 3]` , - where :math:`T` stands for the total sequence lengths in this mini-batch, - :math:`D` for the hidden size. The data type should be float32 or float64. - size(int): Indicate the hidden size. - param_attr(ParamAttr, optional): To specify the weight parameter property. - Default: None, which means the default weight parameter property is used. - See usage for details in :ref:`api_fluid_ParamAttr` . - bias_attr (ParamAttr, optional): To specify the bias parameter property. - Default: None, which means the default bias parameter property is used. - See usage for details in :ref:`api_fluid_ParamAttr` . - is_reverse(bool, optional): Whether to compute in the reversed order of - input sequences. Default False. - gate_activation(str, optional): The activation fuction corresponding to - :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity" - are supported. Default "sigmoid". - candidate_activation(str, optional): The activation fuction corresponding to - :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity" - are supported. Default "tanh". - h_0 (Variable, optional): A Tensor representing the initial hidden state. - It not provided, the default initial hidden state is 0. The shape is - :math:`[N, D]` , where :math:`N` is the number of sequences in the - mini-batch, :math:`D` for the hidden size. The data type should be - same as ``input`` . Default None. - - Returns: - Variable: A LoDTensor whose lod level is 1 and shape is :math:`[T, D]` , \ - where :math:`T` stands for the total sequence lengths in this mini-batch \ - :math:`D` for the hidden size. It represents GRU transformed sequence output, \ - and has the same lod and data type with ``input`` . - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - - dict_dim, emb_dim = 128, 64 - data = fluid.data(name='sequence', - shape=[None], - dtype='int64', - lod_level=1) - emb = fluid.embedding(input=data, size=[dict_dim, emb_dim]) - hidden_dim = 512 - x = fluid.layers.fc(input=emb, size=hidden_dim * 3) - hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim) - """ - - assert in_dygraph_mode( - ) is not True, "please use gru instead of dynamic_gru in dygraph mode!" - - helper = LayerHelper('gru', **locals()) - dtype = helper.input_dtype() - - weight = helper.create_parameter( - attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) - bias = helper.create_parameter( - attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True) - batch_size = input.shape[0] - inputs = {'Input': input, 'Weight': weight, 'Bias': bias} - if h_0: - assert h_0.shape == ( - batch_size, size - ), 'The shape of h0 should be(batch_size, %d)' % size - inputs['H0'] = h_0 - - hidden = helper.create_variable_for_type_inference(dtype) - batch_gate = helper.create_variable_for_type_inference(dtype) - batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype) - batch_hidden = helper.create_variable_for_type_inference(dtype) - - helper.append_op( - type='gru', - inputs=inputs, - outputs={ - 'Hidden': hidden, - 'BatchGate': batch_gate, - 'BatchResetHiddenPrev': batch_reset_hidden_prev, - 'BatchHidden': batch_hidden - }, - attrs={ - 'is_reverse': is_reverse, - 'gate_activation': gate_activation, - 'activation': candidate_activation, - 'origin_mode': origin_mode - }) - return hidden - - -def gru_unit(input, - hidden, - size, - param_attr=None, - bias_attr=None, - activation='tanh', - gate_activation='sigmoid', - origin_mode=False): - """ - Gated Recurrent Unit (GRU) RNN cell. This operator performs GRU calculations for - one time step and it supports these two modes: - - If ``origin_mode`` is True, then the formula used is from paper - `Learning Phrase Representations using RNN Encoder Decoder for Statistical - Machine Translation `_ . - - .. math:: - - u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) - - r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) - - \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) - - h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t} - - - if ``origin_mode`` is False, then the formula used is from paper - `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence - Modeling `_ - - .. math:: - - u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) - - r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) - - \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) - - h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t} - - :math:`x_t` is the input of current time step, but it is not ``input`` . - This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` , - **Note** thus a fully-connect layer whose size is 3 times of GRU hidden size should - be used before this operator, and the output should be used as ``input`` here. - :math:`h_{t-1}` is the hidden state from previous time step. - :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for - update gate, reset gate, candidate hidden and hidden output separately. - :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for - the weight matrix and bias used in update gate, reset gate, candidate hidden - calculations. For implementation, the three weight matrix are merged into a - tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as - a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the - hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}` - are concatenated with shape :math:`[D, D \\times 2]` lying on the first part, - and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` . - - - Args: - input(Variable): A 2D Tensor representing the input after linear projection - after linear projection. Its shape should be :math:`[N, D \\times 3]` , - where :math:`N` stands for batch size, :math:`D` for the hidden size. - The data type should be float32 or float64. - hidden(Variable): A 2D Tensor representing the hidden state from previous step. - Its shape should be :math:`[N, D]` , where :math:`N` stands for batch size, - :math:`D` for the hidden size. The data type should be same as ``input`` . - size(int): Indicate the hidden size. - param_attr(ParamAttr, optional): To specify the weight parameter property. - Default: None, which means the default weight parameter property is used. - See usage for details in :ref:`api_fluid_ParamAttr` . - bias_attr (ParamAttr, optional): To specify the bias parameter property. - Default: None, which means the default bias parameter property is used. - See usage for details in :ref:`api_fluid_ParamAttr` . - activation(str, optional): The activation fuction corresponding to - :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity" - are supported. Default "tanh". - gate_activation(str, optional): The activation fuction corresponding to - :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity" - are supported. Default "sigmoid". - - Returns: - tuple: The tuple contains three Tensor variables with the same data type \ - as ``input`` . They represent the hidden state for next time step ( :math:`h_t` ), \ - reseted previous hidden state ( :math:`r_t \odot h_{t-1}` ), and the \ - concatenation of :math:`h_t, r_t, \\tilde{h_t}` . And they have shape \ - :math:`[N, D]` , :math:`[N, D]` , :math:`[N, D \times 3]` separately. \ - Usually only the hidden state for next time step ( :math:`h_t` ) is used \ - as output and state, the other two are intermediate results of calculations. - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - - dict_dim, emb_dim = 128, 64 - data = fluid.data(name='step_data', shape=[None], dtype='int64') - emb = fluid.embedding(input=data, size=[dict_dim, emb_dim]) - hidden_dim = 512 - x = fluid.layers.fc(input=emb, size=hidden_dim * 3) - pre_hidden = fluid.data( - name='pre_hidden', shape=[None, hidden_dim], dtype='float32') - hidden = fluid.layers.gru_unit( - input=x, hidden=pre_hidden, size=hidden_dim * 3) - - """ - activation_dict = dict( - identity=0, - sigmoid=1, - tanh=2, - relu=3, ) - activation = activation_dict[activation] - gate_activation = activation_dict[gate_activation] - - helper = LayerHelper('gru_unit', **locals()) - dtype = helper.input_dtype() - size = size // 3 - - # create weight - weight = helper.create_parameter( - attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) - - gate = helper.create_variable_for_type_inference(dtype) - reset_hidden_pre = helper.create_variable_for_type_inference(dtype) - updated_hidden = helper.create_variable_for_type_inference(dtype) - inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight} - # create bias - if helper.bias_attr: - bias_size = [1, 3 * size] - bias = helper.create_parameter( - attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) - inputs['Bias'] = bias - - helper.append_op( - type='gru_unit', - inputs=inputs, - outputs={ - 'Gate': gate, - 'ResetHiddenPrev': reset_hidden_pre, - 'Hidden': updated_hidden, - }, - attrs={ - 'activation': 2, # tanh - 'gate_activation': 1, # sigmoid - 'origin_mode': origin_mode - }) - - return updated_hidden, reset_hidden_pre, gate - - @templatedoc() def linear_chain_crf(input, label, param_attr=None, length=None): """ @@ -2198,244 +1336,34 @@ def chunk_eval(input, num_correct_chunks) -@templatedoc() -def sequence_conv(input, - num_filters, - filter_size=3, - filter_stride=1, - padding=True, - padding_start=None, - bias_attr=None, - param_attr=None, - act=None, - name=None): +def softmax(input, use_cudnn=False, name=None, axis=-1): """ - **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use conv2d Op.(fluid.layers.** :ref:`api_fluid_layers_conv2d` ). + This operator implements the softmax layer. The calculation process is as follows: - This operator receives input sequences with variable length and other convolutional - configuration parameters(num_filters, filter_size) to apply the convolution operation. - It fills all-zero padding data on both sides of the sequence by default to ensure that - the output is the same length as the input. You can customize the padding behavior by - configuring the parameter :attr:`padding\_start` . + 1. The dimension :attr:`axis` of the ``input`` will be permuted to the last. - **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future. + 2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's + second dimension(row length) is the same as the dimension :attr:`axis` of the input + tensor, and the first dimension(column length) is the product of all other + dimensions of the input tensor. For each row of the matrix, the softmax operator + squashes the K-dimensional(K is the width of the matrix, which is also the size + of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a + K-dimensional vector of real values in the range [0, 1] that add up to 1. - .. code-block:: text + 3. After the softmax operation is completed, the inverse operations of steps 1 and 2 + are performed to restore the two-dimensional matrix to the same dimension as the ``input``. - Here we will illustrate the details of the padding operation: - For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps: - Assumed input (X) is a [4, N] float LoDTensor, and for the sake of simplicity, we assume N=2. - input.data = [[1, 1], - [2, 2], - [3, 3], - [4, 4]] + It computes the exponential of the given dimension and the sum of exponential + values of all the other dimensions in the K-dimensional vector input. + Then the ratio of the exponential of the given dimension and the sum of + exponential values of all the other dimensions is the output of the softmax + operator. - This is to say that input (X) has 4 words and the dimension of each word - representation is 2. + For each row :math:`i` and each column :math:`j` in the matrix, we have: - * Case1: + .. math:: - If padding_start is -1 and filter_size is 3. - The length of padding data is calculated as follows: - up_pad_len = max(0, -padding_start) = 1 - down_pad_len = max(0, filter_size + padding_start - 1) = 1 - - The output of the input sequence after padding is: - data_aftet_padding = [[0, 0, 1, 1, 2, 2], - [1, 1, 2, 2, 3, 3], - [2, 2, 3, 3, 0, 0], - [0, 0, 4, 4, 0, 0]] - - It will be multiplied by the filter weight to get the final output. - Assume num_filters = 3 - output.data = [[ 0.3234, -0.2334, 0.7433], - [ 0.5646, 0.9464, -0.1223], - [-0.1343, 0.5653, 0.4555], - [ 0.9954, -0.1234, -0.1234]] - output.shape = [4, 3] # 3 = num_filters - output.lod = [[0, 3, 4]] # Remain the same - - - Args: - input (Variable): LoDTensor with shape :math:`(M, K)`, where M is the total time-step of mini-batch - and K is hidden_size of input. Only lod_level of 1 is supported. The data type should be float32 or - float64. - num_filters (int): the number of filters. - filter_size (int): the height of filter. Specified filter width is not supported, the width is - hidden_size by default. Default: 3. - filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1. - padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the - future. Currently, it will always pad input to make sure the length of the output is - the same as input whether :attr:`padding` is set true or false. Because the length of - input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution - result to not be computed correctly. These padding data will not be trainable or updated - while trainnig. Default: True. - padding_start (int): It is used to indicate the start index for padding the input - sequence, which can be negative. The negative number means to pad - :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance. - The positive number means to skip :attr:`padding_start` time-steps of each instance, - and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data - at the end of the sequence to ensure that the output is the same length as the input. - If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled - on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data - is padded at the end of each input sequence. Default: None. - bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the - default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . - param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the - default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . - act (str): Activation to be applied to the output of this layer, such as tanh, softmax, - sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None. - name (str, optional): The default value is None. Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` . - - Returns: - Variable: LoDTensor with the same length as input. The data type is float32 or float64, which is same as input. - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - - x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1) - x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1) - """ - - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_conv', **locals()) - dtype = helper.input_dtype() - filter_shape = [filter_size * input.shape[1], num_filters] - filter_param = helper.create_parameter( - attr=helper.param_attr, shape=filter_shape, dtype=dtype) - pre_bias = helper.create_variable_for_type_inference(dtype) - if padding_start is None: - padding_start = -int(filter_size // 2) - - helper.append_op( - type='sequence_conv', - inputs={ - 'X': [input], - 'Filter': [filter_param], - }, - outputs={"Out": pre_bias}, - attrs={ - 'contextStride': filter_stride, - 'contextStart': padding_start, - 'contextLength': filter_size, - }) - pre_act = helper.append_bias_op(pre_bias) - return helper.append_activation(pre_act) - - -def sequence_softmax(input, use_cudnn=False, name=None): - """ - **Note**: - - **The input type of the OP must be LoDTensor. For Tensor, use:** :ref:`api_fluid_layers_softmax` - - A LoD-tensor can be regarded as several sequences, and this op apply softmax algo on each sequence. - The shape of input Tensor can be :math:`[N, 1]` or :math:`[N]`, where :math:`N` - is the sum of the length of all sequences. Recommended usage: :math:`[N]`. - - For i-th sequence in a mini-batch: - - .. math:: - - Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))} - - For example, for a LoD-Tensor with 6 sequences ([3, 2, 4, 1, 2, 3] - sequence length list in order), - the lod in the runtime is [[0, 3, 5, 9, 10, 12, 15]], - then softmax will be computed among :math:`X[0:3,:],X[3:5,:],X[5:9,:],X[9:10,:],X[10:12,:],X[12:15,:]`, - and :math:`N` turns out to be 15. - - .. code-block:: text - - *Case 1: - - Given: - input.data = [0.7, 1, 0.6, - 1.5, 1.1, - 1.2, 0.2, 0.6, 1.9, - 3.1, - 2.5, 0.8, - 0.1, 2.4, 1.3] - input.lod = [[0, 3, 5, 9, 10, 12, 15]] - then: - output.data = [0.30724832, 0.41474187, 0.2780098, - 0.59868765, 0.40131235, - 0.2544242, 0.09359743, 0.13963096, 0.5123474, - 1., - 0.84553474, 0.15446526, - 0.06995796, 0.69777346, 0.23226859] - output.lod = [[0, 3, 5, 9, 10, 12, 15]] - - - Args: - input (Variable):A LoDTensor with shape of :math:`[N, 1]` or :math:`[N]`, Recommended usage: :math:`[N]`. - Supported data types: float32, float64. - use_cudnn (bool, optional): Use cudnn kernel or not. Effective only when the cudnn version of the paddle - library is installed and GPU is used for training or reasoning. Default: False. - name (str, optional): The default value is None. Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` - - Returns: - Variable: A LoD-Tensor which has the same shape and data type with input. - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - x = fluid.data(name='x', shape=[7, 1], - dtype='float32', lod_level=1) - x_sequence_softmax_1 = fluid.layers.sequence_softmax(input=x) - - y = fluid.data(name='y', shape=[7], - dtype='float32', lod_level=1) - x_sequence_softmax_2 = fluid.layers.sequence_softmax(input=y) - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_softmax', **locals()) - dtype = helper.input_dtype() - softmax_out = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type="sequence_softmax", - inputs={"X": input}, - outputs={"Out": softmax_out}, - attrs={"use_cudnn": use_cudnn}) - return softmax_out - - -def softmax(input, use_cudnn=False, name=None, axis=-1): - """ - This operator implements the softmax layer. The calculation process is as follows: - - 1. The dimension :attr:`axis` of the ``input`` will be permuted to the last. - - 2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's - second dimension(row length) is the same as the dimension :attr:`axis` of the input - tensor, and the first dimension(column length) is the product of all other - dimensions of the input tensor. For each row of the matrix, the softmax operator - squashes the K-dimensional(K is the width of the matrix, which is also the size - of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a - K-dimensional vector of real values in the range [0, 1] that add up to 1. - - 3. After the softmax operation is completed, the inverse operations of steps 1 and 2 - are performed to restore the two-dimensional matrix to the same dimension as the ``input``. - - It computes the exponential of the given dimension and the sum of exponential - values of all the other dimensions in the K-dimensional vector input. - Then the ratio of the exponential of the given dimension and the sum of - exponential values of all the other dimensions is the output of the softmax - operator. - - For each row :math:`i` and each column :math:`j` in the matrix, we have: - - .. math:: - - Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])} + Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])} Example: @@ -3061,493 +1989,148 @@ def conv3d(input, return helper.append_activation(pre_act) -def sequence_pool(input, pool_type, is_test=False, pad_value=0.0): +@templatedoc() +def pool2d(input, + pool_size=-1, + pool_type="max", + pool_stride=1, + pool_padding=0, + global_pooling=False, + use_cudnn=True, + ceil_mode=False, + name=None, + exclusive=True, + data_format="NCHW"): """ - **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use pool2d Op.(fluid.layers.** :ref:`api_fluid_layers_pool2d` ). - - This operator only supports LoDTensor as input. It will apply specified pooling - operation on the input LoDTensor. It pools features of all time-steps of each - sequence at the last lod_level using :attr:`pool_type` mentioned in the parameters, - such as sum, average, sqrt, etc. - - It supports six pool_type: - - - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}` - - sum: :math:`Out[i] = \sum_jX_{ij}` - - sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}` - - max: :math:`Out[i] = max(X_i)` - - last: :math:`Out[i] = X_{N_i}` - - first: :math:`Out[i]` = X_0 - - where :math:`N_i` is the length of i-th input sequence. - - .. code-block:: text - - Case 1: - input is a 1-level LoDTensor and pad_value = 0.0: - input.lod = [[0, 2, 5, 7, 7]] - input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] - input.shape = [7, 1] - - output is LoDTensor: - out.shape = [4, 1] - with condition out.shape[0] == len(x.lod[-1]) == 4 - - for different pool_type: - average: out.data = [[2.], [4.], [3.], [0.0]], where 2.=(1. + 3.)/2, 4.=(2. + 4. + 6.)/3, 3.=(5. + 1.)/2 - sum : out.data = [[4.], [12.], [6.], [0.0]], where 4.=1. + 3., 12.=2. + 4. + 6., 6.=5. + 1. - sqrt : out.data = [[2.82], [6.93], [4.24], [0.0]], where 2.82=(1. + 3.)/sqrt(2), 6.93=(2. + 4. + 6.)/sqrt(3), 4.24=(5. + 1.)/sqrt(2) - max : out.data = [[3.], [6.], [5.], [0.0]], where 3.=max(1., 3.), 6.=max(2., 4., 6.), 5.=max(5., 1.) - last : out.data = [[3.], [6.], [1.], [0.0]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.) - first : out.data = [[1.], [2.], [5.], [0.0]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) - - and all above [0.0] at last of out.data is padding data. - - Case 2: - input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], - where 0 means empty sequence. - The first sequence contains 2 subsequence with length info [1, 2]; - The last sequence contains 3 subsequence with length info [1, 0, 3]. - input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] - input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] - input.shape = [7, 1] - - If pool_typ = sum, it will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 - output is LoDTensor: - out.shape= [5, 1] - out.lod = [[0, 2, 2, 5]] - where out.shape[0] == len(x.lod[-1]) == 5 - sum: out.data = [[1.], [5.], [4.], [0.0], [12.]] - where 1.=1., 5.=3. + 2., 4.=4., 0.0=pad_value, 12.=6. + 5. + 1. + ${comment} Args: - input (variable): LoDTensor with lod_level no more than 2. The data type should be float32. - pool_type (str): The pooling type that supports average, sum, sqrt, max, last or first. - is_test (bool): Only works when :attr:`pool_type` is max. If set False, a temporary Tenosr maxIndex is - created to record the index information corresponding to the maximum value, which is used for backward - gradient calculation in the training phase. Default: False. - pad_value (float): Used to pad the pooling result for empty input sequence. Default: 0.0 + input (Variable): The input tensor of pooling operator which is a 4-D tensor with + shape [N, C, H, W]. The format of input tensor is `"NCHW"` or + `"NHWC"`, where `N` is batch size, `C` is the number of channels, + `H` is the height of the feature, and `W` is the width of the + feature. The data type if float32 or float64. + pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, + it must contain two integers, (pool_size_Height, pool_size_Width). + Otherwise, the pool kernel size will be a square of an int. + pool_type: ${pooling_type_comment} + pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list, + it must contain two integers, (pool_stride_Height, pool_stride_Width). + Otherwise, the pool stride size will be a square of an int. + pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or + 'SAME' which is the padding algorithm. If pool padding size is a tuple or list, + it could be in three forms: `[pad_height, pad_width]` or + `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`, + `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. + when `data_format` is `"NHWC"`, `pool_padding` can be in the form + `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. + Otherwise, the pool padding size will be a square of an int. + global_pooling (bool): ${global_pooling_comment} + use_cudnn (bool): ${use_cudnn_comment} + ceil_mode (bool): ${ceil_mode_comment} + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + exclusive (bool): Whether to exclude padding points in average pooling + mode, default is `true`. + data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`. + The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: + `[batch_size, input_channels, input_height, input_width]`. Returns: - Variable: LoDTensor after pooling with data type float32. + Variable: The output tensor of pooling result. The data type is same as input tensor. + + Raises: + ValueError: If `pool_type` is not "max" nor "avg". + ValueError: If `global_pooling` is False and `pool_size` is -1. + TypeError: If `use_cudnn` is not a bool value. + ValueError: If `data_format` is not "NCHW" or "NHWC". + ValueError: If `pool_padding` is a string, but not "SAME" or "VALID". + ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True. + ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero. + ShapeError: If the input is not a 4-D or 5-D Tensor. + ShapeError: If the dimension of input minus the size of `pool_stride` is not 2. + ShapeError: If the size of `pool_size` and `pool_stride` is not equal. + ShapeError: If the output's shape calculated is not greater than 0. + Examples: .. code-block:: python - import paddle.fluid as fluid + import paddle.fluid as fluid - x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) - avg_x = fluid.layers.sequence_pool(input=x, pool_type='average') - sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum') - sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt') - max_x = fluid.layers.sequence_pool(input=x, pool_type='max') - last_x = fluid.layers.sequence_pool(input=x, pool_type='last') - first_x = fluid.layers.sequence_pool(input=x, pool_type='first') - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_pool', **locals()) - dtype = helper.input_dtype() - pool_out = helper.create_variable_for_type_inference(dtype) - max_index = helper.create_variable_for_type_inference(dtype) + data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32') - helper.append_op( - type="sequence_pool", - inputs={"X": input}, - outputs={"Out": pool_out, - "MaxIndex": max_index}, - attrs={ - "pooltype": pool_type.upper(), - "is_test": is_test, - "pad_value": pad_value - }) + # max pool2d + pool2d = fluid.layers.pool2d( + input = data, + pool_size = 2, + pool_type = "max", + pool_stride = 1, + global_pooling=False) - # when pool_type is max, variable max_index is initialized, - # so we stop the gradient explicitly here - if pool_type == 'max': - max_index.stop_gradient = True + # average pool2d + pool2d = fluid.layers.pool2d( + input = data, + pool_size = 2, + pool_type = "avg", + pool_stride = 1, + global_pooling=False) - return pool_out + # global average pool2d + pool2d = fluid.layers.pool2d( + input = data, + pool_size = 2, + pool_type = "avg", + pool_stride = 1, + global_pooling=True) + # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW". + out_1 = fluid.layers.pool2d( + input = data, + pool_size = 3, + pool_type = "avg", + pool_stride = 1, + pool_padding = [1, 2, 1, 0], + data_format = "NCHW") -@templatedoc() -def sequence_concat(input, name=None): + # Attr(pool_padding) is a string, Attr(data_format) is "NCHW". + out_2 = fluid.layers.pool2d( + input = data, + pool_size = 3, + pool_type = "avg", + pool_stride = 1, + pool_padding = "VALID", + data_format = "NCHW") """ - **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use concat Op.(fluid.layers.** :ref:`api_fluid_layers_concat` ). + if pool_type not in ["max", "avg"]: + raise ValueError( + "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.", + str(pool_type)) - This operator only supports LoDTensor as input. It concatenates the multiple LoDTensor from input by the LoD information, - and outputs the concatenated LoDTensor. + if global_pooling is False and pool_size == -1: + raise ValueError( + "When Attr(global_pooling) is False, Attr(pool_size) must be passed " + "and be a valid value. Received pool_size: %s." % str(pool_size)) - .. code-block:: text + if not isinstance(use_cudnn, bool): + raise TypeError("Attr(use_cudnn) should be True or False. Received " + "Attr(use_cudnn): %s." % str(use_cudnn)) - input is a list of LoDTensor: - input = [x1, x2] - where: - x1.lod = [[0, 3, 5]] - x1.data = [[1], [2], [3], [4], [5]] - x1.shape = [5, 1] + if data_format not in ["NCHW", "NHWC"]: + raise ValueError( + "Attr(data_format) should be 'NCHW' or 'NHWC'. Received " + "Attr(data_format): %s." % str(data_format)) - x2.lod = [[0, 2, 4]] - x2.data = [[6], [7], [8], [9]] - x2.shape = [4, 1] - and should satisfy: len(x1.lod[0]) == len(x2.lod[0]) + pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') + pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride') - output is LoDTensor: - out.lod = [[0, 3+2, 5+4]] - out.data = [[1], [2], [3], [6], [7], [4], [5], [8], [9]] - out.shape = [9, 1] - - Args: - input(list of Variable): List of LoDTensor to be concatenated. The length of each LoDTensor should be same. - The data type can be float32, float64 or int64. - name(str, optional): The default value is None. Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` . - - Returns: - Variable: Output the concatenated LoDTensor. The data type is same as input. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1) - y = fluid.data(name='y', shape=[-1, 10], dtype='float32', lod_level=1) - out = fluid.layers.sequence_concat(input=[x, y]) - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_concat', **locals()) - out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) - helper.append_op( - type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]}) - return out - - -def sequence_first_step(input): - """ - This operator only supports LoDTensor as input. Given the input LoDTensor, it will - select first time-step feature of each sequence as output. - - .. code-block:: text - - Case 1: - input is 1-level LoDTensor: - input.lod = [[0, 2, 5, 7]] - input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] - input.shape = [7, 1] - - output is a LoDTensor: - out.shape = [3, 1] - out.shape[0] == len(x.lod[-1]) == 3 - out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) - - Case 2: - input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], - where 0 means empty sequence. - The first sequence contains 2 subsequence with length info [1, 2]; - The last sequence contains 3 subsequence with length info [1, 0, 3]. - input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] - input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] - input.shape = [7, 1] - - It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 - output is a LoDTensor: - out.shape= [5, 1] - out.lod = [[0, 2, 2, 5]] - out.shape[0] == len(x.lod[-1]) == 5 - out.data = [[1.], [3.], [4.], [0.0], [6.]] - where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.) - - Args: - input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32. - - Returns: - Variable: LoDTensor consist of the sequence's first step vector. The data type is float32. - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) - x_first_step = fluid.layers.sequence_first_step(input=x) - """ - return sequence_pool(input=input, pool_type="first") - - -def sequence_last_step(input): - """ - This operator only supports LoDTensor as input. Given the input LoDTensor, it will - select last time-step feature of each sequence as output. - - .. code-block:: text - - Case 1: - input is 1-level LoDTensor: - input.lod = [[0, 2, 5, 7]] - input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] - input.shape = [7, 1] - - output is a LoDTensor: - out.shape = [3, 1] - out.shape[0] == len(x.lod[-1]) == 3 - out.data = [[3.], [6.], [1.]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.) - - Case 2: - input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], - where 0 means empty sequence. - The first sequence contains 2 subsequence with length info [1, 2]; - The last sequence contains 3 subsequence with length info [1, 0, 3]. - input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] - input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] - input.shape = [7, 1] - - It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 - output is a LoDTensor: - out.shape= [5, 1] - out.lod = [[0, 2, 2, 5]] - out.shape[0] == len(x.lod[-1]) == 5 - out.data = [[1.], [2.], [4.], [0.0], [1.]] - where 1.=last(1.), 2.=last(3., 2.), 4.=last(4.), 0.0 = pad_value, 1=last(6., 5., 1.) - - - Args: - input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32. - - Returns: - Variable: LoDTensor consist of the sequence's last step vector. The data type is float32. - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) - x_last_step = fluid.layers.sequence_last_step(input=x) - """ - return sequence_pool(input=input, pool_type="last") - - -def sequence_slice(input, offset, length, name=None): - """ - **Sequence Slice Layer** - - The layer crops a subsequence from given sequence with given start - offset and subsequence length. - - It only supports sequence data (LoDTensor with lod_level equal to 1). - - .. code-block:: text - - - Case: - - Given the input Variable **input**: - - input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]], - input.lod = [[3, 2]], - input.dims = (5, 2), - - with offset.data = [[0], [1]] and length.data = [[2], [1]], - - the output Variable will be - - out.data = [[a1, a2], [b1, b2], [e1, e2]], - out.lod = [[2, 1]], - out.dims = (3, 2). - - Note: - The first dimension size of **input**, **offset** and **length** - should be equal. The **offset** should start from 0. - - Args: - input(Variable): LoDTensor, The input Variable which consists of the complete - sequences.The data type is float32 or float64. - offset(Variable): LoDTensor, The offset to slice each sequence.The data - type is int32 or int64. - length(Variable): LoDTensor, The length of each subsequence.The data - type is int32 or int64. - name(str|None): The default value is None. Normally there is no need - for user to set this property. For more information, - please refer to :ref:`api_guide_Name` - - Returns: - Variable: The output subsequences. - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - import numpy as np - seqs = fluid.data(name='x', shape=[10, 5], - dtype='float32', lod_level=1) - offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32")) - length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32")) - subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, - length=length) - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper("sequence_slice", **locals()) - dtype = helper.input_dtype() - out = helper.create_variable_for_type_inference(dtype) - - offset.stop_gradient = True - length.stop_gradient = True - - helper.append_op( - type="sequence_slice", - inputs={"X": input, - "Offset": offset, - "Length": length}, - outputs={"Out": out}) - - return out - - -@templatedoc() -def pool2d(input, - pool_size=-1, - pool_type="max", - pool_stride=1, - pool_padding=0, - global_pooling=False, - use_cudnn=True, - ceil_mode=False, - name=None, - exclusive=True, - data_format="NCHW"): - """ - ${comment} - - Args: - input (Variable): The input tensor of pooling operator which is a 4-D tensor with - shape [N, C, H, W]. The format of input tensor is `"NCHW"` or - `"NHWC"`, where `N` is batch size, `C` is the number of channels, - `H` is the height of the feature, and `W` is the width of the - feature. The data type if float32 or float64. - pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, - it must contain two integers, (pool_size_Height, pool_size_Width). - Otherwise, the pool kernel size will be a square of an int. - pool_type: ${pooling_type_comment} - pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list, - it must contain two integers, (pool_stride_Height, pool_stride_Width). - Otherwise, the pool stride size will be a square of an int. - pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or - 'SAME' which is the padding algorithm. If pool padding size is a tuple or list, - it could be in three forms: `[pad_height, pad_width]` or - `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`, - `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. - when `data_format` is `"NHWC"`, `pool_padding` can be in the form - `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. - Otherwise, the pool padding size will be a square of an int. - global_pooling (bool): ${global_pooling_comment} - use_cudnn (bool): ${use_cudnn_comment} - ceil_mode (bool): ${ceil_mode_comment} - name(str, optional): For detailed information, please refer - to :ref:`api_guide_Name`. Usually name is no need to set and - None by default. - exclusive (bool): Whether to exclude padding points in average pooling - mode, default is `true`. - data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`. - The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: - `[batch_size, input_channels, input_height, input_width]`. - - Returns: - Variable: The output tensor of pooling result. The data type is same as input tensor. - - Raises: - ValueError: If `pool_type` is not "max" nor "avg". - ValueError: If `global_pooling` is False and `pool_size` is -1. - TypeError: If `use_cudnn` is not a bool value. - ValueError: If `data_format` is not "NCHW" or "NHWC". - ValueError: If `pool_padding` is a string, but not "SAME" or "VALID". - ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True. - ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero. - ShapeError: If the input is not a 4-D or 5-D Tensor. - ShapeError: If the dimension of input minus the size of `pool_stride` is not 2. - ShapeError: If the size of `pool_size` and `pool_stride` is not equal. - ShapeError: If the output's shape calculated is not greater than 0. - - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - - data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32') - - # max pool2d - pool2d = fluid.layers.pool2d( - input = data, - pool_size = 2, - pool_type = "max", - pool_stride = 1, - global_pooling=False) - - # average pool2d - pool2d = fluid.layers.pool2d( - input = data, - pool_size = 2, - pool_type = "avg", - pool_stride = 1, - global_pooling=False) - - # global average pool2d - pool2d = fluid.layers.pool2d( - input = data, - pool_size = 2, - pool_type = "avg", - pool_stride = 1, - global_pooling=True) - - # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW". - out_1 = fluid.layers.pool2d( - input = data, - pool_size = 3, - pool_type = "avg", - pool_stride = 1, - pool_padding = [1, 2, 1, 0], - data_format = "NCHW") - - # Attr(pool_padding) is a string, Attr(data_format) is "NCHW". - out_2 = fluid.layers.pool2d( - input = data, - pool_size = 3, - pool_type = "avg", - pool_stride = 1, - pool_padding = "VALID", - data_format = "NCHW") - """ - if pool_type not in ["max", "avg"]: - raise ValueError( - "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.", - str(pool_type)) - - if global_pooling is False and pool_size == -1: - raise ValueError( - "When Attr(global_pooling) is False, Attr(pool_size) must be passed " - "and be a valid value. Received pool_size: %s." % str(pool_size)) - - if not isinstance(use_cudnn, bool): - raise TypeError("Attr(use_cudnn) should be True or False. Received " - "Attr(use_cudnn): %s." % str(use_cudnn)) - - if data_format not in ["NCHW", "NHWC"]: - raise ValueError( - "Attr(data_format) should be 'NCHW' or 'NHWC'. Received " - "Attr(data_format): %s." % str(data_format)) - - pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') - pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride') - - def update_padding(padding, data_format): - def is_list_or_tuple(ele): - if isinstance(ele, list) or isinstance(ele, tuple): - return True - return False + def update_padding(padding, data_format): + def is_list_or_tuple(ele): + if isinstance(ele, list) or isinstance(ele, tuple): + return True + return False if is_list_or_tuple(padding) and len(padding) == 4: if is_list_or_tuple(padding[0]) and (data_format == "NCHW"): @@ -5383,868 +3966,93 @@ def conv3d_transpose(input, raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) - padding = padding[1:4] - padding = [ele for a_list in padding for ele in a_list] - padding = utils.convert_to_list(padding, 6, 'padding') - - elif is_list_or_tuple(padding) and len(padding) == 6: - padding = utils.convert_to_list(padding, 6, 'padding') - - else: - padding = utils.convert_to_list(padding, 3, 'padding') - padding = [ - padding[0], padding[0], padding[1], padding[1], padding[2], - padding[2] - ] - return padding - - padding_algorithm = "EXPLICIT" - if isinstance(padding, str): - padding = padding.upper() - if padding not in ["SAME", "VALID"]: - raise ValueError( - "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % - str(padding)) - if padding == "VALID": - padding_algorithm = "VALID" - padding = [0, 0, 0, 0, 0, 0] - elif padding == "SAME": - padding_algorithm = "SAME" - padding = [0, 0, 0, 0, 0, 0] - - padding = _update_padding(padding, data_format) - - if filter_size is None: - if output_size is None: - raise ValueError("output_size must be set when filter_size is None") - if isinstance(output_size, int): - output_size = [output_size, output_size] - - d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1] - h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2] - w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3] - - filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] + - padding[1] - 1) // dilation[0] + 1 - filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] + - padding[3] - 1) // dilation[1] + 1 - filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] + - padding[5] - 1) // dilation[2] + 1 - filter_size = [filter_size_d, filter_size_h, filter_size_w] - else: - filter_size = utils.convert_to_list(filter_size, 3, - 'conv3d_transpose.filter_size') - - if len(padding) == 6 and utils._is_symmetric_padding(padding, 3): - padding = [padding[0], padding[2], padding[4]] - - groups = 1 if groups is None else groups - filter_shape = [input_channel, num_filters // groups] + filter_size - img_filter = helper.create_parameter( - dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) - - if data_format == 'NCDHW': - data_format = 'NCHW' - if data_format == 'NDHWC': - data_format = 'NHWC' - - pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) - helper.append_op( - type=l_type, - inputs={'Input': [input], - 'Filter': [img_filter]}, - outputs={'Output': pre_bias}, - attrs={ - 'strides': stride, - 'paddings': padding, - 'padding_algorithm': padding_algorithm, - 'dilations': dilation, - 'groups': groups, - 'use_cudnn': use_cudnn, - 'data_format': data_format - }) - - if data_format == 'NCHW': - pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) - else: - pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5) - out = helper.append_activation(pre_act) - return out - - -def sequence_expand(x, y, ref_level=-1, name=None): - """Sequence Expand Layer. This layer will expand the input variable ``x`` \ - according to specified level ``ref_level`` lod of ``y``. Please note that \ - the lod level of ``x`` is at most 1. If the lod level of ``x`` is 1, than \ - the size of lod of ``x`` must be equal to the length of ``ref_level`` lod \ - of ``y``. If the lod level of ``x`` is 0, then the first dim of ``x`` should \ - be equal to the size of ``ref_level`` of ``y``. The rank of **x** is at least 2. \ - When rank of ``x`` is greater than 2, then it would be viewed as a 2-D tensor. - - Please note that the input ``x`` should be LodTensor or Tensor, \ - and input ``y`` must be LodTensor. - - Following examples will explain how sequence_expand works: - - .. code-block:: text - - Case 1 - - Consider 2 sequences [a][b] and [c][d], now we want to expand them to [a][b], [a][b], [c][d] and [c][d]. - Sequence [a][b] expand twice and [c][d] expands twice, so the lod which according to is [2, 2]. - - Input x is a 1-level LoDTensor: - x.lod = [[2, 2]] #lod based on length may be easier to understand - x.data = [[a], [b], [c], [d]] - x.dims = [4, 1] - - input y is a LoDTensor: - y.lod = [[2, 2], #the 0th level lod, according to this level - [3, 3, 1, 1]] #the 1st level lod, it has nothing to do with this level - - ref_level: 0 - - then output is a 1-level LoDTensor out: - out.lod = [[2, 2, 2, 2]] #lod based on offfset - out.data = [[a], [b], [a], [b], [c], [d], [c], [d]] - out.dims = [8, 1] - - - Case 2 - - Consider 3 sequences [a], [b], [c], now we want to expand them to [a][a], [c][c][c]. - It's obvious that the lod info of expanded sequences is [2, 0, 3]. - - x is a Tensor: - x.data = [[a], [b], [c]] - x.dims = [3, 1] - - y is a LoDTensor: - y.lod = [[2, 0, 3]] - - ref_level: -1 - - then output is a 1-level LodTensor: - out.data = [[a], [a], [c], [c], [c]] - out.dims = [5, 1] - - Args: - x (Variable): The input variable which is a Tensor or LoDTensor, with the \ - dims ``[M, K]``. The lod level is at most 1. The data type should be \ - float32, float64, int8, int32 or int64. - y (Variable): The input variable which is a LoDTensor, the lod level is \ - at least 1. - ref_level (int): Lod level of ``y`` to be referred by ``x``. If set to -1, \ - refer the last level of lod. - name(str, optional): For detailed information, please refer \ - to :ref:`api_guide_Name`. Usually name is no need to set and \ - None by default. - - Returns: The expanded variable which is a LoDTensor, with dims ``[N, K]``. \ - ``N`` depends on the lod info of ``x`` and ``y``. \ - The data type is same as input. - - Return Type: Variable - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import paddle.fluid.layers as layers - import numpy as np - - x = fluid.data(name='x', shape=[4, 1], dtype='float32') - y = fluid.data(name='y', shape=[8, 1], - dtype='float32', lod_level=1) - out = layers.sequence_expand(x=x, y=y, ref_level=0) - - exe = fluid.Executor(fluid.CPUPlace()) - place = fluid.CPUPlace() - - np_data = np.array([[1], [2], [3], [4]]).astype('float32') - x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place) - print(x_lod_tensor) - #lod: [[0, 2, 4]] - # dim: 4, 1 - # layout: NCHW - # dtype: float - # data: [1 2 3 4] - - np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32') - y_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2], [3,3,1,1]], place) - print(y_lod_tensor) - #lod: [[0, 2, 4][0, 3, 6, 7, 8]] - # dim: 8, 1 - # layout: NCHW - # dtype: int64_t - # data: [0 0 1 1 1 1 1 0] - - out_main = exe.run(fluid.default_main_program(), - feed={'x': x_lod_tensor, 'y': y_lod_tensor}, - fetch_list=[out], return_numpy=False) - print(out_main[0]) - #lod: [[0, 2, 4, 6, 8]] - # dim: 8, 1 - # layout: NCHW - # dtype: float - # data: [1 2 1 2 3 4 3 4] - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_expand', input=x, **locals()) - dtype = helper.input_dtype() - tmp = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type='sequence_expand', - inputs={'X': x, - 'Y': y}, - outputs={'Out': tmp}, - attrs={'ref_level': ref_level}) - return tmp - - -def sequence_expand_as(x, y, name=None): - """Sequence Expand As Layer. This OP will expand the input variable ``x`` \ - according to the zeroth level lod of ``y``. Current implementation requires \ - the level number of ``y``'s lod must be 1, and the first dimension of \ - ``x`` should be equal to the size of ``y``'s zeroth level lod, thus \ - the expanded LodTensor has the same lod info as ``y``. The expanded result \ - has nothing to do with ``x``'s lod, so the lod of Input(X) is not considered. - - Please note that the input ``x`` should be LodTensor or Tensor, \ - and input ``y`` must be LodTensor. - - Following examples will explain how sequence_expand_as works: - - .. code-block:: text - - Case 1: - - Consider 4 sequences [a], [b], [c], [d], now we want to expand them to [a][a][a], [b][b][b], [c] and [d]. - It's obvious that the lod info of expanded sequences is [0, 3, 6, 7, 8]. - Given a 1-level LodTensor ``x``: - x.data = [[a], [b], [c], [d]] - x.dims = [4, 1] - and input ``y`` - y.lod = [[3, 3, 1, 1]] #lod based on length may be easier to understand - - then we get 1-level LoDTensor out: - Out.lod = [[0, 3, 6, 7, 8]] #based on offset - Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]] - Out.dims = [8, 1] - - - Case 2: - - Given a common Tensor ``x``: - x.data = [[a, b], [c, d], [e, f]] - x.dims = [3, 2] - and input ``y``: - y.lod = [[0, 2, 3, 6]] - - then we get a 1-level LoDTensor: - out.lod = [[0, 2, 3, 6]] - out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]] - out.dims = [6, 2] - - Args: - x (Variable): The input variable which is a Tensor or LoDTensor, with the \ - dims ``[M, K]``. The data type should be float32, float64, int8, int32 \ - or int64. - y (Variable): The input variable which is a LoDTensor with 1-level lod. - name (str, optional): For detailed information, please refer \ - to :ref:`api_guide_Name`. Usually name is no need to set and \ - None by default. - - Returns: The expanded variable which is a LoDTensor with the dims ``[N, K]``. \ - ``N`` depends on the lod of ``y``, and the lod level must be 1. \ - The data type is same as input. - - Return Type: Variable - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import paddle.fluid.layers as layers - import numpy as np - - x = fluid.data(name='x', shape=[4, 1], dtype='float32') - y = fluid.data(name='y', shape=[8, 1], dtype='float32', lod_level=1) - out = layers.sequence_expand_as(x=x, y=y) - - exe = fluid.Executor(fluid.CPUPlace()) - place = fluid.CPUPlace() - - np_data = np.array([[1], [2], [3], [4]]).astype('float32') - x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place) - print(x_lod_tensor) - #lod: [[0, 2, 4]] - # dim: 4, 1 - # layout: NCHW - # dtype: float - # data: [1 2 3 4] - - np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32') - y_lod_tensor = fluid.create_lod_tensor(np_data, [[3,3,1,1]], place) - print(y_lod_tensor) - #lod: [[0, 3, 6, 7, 8]] - # dim: 8, 1 - # layout: NCHW - # dtype: int64_t - # data: [0 0 1 0 1 1 1 0] - - out_main = exe.run(fluid.default_main_program(), - feed={'x': x_lod_tensor, 'y': y_lod_tensor}, - fetch_list=[out], return_numpy=False) - print(out_main[0]) - #lod: [[0, 3, 6, 7, 8]] - # dim: 8, 1 - # layout: NCHW - # dtype: float - # data: [1 1 1 2 2 2 3 4] - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_expand_as', input=x, **locals()) - dtype = helper.input_dtype() - tmp = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type='sequence_expand_as', - inputs={'X': x, - 'Y': y}, - outputs={'Out': tmp}) - return tmp - - -def sequence_pad(x, pad_value, maxlen=None, name=None): - """ - This layer padding the sequences in a same batch to a common length (according \ - to ``maxlen``). The padding value is defined by ``pad_value``, and will be \ - appended to the tail of sequences. The result is a Python tuple ``(Out, Length)``: \ - the LodTensor ``Out`` is the padded sequences, and LodTensor ``Length`` is \ - the length information of input sequences. For removing paddding data (unpadding \ - operation), See :ref:`api_fluid_layers_sequence_unpad` . - - Please note that the input ``x`` should be LodTensor. - - .. code-block:: text - - Case 1: - Given input 1-level LoDTensor x: - x.lod = [[0, 2, 5]] - x.data = [[a],[b],[c],[d],[e]] - pad_value: - pad_value.data = [0] - maxlen = 4 - - the output tuple (Out, Length): - Out.data = [[[a],[b],[0],[0]],[[c],[d],[e],[0]]] - Length.data = [2, 3] #Original sequences length - - Case 2: - Given input 1-level LoDTensor x: - x.lod = [[0, 2, 5]] - x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]] - pad_value: - pad_value.data = [0] - defualt maxlen = None, (the virtual value is 3, according to the shape of x) - - the output tuple (Out, Length): - Out.data = [[[a1,a2],[b1,b2],[0,0]],[[c1,c2],[d1,d2],[e1,e2]]] - Length.data = [2, 3] - - Case 3: - Given input 1-level LoDTensor x: - x.lod = [[0, 2, 5]] - x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]] - pad_value: - pad_value.data = [p1,p2] - defualt maxlen = None, (the virtual value is 3) - - get tuple (Out, Length): - Out.data = [[[a1,a2],[b1,b2],[p1,p2]],[[c1,c2],[d1,d2],[e1,e2]]] - Length.data = [2, 3] - - - - Args: - x (Variable): Input 1-level LodTensor with dims ``[M, K]``. The batch \ - size is described by lod infor (the number of sequnces ). \ - The data type should be float32, float64, int8, int32 or int64. - pad_value (Variable): Padding value. It can be a scalar or a 1D tensor \ - with length ``K``. If it's a scalar, it will be automatically broadcasted \ - to a Tensor. The data type should be as same as ``x``. - maxlen (int, optional): The length of padded sequences, None by default. \ - When it is None, all sequences will be padded up to the length of the \ - longest one among them; when it a certain positive value, it must be \ - greater than the length of the longest original sequence. - name (str, optional): For detailed information, please refer \ - to :ref:`api_guide_Name`. Usually name is no need to set and \ - None by default. - - Returns: A Python tuple (Out, Length): the 1st is a 0 level LodTensor \ - ``Out``, with the shape ``[batch_size, maxlen, K]``; the second is the original \ - sequences length infor ``Length``, which should be a 0-level 1D LodTensor. \ - The size of ``Length`` is equal to batch size, and the data type is int64. - - Return Type: tuple - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import numpy - - x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1) - pad_value = fluid.layers.assign( - input=numpy.array([0.0], dtype=numpy.float32)) - out = fluid.layers.sequence_pad(x=x, pad_value=pad_value) - """ - - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_pad', input=x, **locals()) - dtype = helper.input_dtype() - out = helper.create_variable_for_type_inference(dtype) - length = helper.create_variable_for_type_inference(dtype) - - pad_value.stop_gradient = True - length.stop_gradient = True - - if maxlen is None: - maxlen = -1 - helper.append_op( - type='sequence_pad', - inputs={'X': x, - 'PadValue': pad_value}, - outputs={'Out': out, - 'Length': length}, - attrs={'padded_length': maxlen}) - return out, length - - -def sequence_unpad(x, length, name=None): - """ - **Note**: - - **The input of the OP is Tensor and the output is LoDTensor. For padding operation, See:** :ref:`api_fluid_layers_sequence_pad` - - The OP removes the padding data from the input based on the length information and returns a LoDTensor. - - .. code-block:: text - - Case 1: - - Given input Variable **x**: - x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0], - [ 6.0, 7.0, 8.0, 9.0, 10.0], - [11.0, 12.0, 13.0, 14.0, 15.0]], - - in which there are 3 sequences padded to length 5, and the acutal length - specified by input Variable **length**: - - length.data = [2, 3, 4], - - after unpadding, the output Variable will be: - - out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]] - out.lod = [[0, 2, 5, 9]] - - Args: - x(Variable): A Tensor which contains padding data, and its shape size can not be less than 2. - Supported data types: float32, float64, int32, int64. - length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor - has the same shape with the 0th dimension of the X . Supported data types: int64. - name(str|None): The default value is None. Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` - - Returns: - Variable: A LoDTensor whose recursive sequence length is consistent with the information of the length parameter and it has the same data type with input. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import numpy - - # pad data - x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1) - pad_value = fluid.layers.assign(input=numpy.array([0.0], dtype=numpy.float32)) - pad_data, len = fluid.layers.sequence_pad(x=x, pad_value=pad_value) - - # unpad data - unpad_data = fluid.layers.sequence_unpad(x=pad_data, length=len) - """ - - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_unpad', input=x, **locals()) - dtype = helper.input_dtype() - out = helper.create_variable_for_type_inference(dtype) - - length.stop_gradient = True - - helper.append_op( - type='sequence_unpad', - inputs={'X': x, - 'Length': length}, - outputs={'Out': out}) - return out - - -def beam_search(pre_ids, - pre_scores, - ids, - scores, - beam_size, - end_id, - level=0, - is_accumulated=True, - name=None, - return_parent_idx=False): - """ - Beam search is a classical algorithm for selecting candidate words in a - machine translation task. - - Refer to `Beam search `_ - for more details. - - **This operator only supports LoDTensor.** It is used after finishing - scores calculation to perform beam search for one time step. Specifically, - after ``ids`` and ``scores`` have been produced, it selects the top-K - ( `k` is ``beam_size`` ) candidate word ids of current step from ``ids`` - according to the correspongding ``scores``. Additionally, ``pre_id`` and - ``pre_scores`` are the output of `beam_search` at previous step, they - are needed for special use to handle ended candidate translations. - - Note that if ``is_accumulated`` is True, the ``scores`` passed in should - be accumulated scores. Otherwise, the ``scores`` are - considered as the probabilities of single step and would be transformed to - the log field and added up with ``pre_scores`` for final scores in this - operator. Length penalty should be done with extra operators before calculating - the accumulated scores if needed. - - Please see the following demo for a fully beam search usage example: - - fluid/tests/book/test_machine_translation.py - - Args: - pre_ids(Variable): A LodTensor variable (lod level is 2), representing - the selected ids of previous step. It is the output of beam_search - at previous step. Its shape is `[batch_size, 1]` and its lod is - `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the - first step. The data type should be int64. - pre_scores(Variable): A LodTensor variable has the same shape and lod - with ``pre_ids`` , representing the accumulated scores corresponding - to the selected ids of previous step. It is the output of - beam_search at previous step. The data type should be float32. - ids(Variable|None): A LodTensor variable containing the candidates ids. - It has the same lod with ``pre_ids`` and its shape should be - `[batch_size * beam_size, K]`, where `K` supposed to be greater than - ``beam_size`` and the first dimension size (decrease as samples reach - to the end) should be same as that of ``pre_ids`` . The data type - should be int64. It can be None, which use indice in ``scores`` as - ids. - scores(Variable): A LodTensor variable containing the accumulated - scores corresponding to ``ids`` . Both its shape and lod are same as - thoes of ``ids`` . The data type should be float32. - beam_size(int): The beam width used in beam search. - end_id(int): The id of end token. - level(int): **It can be ignored and mustn't change currently.** - The 2 level lod used in this operator has the following - meaning: The first level describes how many beams each sample has, - which would change to 0 when beams of the sample all end (batch reduce); - The second level describes how many times each beam is selected. - Default 0, which shouldn't be changed currently. - is_accumulated(bool): Whether the input ``score`` is accumulated scores. - Default True. - name(str, optional): For detailed information, please refer - to :ref:`api_guide_Name`. Usually name is no need to set and - None by default. - return_parent_idx(bool, optional): Whether to return an extra Tensor variable - in output, which stores the selected ids' parent indice in - ``pre_ids`` and can be used to update RNN's states by gather operator. - Default False. - - Returns: - tuple: The tuple contains two or three LodTensor variables. The two LodTensor, \ - representing the selected ids and the corresponding accumulated scores of \ - current step, have the same shape `[batch_size, beam_size]` and lod with 2 levels, \ - and have data types int64 and float32. If ``return_parent_idx`` is True, \ - an extra Tensor variable preserving the selected ids' parent indice \ - is included, whose shape is `[batch_size * beam_size]` and data type \ - is int64. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - - # Suppose `probs` contains predicted results from the computation - # cell and `pre_ids` and `pre_scores` is the output of beam_search - # at previous step. - beam_size = 4 - end_id = 1 - pre_ids = fluid.data( - name='pre_id', shape=[None, 1], lod_level=2, dtype='int64') - pre_scores = fluid.data( - name='pre_scores', shape=[None, 1], lod_level=2, dtype='float32') - probs = fluid.data( - name='probs', shape=[None, 10000], dtype='float32') - topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size) - accu_scores = fluid.layers.elementwise_add( - x=fluid.layers.log(x=topk_scores), - y=fluid.layers.reshape(pre_scores, shape=[-1]), - axis=0) - selected_ids, selected_scores = fluid.layers.beam_search( - pre_ids=pre_ids, - pre_scores=pre_scores, - ids=topk_indices, - scores=accu_scores, - beam_size=beam_size, - end_id=end_id) - """ - helper = LayerHelper('beam_search', **locals()) - score_type = pre_scores.dtype - id_type = pre_ids.dtype - - inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores} - if ids is not None: - inputs["ids"] = ids - - selected_scores = helper.create_variable_for_type_inference( - dtype=score_type) - selected_ids = helper.create_variable_for_type_inference(dtype=id_type) - # parent_idx is a tensor used to gather cell states at the next time - # step. Though lod in selected_ids can also be used to gather by - # sequence_expand, it is not efficient. - # gather_op's index input only supports int32 dtype currently - parent_idx = helper.create_variable_for_type_inference(dtype="int32") - - helper.append_op( - type='beam_search', - inputs=inputs, - outputs={ - 'selected_ids': selected_ids, - 'selected_scores': selected_scores, - 'parent_idx': parent_idx - }, - attrs={ - # TODO(ChunweiYan) to assure other value support - 'level': level, - 'beam_size': beam_size, - 'end_id': end_id, - 'is_accumulated': is_accumulated, - }) - if return_parent_idx: - return selected_ids, selected_scores, parent_idx - else: - return selected_ids, selected_scores - - -def beam_search_decode(ids, scores, beam_size, end_id, name=None): - """ - This operator is used after beam search has completed. It constructs the - full predicted sequences for each sample by walking back along the search - paths stored in lod of ``ids`` . The result sequences are stored in a - LoDTensor, which uses the following way to parse: - - .. code-block:: text - - If lod = [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]] - - The first level of lod stands for: There are 2 samples each having 3 - (beam width) predicted sequence. - - The second level of lod stands for: The lengths of the first sample's - 3 predicted sequences are 12, 12, 16; The lengths of the second sample's - 3 predicted sequences are 14, 13, 15. - - - Please see the following demo for a fully beam search usage example: - fluid/tests/book/test_machine_translation.py - - Args: - ids(Variable): The LoDTensorArray variable containing the selected ids - of all steps. Each LoDTensor in it has int64 data type and 2 level - lod which can be used to get the search paths. - scores(Variable): The LodTensorArray variable containing the accumulated - scores corresponding to selected ids of all steps. It has the same size - as ``ids`` . Each LoDTensor in it has the same shape and lod as the - counterpart in ``ids`` , and has a float32 data type. - beam_size(int): The beam width used in beam search. - end_id(int): The id of end token. - name(str, optional): For detailed information, please refer - to :ref:`api_guide_Name`. Usually name is no need to set and - None by default. - - Returns: - tuple: The tuple contains two LodTensor variables. The two LodTensor, \ - containing the full sequences of ids and the correspongding accumulated \ - scores, have the same shape flattened to 1D and have the same 2 level \ - lod. The lod can be used to get how many predicted sequences each sample \ - has and how many ids each predicted sequence has. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - - # Suppose `ids` and `scores` are LodTensorArray variables reserving - # the selected ids and scores of all steps - ids = fluid.layers.create_array(dtype='int64') - scores = fluid.layers.create_array(dtype='float32') - finished_ids, finished_scores = fluid.layers.beam_search_decode( - ids, scores, beam_size=5, end_id=0) - """ - helper = LayerHelper('beam_search_decode', **locals()) - sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype) - sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype) - - helper.append_op( - type="beam_search_decode", - inputs={"Ids": ids, - "Scores": scores}, - outputs={ - "SentenceIds": sentence_ids, - "SentenceScores": sentence_scores - }, - attrs={"beam_size": beam_size, - "end_id": end_id}) - - return sentence_ids, sentence_scores - - -def lstm_unit(x_t, - hidden_t_prev, - cell_t_prev, - forget_bias=0.0, - param_attr=None, - bias_attr=None, - name=None): - """ - Long-Short Term Memory (LSTM) RNN cell. This operator performs LSTM calculations for - one time step, whose implementation is based on calculations described in `RECURRENT - NEURAL NETWORK REGULARIZATION `_ . - - We add forget_bias to the biases of the forget gate in order to - reduce the scale of forgetting. The formula is as follows: - - .. math:: - - i_{t} & = \sigma(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i}) - - f_{t} & = \sigma(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias) - - c_{t} & = f_{t}c_{t-1} + i_{t} tanh (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c}) + padding = padding[1:4] + padding = [ele for a_list in padding for ele in a_list] + padding = utils.convert_to_list(padding, 6, 'padding') - o_{t} & = \sigma(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o}) + elif is_list_or_tuple(padding) and len(padding) == 6: + padding = utils.convert_to_list(padding, 6, 'padding') - h_{t} & = o_{t} tanh (c_{t}) + else: + padding = utils.convert_to_list(padding, 3, 'padding') + padding = [ + padding[0], padding[0], padding[1], padding[1], padding[2], + padding[2] + ] + return padding - :math:`x_{t}` stands for ``x_t`` , corresponding to the input of current time step; - :math:`h_{t-1}` and :math:`c_{t-1}` correspond to ``hidden_t_prev`` and ``cell_t_prev`` , - representing the output of from previous time step. - :math:`i_{t}, f_{t}, c_{t}, o_{t}, h_{t}` are input gate, forget gate, cell, output gate - and hidden calculation. + padding_algorithm = "EXPLICIT" + if isinstance(padding, str): + padding = padding.upper() + if padding not in ["SAME", "VALID"]: + raise ValueError( + "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % + str(padding)) + if padding == "VALID": + padding_algorithm = "VALID" + padding = [0, 0, 0, 0, 0, 0] + elif padding == "SAME": + padding_algorithm = "SAME" + padding = [0, 0, 0, 0, 0, 0] - Args: - x_t(Variable): A 2D Tensor representing the input of current time step. - Its shape should be :math:`[N, M]` , where :math:`N` stands for batch - size, :math:`M` for the feature size of input. The data type should - be float32 or float64. - hidden_t_prev(Variable): A 2D Tensor representing the hidden value from - previous step. Its shape should be :math:`[N, D]` , where :math:`N` - stands for batch size, :math:`D` for the hidden size. The data type - should be same as ``x_t`` . - cell_t_prev(Variable): A 2D Tensor representing the cell value from - previous step. It has the same shape and data type with ``hidden_t_prev`` . - forget_bias (float, optional): :math:`forget\\_bias` added to the biases - of the forget gate. Default 0. - param_attr(ParamAttr, optional): To specify the weight parameter property. - Default: None, which means the default weight parameter property is used. - See usage for details in :ref:`api_fluid_ParamAttr` . - bias_attr (ParamAttr, optional): To specify the bias parameter property. - Default: None, which means the default bias parameter property is used. - See usage for details in :ref:`api_fluid_ParamAttr` . - name(str, optional): For detailed information, please refer - to :ref:`api_guide_Name`. Usually name is no need to set and - None by default. + padding = _update_padding(padding, data_format) - Returns: - tuple: The tuple contains two Tensor variables with the same shape and \ - data type with ``hidden_t_prev`` , representing the hidden value and \ - cell value which correspond to :math:`h_{t}` and :math:`c_{t}` in \ - the formula. + if filter_size is None: + if output_size is None: + raise ValueError("output_size must be set when filter_size is None") + if isinstance(output_size, int): + output_size = [output_size, output_size] - Raises: - ValueError: Rank of x_t must be 2. - ValueError: Rank of hidden_t_prev must be 2. - ValueError: Rank of cell_t_prev must be 2. - ValueError: The 1st dimensions of x_t, hidden_t_prev and cell_t_prev must be the same. - ValueError: The 2nd dimensions of hidden_t_prev and cell_t_prev must be the same. + d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1] + h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2] + w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3] - Examples: + filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] + + padding[1] - 1) // dilation[0] + 1 + filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] + + padding[3] - 1) // dilation[1] + 1 + filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] + + padding[5] - 1) // dilation[2] + 1 + filter_size = [filter_size_d, filter_size_h, filter_size_w] + else: + filter_size = utils.convert_to_list(filter_size, 3, + 'conv3d_transpose.filter_size') - .. code-block:: python + if len(padding) == 6 and utils._is_symmetric_padding(padding, 3): + padding = [padding[0], padding[2], padding[4]] - import paddle.fluid as fluid + groups = 1 if groups is None else groups + filter_shape = [input_channel, num_filters // groups] + filter_size + img_filter = helper.create_parameter( + dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) - dict_dim, emb_dim, hidden_dim = 128, 64, 512 - data = fluid.data(name='step_data', shape=[None], dtype='int64') - x = fluid.embedding(input=data, size=[dict_dim, emb_dim]) - pre_hidden = fluid.data( - name='pre_hidden', shape=[None, hidden_dim], dtype='float32') - pre_cell = fluid.data( - name='pre_cell', shape=[None, hidden_dim], dtype='float32') - hidden = fluid.layers.lstm_unit( - x_t=x, - hidden_t_prev=pre_hidden, - cell_t_prev=pre_cell) - """ - helper = LayerHelper('lstm_unit', **locals()) - - if len(x_t.shape) != 2: - raise ValueError("Rank of x_t must be 2.") - - if len(hidden_t_prev.shape) != 2: - raise ValueError("Rank of hidden_t_prev must be 2.") - - if len(cell_t_prev.shape) != 2: - raise ValueError("Rank of cell_t_prev must be 2.") - - if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[ - 0] != cell_t_prev.shape[0]: - raise ValueError("The 1st dimensions of x_t, hidden_t_prev and " - "cell_t_prev must be the same.") - - if hidden_t_prev.shape[1] != cell_t_prev.shape[1]: - raise ValueError("The 2nd dimensions of hidden_t_prev and " - "cell_t_prev must be the same.") - - if bias_attr is None: - bias_attr = ParamAttr() - - size = cell_t_prev.shape[1] - concat_out = concat(input=[x_t, hidden_t_prev], axis=1) - fc_out = fc(input=concat_out, - size=4 * size, - param_attr=param_attr, - bias_attr=bias_attr) - dtype = x_t.dtype - c = helper.create_variable_for_type_inference(dtype) - h = helper.create_variable_for_type_inference(dtype) + if data_format == 'NCDHW': + data_format = 'NCHW' + if data_format == 'NDHWC': + data_format = 'NHWC' + pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( - type='lstm_unit', - inputs={"X": fc_out, - "C_prev": cell_t_prev}, - outputs={"C": c, - "H": h}, - attrs={"forget_bias": forget_bias}) + type=l_type, + inputs={'Input': [input], + 'Filter': [img_filter]}, + outputs={'Output': pre_bias}, + attrs={ + 'strides': stride, + 'paddings': padding, + 'padding_algorithm': padding_algorithm, + 'dilations': dilation, + 'groups': groups, + 'use_cudnn': use_cudnn, + 'data_format': data_format + }) - return h, c + if data_format == 'NCHW': + pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) + else: + pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5) + out = helper.append_activation(pre_act) + return out def reduce_sum(input, dim=None, keep_dim=False, name=None): @@ -7521,63 +5329,6 @@ def warpctc(input, return loss_out -def sequence_reshape(input, new_dim): - """ - **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reshape Op.(fluid.layers.** :ref:`api_fluid_layers_reshape` ). - - This operator only supports LoDTensor as input. Given :attr:`new_dim` , - it will compute new shape according to original length of each sequence, - original dimensions and :attr:`new_dim` . Then it will output a new LoDTensor - containing :attr:`new_dim` . Currently it only supports 1-level LoDTensor. - Please make sure that (original length * original dimensions) can be divided - by the :attr:`new_dim` with no remainder for each sequence. - - .. code-block:: text - - input is a LoDTensor: - input.lod = [[0, 2, 6]] - input.data = [[1, 2], [3, 4], - [5, 6], [7, 8], - [9, 10], [11, 12]] - input.shape = [6, 2] - - set new_dim = 4 - out is a LoDTensor: - out.lod = [[0, 1, 3]] - out.data = [[1, 2, 3, 4], - [5, 6, 7, 8], - [9, 10, 11, 12]] - out.shape = [3, 4] - - - Args: - - input (Variable): 1-level LoDTensor with shape :math:`[M, K]` . The data type should - be int32, int64, float32 or float64. - new_dim (int): New dimension that the input LoDTensor is reshaped to. - - Returns: - Variable: Reshaped LoDTensor according to new dimension. The data type is same as input. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - x = fluid.data(name='x', shape=[None, 16], dtype='float32', lod_level=1) - x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4) - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_reshape', **locals()) - out = helper.create_variable_for_type_inference(helper.input_dtype()) - helper.append_op( - type='sequence_reshape', - inputs={'X': [input]}, - outputs={'Out': [out]}, - attrs={'new_dim': new_dim}) - return out - - # FIXME(wuyi): let docstring_checker.py understand @autodoc. # For now, the comments in c++ use types like Tensor, but in python side # the type is often "Variable", and arguments may vary. @@ -11074,84 +8825,6 @@ def scatter_nd(index, updates, shape, name=None): return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name) -def sequence_scatter(input, index, updates, name=None): - """ - **Note**: - - **The index and updates parameters of the OP must be LoDTensor.** - - Plus the updates data to the correspoding input according to the index. - - The updated algorithm is as follows: output[instance_index][index [pos]] = input[instance_index][index [pos]] + updates[pos], - where instance_idx is the K sample corresponding to pos in batch. - - The value of output[i][j] depends on whether j can be found in the i+1th interval of the index. If found, - out[i][j] = input[i][j] + update[m] [n], otherwise, out[i][j] = input[i][j]. - - For example, in the following example, the lod information for index is divided into three sequences. Among - them, because the element 0 can be found in the first interval of the index, it is updated with the value of - the corresponding position of the updates, out[0][0] = input[0][0]+updates[0][0] . Because element 1 cannot - be found in the third interval of index, out[2][1] = input[2][1]. - - .. code-block:: text - - *Case 1: - - Given: - input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], - [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], - [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]] - input.dims = [3, 6] - - index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]] - index.lod = [[0, 3, 8, 12]] - - updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]] - updates.lod = [[ 0, 3, 8, 12]] - - Then: - out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0], - [1.0, 1.0, 1.4, 1.3, 1.2, 1.1], - [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]] - out.dims = X.dims = [3, 6] - - Args: - input (Variable): A Tensor with shape of :math:`[N, k_1... k_n]`. Supported data types: float32, float64, int32, int64. - index (Variable): A LoDTensor contains index information. Its LoD level must be 1 and its data type must be int64. - updates (Variable): A LodTensor contains updates information. It has the same LoD level with the index and has the - same data type with the input. Supported data types: float32, float64, int32, int64. - name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, - please refer to :ref:`api_guide_Name` - - Returns: - Variable: A Tensor which has been updated. It has the same shape and data type with input. - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - - input = fluid.data( name="x", shape=[None, 3, 6], dtype='float32' ) - index = fluid.data( name='index', shape=[12, 1], dtype='int64', lod_level=1) - updates = fluid.data( name='updates', shape=[12, 1], dtype='float32', lod_level=1) - output = fluid.layers.sequence_scatter(input, index, updates) - - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_scatter', **locals()) - dtype = helper.input_dtype() - out = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type="sequence_scatter", - inputs={"X": input, - "Ids": index, - "Updates": updates}, - outputs={"Out": out}) - return out - - @templatedoc() def random_crop(x, shape, seed=None): """ @@ -12582,146 +10255,6 @@ def flatten(x, axis=1, name=None): return out -def sequence_enumerate(input, win_size, pad_value=0, name=None): - """ - Generate a new sequence for the input index sequence with \ - shape ``[d_1, win_size]``, which enumerates all the \ - sub-sequences with length ``win_size`` of the input with \ - shape ``[d_1, 1]``, and padded by ``pad_value`` if necessary in generation. - - Please note that the `input` must be LodTensor. - - .. code-block:: text - - Input x: - x.lod = [[0, 3, 5]] - x.data = [[1], [2], [3], [4], [5]] - x.dims = [5, 1] - - Attrs: - win_size = 2 - pad_value = 0 - - Output: - out.lod = [[0, 3, 5]] - out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]] - out.dims = [5, 2] - - - Args: - input (Variable): The input variable which is a index sequence, \ - which should be a LodTensor with shape ``[d_1, 1]`` and 1-level lod info. \ - The data type should be float32, float64, int8, int32 or int64. - win_size (int): The window size for enumerating all sub-sequences. - pad_value (int, optional): The padding value, default 0. - name(str, optional): For detailed information, please refer \ - to :ref:`api_guide_Name`. Usually name is no need to set and \ - None by default. - - Returns: The enumerate sequence variable which is a LoDTensor with \ - shape ``[d_1, win_size]`` and 1-level lod info. \ - The data type is same as ``input``. - - Return Type: Variable - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - - x = fluid.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1) - out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0) - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper('sequence_enumerate', **locals()) - out = helper.create_variable_for_type_inference( - helper.input_dtype(), stop_gradient=True) - helper.append_op( - type='sequence_enumerate', - inputs={'X': input}, - outputs={'Out': out}, - attrs={'win_size': win_size, - 'pad_value': pad_value}) - return out - - -def sequence_mask(x, maxlen=None, dtype='int64', name=None): - """ - **SequenceMask Layer** - - This layer outputs a mask according to the input :code:`x` and - :code:`maxlen` with data type of :code:`dtype`. - - Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the - :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where: - - .. math:: - - y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n)) - - .. code-block:: text - - Case: - - Consider input: - x = [3, 1, 1, 0] max_len = 4 - - then we get out: - mask = [[1, 1, 1, 0], - [1, 0, 0, 0], - [1, 0, 0, 0], - [0, 0, 0, 0]] - - Args: - x (Variable): Input tensor of sequence_mask layer, \ - whose elements are integers less than :code:`maxlen`. \ - Tensor or LodTensor with shape [d_1, d_2, ..., d_n]. - maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \ - is None, it would be replace with :math:`max(x)`. - dtype (np.dtype|core.VarDesc.VarType|str, optional): Data type of the output, \ - ``int64`` by default. - name(str, optional): For detailed information, please refer \ - to :ref:`api_guide_Name`. Usually name is no need to set and \ - None by default. - - Returns: The output sequence mask. Tensor or LodTensor with shape [d_1, d_2, ..., d_n, maxlen] \ - and data type of :code:`dtype`. The data type should be float32, float64, int8, \ - int32 or int64. - - Return Type: Variable - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - import paddle.fluid.layers as layers - - x = fluid.data(name='x', shape=[10], dtype='float32', lod_level=1) - mask = layers.sequence_mask(x=x) - - """ - helper = LayerHelper('sequence_mask', **locals()) - if name is None: - out = helper.create_variable_for_type_inference(dtype=dtype) - else: - out = helper.create_variable_for_type_inference(dtype=dtype, name=name) - - inputs = {'X': [x]} - attrs = {'out_dtype': out.dtype} - if maxlen is not None: - if isinstance(maxlen, Variable): - inputs['MaxLenTensor'] = maxlen - else: - attrs['maxlen'] = maxlen - - helper.append_op( - type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs) - - out.stop_gradient = True - return out - - def stack(x, axis=0): """ @@ -15306,68 +12839,6 @@ def space_to_depth(x, blocksize, name=None): return out -@templatedoc() -def sequence_reverse(x, name=None): - """ - **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reverse Op.(fluid.layers.** :ref:`api_fluid_layers_reverse` ). - - This operator only supports LoDTensor as input. It will reverse each sequence for input LoDTensor. - Currently it only supports 1-level LoDTensor. This operator is very useful when building a - reverse :ref:`api_fluid_layers_DynamicRNN` network. - - .. code-block:: text - - input(x) is a LoDTensor: - x.lod = [[0, 2, 5]] - x.data = [[1, 2, 3, 4], - [5, 6, 7, 8], - [9, 10, 11, 12], - [13,14, 15, 16], - [17,18, 19, 20]] - x.shape = [5, 4] - - output LoDTensor with same shape and LoD info: - out.lod = [[0, 2, 5]] - out.data = [[5, 6, 7, 8], - [1, 2, 3, 4], - [17,18, 19, 20], - [13,14, 15, 16], - [9, 10, 11, 12]] - out.shape = [5, 4] - - Args: - x(Variable): LoDTensor with 1-level LoD info. Currently it only supports 1-level LoDTensor. - The data type should be float32, float64, int8, int32 or int64. - name(str, optional): The default value is None. Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` . - - Returns: - Variable: LoDTensor reversed from input. The data type is same with input. - - Examples: - .. code-block:: python - - import paddle.fluid as fluid - x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) - x_reversed = fluid.layers.sequence_reverse(x) - """ - assert not in_dygraph_mode(), ( - "sequence layer is not supported in dygraph mode yet.") - helper = LayerHelper("sequence_reverse", **locals()) - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) - - helper.append_op( - type="sequence_reverse", - inputs={"X": x}, - outputs={"Y": out}, - attrs=dict()) - return out - - def affine_channel(x, scale=None, bias=None, diff --git a/python/paddle/fluid/layers/rnn.py b/python/paddle/fluid/layers/rnn.py index 40f5df60e4..1055703232 100644 --- a/python/paddle/fluid/layers/rnn.py +++ b/python/paddle/fluid/layers/rnn.py @@ -20,7 +20,11 @@ from . import nn from . import tensor from . import control_flow from . import utils +from . import sequence_lod from .utils import * +from ..layer_helper import LayerHelper +from ..framework import in_dygraph_mode +from ..param_attr import ParamAttr __all__ = [ 'RNNCell', @@ -30,6 +34,14 @@ __all__ = [ 'BeamSearchDecoder', 'rnn', 'dynamic_decode', + 'dynamic_lstm', + 'dynamic_lstmp', + 'dynamic_gru', + 'gru_unit', + 'lstm_unit', + 'lstm', + 'beam_search', + 'beam_search_decode', ] @@ -433,7 +445,7 @@ def rnn(cell, if sequence_length: max_seq_len = nn.shape(flatten(inputs)[0])[0] - mask = nn.sequence_mask( + mask = sequence_lod.sequence_mask( sequence_length, maxlen=max_seq_len, dtype=flatten(initial_states)[0].dtype) @@ -1163,3 +1175,1195 @@ def dynamic_decode(decoder, final_outputs = map_structure(_transpose_batch_time, final_outputs) return final_outputs, final_states + + +def dynamic_lstm(input, + size, + h_0=None, + c_0=None, + param_attr=None, + bias_attr=None, + use_peepholes=True, + is_reverse=False, + gate_activation='sigmoid', + cell_activation='tanh', + candidate_activation='tanh', + dtype='float32', + name=None): + """ + **Note**: + 1. This OP only supports LoDTensor as inputs. If you need to deal with Tensor, please use :ref:`api_fluid_layers_lstm` . + 2. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP. + + The implementation of this OP include diagonal/peephole connections. + Please refer to `Gers, F. A., & Schmidhuber, J. (2000) `_ . + If you do not need peephole connections, please set use_peepholes to False . + + This OP computes each timestep as follows: + + .. math:: + i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i}) + .. math:: + f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f}) + .. math:: + o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o}) + .. math:: + \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c}) + .. math:: + c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t} + .. math:: + h_t = o_t \odot tanh(c_t) + + The symbolic meanings in the formula are as follows: + + - :math:`x_{t}` represents the input at timestep :math:`t` + - :math:`h_{t}` represents the hidden state at timestep :math:`t` + - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively + - :math:`\widetilde{c_t}` represents the candidate cell state + - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively + - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` ) + - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate) + - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid + - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension + + Parameters: + input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64. + size (int): must be 4 * hidden_size. + h_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` . + Data type is float32 or float64. If set to None, it will be a vector of all 0. Default: None. + c_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` . + Data type is float32 or float64. If set to None, it will be a vector of all 0. `h_0` and `c_0` can be None but only at the same time. Default: None. + param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' . + If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None. + + - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [hidden_size, 4*hidden_size]. + + bias_attr (ParamAttr, optional): The bias attribute for the learnable bias + weights, which contains two parts, input-hidden + bias weights and peephole connections weights if + setting `use_peepholes` to `True`. + Please refer to ref:`api_fluid_ParamAttr' . Default: None. + + 1. `use_peepholes = False` + - Biases = {:math:`b_c, b_i, b_f, b_o`}. + - The shape is [1, 4*hidden_size]. + 2. `use_peepholes = True` + - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \ + W_{fc}, W_{oc}`}. + - The shape is [1, 7*hidden_size]. + + use_peepholes (bool, optional): Whether to use peephole connection or not. Default: True. + is_reverse (bool, optional): Whether to calculate reverse LSTM. Default: False. + gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default: "sigmoid". + cell_activation (str, optional): The activation for cell output. Default: "tanh". + candidate_activation (str, optional): The activation for candidate hidden state. Default: "tanh". + dtype (str, optional): Data type, can be "float32" or "float64". Default: "float32". + name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None. + + Returns: + tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) : + + The hidden state and cell state of LSTM + + - hidden: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input. + - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + emb_dim = 256 + vocab_size = 10000 + hidden_dim = 512 + + data = fluid.data(name='x', shape=[None], dtype='int64', lod_level=1) + emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True) + + forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4, + bias_attr=False) + + forward, cell = fluid.layers.dynamic_lstm( + input=forward_proj, size=hidden_dim * 4, use_peepholes=False) + forward.shape # (-1, 512) + cell.shape # (-1, 512) + """ + assert in_dygraph_mode( + ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!" + assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." + helper = LayerHelper('lstm', **locals()) + size = size // 4 + weight = helper.create_parameter( + attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype) + bias_size = [1, 7 * size] + if not use_peepholes: + bias_size[1] = 4 * size + bias = helper.create_parameter( + attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) + + hidden = helper.create_variable_for_type_inference(dtype) + cell = helper.create_variable_for_type_inference(dtype) + batch_gate = helper.create_variable_for_type_inference(dtype) + batch_cell_pre_act = helper.create_variable_for_type_inference(dtype) + inputs = {'Input': input, 'Weight': weight, 'Bias': bias} + batch_size = input.shape[0] + if h_0: + assert h_0.shape == (batch_size, size), \ + 'The shape of h0 should be (batch_size, %d)' % size + inputs['H0'] = h_0 + if c_0: + assert c_0.shape == (batch_size, size), \ + 'The shape of c0 should be (batch_size, %d)' % size + inputs['C0'] = c_0 + + helper.append_op( + type='lstm', + inputs=inputs, + outputs={ + 'Hidden': hidden, + 'Cell': cell, + 'BatchGate': batch_gate, + 'BatchCellPreAct': batch_cell_pre_act + }, + attrs={ + 'use_peepholes': use_peepholes, + 'is_reverse': is_reverse, + 'gate_activation': gate_activation, + 'cell_activation': cell_activation, + 'candidate_activation': candidate_activation + }) + return hidden, cell + + +def lstm(input, + init_h, + init_c, + max_len, + hidden_size, + num_layers, + dropout_prob=0.0, + is_bidirec=False, + is_test=False, + name=None, + default_initializer=None, + seed=-1): + """ + **Note**: + This OP only supports running on GPU devices. + + This OP implements LSTM operation - `Hochreiter, S., & Schmidhuber, J. (1997) `_ . + + The implementation of this OP does not include diagonal/peephole connections. + Please refer to `Gers, F. A., & Schmidhuber, J. (2000) `_ . + If you need peephole connections, please use :ref:`api_fluid_layers_dynamic_lstm` . + + This OP computes each timestep as follows: + + .. math:: + i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i}) + .. math:: + f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f}) + .. math:: + o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o}) + .. math:: + \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c}) + .. math:: + c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t} + .. math:: + h_t = o_t \odot tanh(c_t) + + The symbolic meanings in the formula are as follows: + + - :math:`x_{t}` represents the input at timestep :math:`t` + - :math:`h_{t}` represents the hidden state at timestep :math:`t` + - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively + - :math:`\widetilde{c_t}` represents the candidate cell state + - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively + - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` ) + - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate) + - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid + - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension + + Parameters: + input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64 + init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` . + If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64. + init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` . + If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64. + max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len. + hidden_size (int): hidden size of the LSTM. + num_layers (int): total layers number of the LSTM. + dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps + There is NO dropout work on rnn output of the last RNN layers. + Default: 0.0. + is_bidirec (bool, optional): If it is bidirectional. Default: False. + is_test (bool, optional): If it is in test phrase. Default: False. + name (str, optional): A name for this layer. If set None, the layer + will be named automatically. Default: None. + default_initializer(Initializer, optional): Where use initializer to initialize the Weight + If set None, defaule initializer will be used. Default: None. + seed(int, optional): Seed for dropout in LSTM, If it's -1, dropout will use random seed. Default: 1. + + + Returns: + tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ) : + + Three tensors, rnn_out, last_h, last_c: + + - rnn_out is result of LSTM hidden, shape is :math:`[seq\_len, batch\_size, hidden\_size]` \ + if is_bidirec set to True, shape will be :math:`[seq\_len, batch\_size, hidden\_size*2]` + - last_h is the hidden state of the last step of LSTM \ + shape is :math:`[num\_layers, batch\_size, hidden\_size]` \ + if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]` + - last_c(Tensor): the cell state of the last step of LSTM \ + shape is :math:`[num\_layers, batch\_size, hidden\_size]` \ + if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]` + + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import paddle.fluid.layers as layers + + emb_dim = 256 + vocab_size = 10000 + data = fluid.data(name='x', shape=[None, 100], dtype='int64') + emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True) + batch_size = 20 + max_len = 100 + dropout_prob = 0.2 + input_size = 100 + hidden_size = 150 + num_layers = 1 + init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 ) + init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 ) + rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \ + max_len, hidden_size, num_layers, \ + dropout_prob=dropout_prob) + rnn_out.shape # (-1, 100, 150) + last_h.shape # (1, 20, 150) + last_c.shape # (1, 20, 150) + """ + + helper = LayerHelper('cudnn_lstm', **locals()) + + dtype = input.dtype + input_shape = list(input.shape) + input_size = input_shape[-1] + weight_size = 0 + for i in range(num_layers): + if i == 0: + input_weight_size = (input_size * hidden_size) * 4 + else: + if is_bidirec: + input_weight_size = (hidden_size * 2 * hidden_size) * 4 + else: + input_weight_size = (hidden_size * hidden_size) * 4 + + hidden_weight_size = (hidden_size * hidden_size) * 4 + + if is_bidirec: + weight_size += (input_weight_size + hidden_weight_size) * 2 + weight_size += hidden_size * 8 * 2 + else: + weight_size += input_weight_size + hidden_weight_size + weight_size += hidden_size * 8 + + weight = helper.create_parameter( + attr=helper.param_attr, + shape=[weight_size], + dtype=dtype, + default_initializer=default_initializer) + + out = helper.create_variable_for_type_inference(dtype) + last_h = helper.create_variable_for_type_inference(dtype) + last_c = helper.create_variable_for_type_inference(dtype) + + cache = helper.create_variable( + persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True) + + helper.append_op( + type='cudnn_lstm', + inputs={ + 'Input': input, + 'InitH': init_h, + 'InitC': init_c, + 'W': weight, + 'Cache': cache, + }, + outputs={ + 'Out': out, + 'last_h': last_h, + 'last_c': last_c, + }, + attrs={ + 'max_len': max_len, + 'is_bidirec': is_bidirec, + 'input_size': input_size, + 'hidden_size': hidden_size, + 'num_layers': num_layers, + 'is_test': is_test, + 'dropout_prob': dropout_prob, + 'seed': seed, + }) + return out, last_h, last_c + + +def dynamic_lstmp(input, + size, + proj_size, + param_attr=None, + bias_attr=None, + use_peepholes=True, + is_reverse=False, + gate_activation='sigmoid', + cell_activation='tanh', + candidate_activation='tanh', + proj_activation='tanh', + dtype='float32', + name=None, + h_0=None, + c_0=None, + cell_clip=None, + proj_clip=None): + """ + **Note**: + 1. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP. + + This OP implements the LSTMP (LSTM Projected) layer. + The LSTMP layer has a separate linear mapping layer behind the LSTM layer. -- `Sak, H., Senior, A., & Beaufays, F. (2014) `_ . + + Compared with the standard LSTM layer, LSTMP has an additional linear mapping layer, + which is used to map from the original hidden state :math:`h_t` to the lower dimensional state :math:`r_t` . + This reduces the total number of parameters and computational complexity, especially when the output unit is relatively large. + + The default implementation of the OP contains diagonal/peephole connections, + please refer to `Gers, F. A., & Schmidhuber, J. (2000) `_ . + If you need to disable the peephole connections, set use_peepholes to False. + + This OP computes each timestep as follows: + + .. math:: + i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i) + .. math:: + f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f) + .. math:: + o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_{t-1} + b_o) + .. math:: + \widetilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c) + .. math:: + c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t} + .. math:: + h_t = o_t \odot act_h(c_t) + .. math:: + r_t = \overline{act_h}(W_{rh}h_t) + + The symbolic meanings in the formula are as follows: + + - :math:`x_{t}` represents the input at timestep :math:`t` + - :math:`h_{t}` represents the hidden state at timestep :math:`t` + - :math:`r_{t}` : represents the state of the projected output of the hidden state :math:`h_{t}` + - :math:`h_{t-1}, c_{t-1}, r_{t-1}` represent the hidden state, cell state and projected output at timestep :math:`t-1` , respectively + - :math:`\widetilde{c_t}` represents the candidate cell state + - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively + - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` ) + - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate) + - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid + - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension + + Parameters: + input( :ref:`api_guide_Variable_en` ): The input of dynamic_lstmp layer, which supports + variable-time length input sequence. + It is a multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64. + size(int): must be 4 * hidden_size. + proj_size(int): The size of projection output. + param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' . + If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None. + + - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [P, 4*hidden_size] , where P is the projection size. + - Projection weight = :math:`\{ W_{rh} \}` , the shape is [hidden_size, P]. + + bias_attr (ParamAttr, optional): The bias attribute for the learnable bias + weights, which contains two parts, input-hidden + bias weights and peephole connections weights if + setting `use_peepholes` to `True`. + Please refer to ref:`api_fluid_ParamAttr' . Default: None. + + 1. `use_peepholes = False` + - Biases = {:math:`b_c, b_i, b_f, b_o`}. + - The shape is [1, 4*hidden_size]. + 2. `use_peepholes = True` + - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \ + W_{fc}, W_{oc}`}. + - The shape is [1, 7*hidden_size]. + + use_peepholes (bool, optional): Whether to use peephole connection or not. Default True. + is_reverse (bool, optional): Whether to calculate reverse LSTM. Default False. + gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default "sigmoid". + cell_activation (str, optional): The activation for cell output. Default "tanh". + candidate_activation (str, optional): The activation for candidate hidden state. Default "tanh". + proj_activation(str, optional): The activation for projection output. Default "tanh". + dtype (str, optional): Data type, can be "float32" or "float64". Default "float32". + name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None. + h_0( :ref:`api_guide_Variable` , optional): The initial hidden state is an optional input, default is zero. + This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. Default: None. + c_0( :ref:`api_guide_Variable` , optional): The initial cell state is an optional input, default is zero. + This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. + `h_0` and `c_0` can be None but only at the same time. Default: None. + cell_clip(float, optional): If not None, the cell state is clipped + by this value prior to the cell output activation. Default: None. + proj_clip(float, optional): If `num_proj > 0` and `proj_clip` is + provided, then the projected values are clipped elementwise to within + `[-proj_clip, proj_clip]`. Default: None. + + Returns: + tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) : + + The hidden state and cell state of LSTMP + + - hidden: LoDTensor with shape of :math:`[T, P]` , and its lod and dtype is the same as the input. + - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + dict_dim, emb_dim = 128, 64 + data = fluid.data(name='sequence', shape=[None], dtype='int64', lod_level=1) + emb = fluid.embedding(input=data, size=[dict_dim, emb_dim]) + hidden_dim, proj_dim = 512, 256 + fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4, + act=None, bias_attr=None) + proj_out, last_c = fluid.layers.dynamic_lstmp(input=fc_out, + size=hidden_dim * 4, + proj_size=proj_dim, + use_peepholes=False, + is_reverse=True, + cell_activation="tanh", + proj_activation="tanh") + proj_out.shape # (-1, 256) + last_c.shape # (-1, 512) + """ + + assert in_dygraph_mode( + ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!" + + assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." + helper = LayerHelper('lstmp', **locals()) + size = size // 4 + weight = helper.create_parameter( + attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype) + proj_weight = helper.create_parameter( + attr=helper.param_attr, shape=[size, proj_size], dtype=dtype) + bias_size = [1, 7 * size] + if not use_peepholes: + bias_size[1] = 4 * size + bias = helper.create_parameter( + attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) + + projection = helper.create_variable_for_type_inference(dtype) + cell = helper.create_variable_for_type_inference(dtype) + ordered_proj0 = helper.create_variable_for_type_inference(dtype) + batch_hidden = helper.create_variable_for_type_inference(dtype) + batch_gate = helper.create_variable_for_type_inference(dtype) + batch_cell_pre_act = helper.create_variable_for_type_inference(dtype) + inputs = { + 'Input': input, + 'Weight': weight, + 'ProjWeight': proj_weight, + 'Bias': bias + } + batch_size = input.shape[0] + if h_0: + assert h_0.shape == (batch_size, proj_size), \ + 'The shape of h0 should be (batch_size, %d)' % proj_size + inputs['H0'] = h_0 + if c_0: + assert c_0.shape == (batch_size, size), \ + 'The shape of c0 should be (batch_size, %d)' % size + inputs['C0'] = c_0 + + if cell_clip: + assert cell_clip >= 0, "cell_clip should not be negtive." + if proj_clip: + assert proj_clip >= 0, "proj_clip should not be negtive." + + helper.append_op( + type='lstmp', + inputs=inputs, + outputs={ + 'Projection': projection, + 'Cell': cell, + 'BatchHidden': batch_hidden, + 'BatchGate': batch_gate, + 'BatchCellPreAct': batch_cell_pre_act + }, + attrs={ + 'use_peepholes': use_peepholes, + 'cell_clip': cell_clip, + 'proj_clip': proj_clip, + 'is_reverse': is_reverse, + 'gate_activation': gate_activation, + 'cell_activation': cell_activation, + 'candidate_activation': candidate_activation, + 'proj_activation': proj_activation + }) + return projection, cell + + +def dynamic_gru(input, + size, + param_attr=None, + bias_attr=None, + is_reverse=False, + gate_activation='sigmoid', + candidate_activation='tanh', + h_0=None, + origin_mode=False): + """ + **Note: The input type of this must be LoDTensor. If the input type to be + processed is Tensor, use** :ref:`api_fluid_layers_StaticRNN` . + + This operator is used to perform the calculations for a single layer of + Gated Recurrent Unit (GRU) on full sequences step by step. The calculations + in one time step support these two modes: + + If ``origin_mode`` is True, then the formula used is from paper + `Learning Phrase Representations using RNN Encoder Decoder for Statistical + Machine Translation `_ . + + .. math:: + + u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) + + r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) + + \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) + + h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t} + + + if ``origin_mode`` is False, then the formula used is from paper + `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence + Modeling `_ + + .. math:: + + u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) + + r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) + + \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) + + h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t} + + :math:`x_t` is the input of current time step, but it is not from ``input`` . + This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` , + **Note** thus a fully-connect layer whose size is 3 times of ``size`` should + be used before this operator, and the output should be used as ``input`` here. + :math:`h_{t-1}` is the hidden state from previous time step. + :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for + update gate, reset gate, candidate hidden and hidden output separately. + :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for + the weight matrix and bias used in update gate, reset gate, candidate hidden + calculations. For implementation, the three weight matrix are merged into a + tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as + a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the + hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}` + are concatenated with shape :math:`[D, D \\times 2]` lying on the first part, + and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` . + + + Args: + input(Variable): A LoDTensor whose lod level is 1, representing the input + after linear projection. Its shape should be :math:`[T, D \\times 3]` , + where :math:`T` stands for the total sequence lengths in this mini-batch, + :math:`D` for the hidden size. The data type should be float32 or float64. + size(int): Indicate the hidden size. + param_attr(ParamAttr, optional): To specify the weight parameter property. + Default: None, which means the default weight parameter property is used. + See usage for details in :ref:`api_fluid_ParamAttr` . + bias_attr (ParamAttr, optional): To specify the bias parameter property. + Default: None, which means the default bias parameter property is used. + See usage for details in :ref:`api_fluid_ParamAttr` . + is_reverse(bool, optional): Whether to compute in the reversed order of + input sequences. Default False. + gate_activation(str, optional): The activation fuction corresponding to + :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity" + are supported. Default "sigmoid". + candidate_activation(str, optional): The activation fuction corresponding to + :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity" + are supported. Default "tanh". + h_0 (Variable, optional): A Tensor representing the initial hidden state. + It not provided, the default initial hidden state is 0. The shape is + :math:`[N, D]` , where :math:`N` is the number of sequences in the + mini-batch, :math:`D` for the hidden size. The data type should be + same as ``input`` . Default None. + + Returns: + Variable: A LoDTensor whose lod level is 1 and shape is :math:`[T, D]` , \ + where :math:`T` stands for the total sequence lengths in this mini-batch \ + :math:`D` for the hidden size. It represents GRU transformed sequence output, \ + and has the same lod and data type with ``input`` . + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + + dict_dim, emb_dim = 128, 64 + data = fluid.data(name='sequence', + shape=[None], + dtype='int64', + lod_level=1) + emb = fluid.embedding(input=data, size=[dict_dim, emb_dim]) + hidden_dim = 512 + x = fluid.layers.fc(input=emb, size=hidden_dim * 3) + hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim) + """ + + assert in_dygraph_mode( + ) is not True, "please use gru instead of dynamic_gru in dygraph mode!" + + helper = LayerHelper('gru', **locals()) + dtype = helper.input_dtype() + + weight = helper.create_parameter( + attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) + bias = helper.create_parameter( + attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True) + batch_size = input.shape[0] + inputs = {'Input': input, 'Weight': weight, 'Bias': bias} + if h_0: + assert h_0.shape == ( + batch_size, size + ), 'The shape of h0 should be(batch_size, %d)' % size + inputs['H0'] = h_0 + + hidden = helper.create_variable_for_type_inference(dtype) + batch_gate = helper.create_variable_for_type_inference(dtype) + batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype) + batch_hidden = helper.create_variable_for_type_inference(dtype) + + helper.append_op( + type='gru', + inputs=inputs, + outputs={ + 'Hidden': hidden, + 'BatchGate': batch_gate, + 'BatchResetHiddenPrev': batch_reset_hidden_prev, + 'BatchHidden': batch_hidden + }, + attrs={ + 'is_reverse': is_reverse, + 'gate_activation': gate_activation, + 'activation': candidate_activation, + 'origin_mode': origin_mode + }) + return hidden + + +def gru_unit(input, + hidden, + size, + param_attr=None, + bias_attr=None, + activation='tanh', + gate_activation='sigmoid', + origin_mode=False): + """ + Gated Recurrent Unit (GRU) RNN cell. This operator performs GRU calculations for + one time step and it supports these two modes: + + If ``origin_mode`` is True, then the formula used is from paper + `Learning Phrase Representations using RNN Encoder Decoder for Statistical + Machine Translation `_ . + + .. math:: + + u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) + + r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) + + \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) + + h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t} + + + if ``origin_mode`` is False, then the formula used is from paper + `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence + Modeling `_ + + .. math:: + + u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u) + + r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r) + + \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c) + + h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t} + + :math:`x_t` is the input of current time step, but it is not ``input`` . + This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` , + **Note** thus a fully-connect layer whose size is 3 times of GRU hidden size should + be used before this operator, and the output should be used as ``input`` here. + :math:`h_{t-1}` is the hidden state from previous time step. + :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for + update gate, reset gate, candidate hidden and hidden output separately. + :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for + the weight matrix and bias used in update gate, reset gate, candidate hidden + calculations. For implementation, the three weight matrix are merged into a + tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as + a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the + hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}` + are concatenated with shape :math:`[D, D \\times 2]` lying on the first part, + and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` . + + + Args: + input(Variable): A 2D Tensor representing the input after linear projection + after linear projection. Its shape should be :math:`[N, D \\times 3]` , + where :math:`N` stands for batch size, :math:`D` for the hidden size. + The data type should be float32 or float64. + hidden(Variable): A 2D Tensor representing the hidden state from previous step. + Its shape should be :math:`[N, D]` , where :math:`N` stands for batch size, + :math:`D` for the hidden size. The data type should be same as ``input`` . + size(int): Indicate the hidden size. + param_attr(ParamAttr, optional): To specify the weight parameter property. + Default: None, which means the default weight parameter property is used. + See usage for details in :ref:`api_fluid_ParamAttr` . + bias_attr (ParamAttr, optional): To specify the bias parameter property. + Default: None, which means the default bias parameter property is used. + See usage for details in :ref:`api_fluid_ParamAttr` . + activation(str, optional): The activation fuction corresponding to + :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity" + are supported. Default "tanh". + gate_activation(str, optional): The activation fuction corresponding to + :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity" + are supported. Default "sigmoid". + + Returns: + tuple: The tuple contains three Tensor variables with the same data type \ + as ``input`` . They represent the hidden state for next time step ( :math:`h_t` ), \ + reseted previous hidden state ( :math:`r_t \odot h_{t-1}` ), and the \ + concatenation of :math:`h_t, r_t, \\tilde{h_t}` . And they have shape \ + :math:`[N, D]` , :math:`[N, D]` , :math:`[N, D \times 3]` separately. \ + Usually only the hidden state for next time step ( :math:`h_t` ) is used \ + as output and state, the other two are intermediate results of calculations. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + + dict_dim, emb_dim = 128, 64 + data = fluid.data(name='step_data', shape=[None], dtype='int64') + emb = fluid.embedding(input=data, size=[dict_dim, emb_dim]) + hidden_dim = 512 + x = fluid.layers.fc(input=emb, size=hidden_dim * 3) + pre_hidden = fluid.data( + name='pre_hidden', shape=[None, hidden_dim], dtype='float32') + hidden = fluid.layers.gru_unit( + input=x, hidden=pre_hidden, size=hidden_dim * 3) + + """ + activation_dict = dict( + identity=0, + sigmoid=1, + tanh=2, + relu=3, ) + activation = activation_dict[activation] + gate_activation = activation_dict[gate_activation] + + helper = LayerHelper('gru_unit', **locals()) + dtype = helper.input_dtype() + size = size // 3 + + # create weight + weight = helper.create_parameter( + attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) + + gate = helper.create_variable_for_type_inference(dtype) + reset_hidden_pre = helper.create_variable_for_type_inference(dtype) + updated_hidden = helper.create_variable_for_type_inference(dtype) + inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight} + # create bias + if helper.bias_attr: + bias_size = [1, 3 * size] + bias = helper.create_parameter( + attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) + inputs['Bias'] = bias + + helper.append_op( + type='gru_unit', + inputs=inputs, + outputs={ + 'Gate': gate, + 'ResetHiddenPrev': reset_hidden_pre, + 'Hidden': updated_hidden, + }, + attrs={ + 'activation': 2, # tanh + 'gate_activation': 1, # sigmoid + 'origin_mode': origin_mode + }) + + return updated_hidden, reset_hidden_pre, gate + + +def beam_search(pre_ids, + pre_scores, + ids, + scores, + beam_size, + end_id, + level=0, + is_accumulated=True, + name=None, + return_parent_idx=False): + """ + Beam search is a classical algorithm for selecting candidate words in a + machine translation task. + + Refer to `Beam search `_ + for more details. + + **This operator only supports LoDTensor.** It is used after finishing + scores calculation to perform beam search for one time step. Specifically, + after ``ids`` and ``scores`` have been produced, it selects the top-K + ( `k` is ``beam_size`` ) candidate word ids of current step from ``ids`` + according to the correspongding ``scores``. Additionally, ``pre_id`` and + ``pre_scores`` are the output of `beam_search` at previous step, they + are needed for special use to handle ended candidate translations. + + Note that if ``is_accumulated`` is True, the ``scores`` passed in should + be accumulated scores. Otherwise, the ``scores`` are + considered as the probabilities of single step and would be transformed to + the log field and added up with ``pre_scores`` for final scores in this + operator. Length penalty should be done with extra operators before calculating + the accumulated scores if needed. + + Please see the following demo for a fully beam search usage example: + + fluid/tests/book/test_machine_translation.py + + Args: + pre_ids(Variable): A LodTensor variable (lod level is 2), representing + the selected ids of previous step. It is the output of beam_search + at previous step. Its shape is `[batch_size, 1]` and its lod is + `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the + first step. The data type should be int64. + pre_scores(Variable): A LodTensor variable has the same shape and lod + with ``pre_ids`` , representing the accumulated scores corresponding + to the selected ids of previous step. It is the output of + beam_search at previous step. The data type should be float32. + ids(Variable|None): A LodTensor variable containing the candidates ids. + It has the same lod with ``pre_ids`` and its shape should be + `[batch_size * beam_size, K]`, where `K` supposed to be greater than + ``beam_size`` and the first dimension size (decrease as samples reach + to the end) should be same as that of ``pre_ids`` . The data type + should be int64. It can be None, which use indice in ``scores`` as + ids. + scores(Variable): A LodTensor variable containing the accumulated + scores corresponding to ``ids`` . Both its shape and lod are same as + thoes of ``ids`` . The data type should be float32. + beam_size(int): The beam width used in beam search. + end_id(int): The id of end token. + level(int): **It can be ignored and mustn't change currently.** + The 2 level lod used in this operator has the following + meaning: The first level describes how many beams each sample has, + which would change to 0 when beams of the sample all end (batch reduce); + The second level describes how many times each beam is selected. + Default 0, which shouldn't be changed currently. + is_accumulated(bool): Whether the input ``score`` is accumulated scores. + Default True. + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + return_parent_idx(bool, optional): Whether to return an extra Tensor variable + in output, which stores the selected ids' parent indice in + ``pre_ids`` and can be used to update RNN's states by gather operator. + Default False. + + Returns: + tuple: The tuple contains two or three LodTensor variables. The two LodTensor, \ + representing the selected ids and the corresponding accumulated scores of \ + current step, have the same shape `[batch_size, beam_size]` and lod with 2 levels, \ + and have data types int64 and float32. If ``return_parent_idx`` is True, \ + an extra Tensor variable preserving the selected ids' parent indice \ + is included, whose shape is `[batch_size * beam_size]` and data type \ + is int64. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + + # Suppose `probs` contains predicted results from the computation + # cell and `pre_ids` and `pre_scores` is the output of beam_search + # at previous step. + beam_size = 4 + end_id = 1 + pre_ids = fluid.data( + name='pre_id', shape=[None, 1], lod_level=2, dtype='int64') + pre_scores = fluid.data( + name='pre_scores', shape=[None, 1], lod_level=2, dtype='float32') + probs = fluid.data( + name='probs', shape=[None, 10000], dtype='float32') + topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size) + accu_scores = fluid.layers.elementwise_add( + x=fluid.layers.log(x=topk_scores), + y=fluid.layers.reshape(pre_scores, shape=[-1]), + axis=0) + selected_ids, selected_scores = fluid.layers.beam_search( + pre_ids=pre_ids, + pre_scores=pre_scores, + ids=topk_indices, + scores=accu_scores, + beam_size=beam_size, + end_id=end_id) + """ + helper = LayerHelper('beam_search', **locals()) + score_type = pre_scores.dtype + id_type = pre_ids.dtype + + inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores} + if ids is not None: + inputs["ids"] = ids + + selected_scores = helper.create_variable_for_type_inference( + dtype=score_type) + selected_ids = helper.create_variable_for_type_inference(dtype=id_type) + # parent_idx is a tensor used to gather cell states at the next time + # step. Though lod in selected_ids can also be used to gather by + # sequence_expand, it is not efficient. + # gather_op's index input only supports int32 dtype currently + parent_idx = helper.create_variable_for_type_inference(dtype="int32") + + helper.append_op( + type='beam_search', + inputs=inputs, + outputs={ + 'selected_ids': selected_ids, + 'selected_scores': selected_scores, + 'parent_idx': parent_idx + }, + attrs={ + # TODO(ChunweiYan) to assure other value support + 'level': level, + 'beam_size': beam_size, + 'end_id': end_id, + 'is_accumulated': is_accumulated, + }) + if return_parent_idx: + return selected_ids, selected_scores, parent_idx + else: + return selected_ids, selected_scores + + +def beam_search_decode(ids, scores, beam_size, end_id, name=None): + """ + This operator is used after beam search has completed. It constructs the + full predicted sequences for each sample by walking back along the search + paths stored in lod of ``ids`` . The result sequences are stored in a + LoDTensor, which uses the following way to parse: + + .. code-block:: text + + If lod = [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]] + + The first level of lod stands for: There are 2 samples each having 3 + (beam width) predicted sequence. + + The second level of lod stands for: The lengths of the first sample's + 3 predicted sequences are 12, 12, 16; The lengths of the second sample's + 3 predicted sequences are 14, 13, 15. + + + Please see the following demo for a fully beam search usage example: + fluid/tests/book/test_machine_translation.py + + Args: + ids(Variable): The LoDTensorArray variable containing the selected ids + of all steps. Each LoDTensor in it has int64 data type and 2 level + lod which can be used to get the search paths. + scores(Variable): The LodTensorArray variable containing the accumulated + scores corresponding to selected ids of all steps. It has the same size + as ``ids`` . Each LoDTensor in it has the same shape and lod as the + counterpart in ``ids`` , and has a float32 data type. + beam_size(int): The beam width used in beam search. + end_id(int): The id of end token. + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + + Returns: + tuple: The tuple contains two LodTensor variables. The two LodTensor, \ + containing the full sequences of ids and the correspongding accumulated \ + scores, have the same shape flattened to 1D and have the same 2 level \ + lod. The lod can be used to get how many predicted sequences each sample \ + has and how many ids each predicted sequence has. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + + # Suppose `ids` and `scores` are LodTensorArray variables reserving + # the selected ids and scores of all steps + ids = fluid.layers.create_array(dtype='int64') + scores = fluid.layers.create_array(dtype='float32') + finished_ids, finished_scores = fluid.layers.beam_search_decode( + ids, scores, beam_size=5, end_id=0) + """ + helper = LayerHelper('beam_search_decode', **locals()) + sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype) + sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype) + + helper.append_op( + type="beam_search_decode", + inputs={"Ids": ids, + "Scores": scores}, + outputs={ + "SentenceIds": sentence_ids, + "SentenceScores": sentence_scores + }, + attrs={"beam_size": beam_size, + "end_id": end_id}) + + return sentence_ids, sentence_scores + + +def lstm_unit(x_t, + hidden_t_prev, + cell_t_prev, + forget_bias=0.0, + param_attr=None, + bias_attr=None, + name=None): + """ + Long-Short Term Memory (LSTM) RNN cell. This operator performs LSTM calculations for + one time step, whose implementation is based on calculations described in `RECURRENT + NEURAL NETWORK REGULARIZATION `_ . + + We add forget_bias to the biases of the forget gate in order to + reduce the scale of forgetting. The formula is as follows: + + .. math:: + + i_{t} & = \sigma(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i}) + + f_{t} & = \sigma(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias) + + c_{t} & = f_{t}c_{t-1} + i_{t} tanh (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c}) + + o_{t} & = \sigma(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o}) + + h_{t} & = o_{t} tanh (c_{t}) + + :math:`x_{t}` stands for ``x_t`` , corresponding to the input of current time step; + :math:`h_{t-1}` and :math:`c_{t-1}` correspond to ``hidden_t_prev`` and ``cell_t_prev`` , + representing the output of from previous time step. + :math:`i_{t}, f_{t}, c_{t}, o_{t}, h_{t}` are input gate, forget gate, cell, output gate + and hidden calculation. + + Args: + x_t(Variable): A 2D Tensor representing the input of current time step. + Its shape should be :math:`[N, M]` , where :math:`N` stands for batch + size, :math:`M` for the feature size of input. The data type should + be float32 or float64. + hidden_t_prev(Variable): A 2D Tensor representing the hidden value from + previous step. Its shape should be :math:`[N, D]` , where :math:`N` + stands for batch size, :math:`D` for the hidden size. The data type + should be same as ``x_t`` . + cell_t_prev(Variable): A 2D Tensor representing the cell value from + previous step. It has the same shape and data type with ``hidden_t_prev`` . + forget_bias (float, optional): :math:`forget\\_bias` added to the biases + of the forget gate. Default 0. + param_attr(ParamAttr, optional): To specify the weight parameter property. + Default: None, which means the default weight parameter property is used. + See usage for details in :ref:`api_fluid_ParamAttr` . + bias_attr (ParamAttr, optional): To specify the bias parameter property. + Default: None, which means the default bias parameter property is used. + See usage for details in :ref:`api_fluid_ParamAttr` . + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + + Returns: + tuple: The tuple contains two Tensor variables with the same shape and \ + data type with ``hidden_t_prev`` , representing the hidden value and \ + cell value which correspond to :math:`h_{t}` and :math:`c_{t}` in \ + the formula. + + Raises: + ValueError: Rank of x_t must be 2. + ValueError: Rank of hidden_t_prev must be 2. + ValueError: Rank of cell_t_prev must be 2. + ValueError: The 1st dimensions of x_t, hidden_t_prev and cell_t_prev must be the same. + ValueError: The 2nd dimensions of hidden_t_prev and cell_t_prev must be the same. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + + dict_dim, emb_dim, hidden_dim = 128, 64, 512 + data = fluid.data(name='step_data', shape=[None], dtype='int64') + x = fluid.embedding(input=data, size=[dict_dim, emb_dim]) + pre_hidden = fluid.data( + name='pre_hidden', shape=[None, hidden_dim], dtype='float32') + pre_cell = fluid.data( + name='pre_cell', shape=[None, hidden_dim], dtype='float32') + hidden = fluid.layers.lstm_unit( + x_t=x, + hidden_t_prev=pre_hidden, + cell_t_prev=pre_cell) + """ + helper = LayerHelper('lstm_unit', **locals()) + + if len(x_t.shape) != 2: + raise ValueError("Rank of x_t must be 2.") + + if len(hidden_t_prev.shape) != 2: + raise ValueError("Rank of hidden_t_prev must be 2.") + + if len(cell_t_prev.shape) != 2: + raise ValueError("Rank of cell_t_prev must be 2.") + + if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[ + 0] != cell_t_prev.shape[0]: + raise ValueError("The 1st dimensions of x_t, hidden_t_prev and " + "cell_t_prev must be the same.") + + if hidden_t_prev.shape[1] != cell_t_prev.shape[1]: + raise ValueError("The 2nd dimensions of hidden_t_prev and " + "cell_t_prev must be the same.") + + if bias_attr is None: + bias_attr = ParamAttr() + + size = cell_t_prev.shape[1] + concat_out = nn.concat(input=[x_t, hidden_t_prev], axis=1) + fc_out = nn.fc(input=concat_out, + size=4 * size, + param_attr=param_attr, + bias_attr=bias_attr) + dtype = x_t.dtype + c = helper.create_variable_for_type_inference(dtype) + h = helper.create_variable_for_type_inference(dtype) + + helper.append_op( + type='lstm_unit', + inputs={"X": fc_out, + "C_prev": cell_t_prev}, + outputs={"C": c, + "H": h}, + attrs={"forget_bias": forget_bias}) + + return h, c diff --git a/python/paddle/fluid/layers/sequence_lod.py b/python/paddle/fluid/layers/sequence_lod.py new file mode 100644 index 0000000000..2a4fe0b69f --- /dev/null +++ b/python/paddle/fluid/layers/sequence_lod.py @@ -0,0 +1,1351 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +from .layer_function_generator import templatedoc +from ..framework import Variable, in_dygraph_mode +from ..layer_helper import LayerHelper + +__all__ = [ + 'sequence_conv', + 'sequence_softmax', + 'sequence_pool', + 'sequence_concat', + 'sequence_first_step', + 'sequence_last_step', + 'sequence_slice', + 'sequence_expand', + 'sequence_expand_as', + 'sequence_pad', + 'sequence_unpad', + 'sequence_reshape', + 'sequence_scatter', + 'sequence_enumerate', + 'sequence_mask', + 'sequence_reverse', +] + + +@templatedoc() +def sequence_conv(input, + num_filters, + filter_size=3, + filter_stride=1, + padding=True, + padding_start=None, + bias_attr=None, + param_attr=None, + act=None, + name=None): + """ + **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use conv2d Op.(fluid.layers.** :ref:`api_fluid_layers_conv2d` ). + + This operator receives input sequences with variable length and other convolutional + configuration parameters(num_filters, filter_size) to apply the convolution operation. + It fills all-zero padding data on both sides of the sequence by default to ensure that + the output is the same length as the input. You can customize the padding behavior by + configuring the parameter :attr:`padding\_start` . + + **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future. + + .. code-block:: text + + Here we will illustrate the details of the padding operation: + For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps: + Assumed input (X) is a [4, N] float LoDTensor, and for the sake of simplicity, we assume N=2. + input.data = [[1, 1], + [2, 2], + [3, 3], + [4, 4]] + + This is to say that input (X) has 4 words and the dimension of each word + representation is 2. + + * Case1: + + If padding_start is -1 and filter_size is 3. + The length of padding data is calculated as follows: + up_pad_len = max(0, -padding_start) = 1 + down_pad_len = max(0, filter_size + padding_start - 1) = 1 + + The output of the input sequence after padding is: + data_aftet_padding = [[0, 0, 1, 1, 2, 2], + [1, 1, 2, 2, 3, 3], + [2, 2, 3, 3, 0, 0], + [0, 0, 4, 4, 0, 0]] + + It will be multiplied by the filter weight to get the final output. + Assume num_filters = 3 + output.data = [[ 0.3234, -0.2334, 0.7433], + [ 0.5646, 0.9464, -0.1223], + [-0.1343, 0.5653, 0.4555], + [ 0.9954, -0.1234, -0.1234]] + output.shape = [4, 3] # 3 = num_filters + output.lod = [[0, 3, 4]] # Remain the same + + + Args: + input (Variable): LoDTensor with shape :math:`(M, K)`, where M is the total time-step of mini-batch + and K is hidden_size of input. Only lod_level of 1 is supported. The data type should be float32 or + float64. + num_filters (int): the number of filters. + filter_size (int): the height of filter. Specified filter width is not supported, the width is + hidden_size by default. Default: 3. + filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1. + padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the + future. Currently, it will always pad input to make sure the length of the output is + the same as input whether :attr:`padding` is set true or false. Because the length of + input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution + result to not be computed correctly. These padding data will not be trainable or updated + while trainnig. Default: True. + padding_start (int): It is used to indicate the start index for padding the input + sequence, which can be negative. The negative number means to pad + :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance. + The positive number means to skip :attr:`padding_start` time-steps of each instance, + and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data + at the end of the sequence to ensure that the output is the same length as the input. + If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled + on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data + is padded at the end of each input sequence. Default: None. + bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the + default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . + param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the + default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . + act (str): Activation to be applied to the output of this layer, such as tanh, softmax, + sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None. + name (str, optional): The default value is None. Normally there is no need for user to set this property. + For more information, please refer to :ref:`api_guide_Name` . + + Returns: + Variable: LoDTensor with the same length as input. The data type is float32 or float64, which is same as input. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + + x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1) + x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1) + """ + + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_conv', **locals()) + dtype = helper.input_dtype() + filter_shape = [filter_size * input.shape[1], num_filters] + filter_param = helper.create_parameter( + attr=helper.param_attr, shape=filter_shape, dtype=dtype) + pre_bias = helper.create_variable_for_type_inference(dtype) + if padding_start is None: + padding_start = -int(filter_size // 2) + + helper.append_op( + type='sequence_conv', + inputs={ + 'X': [input], + 'Filter': [filter_param], + }, + outputs={"Out": pre_bias}, + attrs={ + 'contextStride': filter_stride, + 'contextStart': padding_start, + 'contextLength': filter_size, + }) + pre_act = helper.append_bias_op(pre_bias) + return helper.append_activation(pre_act) + + +def sequence_softmax(input, use_cudnn=False, name=None): + """ + **Note**: + + **The input type of the OP must be LoDTensor. For Tensor, use:** :ref:`api_fluid_layers_softmax` + + A LoD-tensor can be regarded as several sequences, and this op apply softmax algo on each sequence. + The shape of input Tensor can be :math:`[N, 1]` or :math:`[N]`, where :math:`N` + is the sum of the length of all sequences. Recommended usage: :math:`[N]`. + + For i-th sequence in a mini-batch: + + .. math:: + + Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))} + + For example, for a LoD-Tensor with 6 sequences ([3, 2, 4, 1, 2, 3] - sequence length list in order), + the lod in the runtime is [[0, 3, 5, 9, 10, 12, 15]], + then softmax will be computed among :math:`X[0:3,:],X[3:5,:],X[5:9,:],X[9:10,:],X[10:12,:],X[12:15,:]`, + and :math:`N` turns out to be 15. + + .. code-block:: text + + *Case 1: + + Given: + input.data = [0.7, 1, 0.6, + 1.5, 1.1, + 1.2, 0.2, 0.6, 1.9, + 3.1, + 2.5, 0.8, + 0.1, 2.4, 1.3] + input.lod = [[0, 3, 5, 9, 10, 12, 15]] + then: + output.data = [0.30724832, 0.41474187, 0.2780098, + 0.59868765, 0.40131235, + 0.2544242, 0.09359743, 0.13963096, 0.5123474, + 1., + 0.84553474, 0.15446526, + 0.06995796, 0.69777346, 0.23226859] + output.lod = [[0, 3, 5, 9, 10, 12, 15]] + + + Args: + input (Variable):A LoDTensor with shape of :math:`[N, 1]` or :math:`[N]`, Recommended usage: :math:`[N]`. + Supported data types: float32, float64. + use_cudnn (bool, optional): Use cudnn kernel or not. Effective only when the cudnn version of the paddle + library is installed and GPU is used for training or reasoning. Default: False. + name (str, optional): The default value is None. Normally there is no need for user to set this property. + For more information, please refer to :ref:`api_guide_Name` + + Returns: + Variable: A LoD-Tensor which has the same shape and data type with input. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + x = fluid.data(name='x', shape=[7, 1], + dtype='float32', lod_level=1) + x_sequence_softmax_1 = fluid.layers.sequence_softmax(input=x) + + y = fluid.data(name='y', shape=[7], + dtype='float32', lod_level=1) + x_sequence_softmax_2 = fluid.layers.sequence_softmax(input=y) + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_softmax', **locals()) + dtype = helper.input_dtype() + softmax_out = helper.create_variable_for_type_inference(dtype) + helper.append_op( + type="sequence_softmax", + inputs={"X": input}, + outputs={"Out": softmax_out}, + attrs={"use_cudnn": use_cudnn}) + return softmax_out + + +def sequence_pool(input, pool_type, is_test=False, pad_value=0.0): + """ + **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use pool2d Op.(fluid.layers.** :ref:`api_fluid_layers_pool2d` ). + + This operator only supports LoDTensor as input. It will apply specified pooling + operation on the input LoDTensor. It pools features of all time-steps of each + sequence at the last lod_level using :attr:`pool_type` mentioned in the parameters, + such as sum, average, sqrt, etc. + + It supports six pool_type: + + - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}` + - sum: :math:`Out[i] = \sum_jX_{ij}` + - sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}` + - max: :math:`Out[i] = max(X_i)` + - last: :math:`Out[i] = X_{N_i}` + - first: :math:`Out[i]` = X_0 + + where :math:`N_i` is the length of i-th input sequence. + + .. code-block:: text + + Case 1: + input is a 1-level LoDTensor and pad_value = 0.0: + input.lod = [[0, 2, 5, 7, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + output is LoDTensor: + out.shape = [4, 1] + with condition out.shape[0] == len(x.lod[-1]) == 4 + + for different pool_type: + average: out.data = [[2.], [4.], [3.], [0.0]], where 2.=(1. + 3.)/2, 4.=(2. + 4. + 6.)/3, 3.=(5. + 1.)/2 + sum : out.data = [[4.], [12.], [6.], [0.0]], where 4.=1. + 3., 12.=2. + 4. + 6., 6.=5. + 1. + sqrt : out.data = [[2.82], [6.93], [4.24], [0.0]], where 2.82=(1. + 3.)/sqrt(2), 6.93=(2. + 4. + 6.)/sqrt(3), 4.24=(5. + 1.)/sqrt(2) + max : out.data = [[3.], [6.], [5.], [0.0]], where 3.=max(1., 3.), 6.=max(2., 4., 6.), 5.=max(5., 1.) + last : out.data = [[3.], [6.], [1.], [0.0]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.) + first : out.data = [[1.], [2.], [5.], [0.0]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) + + and all above [0.0] at last of out.data is padding data. + + Case 2: + input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], + where 0 means empty sequence. + The first sequence contains 2 subsequence with length info [1, 2]; + The last sequence contains 3 subsequence with length info [1, 0, 3]. + input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + If pool_typ = sum, it will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 + output is LoDTensor: + out.shape= [5, 1] + out.lod = [[0, 2, 2, 5]] + where out.shape[0] == len(x.lod[-1]) == 5 + sum: out.data = [[1.], [5.], [4.], [0.0], [12.]] + where 1.=1., 5.=3. + 2., 4.=4., 0.0=pad_value, 12.=6. + 5. + 1. + + Args: + input (variable): LoDTensor with lod_level no more than 2. The data type should be float32. + pool_type (str): The pooling type that supports average, sum, sqrt, max, last or first. + is_test (bool): Only works when :attr:`pool_type` is max. If set False, a temporary Tenosr maxIndex is + created to record the index information corresponding to the maximum value, which is used for backward + gradient calculation in the training phase. Default: False. + pad_value (float): Used to pad the pooling result for empty input sequence. Default: 0.0 + + Returns: + Variable: LoDTensor after pooling with data type float32. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + + x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) + avg_x = fluid.layers.sequence_pool(input=x, pool_type='average') + sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum') + sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt') + max_x = fluid.layers.sequence_pool(input=x, pool_type='max') + last_x = fluid.layers.sequence_pool(input=x, pool_type='last') + first_x = fluid.layers.sequence_pool(input=x, pool_type='first') + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_pool', **locals()) + dtype = helper.input_dtype() + pool_out = helper.create_variable_for_type_inference(dtype) + max_index = helper.create_variable_for_type_inference(dtype) + + helper.append_op( + type="sequence_pool", + inputs={"X": input}, + outputs={"Out": pool_out, + "MaxIndex": max_index}, + attrs={ + "pooltype": pool_type.upper(), + "is_test": is_test, + "pad_value": pad_value + }) + + # when pool_type is max, variable max_index is initialized, + # so we stop the gradient explicitly here + if pool_type == 'max': + max_index.stop_gradient = True + + return pool_out + + +@templatedoc() +def sequence_concat(input, name=None): + """ + **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use concat Op.(fluid.layers.** :ref:`api_fluid_layers_concat` ). + + This operator only supports LoDTensor as input. It concatenates the multiple LoDTensor from input by the LoD information, + and outputs the concatenated LoDTensor. + + .. code-block:: text + + input is a list of LoDTensor: + input = [x1, x2] + where: + x1.lod = [[0, 3, 5]] + x1.data = [[1], [2], [3], [4], [5]] + x1.shape = [5, 1] + + x2.lod = [[0, 2, 4]] + x2.data = [[6], [7], [8], [9]] + x2.shape = [4, 1] + and should satisfy: len(x1.lod[0]) == len(x2.lod[0]) + + output is LoDTensor: + out.lod = [[0, 3+2, 5+4]] + out.data = [[1], [2], [3], [6], [7], [4], [5], [8], [9]] + out.shape = [9, 1] + + Args: + input(list of Variable): List of LoDTensor to be concatenated. The length of each LoDTensor should be same. + The data type can be float32, float64 or int64. + name(str, optional): The default value is None. Normally there is no need for user to set this property. + For more information, please refer to :ref:`api_guide_Name` . + + Returns: + Variable: Output the concatenated LoDTensor. The data type is same as input. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1) + y = fluid.data(name='y', shape=[-1, 10], dtype='float32', lod_level=1) + out = fluid.layers.sequence_concat(input=[x, y]) + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_concat', **locals()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) + helper.append_op( + type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]}) + return out + + +def sequence_first_step(input): + """ + This operator only supports LoDTensor as input. Given the input LoDTensor, it will + select first time-step feature of each sequence as output. + + .. code-block:: text + + Case 1: + input is 1-level LoDTensor: + input.lod = [[0, 2, 5, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + output is a LoDTensor: + out.shape = [3, 1] + out.shape[0] == len(x.lod[-1]) == 3 + out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) + + Case 2: + input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], + where 0 means empty sequence. + The first sequence contains 2 subsequence with length info [1, 2]; + The last sequence contains 3 subsequence with length info [1, 0, 3]. + input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 + output is a LoDTensor: + out.shape= [5, 1] + out.lod = [[0, 2, 2, 5]] + out.shape[0] == len(x.lod[-1]) == 5 + out.data = [[1.], [3.], [4.], [0.0], [6.]] + where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.) + + Args: + input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32. + + Returns: + Variable: LoDTensor consist of the sequence's first step vector. The data type is float32. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) + x_first_step = fluid.layers.sequence_first_step(input=x) + """ + return sequence_pool(input=input, pool_type="first") + + +def sequence_last_step(input): + """ + This operator only supports LoDTensor as input. Given the input LoDTensor, it will + select last time-step feature of each sequence as output. + + .. code-block:: text + + Case 1: + input is 1-level LoDTensor: + input.lod = [[0, 2, 5, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + output is a LoDTensor: + out.shape = [3, 1] + out.shape[0] == len(x.lod[-1]) == 3 + out.data = [[3.], [6.], [1.]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.) + + Case 2: + input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], + where 0 means empty sequence. + The first sequence contains 2 subsequence with length info [1, 2]; + The last sequence contains 3 subsequence with length info [1, 0, 3]. + input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 + output is a LoDTensor: + out.shape= [5, 1] + out.lod = [[0, 2, 2, 5]] + out.shape[0] == len(x.lod[-1]) == 5 + out.data = [[1.], [2.], [4.], [0.0], [1.]] + where 1.=last(1.), 2.=last(3., 2.), 4.=last(4.), 0.0 = pad_value, 1=last(6., 5., 1.) + + + Args: + input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32. + + Returns: + Variable: LoDTensor consist of the sequence's last step vector. The data type is float32. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) + x_last_step = fluid.layers.sequence_last_step(input=x) + """ + return sequence_pool(input=input, pool_type="last") + + +def sequence_slice(input, offset, length, name=None): + """ + **Sequence Slice Layer** + + The layer crops a subsequence from given sequence with given start + offset and subsequence length. + + It only supports sequence data (LoDTensor with lod_level equal to 1). + + .. code-block:: text + + - Case: + + Given the input Variable **input**: + + input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]], + input.lod = [[3, 2]], + input.dims = (5, 2), + + with offset.data = [[0], [1]] and length.data = [[2], [1]], + + the output Variable will be + + out.data = [[a1, a2], [b1, b2], [e1, e2]], + out.lod = [[2, 1]], + out.dims = (3, 2). + + Note: + The first dimension size of **input**, **offset** and **length** + should be equal. The **offset** should start from 0. + + Args: + input(Variable): LoDTensor, The input Variable which consists of the complete + sequences.The data type is float32 or float64. + offset(Variable): LoDTensor, The offset to slice each sequence.The data + type is int32 or int64. + length(Variable): LoDTensor, The length of each subsequence.The data + type is int32 or int64. + name(str|None): The default value is None. Normally there is no need + for user to set this property. For more information, + please refer to :ref:`api_guide_Name` + + Returns: + Variable: The output subsequences. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + import numpy as np + seqs = fluid.data(name='x', shape=[10, 5], + dtype='float32', lod_level=1) + offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32")) + length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32")) + subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, + length=length) + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper("sequence_slice", **locals()) + dtype = helper.input_dtype() + out = helper.create_variable_for_type_inference(dtype) + + offset.stop_gradient = True + length.stop_gradient = True + + helper.append_op( + type="sequence_slice", + inputs={"X": input, + "Offset": offset, + "Length": length}, + outputs={"Out": out}) + + return out + + +def sequence_expand(x, y, ref_level=-1, name=None): + """Sequence Expand Layer. This layer will expand the input variable ``x`` \ + according to specified level ``ref_level`` lod of ``y``. Please note that \ + the lod level of ``x`` is at most 1. If the lod level of ``x`` is 1, than \ + the size of lod of ``x`` must be equal to the length of ``ref_level`` lod \ + of ``y``. If the lod level of ``x`` is 0, then the first dim of ``x`` should \ + be equal to the size of ``ref_level`` of ``y``. The rank of **x** is at least 2. \ + When rank of ``x`` is greater than 2, then it would be viewed as a 2-D tensor. + + Please note that the input ``x`` should be LodTensor or Tensor, \ + and input ``y`` must be LodTensor. + + Following examples will explain how sequence_expand works: + + .. code-block:: text + + Case 1 + + Consider 2 sequences [a][b] and [c][d], now we want to expand them to [a][b], [a][b], [c][d] and [c][d]. + Sequence [a][b] expand twice and [c][d] expands twice, so the lod which according to is [2, 2]. + + Input x is a 1-level LoDTensor: + x.lod = [[2, 2]] #lod based on length may be easier to understand + x.data = [[a], [b], [c], [d]] + x.dims = [4, 1] + + input y is a LoDTensor: + y.lod = [[2, 2], #the 0th level lod, according to this level + [3, 3, 1, 1]] #the 1st level lod, it has nothing to do with this level + + ref_level: 0 + + then output is a 1-level LoDTensor out: + out.lod = [[2, 2, 2, 2]] #lod based on offfset + out.data = [[a], [b], [a], [b], [c], [d], [c], [d]] + out.dims = [8, 1] + + + Case 2 + + Consider 3 sequences [a], [b], [c], now we want to expand them to [a][a], [c][c][c]. + It's obvious that the lod info of expanded sequences is [2, 0, 3]. + + x is a Tensor: + x.data = [[a], [b], [c]] + x.dims = [3, 1] + + y is a LoDTensor: + y.lod = [[2, 0, 3]] + + ref_level: -1 + + then output is a 1-level LodTensor: + out.data = [[a], [a], [c], [c], [c]] + out.dims = [5, 1] + + Args: + x (Variable): The input variable which is a Tensor or LoDTensor, with the \ + dims ``[M, K]``. The lod level is at most 1. The data type should be \ + float32, float64, int8, int32 or int64. + y (Variable): The input variable which is a LoDTensor, the lod level is \ + at least 1. + ref_level (int): Lod level of ``y`` to be referred by ``x``. If set to -1, \ + refer the last level of lod. + name(str, optional): For detailed information, please refer \ + to :ref:`api_guide_Name`. Usually name is no need to set and \ + None by default. + + Returns: The expanded variable which is a LoDTensor, with dims ``[N, K]``. \ + ``N`` depends on the lod info of ``x`` and ``y``. \ + The data type is same as input. + + Return Type: Variable + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import paddle.fluid.layers as layers + import numpy as np + + x = fluid.data(name='x', shape=[4, 1], dtype='float32') + y = fluid.data(name='y', shape=[8, 1], + dtype='float32', lod_level=1) + out = layers.sequence_expand(x=x, y=y, ref_level=0) + + exe = fluid.Executor(fluid.CPUPlace()) + place = fluid.CPUPlace() + + np_data = np.array([[1], [2], [3], [4]]).astype('float32') + x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place) + print(x_lod_tensor) + #lod: [[0, 2, 4]] + # dim: 4, 1 + # layout: NCHW + # dtype: float + # data: [1 2 3 4] + + np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32') + y_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2], [3,3,1,1]], place) + print(y_lod_tensor) + #lod: [[0, 2, 4][0, 3, 6, 7, 8]] + # dim: 8, 1 + # layout: NCHW + # dtype: int64_t + # data: [0 0 1 1 1 1 1 0] + + out_main = exe.run(fluid.default_main_program(), + feed={'x': x_lod_tensor, 'y': y_lod_tensor}, + fetch_list=[out], return_numpy=False) + print(out_main[0]) + #lod: [[0, 2, 4, 6, 8]] + # dim: 8, 1 + # layout: NCHW + # dtype: float + # data: [1 2 1 2 3 4 3 4] + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_expand', input=x, **locals()) + dtype = helper.input_dtype() + tmp = helper.create_variable_for_type_inference(dtype) + helper.append_op( + type='sequence_expand', + inputs={'X': x, + 'Y': y}, + outputs={'Out': tmp}, + attrs={'ref_level': ref_level}) + return tmp + + +def sequence_expand_as(x, y, name=None): + """Sequence Expand As Layer. This OP will expand the input variable ``x`` \ + according to the zeroth level lod of ``y``. Current implementation requires \ + the level number of ``y``'s lod must be 1, and the first dimension of \ + ``x`` should be equal to the size of ``y``'s zeroth level lod, thus \ + the expanded LodTensor has the same lod info as ``y``. The expanded result \ + has nothing to do with ``x``'s lod, so the lod of Input(X) is not considered. + + Please note that the input ``x`` should be LodTensor or Tensor, \ + and input ``y`` must be LodTensor. + + Following examples will explain how sequence_expand_as works: + + .. code-block:: text + + Case 1: + + Consider 4 sequences [a], [b], [c], [d], now we want to expand them to [a][a][a], [b][b][b], [c] and [d]. + It's obvious that the lod info of expanded sequences is [0, 3, 6, 7, 8]. + Given a 1-level LodTensor ``x``: + x.data = [[a], [b], [c], [d]] + x.dims = [4, 1] + and input ``y`` + y.lod = [[3, 3, 1, 1]] #lod based on length may be easier to understand + + then we get 1-level LoDTensor out: + Out.lod = [[0, 3, 6, 7, 8]] #based on offset + Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]] + Out.dims = [8, 1] + + + Case 2: + + Given a common Tensor ``x``: + x.data = [[a, b], [c, d], [e, f]] + x.dims = [3, 2] + and input ``y``: + y.lod = [[0, 2, 3, 6]] + + then we get a 1-level LoDTensor: + out.lod = [[0, 2, 3, 6]] + out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]] + out.dims = [6, 2] + + Args: + x (Variable): The input variable which is a Tensor or LoDTensor, with the \ + dims ``[M, K]``. The data type should be float32, float64, int8, int32 \ + or int64. + y (Variable): The input variable which is a LoDTensor with 1-level lod. + name (str, optional): For detailed information, please refer \ + to :ref:`api_guide_Name`. Usually name is no need to set and \ + None by default. + + Returns: The expanded variable which is a LoDTensor with the dims ``[N, K]``. \ + ``N`` depends on the lod of ``y``, and the lod level must be 1. \ + The data type is same as input. + + Return Type: Variable + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import paddle.fluid.layers as layers + import numpy as np + + x = fluid.data(name='x', shape=[4, 1], dtype='float32') + y = fluid.data(name='y', shape=[8, 1], dtype='float32', lod_level=1) + out = layers.sequence_expand_as(x=x, y=y) + + exe = fluid.Executor(fluid.CPUPlace()) + place = fluid.CPUPlace() + + np_data = np.array([[1], [2], [3], [4]]).astype('float32') + x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place) + print(x_lod_tensor) + #lod: [[0, 2, 4]] + # dim: 4, 1 + # layout: NCHW + # dtype: float + # data: [1 2 3 4] + + np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32') + y_lod_tensor = fluid.create_lod_tensor(np_data, [[3,3,1,1]], place) + print(y_lod_tensor) + #lod: [[0, 3, 6, 7, 8]] + # dim: 8, 1 + # layout: NCHW + # dtype: int64_t + # data: [0 0 1 0 1 1 1 0] + + out_main = exe.run(fluid.default_main_program(), + feed={'x': x_lod_tensor, 'y': y_lod_tensor}, + fetch_list=[out], return_numpy=False) + print(out_main[0]) + #lod: [[0, 3, 6, 7, 8]] + # dim: 8, 1 + # layout: NCHW + # dtype: float + # data: [1 1 1 2 2 2 3 4] + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_expand_as', input=x, **locals()) + dtype = helper.input_dtype() + tmp = helper.create_variable_for_type_inference(dtype) + helper.append_op( + type='sequence_expand_as', + inputs={'X': x, + 'Y': y}, + outputs={'Out': tmp}) + return tmp + + +def sequence_pad(x, pad_value, maxlen=None, name=None): + """ + This layer padding the sequences in a same batch to a common length (according \ + to ``maxlen``). The padding value is defined by ``pad_value``, and will be \ + appended to the tail of sequences. The result is a Python tuple ``(Out, Length)``: \ + the LodTensor ``Out`` is the padded sequences, and LodTensor ``Length`` is \ + the length information of input sequences. For removing paddding data (unpadding \ + operation), See :ref:`api_fluid_layers_sequence_unpad` . + + Please note that the input ``x`` should be LodTensor. + + .. code-block:: text + + Case 1: + Given input 1-level LoDTensor x: + x.lod = [[0, 2, 5]] + x.data = [[a],[b],[c],[d],[e]] + pad_value: + pad_value.data = [0] + maxlen = 4 + + the output tuple (Out, Length): + Out.data = [[[a],[b],[0],[0]],[[c],[d],[e],[0]]] + Length.data = [2, 3] #Original sequences length + + Case 2: + Given input 1-level LoDTensor x: + x.lod = [[0, 2, 5]] + x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]] + pad_value: + pad_value.data = [0] + defualt maxlen = None, (the virtual value is 3, according to the shape of x) + + the output tuple (Out, Length): + Out.data = [[[a1,a2],[b1,b2],[0,0]],[[c1,c2],[d1,d2],[e1,e2]]] + Length.data = [2, 3] + + Case 3: + Given input 1-level LoDTensor x: + x.lod = [[0, 2, 5]] + x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]] + pad_value: + pad_value.data = [p1,p2] + defualt maxlen = None, (the virtual value is 3) + + get tuple (Out, Length): + Out.data = [[[a1,a2],[b1,b2],[p1,p2]],[[c1,c2],[d1,d2],[e1,e2]]] + Length.data = [2, 3] + + + + Args: + x (Variable): Input 1-level LodTensor with dims ``[M, K]``. The batch \ + size is described by lod infor (the number of sequnces ). \ + The data type should be float32, float64, int8, int32 or int64. + pad_value (Variable): Padding value. It can be a scalar or a 1D tensor \ + with length ``K``. If it's a scalar, it will be automatically broadcasted \ + to a Tensor. The data type should be as same as ``x``. + maxlen (int, optional): The length of padded sequences, None by default. \ + When it is None, all sequences will be padded up to the length of the \ + longest one among them; when it a certain positive value, it must be \ + greater than the length of the longest original sequence. + name (str, optional): For detailed information, please refer \ + to :ref:`api_guide_Name`. Usually name is no need to set and \ + None by default. + + Returns: A Python tuple (Out, Length): the 1st is a 0 level LodTensor \ + ``Out``, with the shape ``[batch_size, maxlen, K]``; the second is the original \ + sequences length infor ``Length``, which should be a 0-level 1D LodTensor. \ + The size of ``Length`` is equal to batch size, and the data type is int64. + + Return Type: tuple + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import numpy + + x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1) + pad_value = fluid.layers.assign( + input=numpy.array([0.0], dtype=numpy.float32)) + out = fluid.layers.sequence_pad(x=x, pad_value=pad_value) + """ + + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_pad', input=x, **locals()) + dtype = helper.input_dtype() + out = helper.create_variable_for_type_inference(dtype) + length = helper.create_variable_for_type_inference(dtype) + + pad_value.stop_gradient = True + length.stop_gradient = True + + if maxlen is None: + maxlen = -1 + helper.append_op( + type='sequence_pad', + inputs={'X': x, + 'PadValue': pad_value}, + outputs={'Out': out, + 'Length': length}, + attrs={'padded_length': maxlen}) + return out, length + + +def sequence_unpad(x, length, name=None): + """ + **Note**: + + **The input of the OP is Tensor and the output is LoDTensor. For padding operation, See:** :ref:`api_fluid_layers_sequence_pad` + + The OP removes the padding data from the input based on the length information and returns a LoDTensor. + + .. code-block:: text + + Case 1: + + Given input Variable **x**: + x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0], + [ 6.0, 7.0, 8.0, 9.0, 10.0], + [11.0, 12.0, 13.0, 14.0, 15.0]], + + in which there are 3 sequences padded to length 5, and the acutal length + specified by input Variable **length**: + + length.data = [2, 3, 4], + + after unpadding, the output Variable will be: + + out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]] + out.lod = [[0, 2, 5, 9]] + + Args: + x(Variable): A Tensor which contains padding data, and its shape size can not be less than 2. + Supported data types: float32, float64, int32, int64. + length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor + has the same shape with the 0th dimension of the X . Supported data types: int64. + name(str|None): The default value is None. Normally there is no need for user to set this property. + For more information, please refer to :ref:`api_guide_Name` + + Returns: + Variable: A LoDTensor whose recursive sequence length is consistent with the information of the length parameter and it has the same data type with input. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import numpy + + # pad data + x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1) + pad_value = fluid.layers.assign(input=numpy.array([0.0], dtype=numpy.float32)) + pad_data, len = fluid.layers.sequence_pad(x=x, pad_value=pad_value) + + # unpad data + unpad_data = fluid.layers.sequence_unpad(x=pad_data, length=len) + """ + + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_unpad', input=x, **locals()) + dtype = helper.input_dtype() + out = helper.create_variable_for_type_inference(dtype) + + length.stop_gradient = True + + helper.append_op( + type='sequence_unpad', + inputs={'X': x, + 'Length': length}, + outputs={'Out': out}) + return out + + +def sequence_reshape(input, new_dim): + """ + **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reshape Op.(fluid.layers.** :ref:`api_fluid_layers_reshape` ). + + This operator only supports LoDTensor as input. Given :attr:`new_dim` , + it will compute new shape according to original length of each sequence, + original dimensions and :attr:`new_dim` . Then it will output a new LoDTensor + containing :attr:`new_dim` . Currently it only supports 1-level LoDTensor. + Please make sure that (original length * original dimensions) can be divided + by the :attr:`new_dim` with no remainder for each sequence. + + .. code-block:: text + + input is a LoDTensor: + input.lod = [[0, 2, 6]] + input.data = [[1, 2], [3, 4], + [5, 6], [7, 8], + [9, 10], [11, 12]] + input.shape = [6, 2] + + set new_dim = 4 + out is a LoDTensor: + out.lod = [[0, 1, 3]] + out.data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + out.shape = [3, 4] + + + Args: + + input (Variable): 1-level LoDTensor with shape :math:`[M, K]` . The data type should + be int32, int64, float32 or float64. + new_dim (int): New dimension that the input LoDTensor is reshaped to. + + Returns: + Variable: Reshaped LoDTensor according to new dimension. The data type is same as input. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + x = fluid.data(name='x', shape=[None, 16], dtype='float32', lod_level=1) + x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4) + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_reshape', **locals()) + out = helper.create_variable_for_type_inference(helper.input_dtype()) + helper.append_op( + type='sequence_reshape', + inputs={'X': [input]}, + outputs={'Out': [out]}, + attrs={'new_dim': new_dim}) + return out + + +def sequence_scatter(input, index, updates, name=None): + """ + **Note**: + + **The index and updates parameters of the OP must be LoDTensor.** + + Plus the updates data to the correspoding input according to the index. + + The updated algorithm is as follows: output[instance_index][index [pos]] = input[instance_index][index [pos]] + updates[pos], + where instance_idx is the K sample corresponding to pos in batch. + + The value of output[i][j] depends on whether j can be found in the i+1th interval of the index. If found, + out[i][j] = input[i][j] + update[m] [n], otherwise, out[i][j] = input[i][j]. + + For example, in the following example, the lod information for index is divided into three sequences. Among + them, because the element 0 can be found in the first interval of the index, it is updated with the value of + the corresponding position of the updates, out[0][0] = input[0][0]+updates[0][0] . Because element 1 cannot + be found in the third interval of index, out[2][1] = input[2][1]. + + .. code-block:: text + + *Case 1: + + Given: + input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]] + input.dims = [3, 6] + + index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]] + index.lod = [[0, 3, 8, 12]] + + updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]] + updates.lod = [[ 0, 3, 8, 12]] + + Then: + out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0], + [1.0, 1.0, 1.4, 1.3, 1.2, 1.1], + [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]] + out.dims = X.dims = [3, 6] + + Args: + input (Variable): A Tensor with shape of :math:`[N, k_1... k_n]`. Supported data types: float32, float64, int32, int64. + index (Variable): A LoDTensor contains index information. Its LoD level must be 1 and its data type must be int64. + updates (Variable): A LodTensor contains updates information. It has the same LoD level with the index and has the + same data type with the input. Supported data types: float32, float64, int32, int64. + name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, + please refer to :ref:`api_guide_Name` + + Returns: + Variable: A Tensor which has been updated. It has the same shape and data type with input. + + Examples: + + .. code-block:: python + + import paddle.fluid as fluid + + input = fluid.data( name="x", shape=[None, 3, 6], dtype='float32' ) + index = fluid.data( name='index', shape=[12, 1], dtype='int64', lod_level=1) + updates = fluid.data( name='updates', shape=[12, 1], dtype='float32', lod_level=1) + output = fluid.layers.sequence_scatter(input, index, updates) + + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_scatter', **locals()) + dtype = helper.input_dtype() + out = helper.create_variable_for_type_inference(dtype) + helper.append_op( + type="sequence_scatter", + inputs={"X": input, + "Ids": index, + "Updates": updates}, + outputs={"Out": out}) + return out + + +def sequence_enumerate(input, win_size, pad_value=0, name=None): + """ + Generate a new sequence for the input index sequence with \ + shape ``[d_1, win_size]``, which enumerates all the \ + sub-sequences with length ``win_size`` of the input with \ + shape ``[d_1, 1]``, and padded by ``pad_value`` if necessary in generation. + + Please note that the `input` must be LodTensor. + + .. code-block:: text + + Input x: + x.lod = [[0, 3, 5]] + x.data = [[1], [2], [3], [4], [5]] + x.dims = [5, 1] + + Attrs: + win_size = 2 + pad_value = 0 + + Output: + out.lod = [[0, 3, 5]] + out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]] + out.dims = [5, 2] + + + Args: + input (Variable): The input variable which is a index sequence, \ + which should be a LodTensor with shape ``[d_1, 1]`` and 1-level lod info. \ + The data type should be float32, float64, int8, int32 or int64. + win_size (int): The window size for enumerating all sub-sequences. + pad_value (int, optional): The padding value, default 0. + name(str, optional): For detailed information, please refer \ + to :ref:`api_guide_Name`. Usually name is no need to set and \ + None by default. + + Returns: The enumerate sequence variable which is a LoDTensor with \ + shape ``[d_1, win_size]`` and 1-level lod info. \ + The data type is same as ``input``. + + Return Type: Variable + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + + x = fluid.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1) + out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0) + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper('sequence_enumerate', **locals()) + out = helper.create_variable_for_type_inference( + helper.input_dtype(), stop_gradient=True) + helper.append_op( + type='sequence_enumerate', + inputs={'X': input}, + outputs={'Out': out}, + attrs={'win_size': win_size, + 'pad_value': pad_value}) + return out + + +def sequence_mask(x, maxlen=None, dtype='int64', name=None): + """ + **SequenceMask Layer** + + This layer outputs a mask according to the input :code:`x` and + :code:`maxlen` with data type of :code:`dtype`. + + Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the + :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where: + + .. math:: + + y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n)) + + .. code-block:: text + + Case: + + Consider input: + x = [3, 1, 1, 0] max_len = 4 + + then we get out: + mask = [[1, 1, 1, 0], + [1, 0, 0, 0], + [1, 0, 0, 0], + [0, 0, 0, 0]] + + Args: + x (Variable): Input tensor of sequence_mask layer, \ + whose elements are integers less than :code:`maxlen`. \ + Tensor or LodTensor with shape [d_1, d_2, ..., d_n]. + maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \ + is None, it would be replace with :math:`max(x)`. + dtype (np.dtype|core.VarDesc.VarType|str, optional): Data type of the output, \ + ``int64`` by default. + name(str, optional): For detailed information, please refer \ + to :ref:`api_guide_Name`. Usually name is no need to set and \ + None by default. + + Returns: The output sequence mask. Tensor or LodTensor with shape [d_1, d_2, ..., d_n, maxlen] \ + and data type of :code:`dtype`. The data type should be float32, float64, int8, \ + int32 or int64. + + Return Type: Variable + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import paddle.fluid.layers as layers + + x = fluid.data(name='x', shape=[10], dtype='float32', lod_level=1) + mask = layers.sequence_mask(x=x) + + """ + helper = LayerHelper('sequence_mask', **locals()) + if name is None: + out = helper.create_variable_for_type_inference(dtype=dtype) + else: + out = helper.create_variable_for_type_inference(dtype=dtype, name=name) + + inputs = {'X': [x]} + attrs = {'out_dtype': out.dtype} + if maxlen is not None: + if isinstance(maxlen, Variable): + inputs['MaxLenTensor'] = maxlen + else: + attrs['maxlen'] = maxlen + + helper.append_op( + type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs) + + out.stop_gradient = True + return out + + +@templatedoc() +def sequence_reverse(x, name=None): + """ + **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reverse Op.(fluid.layers.** :ref:`api_fluid_layers_reverse` ). + + This operator only supports LoDTensor as input. It will reverse each sequence for input LoDTensor. + Currently it only supports 1-level LoDTensor. This operator is very useful when building a + reverse :ref:`api_fluid_layers_DynamicRNN` network. + + .. code-block:: text + + input(x) is a LoDTensor: + x.lod = [[0, 2, 5]] + x.data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], + [13,14, 15, 16], + [17,18, 19, 20]] + x.shape = [5, 4] + + output LoDTensor with same shape and LoD info: + out.lod = [[0, 2, 5]] + out.data = [[5, 6, 7, 8], + [1, 2, 3, 4], + [17,18, 19, 20], + [13,14, 15, 16], + [9, 10, 11, 12]] + out.shape = [5, 4] + + Args: + x(Variable): LoDTensor with 1-level LoD info. Currently it only supports 1-level LoDTensor. + The data type should be float32, float64, int8, int32 or int64. + name(str, optional): The default value is None. Normally there is no need for user to set this property. + For more information, please refer to :ref:`api_guide_Name` . + + Returns: + Variable: LoDTensor reversed from input. The data type is same with input. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) + x_reversed = fluid.layers.sequence_reverse(x) + """ + assert not in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") + helper = LayerHelper("sequence_reverse", **locals()) + if name is None: + out = helper.create_variable_for_type_inference(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="sequence_reverse", + inputs={"X": x}, + outputs={"Y": out}, + attrs=dict()) + return out -- GitLab