Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
78553768
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
78553768
编写于
8月 18, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into develop
上级
02299813
ab270c38
变更
51
显示空白变更内容
内联
并排
Showing
51 changed file
with
764 addition
and
338 deletion
+764
-338
CMakeLists.txt
CMakeLists.txt
+2
-2
paddle/framework/backward.cc
paddle/framework/backward.cc
+20
-22
paddle/framework/backward.h
paddle/framework/backward.h
+1
-1
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+4
-5
paddle/framework/framework.proto
paddle/framework/framework.proto
+1
-1
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+1
-1
paddle/framework/grad_op_builder_test.cc
paddle/framework/grad_op_builder_test.cc
+2
-2
paddle/framework/op_registry.cc
paddle/framework/op_registry.cc
+5
-6
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+19
-7
paddle/framework/op_registry_test.cc
paddle/framework/op_registry_test.cc
+2
-4
paddle/framework/operator.h
paddle/framework/operator.h
+27
-10
paddle/framework/operator_test.cc
paddle/framework/operator_test.cc
+18
-0
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+56
-85
paddle/gserver/layers/MKLDNNFcLayer.cpp
paddle/gserver/layers/MKLDNNFcLayer.cpp
+6
-2
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+20
-7
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+1
-1
paddle/memory/detail/system_allocator.cc
paddle/memory/detail/system_allocator.cc
+1
-1
paddle/memory/memory.cc
paddle/memory/memory.cc
+50
-18
paddle/memory/memory.h
paddle/memory/memory.h
+0
-1
paddle/operators/gather_test.cc
paddle/operators/gather_test.cc
+4
-0
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+1
-1
paddle/operators/mean_op.h
paddle/operators/mean_op.h
+2
-1
paddle/operators/net_op.cc
paddle/operators/net_op.cc
+8
-1
paddle/operators/net_op.h
paddle/operators/net_op.h
+23
-5
paddle/operators/net_op_test.cc
paddle/operators/net_op_test.cc
+25
-11
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+34
-14
paddle/operators/rowwise_add_op.cc
paddle/operators/rowwise_add_op.cc
+28
-6
paddle/operators/rowwise_add_op.cu
paddle/operators/rowwise_add_op.cu
+1
-1
paddle/operators/rowwise_add_op.h
paddle/operators/rowwise_add_op.h
+21
-1
paddle/operators/scatter_test.cc
paddle/operators/scatter_test.cc
+4
-0
paddle/operators/sgd_op.h
paddle/operators/sgd_op.h
+1
-1
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+2
-1
paddle/operators/sigmoid_op.h
paddle/operators/sigmoid_op.h
+1
-1
paddle/parameter/Parameter.cpp
paddle/parameter/Parameter.cpp
+6
-4
paddle/parameter/Parameter.h
paddle/parameter/Parameter.h
+35
-2
paddle/platform/CMakeLists.txt
paddle/platform/CMakeLists.txt
+2
-1
paddle/platform/environment.h
paddle/platform/environment.h
+60
-0
paddle/platform/environment_test.cc
paddle/platform/environment_test.cc
+54
-0
paddle/platform/gpu_info.cc
paddle/platform/gpu_info.cc
+10
-0
paddle/platform/gpu_info.h
paddle/platform/gpu_info.h
+5
-0
paddle/pserver/ParameterServer2.cpp
paddle/pserver/ParameterServer2.cpp
+4
-3
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+2
-1
paddle/trainer/TrainerConfigHelper.cpp
paddle/trainer/TrainerConfigHelper.cpp
+0
-2
paddle/utils/Flags.cpp
paddle/utils/Flags.cpp
+0
-1
paddle/utils/Flags.h
paddle/utils/Flags.h
+0
-1
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+2
-0
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+117
-98
python/paddle/v2/framework/tests/test_gradient_checker.py
python/paddle/v2/framework/tests/test_gradient_checker.py
+43
-0
python/paddle/v2/framework/tests/test_mean_op.py
python/paddle/v2/framework/tests/test_mean_op.py
+8
-0
python/paddle/v2/framework/tests/test_rowwise_add_op.py
python/paddle/v2/framework/tests/test_rowwise_add_op.py
+12
-1
python/paddle/v2/framework/tests/test_sigmoid_op.py
python/paddle/v2/framework/tests/test_sigmoid_op.py
+13
-4
未找到文件。
CMakeLists.txt
浏览文件 @
78553768
...
...
@@ -137,9 +137,9 @@ set(EXTERNAL_LIBS
)
if
(
WITH_GPU
)
list
(
APPEND EXTERNAL_LIB
${
CUDA_LIBRARIES
}
${
CUDA_rt_LIBRARY
}
)
list
(
APPEND EXTERNAL_LIB
S
${
CUDA_LIBRARIES
}
${
CUDA_rt_LIBRARY
}
)
if
(
NOT WITH_DSO
)
list
(
APPEND EXTERNAL_LIB
${
CUDNN_LIBRARY
}
${
CUDA_CUBLAS_LIBRARIES
}
${
CUDA_curand_LIBRARY
}
)
list
(
APPEND EXTERNAL_LIB
S
${
CUDNN_LIBRARY
}
${
CUDA_CUBLAS_LIBRARIES
}
${
CUDA_curand_LIBRARY
}
)
endif
(
NOT WITH_DSO
)
endif
(
WITH_GPU
)
...
...
paddle/framework/backward.cc
浏览文件 @
78553768
...
...
@@ -15,6 +15,8 @@
#include "paddle/framework/backward.h"
#include <list>
#include <memory>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
...
...
@@ -43,11 +45,11 @@ static bool AllInSet(
return
all_in_set
;
}
static
std
::
shared
_ptr
<
OperatorBase
>
NOP
()
{
auto
net_op
=
std
::
make_shared
<
operators
::
NetOp
>
();
static
std
::
unique
_ptr
<
OperatorBase
>
NOP
()
{
auto
net_op
=
new
operators
::
NetOp
();
net_op
->
SetType
(
"@NOP@"
);
net_op
->
CompleteAddOp
();
return
net_op
;
return
std
::
unique_ptr
<
OperatorBase
>
(
net_op
)
;
}
// Get backward operator from a forward operator, a recursive implementation.
...
...
@@ -62,11 +64,7 @@ static std::shared_ptr<OperatorBase> NOP() {
// operator, in a complex situation, it maybe a NetOp.
//
// See Backward.h for details
static
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
);
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
static
std
::
unique_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
)
{
// If all input gradients of forwarding operator do not need to calculate,
...
...
@@ -91,7 +89,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
}
// Returned gradient network
auto
net
=
std
::
make_shared
<
operators
::
NetOp
>
(
);
auto
net
=
std
::
unique_ptr
<
operators
::
NetOp
>
(
new
operators
::
NetOp
()
);
if
(
forwardOp
.
IsNetOp
())
{
// Because forwardOp is a net op, it can static_cast.
...
...
@@ -105,14 +103,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// reversely travel forwardNet and collect all duplicate outputs.
for
(
auto
it
=
forwardNet
.
ops_
.
rbegin
();
it
!=
forwardNet
.
ops_
.
rend
();
++
it
,
++
local_op_id
)
{
auto
fwd
=
*
it
;
auto
&
fwd
=
*
it
;
auto
bwd
=
BackwardRecursive
(
*
fwd
,
no_grad_names
,
uniq_id
);
net
->
AddOp
(
bwd
);
ForEachVarName
(
bwd
->
Outputs
(),
[
&
dup_output_ops
,
local_op_id
](
const
std
::
string
&
out
)
{
dup_output_ops
[
out
].
emplace_back
(
local_op_id
);
return
false
;
});
net
->
AddOp
(
std
::
move
(
bwd
));
}
// Get unique ID for this method.
auto
uid
=
uniq_id
++
;
...
...
@@ -122,7 +120,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// to handle this case. For each duplicate output, rename it to an alias
// (original name with a offset), append an `add` op for its operator,
// and finally sum all the alias variable to the final output variable y.
using
Pos
=
std
::
pair
<
size_t
,
std
::
shared
_ptr
<
OperatorBase
>>
;
using
Pos
=
std
::
pair
<
size_t
,
std
::
unique
_ptr
<
OperatorBase
>>
;
std
::
list
<
Pos
>
insert_position
;
for
(
auto
&
dup_output_op
:
dup_output_ops
)
{
const
std
::
string
&
name
=
dup_output_op
.
first
;
...
...
@@ -150,13 +148,13 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
[](
const
Pos
&
l
,
const
Pos
&
r
)
{
return
l
.
first
>
r
.
first
;
});
for
(
auto
&
pos
:
insert_position
)
{
net
->
InsertOp
(
pos
.
first
+
1
,
pos
.
second
);
net
->
InsertOp
(
pos
.
first
+
1
,
std
::
move
(
pos
.
second
)
);
}
}
else
{
std
::
shared_ptr
<
OperatorBase
>
grad_op
=
OpRegistry
::
CreateGradOp
(
forwardOp
);
std
::
unique_ptr
<
OperatorBase
>
grad_op
(
OpRegistry
::
CreateGradOp
(
forwardOp
)
);
ForEachVarName
(
grad_op
->
Inputs
(),
[
&
no_grad_names
,
&
net
,
grad_op
](
const
std
::
string
&
grad_input
)
{
ForEachVarName
(
grad_op
->
Inputs
(),
[
&
no_grad_names
,
&
net
,
&
grad_op
](
const
std
::
string
&
grad_input
)
{
if
(
no_grad_names
.
count
(
grad_input
))
{
// +1 for \0
std
::
string
prefix
=
grad_input
.
substr
(
...
...
@@ -190,23 +188,23 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
const
auto
&
stepnet_op
=
*
static_cast
<
const
OperatorBase
*>
(
&
rnnop
.
stepnet
());
// create stepnet's gradient op
auto
grad_stepnet
=
BackwardRecursive
(
stepnet_op
,
no_grad_names
,
uniq_id
);
rnn_grad_op
->
set_stepnet
(
std
::
static_pointer_cast
<
operators
::
NetOp
>
(
grad_stepnet
));
BackwardRecursive
(
stepnet_op
,
no_grad_names
,
uniq_id
));
}
if
(
net
->
ops_
.
empty
())
{
// Current no aux op is added to network
return
grad_op
;
}
net
->
AddOp
(
grad_op
);
net
->
AddOp
(
std
::
move
(
grad_op
)
);
}
net
->
SetType
(
"@GENERATED_BACKWARD@"
);
net
->
CompleteAddOp
();
return
net
;
}
// namespace framework
return
std
::
unique_ptr
<
OperatorBase
>
(
static_cast
<
OperatorBase
*>
(
net
.
release
()));
}
// See header for comments
std
::
shared
_ptr
<
OperatorBase
>
Backward
(
std
::
unique
_ptr
<
OperatorBase
>
Backward
(
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_vars
)
{
std
::
unordered_set
<
std
::
string
>
no_grad_names
;
...
...
paddle/framework/backward.h
浏览文件 @
78553768
...
...
@@ -20,7 +20,7 @@ namespace framework {
// Create the backward operator from a forward operator.
// TODO(yuyang18): Add more API reference comment.
extern
std
::
shared
_ptr
<
OperatorBase
>
Backward
(
extern
std
::
unique
_ptr
<
OperatorBase
>
Backward
(
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_vars
);
}
// namespace framework
...
...
paddle/framework/backward_test.cc
浏览文件 @
78553768
...
...
@@ -32,9 +32,9 @@ class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input X of Add"
).
AsNo
Gradient
();
AddInput
(
"b"
,
"Bias of Add"
).
AsNo
Gradient
();
AddOutput
(
"Out"
,
"Out of Add"
).
AsNo
Gradient
();
AddInput
(
"X"
,
"Input X of Add"
).
NotIn
Gradient
();
AddInput
(
"b"
,
"Bias of Add"
).
NotIn
Gradient
();
AddOutput
(
"Out"
,
"Out of Add"
).
NotIn
Gradient
();
AddComment
(
"Add Op"
);
}
};
...
...
@@ -180,8 +180,7 @@ TEST(Backward, simple_op_not_need_grad) {
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"x"
,
"b"
});
ASSERT_NE
(
no_input_gop
,
nullptr
);
ASSERT_TRUE
(
no_input_gop
->
IsNetOp
());
ASSERT_EQ
(
0UL
,
std
::
static_pointer_cast
<
ops
::
NetOp
>
(
no_input_gop
)
->
ops_
.
size
());
ASSERT_EQ
(
0UL
,
static_cast
<
ops
::
NetOp
*>
(
no_input_gop
.
get
())
->
ops_
.
size
());
}
TEST
(
Backward
,
net_fc_backward_normal
)
{
...
...
paddle/framework/framework.proto
浏览文件 @
78553768
...
...
@@ -60,7 +60,7 @@ message OpProto {
optional
bool
duplicable
=
3
[
default
=
false
];
optional
bool
intermediate
=
4
[
default
=
false
];
optional
bool
no_gradient
=
5
[
default
=
false
];
optional
bool
no
t_in
_gradient
=
5
[
default
=
false
];
}
// AttrProto describes the C++ type Attribute.
...
...
paddle/framework/grad_op_builder.cc
浏览文件 @
78553768
...
...
@@ -28,7 +28,7 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
const
auto
&
src_arg_list
=
src_type
==
OpArgType
::
IN
?
proto
->
inputs
()
:
proto
->
outputs
();
for
(
const
auto
&
arg
:
src_arg_list
)
{
if
(
arg
.
no_gradient
()
&&
!
is_grad
)
continue
;
if
(
arg
.
no
t_in
_gradient
()
&&
!
is_grad
)
continue
;
const
std
::
string
src_name
=
arg
.
name
();
std
::
string
dst_name
=
is_grad
?
GradVarName
(
src_name
)
:
src_name
;
dst_inout
[
dst_name
].
reserve
(
src_inout
.
at
(
src_name
).
size
());
...
...
paddle/framework/grad_op_builder_test.cc
浏览文件 @
78553768
...
...
@@ -26,10 +26,10 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
IOIgnoredOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"In1"
,
"a single input"
);
AddInput
(
"In2_mult"
,
"a multiple input"
).
AsDuplicable
().
AsNo
Gradient
();
AddInput
(
"In2_mult"
,
"a multiple input"
).
AsDuplicable
().
NotIn
Gradient
();
AddInput
(
"In3_mult"
,
"another multiple input"
).
AsDuplicable
();
AddOutput
(
"Out1_mult"
,
"a multiple output"
).
AsDuplicable
();
AddOutput
(
"Out2"
,
"a single output"
).
AsNo
Gradient
();
AddOutput
(
"Out2"
,
"a single output"
).
NotIn
Gradient
();
AddComment
(
"op with inputs and outputs ignored in gradient calculating"
);
}
};
...
...
paddle/framework/op_registry.cc
浏览文件 @
78553768
...
...
@@ -19,7 +19,7 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
std
::
string
&
type
,
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
AttributeMap
attrs
)
{
...
...
@@ -28,10 +28,10 @@ std::shared_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type,
"Operator '%s' has not been registered."
,
type
);
it
->
second
.
checker_
->
Check
(
attrs
);
auto
op
=
it
->
second
.
creator_
(
type
,
inputs
,
outputs
,
attrs
);
return
std
::
shared
_ptr
<
OperatorBase
>
(
op
);
return
std
::
unique
_ptr
<
OperatorBase
>
(
op
);
}
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
OpDesc
&
op_desc
)
{
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
OpDesc
&
op_desc
)
{
VarNameMap
inputs
=
ConvertOpDescVarsToVarNameMap
(
op_desc
.
inputs
());
VarNameMap
outputs
=
ConvertOpDescVarsToVarNameMap
(
op_desc
.
outputs
());
AttributeMap
attrs
;
...
...
@@ -55,10 +55,9 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
return
ret_val
;
}
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateGradOp
(
const
OperatorBase
&
op
)
{
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateGradOp
(
const
OperatorBase
&
op
)
{
PADDLE_ENFORCE
(
!
op
.
IsNetOp
(),
"Use framework::Backward to get backward ops"
);
std
::
shared_ptr
<
OperatorBase
>
grad_op
(
BuildGradOp
(
&
op
));
return
grad_op
;
return
std
::
unique_ptr
<
OperatorBase
>
(
BuildGradOp
(
&
op
));
}
}
// namespace framework
...
...
paddle/framework/op_registry.h
浏览文件 @
78553768
...
...
@@ -77,17 +77,17 @@ class OpRegistry {
}
}
static
std
::
shared
_ptr
<
OperatorBase
>
CreateOp
(
const
std
::
string
&
type
,
static
std
::
unique
_ptr
<
OperatorBase
>
CreateOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
AttributeMap
attrs
);
static
std
::
shared
_ptr
<
OperatorBase
>
CreateOp
(
const
OpDesc
&
op_desc
);
static
std
::
unique
_ptr
<
OperatorBase
>
CreateOp
(
const
OpDesc
&
op_desc
);
static
VarNameMap
ConvertOpDescVarsToVarNameMap
(
const
google
::
protobuf
::
RepeatedPtrField
<
OpDesc
::
Var
>&
op_desc_vars
);
static
std
::
shared
_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
);
static
std
::
unique
_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
);
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>&
op_info_map
()
{
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>
op_info_map_
;
...
...
@@ -144,8 +144,18 @@ class OpKernelRegistrar : public Registrar {
grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \
static ::paddle::framework::OpRegistrar<op_class, op_maker_class, \
grad_op_class> \
class _OpClass_##op_type##_ : public op_class { \
public: \
DEFINE_OP_CLONE_METHOD(_OpClass_##op_type##_); \
DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_, op_class); \
}; \
class _OpGradClass_##op_type##_ : public grad_op_class { \
public: \
DEFINE_OP_CLONE_METHOD(_OpGradClass_##op_type##_); \
DEFINE_OP_CONSTRUCTOR(_OpGradClass_##op_type##_, grad_op_class); \
}; \
static ::paddle::framework::OpRegistrar< \
_OpClass_##op_type##_, op_maker_class, _OpGradClass_##op_type##_> \
__op_registrar_##op_type##__(#op_type, #grad_op_type); \
int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \
...
...
@@ -176,7 +186,8 @@ class OpKernelRegistrar : public Registrar {
REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
/**
* Macro to mark what Operator and Kernel we will use and tell the compiler to
* Macro to mark what Operator and Kernel
* we will use and tell the compiler to
* link them into target.
*/
#define USE_OP_ITSELF(op_type) \
...
...
@@ -196,7 +207,8 @@ class OpKernelRegistrar : public Registrar {
__attribute__((unused)) = \
TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE()
// TODO(fengjiayi): The following macros seems ugly, do we have better method?
// TODO(fengjiayi): The following macros
// seems ugly, do we have better method?
#ifdef PADDLE_ONLY_CPU
#define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU)
...
...
paddle/framework/op_registry_test.cc
浏览文件 @
78553768
...
...
@@ -76,8 +76,7 @@ TEST(OpRegistry, CreateOp) {
attr
->
set_type
(
paddle
::
framework
::
AttrType
::
FLOAT
);
attr
->
set_f
(
scale
);
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUDeviceContext
dev_ctx
;
op
->
Run
(
scope
,
dev_ctx
);
...
...
@@ -118,8 +117,7 @@ TEST(OpRegistry, DefaultValue) {
ASSERT_TRUE
(
op_desc
.
IsInitialized
());
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUDeviceContext
dev_ctx
;
op
->
Run
(
scope
,
dev_ctx
);
...
...
paddle/framework/operator.h
浏览文件 @
78553768
...
...
@@ -67,10 +67,6 @@ class OperatorBase {
OperatorBase
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
AttributeMap
&
attrs
);
OperatorBase
(
const
OperatorBase
&
o
)
=
delete
;
OperatorBase
&
operator
=
(
const
OperatorBase
&
o
)
=
delete
;
OperatorBase
(
OperatorBase
&&
o
)
=
delete
;
virtual
~
OperatorBase
()
{}
template
<
typename
T
>
...
...
@@ -116,10 +112,14 @@ class OperatorBase {
void
SetType
(
const
std
::
string
&
type
)
{
type_
=
type
;
}
const
AttributeMap
&
Attrs
()
const
{
return
attrs_
;
}
// Return a new operator instance, which is as same as this.
// Use unique_ptr to prevent caller forget to delete this pointer.
virtual
std
::
unique_ptr
<
OperatorBase
>
Clone
()
const
=
0
;
protected:
std
::
string
type_
;
// NOTE: in case of OpGrad, inputs_ contains:
// I (Inputs)
// I (Inputs)
opear
// O (Outputs)
// OG (Output Gradients)
VarNameMap
inputs_
;
...
...
@@ -130,12 +130,32 @@ class OperatorBase {
AttributeMap
attrs_
;
};
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
// register it. i.e. `Clone` method is not needed to define by yourself.
#define DEFINE_OP_CLONE_METHOD(CLS) \
std::unique_ptr<OperatorBase> Clone() const final { \
return std::unique_ptr<OperatorBase>(new CLS(*this)); \
}
// Macro for define a default constructor for Operator.
// You can also use
// using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \
CLS(const std::string& type, const VarNameMap& inputs, \
const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
: PARENT_CLS(type, inputs, outputs, attrs) {}
class
NOP
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
std
::
unique_ptr
<
OperatorBase
>
Clone
()
const
override
{
return
std
::
unique_ptr
<
OperatorBase
>
(
new
NOP
(
*
this
));
}
};
// this class not only make proto but also init attribute checkers.
...
...
@@ -164,11 +184,8 @@ class OpProtoAndCheckerMaker {
return
*
this
;
}
// TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
// means that input/output is not needed when calculate gradient. It does
// not mean no gradient when backward. It should be changed soon.
VariableBuilder
&
AsNoGradient
()
{
var_
->
set_no_gradient
(
true
);
VariableBuilder
&
NotInGradient
()
{
var_
->
set_not_in_gradient
(
true
);
return
*
this
;
}
};
...
...
paddle/framework/operator_test.cc
浏览文件 @
78553768
...
...
@@ -245,3 +245,21 @@ TEST(OpKernel, multi_inputs) {
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
op
->
Run
(
scope
,
cpu_device_context
);
}
class
OperatorClone
:
public
paddle
::
framework
::
OperatorBase
{
public:
DEFINE_OP_CLONE_METHOD
(
OperatorClone
);
OperatorClone
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
paddle
::
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
const
paddle
::
framework
::
Scope
&
scope
)
const
override
{}
void
Run
(
const
paddle
::
framework
::
Scope
&
scope
,
const
paddle
::
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
};
TEST
(
Operator
,
Clone
)
{
OperatorClone
a
(
"ABC"
,
{},
{},
{});
auto
b
=
a
.
Clone
();
ASSERT_EQ
(
a
.
Type
(),
b
->
Type
());
}
\ No newline at end of file
paddle/framework/pybind.cc
浏览文件 @
78553768
...
...
@@ -49,29 +49,6 @@ namespace framework {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
ClassType
>
void
ExposeOperator
(
ClassType
&
m
)
{
m
.
def
(
"infer_shape"
,
&
ClassType
::
type
::
InferShape
)
.
def
(
"run"
,
&
ClassType
::
type
::
Run
)
.
def
(
"type"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
string
{
return
op
.
Type
();
})
.
def
(
"outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
{
return
op
.
Outputs
();
})
.
def
(
"inputs"
,
[](
const
typename
ClassType
::
type
&
op
)
{
return
op
.
Inputs
();
})
.
def
(
"__str__"
,
&
ClassType
::
type
::
DebugString
)
.
def
(
"no_intermediate_outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
{
return
op
.
OutputVars
(
false
);
})
.
def
(
"support_gpu"
,
&
ClassType
::
type
::
SupportGPU
);
}
static
size_t
UniqueIntegerGenerator
()
{
static
std
::
atomic
<
size_t
>
generator
;
return
generator
.
fetch_add
(
1
);
...
...
@@ -208,10 +185,9 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
py
::
init
<>
())
.
def
(
"__str__"
,
string
::
to_string
<
const
platform
::
CPUPlace
&>
);
py
::
class_
<
OperatorBase
,
std
::
shared_ptr
<
OperatorBase
>>
operator_base
(
m
,
"Operator"
);
operator_base
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
{
py
::
class_
<
OperatorBase
>
(
m
,
"Operator"
)
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
...
...
@@ -219,49 +195,46 @@ All parameter, weight, gradient are variables in Paddle.
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
return
OpRegistry
::
CreateOp
(
desc
);
});
operator_base
.
def
(
"backward"
,
})
.
def
(
"backward"
,
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
return
Backward
(
forwardOp
,
no_grad_vars
);
});
ExposeOperator
(
operator_base
);
py
::
class_
<
operators
::
NetOp
,
std
::
shared_ptr
<
operators
::
NetOp
>>
net
(
m
,
"Net"
);
return
Backward
(
forwardOp
,
no_grad_vars
).
release
();
})
.
def
(
"infer_shape"
,
&
OperatorBase
::
InferShape
)
.
def
(
"run"
,
&
OperatorBase
::
Run
)
.
def
(
"type"
,
[](
const
OperatorBase
&
op
)
->
std
::
string
{
return
op
.
Type
();
})
.
def
(
"outputs"
,
[](
const
OperatorBase
&
op
)
->
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
{
return
op
.
Outputs
();
})
.
def
(
"inputs"
,
[](
const
OperatorBase
&
op
)
{
return
op
.
Inputs
();
})
.
def
(
"__str__"
,
&
OperatorBase
::
DebugString
)
.
def
(
"no_intermediate_outputs"
,
[](
const
OperatorBase
&
op
)
{
return
op
.
OutputVars
(
false
);
})
.
def
(
"support_gpu"
,
&
OperatorBase
::
SupportGPU
);
net
.
def_static
(
"create"
,
[]()
->
std
::
shared_ptr
<
operators
::
NetOp
>
{
auto
retv
=
std
::
make_shared
<
operators
::
NetOp
>
();
py
::
class_
<
operators
::
NetOp
,
OperatorBase
>
(
m
,
"Net"
)
.
def_static
(
"create"
,
[]()
->
operators
::
NetOp
*
{
auto
*
retv
=
new
operators
::
NetOp
;
retv
->
SetType
(
"plain_net"
);
return
retv
;
})
.
def
(
"add_op"
,
&
operators
::
NetOp
::
AddOp
)
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
net
));
})
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
std
::
shared_ptr
<
operators
::
RecurrentOp
>
&
rnn
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
rnn
));
})
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
OperatorBase
&
op
)
{
self
.
AddOp
(
op
);
})
.
def
(
"complete_add_op"
,
&
operators
::
NetOp
::
CompleteAddOp
)
.
def
(
"complete_add_op"
,
[](
std
::
shared_ptr
<
operators
::
NetOp
>
&
self
)
{
self
->
CompleteAddOp
();
});
ExposeOperator
(
net
);
// recurrent_op
py
::
class_
<
operators
::
RecurrentOp
,
std
::
shared_ptr
<
operators
::
RecurrentOp
>>
rnn
(
m
,
"RecurrentOp"
);
rnn
.
def_static
(
py
::
class_
<
operators
::
RecurrentOp
,
OperatorBase
>
(
m
,
"RecurrentOp"
)
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
->
std
::
shared_ptr
<
operators
::
RecurrentOp
>
{
[](
py
::
bytes
protobin
)
->
operators
::
RecurrentOp
*
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
...
...
@@ -269,14 +242,12 @@ All parameter, weight, gradient are variables in Paddle.
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
auto
rnn_op
=
OpRegistry
::
CreateOp
(
desc
);
return
std
::
dynamic_pointer_cast
<
operators
::
RecurrentOp
>
(
rnn_op
);
return
static_cast
<
operators
::
RecurrentOp
*>
(
rnn_op
.
release
()
);
})
.
def
(
"set_stepnet"
,
[](
operators
::
RecurrentOp
&
self
,
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
set_stepnet
(
net
);
.
def
(
"set_stepnet"
,
[](
operators
::
RecurrentOp
&
self
,
const
operators
::
NetOp
&
net
)
->
void
{
self
.
set_stepnet
(
net
.
Clone
());
});
ExposeOperator
(
rnn
);
m
.
def
(
"unique_integer"
,
UniqueIntegerGenerator
);
...
...
paddle/gserver/layers/MKLDNNFcLayer.cpp
浏览文件 @
78553768
...
...
@@ -57,11 +57,14 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap,
}
void
MKLDNNFcLayer
::
convertWeightsFromPaddle
()
{
if
(
FLAGS_use_mkldnn_wgt
)
{
if
(
hasInitedWgt_
)
{
return
;
}
if
(
hasInitedWgt_
)
{
// TODO(TJ): dst format should get from wgtVal_
int
dstFmt
=
PARAM_FORMAT_MKLDNN_OI
;
int
srcFmt
=
weight_
->
getParameterPtr
()
->
getHeaderFormat
();
if
(
srcFmt
==
dstFmt
)
{
return
;
}
...
...
@@ -78,6 +81,7 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
MatrixPtr
paddleWgtT
;
paddleWgt
->
transpose
(
paddleWgtT
,
true
);
weight_
->
getW
()
->
copyFrom
(
*
paddleWgtT
);
weight_
->
getParameterPtr
()
->
setHeaderFormat
(
dstFmt
);
hasInitedWgt_
=
true
;
}
...
...
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
78553768
...
...
@@ -330,9 +330,7 @@ void MKLDNNTester::run(const TestConfig& dnn,
log_
=
log
;
lvl_
=
level
;
// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt
=
false
;
// reset and run once
// Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
reset
(
dnn
,
ref
,
batchSize
);
randomWgtDatas
();
clearWgtDiffs
();
...
...
@@ -342,17 +340,32 @@ void MKLDNNTester::run(const TestConfig& dnn,
runOnce
();
}
// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt
=
true
;
// after run once the mkldnn weight has been stored in dnnlayer
if
(
parameters_
[
DNN
].
empty
())
{
// has no paramters
return
;
}
// After run some iterations, the mkldnn weight has been stored in dnnLayer
// and we can also get the mkldnn weight parameter header format.
// Weight parameter should always be index 0 (and bias index 1).
// TODO(TJ): should also consider mean and var format when batchnorm ready
int
dnnWgtFmt
=
parameters_
[
DNN
][
0
]
->
getHeaderFormat
();
int
refWgtFmt
=
parameters_
[
REF
][
0
]
->
getHeaderFormat
();
if
(
dnnWgtFmt
==
refWgtFmt
)
{
// weight format are equal, so no need check more
return
;
}
// then save the weights and restart again
vector
<
VectorPtr
>
dnnWgts
,
refWgts
;
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
saveWgt
(
parameters_
[
REF
],
refWgts
);
// restart again with
flag true
// restart again with
dnn weight format
reset
(
dnn
,
ref
,
batchSize
);
// TODO(TJ): should also considerate mean and var format when batchnorm ready
parameters_
[
DNN
][
0
]
->
setHeaderFormat
(
dnnWgtFmt
);
// restore wgt
restoreWgt
(
dnnWgts
,
parameters_
[
DNN
]);
...
...
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
78553768
...
...
@@ -108,7 +108,7 @@ private:
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
* The return value should
be
smaller than eps when passing.
*/
double
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
...
...
paddle/memory/detail/system_allocator.cc
浏览文件 @
78553768
...
...
@@ -27,7 +27,7 @@ limitations under the License. */
// between host and device. Allocates too much would reduce the amount
// of memory available to the system for paging. So, by default, we
// should set false to use_pinned_memory.
DEFINE_bool
(
use_pinned_memory
,
fals
e
,
"If set, allocate cpu pinned memory."
);
DEFINE_bool
(
use_pinned_memory
,
tru
e
,
"If set, allocate cpu pinned memory."
);
namespace
paddle
{
namespace
memory
{
...
...
paddle/memory/memory.cc
浏览文件 @
78553768
...
...
@@ -13,22 +13,38 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/memory.h"
#include <algorithm> // for transform
#include <cstring> // for memcpy
#include <memory> // for unique_ptr
#include <mutex> // for call_once
#include "glog/logging.h"
#include "paddle/memory/detail/buddy_allocator.h"
#include "paddle/memory/detail/system_allocator.h"
#include "paddle/platform/gpu_info.h"
#include <cstring> // for memcpy
DECLARE_double
(
fraction_of_gpu_memory_to_use
);
namespace
paddle
{
namespace
memory
{
detail
::
BuddyAllocator
*
GetCPUBuddyAllocator
()
{
static
detail
::
BuddyAllocator
*
a
=
nullptr
;
if
(
a
==
nullptr
)
{
a
=
new
detail
::
BuddyAllocator
(
new
detail
::
CPUAllocator
,
using
BuddyAllocator
=
detail
::
BuddyAllocator
;
std
::
once_flag
cpu_allocator_flag
;
std
::
once_flag
gpu_allocator_flag
;
BuddyAllocator
*
GetCPUBuddyAllocator
()
{
static
std
::
unique_ptr
<
BuddyAllocator
>
a
{
nullptr
};
std
::
call_once
(
cpu_allocator_flag
,
[
&
]()
{
a
.
reset
(
new
BuddyAllocator
(
new
detail
::
CPUAllocator
,
platform
::
CpuMinChunkSize
(),
platform
::
CpuMaxChunkSize
());
}
return
a
;
platform
::
CpuMaxChunkSize
()));
});
return
a
.
get
();
}
template
<
>
...
...
@@ -48,20 +64,36 @@ size_t Used<platform::CPUPlace>(platform::CPUPlace place) {
#ifndef PADDLE_ONLY_CPU
detail
::
BuddyAllocator
*
GetGPUBuddyAllocator
(
int
gpu_id
)
{
static
detail
::
BuddyAllocator
**
as
=
NULL
;
if
(
as
==
NULL
)
{
BuddyAllocator
*
GetGPUBuddyAllocator
(
int
gpu_id
)
{
using
BuddyAllocVec
=
std
::
vector
<
BuddyAllocator
*>
;
static
std
::
unique_ptr
<
BuddyAllocVec
,
void
(
*
)(
BuddyAllocVec
*
p
)
>
as
{
new
BuddyAllocVec
,
[](
BuddyAllocVec
*
p
)
{
std
::
for_each
(
p
->
begin
(),
p
->
end
(),
[](
BuddyAllocator
*
p
)
{
delete
p
;
});
}};
// GPU buddy allocators
auto
&
allocators
=
*
as
.
get
();
// GPU buddy allocator initialization
std
::
call_once
(
gpu_allocator_flag
,
[
&
]()
{
int
gpu_num
=
platform
::
GetDeviceCount
();
a
s
=
new
detail
::
BuddyAllocator
*
[
gpu_num
]
;
a
llocators
.
reserve
(
gpu_num
)
;
for
(
int
gpu
=
0
;
gpu
<
gpu_num
;
gpu
++
)
{
platform
::
SetDeviceId
(
gpu
);
a
s
[
gpu
]
=
new
detail
::
BuddyAllocator
(
new
detail
::
GPUAllocator
,
a
llocators
.
emplace_back
(
new
BuddyAllocator
(
new
detail
::
GPUAllocator
,
platform
::
GpuMinChunkSize
(),
platform
::
GpuMaxChunkSize
());
}
platform
::
GpuMaxChunkSize
()));
}
VLOG
(
3
)
<<
"
\n\n
NOTE: each GPU device use "
<<
FLAGS_fraction_of_gpu_memory_to_use
*
100
<<
"% of GPU memory.
\n
"
<<
"You can set environment variable '"
<<
platform
::
kEnvFractionGpuMemoryToUse
<<
"' to change the fraction of GPU usage.
\n\n
"
;
});
platform
::
SetDeviceId
(
gpu_id
);
return
as
[
gpu_id
];
return
a
llocator
s
[
gpu_id
];
}
template
<
>
...
...
paddle/memory/memory.h
浏览文件 @
78553768
...
...
@@ -14,7 +14,6 @@ limitations under the License. */
#pragma once
#include "paddle/platform/gpu_info.h"
#include "paddle/platform/place.h"
namespace
paddle
{
...
...
paddle/operators/gather_test.cc
浏览文件 @
78553768
...
...
@@ -45,4 +45,8 @@ TEST(Gather, GatherData) {
for
(
int
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
+
4
);
for
(
int
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
-
4
);
delete
src
;
delete
index
;
delete
output
;
}
paddle/operators/mean_op.cc
浏览文件 @
78553768
...
...
@@ -34,7 +34,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
MeanOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
).
AsNo
Gradient
();
AddOutput
(
"Out"
,
"The output of mean op"
).
NotIn
Gradient
();
AddComment
(
"Mean Operator"
);
}
};
...
...
paddle/operators/mean_op.h
浏览文件 @
78553768
...
...
@@ -55,9 +55,10 @@ class MeanGradKernel : public framework::OpKernel {
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
ig_size
=
(
T
)
framework
::
product
(
IG
->
dims
());
Eigen
::
DSizes
<
int
,
1
>
bcast
(
ig_size
);
EigenVector
<
T
>::
Flatten
(
*
IG
).
device
(
context
.
GetEigenDevice
<
Place
>
())
=
EigenScalar
<
T
>::
From
(
*
OG
)
/
ig_size
;
(
EigenVector
<
T
>::
From
(
*
OG
)
/
ig_size
).
broadcast
(
bcast
)
;
}
};
...
...
paddle/operators/net_op.cc
浏览文件 @
78553768
...
...
@@ -85,7 +85,14 @@ NetOp::NetOp(const std::string& type,
const
framework
::
OperatorBase
::
VarNameMap
&
inputs
,
const
framework
::
OperatorBase
::
VarNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
std
::
unique_ptr
<
framework
::
OperatorBase
>
NetOp
::
Clone
()
const
{
PADDLE_ENFORCE
(
add_op_done_
,
"Must clone a sealed NetOp, invoke Net::CompleteAddOp before clone"
);
return
std
::
unique_ptr
<
OperatorBase
>
(
new
NetOp
(
*
this
));
}
}
// namespace operators
}
// namespace paddle
paddle/operators/net_op.h
浏览文件 @
78553768
...
...
@@ -41,6 +41,16 @@ class NetOp : public framework::OperatorBase {
NetOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
);
NetOp
(
const
NetOp
&
o
)
:
framework
::
OperatorBase
(
o
.
type_
,
{},
{},
o
.
attrs_
)
{
this
->
ops_
.
reserve
(
o
.
ops_
.
size
());
std
::
transform
(
o
.
ops_
.
begin
(),
o
.
ops_
.
end
(),
std
::
back_inserter
(
this
->
ops_
),
[](
const
std
::
unique_ptr
<
framework
::
OperatorBase
>&
op
)
{
return
std
::
unique_ptr
<
framework
::
OperatorBase
>
(
op
->
Clone
());
});
this
->
CompleteAddOp
();
}
/**
* Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch
...
...
@@ -74,21 +84,27 @@ class NetOp : public framework::OperatorBase {
return
true
;
}
void
AddOp
(
const
framework
::
OperatorBase
&
op
)
{
AddOp
(
op
.
Clone
());
}
/**
* @brief Add an operator by ptr
*/
void
AddOp
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
void
AddOp
(
std
::
unique_ptr
<
framework
::
OperatorBase
>
op
)
{
PADDLE_ENFORCE
(
!
add_op_done_
,
"Cannot AddOp when this network is sealed"
);
PADDLE_ENFORCE_NOT_NULL
(
op
,
"Cannot Insert Null op"
);
ops_
.
push_back
(
op
);
ops_
.
push_back
(
std
::
move
(
op
)
);
}
void
InsertOp
(
size_t
pos
,
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
void
InsertOp
(
size_t
pos
,
std
::
unique_ptr
<
framework
::
OperatorBase
>
op
)
{
PADDLE_ENFORCE
(
!
add_op_done_
,
"Cannot InsertOp when this network is sealed"
);
PADDLE_ENFORCE_NOT_NULL
(
op
,
"Cannot Insert Null op"
);
PADDLE_ENFORCE_LE
(
pos
,
ops_
.
size
(),
"Out of range"
);
ops_
.
insert
(
ops_
.
begin
()
+
pos
,
op
);
ops_
.
insert
(
ops_
.
begin
()
+
pos
,
std
::
move
(
op
));
}
void
InsertOp
(
size_t
pos
,
const
framework
::
OperatorBase
&
op
)
{
InsertOp
(
pos
,
op
.
Clone
());
}
void
CompleteAddOp
(
bool
calculate
=
true
);
...
...
@@ -98,7 +114,9 @@ class NetOp : public framework::OperatorBase {
bool
IsNetOp
()
const
override
;
std
::
vector
<
std
::
string
>
OutputVars
(
bool
has_intermediate
)
const
override
;
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
>>
ops_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>
Clone
()
const
override
;
std
::
vector
<
std
::
unique_ptr
<
framework
::
OperatorBase
>>
ops_
;
private:
bool
add_op_done_
{
false
};
...
...
paddle/operators/net_op_test.cc
浏览文件 @
78553768
...
...
@@ -13,6 +13,7 @@ static int run_cnt = 0;
class
TestOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
DEFINE_OP_CLONE_METHOD
(
TestOp
);
void
InferShape
(
const
Scope
&
scope
)
const
override
{
++
infer_shape_cnt
;
}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
...
...
@@ -37,15 +38,12 @@ TEST(OpKernel, all) {
auto
net
=
std
::
make_shared
<
NetOp
>
();
ASSERT_NE
(
net
,
nullptr
);
auto
op1
=
std
::
shared
_ptr
<
TestOp
>
(
net
->
AddOp
(
std
::
unique
_ptr
<
TestOp
>
(
new
TestOp
(
"test"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
net
->
AddOp
(
op1
);
auto
op2
=
std
::
shared_ptr
<
TestOp
>
(
{{
"Out"
,
{
"y"
}}},
{})));
net
->
AddOp
(
std
::
unique_ptr
<
TestOp
>
(
new
TestOp
(
"test"
,
{{
"X"
,
{
"y"
}},
{
"W"
,
{
"w2"
}},
{
"b"
,
{
"b2"
}}},
{{
"Out"
,
{
"z"
}}},
{}));
net
->
AddOp
(
op2
);
{{
"Out"
,
{
"z"
}}},
{})));
net
->
CompleteAddOp
();
AssertSameVectorWithoutOrder
({
"x"
,
"w1"
,
"b1"
,
"w2"
,
"b2"
},
...
...
@@ -60,15 +58,31 @@ TEST(OpKernel, all) {
TEST
(
NetOp
,
insert_op
)
{
NetOp
net
;
auto
op1
=
std
::
shared
_ptr
<
framework
::
NOP
>
(
auto
op1
=
std
::
unique
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
(
"empty"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
net
.
AddOp
(
op1
);
net
.
InsertOp
(
0
,
op1
);
net
.
AddOp
(
*
op1
);
net
.
InsertOp
(
0
,
*
op1
);
ASSERT_EQ
(
2UL
,
net
.
ops_
.
size
());
net
.
InsertOp
(
2
,
op1
);
net
.
InsertOp
(
2
,
std
::
move
(
op1
)
);
ASSERT_EQ
(
3UL
,
net
.
ops_
.
size
());
}
TEST
(
NetOp
,
Clone
)
{
NetOp
net
;
net
.
AddOp
(
std
::
unique_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
{
"empty"
,
{},
{},
{}}));
net
.
AddOp
(
std
::
unique_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
{
"empty2"
,
{},
{},
{}}));
net
.
CompleteAddOp
(
true
);
auto
new_net_op
=
net
.
Clone
();
ASSERT_NE
(
new_net_op
,
nullptr
);
ASSERT_TRUE
(
new_net_op
->
IsNetOp
());
auto
*
new_net
=
static_cast
<
NetOp
*>
(
new_net_op
.
get
());
ASSERT_EQ
(
2
,
new_net
->
ops_
.
size
());
ASSERT_EQ
(
new_net
->
ops_
[
0
]
->
Type
(),
"empty"
);
ASSERT_EQ
(
new_net
->
ops_
[
1
]
->
Type
(),
"empty2"
);
}
}
// namespace operators
}
// namespace paddle
paddle/operators/recurrent_op.h
浏览文件 @
78553768
...
...
@@ -34,7 +34,8 @@ class RecurrentAlgorithm {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
;
void
Init
(
rnn
::
Argument
*
arg
,
std
::
shared_ptr
<
NetOp
>*
stepnet
)
{
void
Init
(
rnn
::
Argument
*
arg
,
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet
)
{
PADDLE_ENFORCE_NOT_NULL
(
stepnet
,
"stepnet should be set before."
);
arg_
=
arg
;
stepnet_
=
stepnet
;
...
...
@@ -63,7 +64,7 @@ class RecurrentAlgorithm {
void
InitMemories
(
framework
::
Scope
*
step_scopes
,
bool
infer_shape_mode
)
const
;
private:
std
::
shared_ptr
<
NetOp
>*
stepnet_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet_
;
rnn
::
Argument
*
arg_
;
mutable
size_t
seq_len_
;
};
...
...
@@ -80,7 +81,8 @@ class RecurrentGradientAlgorithm {
* operator.
*/
public:
void
Init
(
rnn
::
Argument
*
arg
,
std
::
shared_ptr
<
NetOp
>*
stepnet
)
{
void
Init
(
rnn
::
Argument
*
arg
,
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet
)
{
PADDLE_ENFORCE_NOT_NULL
(
stepnet
,
"stepnet should be set before."
);
arg_
=
std
::
move
(
arg
);
stepnet_
=
stepnet
;
...
...
@@ -107,13 +109,20 @@ class RecurrentGradientAlgorithm {
private:
rnn
::
Argument
*
arg_
;
mutable
size_t
seq_len_
;
std
::
shared_ptr
<
NetOp
>*
stepnet_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet_
;
};
class
RecurrentOp
final
:
public
framework
::
OperatorBase
{
class
RecurrentOp
:
public
framework
::
OperatorBase
{
public:
RecurrentOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
);
RecurrentOp
(
const
RecurrentOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
// TODO(yuyang18): Implement copy ctor well.
PADDLE_THROW
(
"Not implemented"
);
}
/**
* InferShape must be called before Run.
*/
...
...
@@ -126,23 +135,32 @@ class RecurrentOp final : public framework::OperatorBase {
alg_
.
Run
(
scope
,
dev_ctx
);
}
void
set_stepnet
(
std
::
shared_ptr
<
NetOp
>
net
)
{
stepnet_
=
net
;
}
const
NetOp
&
stepnet
()
const
{
return
*
stepnet_
;
}
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
stepnet_
=
std
::
move
(
net
);
}
const
OperatorBase
&
stepnet
()
const
{
return
*
stepnet_
;
}
static
const
rnn
::
ArgumentName
kArgName
;
private:
RecurrentAlgorithm
alg_
;
rnn
::
Argument
arg_
;
std
::
shared_ptr
<
NetOp
>
stepnet_
;
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
};
class
RecurrentGradientOp
final
:
public
framework
::
OperatorBase
{
class
RecurrentGradientOp
:
public
framework
::
OperatorBase
{
public:
RecurrentGradientOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
);
RecurrentGradientOp
(
const
RecurrentGradientOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
// TODO(yuyang18): Implement Copy ctor.
PADDLE_THROW
(
"Not Implemented"
);
}
/**
* InferShape must be called before Run.
*/
...
...
@@ -157,12 +175,14 @@ class RecurrentGradientOp final : public framework::OperatorBase {
static
const
rnn
::
ArgumentName
kArgName
;
void
set_stepnet
(
const
std
::
shared_ptr
<
NetOp
>&
net
)
{
stepnet_
=
net
;
}
const
NetOp
&
stepnet
()
const
{
return
*
stepnet_
;
}
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
stepnet_
=
std
::
move
(
net
);
}
const
OperatorBase
&
stepnet
()
const
{
return
*
stepnet_
;
}
private:
RecurrentGradientAlgorithm
alg_
;
std
::
shared_ptr
<
NetOp
>
stepnet_
;
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
rnn
::
Argument
arg_
;
};
...
...
paddle/operators/rowwise_add_op.cc
浏览文件 @
78553768
...
...
@@ -17,7 +17,9 @@
namespace
paddle
{
namespace
operators
{
class
RowWiseAddOp
:
public
framework
::
OperatorWithKernel
{
using
framework
::
Tensor
;
class
RowwiseAddOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -34,9 +36,9 @@ class RowWiseAddOp : public framework::OperatorWithKernel {
}
};
class
Row
W
iseAddOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
Row
w
iseAddOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Row
W
iseAddOpMaker
(
framework
::
OpProto
*
proto
,
Row
w
iseAddOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The left input of row-wise add op, must be matrix"
);
...
...
@@ -49,12 +51,32 @@ for i in xrange(X.shape[0]):
)DOC"
);
}
};
class
RowwiseAddGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"X should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"b"
),
"b should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
dims0
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dims1
=
ctx
.
Input
<
Tensor
>
(
"b"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
1
,
dims1
.
size
(),
"b dims should be 1"
)
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
dims0
);
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"b"
))
->
Resize
(
dims1
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
rowwise_add
,
ops
::
RowWiseAddOp
,
ops
::
RowWiseAddOpMaker
);
REGISTER_OP
(
rowwise_add
,
ops
::
RowwiseAddOp
,
ops
::
RowwiseAddOpMaker
,
rowwise_add_grad
,
ops
::
RowwiseAddGradOp
);
REGISTER_OP_CPU_KERNEL
(
rowwise_add
,
ops
::
RowwiseAddKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
rowwise_add
,
ops
::
RowWiseAddKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
rowwise_add_grad
,
ops
::
RowwiseAddGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/rowwise_add_op.cu
浏览文件 @
78553768
...
...
@@ -17,4 +17,4 @@
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
rowwise_add
,
ops
::
Row
W
iseAddKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
rowwise_add
,
ops
::
Row
w
iseAddKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/rowwise_add_op.h
浏览文件 @
78553768
...
...
@@ -28,7 +28,7 @@ template <typename T, int MajorType = Eigen::RowMajor,
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
Row
W
iseAddKernel
:
public
framework
::
OpKernel
{
class
Row
w
iseAddKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
...
...
@@ -47,5 +47,25 @@ class RowWiseAddKernel : public framework::OpKernel {
}
};
template
<
typename
Place
,
typename
T
>
class
RowwiseAddGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
db
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"b"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
db
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
OutGrad
=
EigenMatrix
<
T
>::
From
(
*
dOut
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
EigenMatrix
<
T
>::
From
(
*
dX
).
device
(
place
)
=
OutGrad
;
// https://eigen.tuxfamily.org/dox/unsupported/TensorBase_8h_source.html
// colwise add
Eigen
::
array
<
int
,
1
>
dims
{{
1
}};
/* dimension to reduce */
EigenVector
<
T
>::
Flatten
(
*
db
).
device
(
place
)
=
OutGrad
.
sum
(
dims
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/scatter_test.cc
浏览文件 @
78553768
...
...
@@ -49,4 +49,8 @@ TEST(scatter, ScatterUpdate) {
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
i
-
4
));
for
(
size_t
i
=
8
;
i
<
16
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
float
(
0
));
for
(
size_t
i
=
8
;
i
<
16
;
++
i
)
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
0
));
delete
src
;
delete
index
;
delete
output
;
}
paddle/operators/sgd_op.h
浏览文件 @
78553768
...
...
@@ -30,7 +30,7 @@ class SGDOpKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param
=
ctx
.
Input
<
Tensor
>
(
"param"
);
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"grad"
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
0
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
"param_out"
);
float
lr
=
ctx
.
op_
.
GetAttr
<
float
>
(
"learning_rate"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
paddle/operators/sigmoid_op.cc
浏览文件 @
78553768
...
...
@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
};
...
...
paddle/operators/sigmoid_op.h
浏览文件 @
78553768
...
...
@@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel {
auto
Y
=
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Y
.
device
(
place
)
=
1.
0
/
(
1.0
+
(
-
1.0
*
X
).
exp
());
Y
.
device
(
place
)
=
1.
/
(
1.
+
(
-
X
).
exp
());
}
};
...
...
paddle/parameter/Parameter.cpp
浏览文件 @
78553768
...
...
@@ -48,7 +48,8 @@ Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
deviceId_
(
-
1
),
sharedCount_
(
0
),
updateCounter_
(
0
),
updated_
(
false
)
{
updated_
(
false
),
headerFormat_
(
PARAM_FORMAT_ORIGINAL
)
{
setID
(
-
1
);
/* capture uninitialized id */
if
(
useGpu_
&&
FLAGS_parallel_nn
)
{
/* gpu environment is specified by device property */
...
...
@@ -285,7 +286,7 @@ bool Parameter::save(const std::string& filename) const {
bool
Parameter
::
save
(
std
::
ostream
&
s
)
const
{
CpuVector
vec
(
*
bufs_
[
PARAMETER_VALUE
].
get
());
Header
header
;
header
.
version
=
kFormatVersion
;
header
.
format
=
headerFormat_
;
header
.
valueSize
=
sizeof
(
real
);
header
.
size
=
getSize
();
...
...
@@ -344,8 +345,9 @@ bool Parameter::load(std::istream& s) {
Header
header
;
CHECK
(
s
.
read
(
reinterpret_cast
<
char
*>
(
&
header
),
sizeof
(
header
)))
<<
"Fail to read parameter "
<<
getName
();
CHECK_EQ
(
header
.
version
,
kFormatVersion
)
<<
"Incorrect format version: "
<<
header
.
version
;
CHECK
(
isHeaderFormatSupported
(
header
.
format
))
<<
"Incorrect format version: "
<<
header
.
format
;
headerFormat_
=
header
.
format
;
CHECK_EQ
(
header
.
size
,
getSize
())
<<
"The size ("
<<
header
.
size
<<
") in the file does not match the size "
<<
"("
<<
getSize
()
<<
") of the parameter: "
<<
getName
();
...
...
paddle/parameter/Parameter.h
浏览文件 @
78553768
...
...
@@ -34,6 +34,20 @@ limitations under the License. */
namespace
paddle
{
typedef
enum
{
/// The paddle original basic format
PARAM_FORMAT_ORIGINAL
=
0
,
/// See mkldnn_memory_format_t in
/// https://github.com/01org/mkl-dnn/blob/master/include/mkldnn_types.h
/// for a detailed description.
/// 2D weights tensor in the format (output channels, input channels).
PARAM_FORMAT_MKLDNN_OI
,
/// The total format items numbers
PARAM_FORMAT_ITEMS
,
}
PARAM_FORMAT
;
class
SparsePrefetchRowCpuMatrix
;
class
Parameter
;
...
...
@@ -242,14 +256,30 @@ public:
/// Initialize the value to 0
void
zeroMem
();
static
const
int
kFormatVersion
=
0
;
/// file header structure
struct
Header
{
int32_t
version
;
// = 0, file format version
int32_t
format
;
// = PARAM_FORMAT
uint32_t
valueSize
;
// = sizeof(real)
uint64_t
size
;
// = getSize()
};
/**
* @brief Is the header format supported.
*/
static
bool
isHeaderFormatSupported
(
int32_t
fmt
)
{
return
fmt
<
PARAM_FORMAT_ITEMS
;
}
/**
* @brief Get the format in header.
*/
int
getHeaderFormat
()
{
return
headerFormat_
;
}
/**
* @brief Set the format in header.
*/
void
setHeaderFormat
(
int32_t
fmt
)
{
headerFormat_
=
fmt
;
}
/**
* @brief Parameter Update Hook.
*
...
...
@@ -321,6 +351,9 @@ protected:
bool
updated_
;
SparseFormat
format_
;
/// The header format for saving or loading param
int32_t
headerFormat_
;
std
::
vector
<
std
::
shared_ptr
<
IParameterUpdaterHook
>>
updaterHooks_
;
public:
...
...
paddle/platform/CMakeLists.txt
浏览文件 @
78553768
cc_library
(
cpu_info SRCS cpu_info.cc DEPS gflags glog
)
cc_test
(
cpu_info_test SRCS cpu_info_test.cc DEPS cpu_info
)
nv_library
(
gpu_info SRCS gpu_info.cc DEPS gflags
)
nv_library
(
gpu_info SRCS gpu_info.cc DEPS gflags
glog
)
cc_library
(
place SRCS place.cc
)
cc_test
(
place_test SRCS place_test.cc DEPS place glog gflags
)
...
...
@@ -9,6 +9,7 @@ cc_test(place_test SRCS place_test.cc DEPS place glog gflags)
add_subdirectory
(
dynload
)
cc_test
(
enforce_test SRCS enforce_test.cc DEPS stringpiece
)
cc_test
(
environment_test SRCS environment_test.cc DEPS stringpiece
)
IF
(
WITH_GPU
)
set
(
GPU_CTX_DEPS dynload_cuda dynamic_loader
)
...
...
paddle/platform/environment.h
0 → 100644
浏览文件 @
78553768
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stdlib.h>
#include <unistd.h>
#include <vector>
#include "paddle/platform/enforce.h"
#include "paddle/string/piece.h"
extern
char
**
environ
;
// for environment variables
namespace
paddle
{
namespace
platform
{
inline
void
SetEnvVariable
(
const
std
::
string
&
name
,
const
std
::
string
&
value
)
{
PADDLE_ENFORCE_NE
(
setenv
(
name
.
c_str
(),
value
.
c_str
(),
1
),
-
1
,
"Failed to set environment variable %s=%s"
,
name
,
value
);
}
inline
void
UnsetEnvVariable
(
const
std
::
string
&
name
)
{
PADDLE_ENFORCE_NE
(
unsetenv
(
name
.
c_str
()),
-
1
,
"Failed to unset environment variable %s"
,
name
);
}
inline
bool
IsEnvVarDefined
(
const
std
::
string
&
name
)
{
return
std
::
getenv
(
name
.
c_str
())
!=
nullptr
;
}
inline
std
::
string
GetEnvValue
(
const
std
::
string
&
name
)
{
PADDLE_ENFORCE
(
IsEnvVarDefined
(
name
),
"Tried to access undefined environment variable %s"
,
name
);
return
std
::
getenv
(
name
.
c_str
());
}
inline
std
::
vector
<
std
::
string
>
GetAllEnvVariables
()
{
std
::
vector
<
std
::
string
>
vars
;
for
(
auto
var
=
environ
;
*
var
!=
nullptr
;
++
var
)
{
auto
tail
=
string
::
Index
(
*
var
,
"="
);
auto
name
=
string
::
SubStr
(
*
var
,
0
,
tail
).
ToString
();
vars
.
push_back
(
name
);
}
return
vars
;
}
}
// namespace platform
}
// namespace paddle
paddle/platform/environment_test.cc
0 → 100644
浏览文件 @
78553768
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/platform/environment.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
TEST
(
ENVIRONMENT
,
ACCESS
)
{
namespace
platform
=
paddle
::
platform
;
namespace
string
=
paddle
::
string
;
platform
::
SetEnvVariable
(
"PADDLE_USE_ENV"
,
"TRUE"
);
EXPECT_TRUE
(
platform
::
IsEnvVarDefined
(
"PADDLE_USE_ENV"
));
EXPECT_EQ
(
platform
::
GetEnvValue
(
"PADDLE_USE_ENV"
),
"TRUE"
);
platform
::
UnsetEnvVariable
(
"PADDLE_USE_ENV"
);
EXPECT_FALSE
(
platform
::
IsEnvVarDefined
(
"PADDLE_USE_ENV"
));
platform
::
SetEnvVariable
(
"PADDLE_USE_ENV1"
,
"Hello "
);
platform
::
SetEnvVariable
(
"PADDLE_USE_ENV2"
,
"World, "
);
platform
::
SetEnvVariable
(
"PADDLE_USE_ENV3"
,
"PaddlePaddle!"
);
std
::
string
env_info
;
auto
vars
=
platform
::
GetAllEnvVariables
();
for_each
(
vars
.
begin
(),
vars
.
end
(),
[
&
](
const
std
::
string
&
var
)
{
env_info
+=
platform
::
GetEnvValue
(
var
);
});
EXPECT_TRUE
(
string
::
Contains
(
env_info
,
"Hello World, PaddlePaddle!"
));
platform
::
UnsetEnvVariable
(
"PADDLE_USE_ENV1"
);
platform
::
UnsetEnvVariable
(
"PADDLE_USE_ENV2"
);
platform
::
UnsetEnvVariable
(
"PADDLE_USE_ENV3"
);
env_info
.
clear
();
vars
=
platform
::
GetAllEnvVariables
();
for_each
(
vars
.
begin
(),
vars
.
end
(),
[
&
](
const
std
::
string
&
var
)
{
env_info
+=
platform
::
GetEnvValue
(
var
);
});
EXPECT_FALSE
(
string
::
Contains
(
env_info
,
"Hello World, PaddlePaddle!"
));
EXPECT_FALSE
(
platform
::
IsEnvVarDefined
(
"PADDLE_USE_ENV1"
));
EXPECT_FALSE
(
platform
::
IsEnvVarDefined
(
"PADDLE_USE_ENV2"
));
EXPECT_FALSE
(
platform
::
IsEnvVarDefined
(
"PADDLE_USE_ENV3"
));
}
paddle/platform/gpu_info.cc
浏览文件 @
78553768
...
...
@@ -13,8 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/platform/gpu_info.h"
#include "gflags/gflags.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/environment.h"
DEFINE_double
(
fraction_of_gpu_memory_to_use
,
0.95
,
"Default use 95% of GPU memory for PaddlePaddle,"
...
...
@@ -70,6 +73,13 @@ size_t GpuMaxChunkSize() {
GpuMemoryUsage
(
available
,
total
);
if
(
IsEnvVarDefined
(
kEnvFractionGpuMemoryToUse
))
{
auto
val
=
std
::
stod
(
GetEnvValue
(
kEnvFractionGpuMemoryToUse
));
PADDLE_ENFORCE_GT
(
val
,
0.0
);
PADDLE_ENFORCE_LE
(
val
,
1.0
);
FLAGS_fraction_of_gpu_memory_to_use
=
val
;
}
// Reserving the rest memory for page tables, etc.
size_t
reserving
=
(
1
-
FLAGS_fraction_of_gpu_memory_to_use
)
*
total
;
...
...
paddle/platform/gpu_info.h
浏览文件 @
78553768
...
...
@@ -18,10 +18,15 @@ limitations under the License. */
#include <cuda_runtime.h>
#include <stddef.h>
#include <string>
namespace
paddle
{
namespace
platform
{
//! Environment variable: fraction of GPU memory to use on each device.
const
std
::
string
kEnvFractionGpuMemoryToUse
=
"PADDLE_FRACTION_GPU_MEMORY_TO_USE"
;
//! Get the total number of GPU devices in system.
int
GetDeviceCount
();
...
...
paddle/pserver/ParameterServer2.cpp
浏览文件 @
78553768
...
...
@@ -1032,8 +1032,8 @@ void ParameterServer2::loadValueVector(const LoadValueRequest& request,
Parameter
::
Header
header
;
CHECK
(
fs
.
read
(
reinterpret_cast
<
char
*>
(
&
header
),
sizeof
(
header
)))
<<
"Fail to read parameters in pserver"
;
CHECK
_EQ
(
header
.
version
,
Parameter
::
kFormatVersion
)
<<
"Incorrect format version: "
<<
header
.
version
;
CHECK
(
Parameter
::
isHeaderFormatSupported
(
header
.
format
)
)
<<
"Incorrect format version: "
<<
header
.
format
;
CHECK_EQ
(
header
.
size
,
(
size_t
)
size_
)
<<
"The size ("
<<
header
.
size
<<
") in the file does not match the size "
<<
"("
<<
size_
<<
") of the pserver: "
<<
serverId_
;
...
...
@@ -1063,7 +1063,8 @@ void ParameterServer2::saveValueVector(const SaveValueRequest& request,
CpuVector
&
vec
=
vectors_
[
PARAMETER_APPLY
]
?
*
vectors_
[
PARAMETER_APPLY
]
:
*
vectors_
[
PARAMETER_VALUE
];
Parameter
::
Header
header
;
header
.
version
=
Parameter
::
kFormatVersion
;
// TODO(TJ): save param headerFormat_
header
.
format
=
PARAM_FORMAT_ORIGINAL
;
header
.
valueSize
=
sizeof
(
real
);
header
.
size
=
size_
;
...
...
paddle/scripts/docker/build.sh
浏览文件 @
78553768
...
...
@@ -146,7 +146,8 @@ RUN apt-get update &&\
pip install /*.whl; apt-get install -f -y &&
\
apt-get clean -y &&
\
rm -f /*.whl &&
\
paddle version
paddle version &&
\
ldconfig
${
DOCKERFILE_CUDNN_DSO
}
${
DOCKERFILE_GPU_ENV
}
ADD go/cmd/pserver/pserver /usr/bin/
...
...
paddle/trainer/TrainerConfigHelper.cpp
浏览文件 @
78553768
...
...
@@ -29,7 +29,6 @@ DECLARE_bool(with_gpu);
DECLARE_bool
(
parallel_nn
);
DECLARE_string
(
config_args
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
const
char
*
kConfigParserModuleName
=
"paddle.trainer.config_parser"
;
const
char
*
kConfigParserFuncName
=
"parse_config_and_serialize"
;
...
...
@@ -47,7 +46,6 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
<<
",with_cost="
<<
FLAGS_with_cost
<<
",use_gpu="
<<
FLAGS_use_gpu
<<
",parallel_nn="
<<
FLAGS_parallel_nn
<<
",use_mkldnn="
<<
FLAGS_use_mkldnn
<<
",use_mkldnn_wgt="
<<
FLAGS_use_mkldnn_wgt
<<
",cudnn_version="
<<
hl_get_cudnn_lib_version
();
if
(
!
FLAGS_config_args
.
empty
())
{
configArgs
<<
","
<<
FLAGS_config_args
;
...
...
paddle/utils/Flags.cpp
浏览文件 @
78553768
...
...
@@ -27,7 +27,6 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
DEFINE_bool
(
use_mkldnn
,
false
,
"Only support CPU training"
);
#endif
DEFINE_bool
(
use_mkldnn_wgt
,
false
,
"Init weight from CPU weight"
);
DEFINE_bool
(
parallel_nn
,
false
,
"Whether to use multi-threads to calculate one neural network."
...
...
paddle/utils/Flags.h
浏览文件 @
78553768
...
...
@@ -41,4 +41,3 @@ DECLARE_string(predict_file);
DECLARE_bool
(
prev_batch_state
);
DECLARE_string
(
init_model_path
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
78553768
...
...
@@ -26,3 +26,5 @@ py_test(test_operator SRCS test_operator.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
py_test
(
test_recurrent_op SRCS test_recurrent_op.py
)
py_test
(
test_sgd_op SRCS test_sgd_op.py
)
py_test
(
test_gradient_checker SRCS test_gradient_checker.py
)
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
78553768
import
unittest
import
numpy
import
itertools
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
...
...
@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient']
def
create_op
(
op_type
):
# TODO need to set attrs
kwargs
=
dict
()
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
kwargs
[
in_name
]
=
in_name
...
...
@@ -66,7 +68,6 @@ def get_numeric_gradient(op,
local_scope
.
find_var
(
output
).
get_tensor
().
alloc_float
(
core
.
CPUPlace
(
))
# TODO(yuyang18): Only CPU is support now.
cpu_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
def
get_output
():
...
...
@@ -109,12 +110,110 @@ def get_numeric_gradient(op,
class
GradientChecker
(
unittest
.
TestCase
):
def
assert_is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
,
msg_prefix
):
for
name
in
numeric_grads
:
b
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
a
=
numeric_grads
[
name
]
def
__get_gradient
(
self
,
forward_op
,
backward_op
,
input_value
,
grad_names
,
place
):
"""Get the input gradients after running forward and backward operators
on the given places.
:param forward_op: forward operator
:type forward_op: Operator
:param backward_op: backward operator
:type backward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param grad_names: the names of returned input gradients.
:type input_value: a list of string
:param place: the device type.
:type place: CPUPlace or GPUPlace
:return: the input grdients of given grad_names.
:rtype: a list of numpy.array
"""
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
# create input var and set value
for
name
,
value
in
input_value
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
"does not exist in Op's inputs."
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# run forward op
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
)
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# set output var's shape
# set output grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
numpy
.
ones
(
out_tensor
.
shape
(),
dtype
=
numpy
.
float32
)
grad_tensor
.
set
(
data
,
place
)
# run backward op
for
name
in
backward_op
.
outputs
():
scope
.
new_var
(
name
)
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
outs
=
[
numpy
.
array
(
scope
.
find_var
(
name
).
get_tensor
())
for
name
in
grad_names
]
return
outs
def
compare_grad
(
self
,
forward_op
,
input_value
):
""" Compare the input gradients between CPU and GPU for the given forward
operator.
:param forward_op: forward operator
:type forward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:raises: AssertionError, there is different gradient value.
"""
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
set
())
# return if not compile with GPU or not implementing GPU kernel
if
not
(
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
()):
return
outputs
=
backward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
cpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
CPUPlace
())
gpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
GPUPlace
(
0
))
for
c_grad
,
g_grad
,
name
in
itertools
.
izip
(
cpu_grads
,
gpu_grads
,
out_names
):
self
.
assertTrue
(
numpy
.
allclose
(
c_grad
,
g_grad
,
atol
=
1e-4
),
"output name: "
+
name
+
" has diff"
)
def
__assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
"""Use relative error for the comparison.
:param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug.
:type names: a list of string
:param msg_prefix: string info, used to print for debug.
:type msf_prefix: string
"""
for
a
,
b
,
name
in
itertools
.
izip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
numpy
.
abs
(
a
)
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
...
...
@@ -159,106 +258,26 @@ class GradientChecker(unittest.TestCase):
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
bwd_outputs
=
backward_op
.
outputs
()
bwd_out_names
=
[
item
for
k
in
bwd_outputs
for
item
in
bwd_outputs
[
k
]]
places
=
[
core
.
CPUPlace
()]
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
numeric_grad
=
dict
()
# get numeric gradient
for
check_name
in
inputs_to_check
:
numeric_grad
[
check_name
]
=
\
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
check_name
)
# get numerical gradients
numeric_grads
=
[
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
name
)
for
name
in
inputs_to_check
]
# get operator gradient according to different device
check_names
=
[
grad_var_name
(
name
)
for
name
in
inputs_to_check
]
for
place
in
places
:
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
# create input var and set value
for
name
,
value
in
input_vars
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
" not in op.inputs_"
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# create output var
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
).
get_tensor
()
# infer the shape of output var and compute/set value of output var
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
1.0
*
numpy
.
ones
(
out_tensor
.
shape
())
grad_tensor
.
set
(
data
,
place
)
# create input grad var
for
name
in
bwd_out_names
:
scope
.
new_var
(
name
).
get_tensor
()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
self
.
assert_is_close
(
numeric_grad
,
scope
,
max_relative_error
,
# get analytical gradients according to different device
analytic_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_vars
,
check_names
,
place
)
self
.
__assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
if
__name__
==
'__main__'
:
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-2
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
unittest
.
main
()
python/paddle/v2/framework/tests/test_gradient_checker.py
0 → 100644
浏览文件 @
78553768
import
unittest
import
numpy
from
paddle.v2.framework.op
import
Operator
from
gradient_checker
import
GradientChecker
from
gradient_checker
import
get_numeric_gradient
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-4
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_mean_op.py
浏览文件 @
78553768
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
as
np
...
...
@@ -12,5 +13,12 @@ class TestMeanOp(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
np
.
mean
(
self
.
inputs
[
'X'
])}
class
MeanGradOpTest
(
GradientChecker
):
def
test_normal
(
self
):
op
=
create_op
(
"mean"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_rowwise_add_op.py
浏览文件 @
78553768
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
as
np
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
class
TestRowwiseAddOp
(
unittest
.
TestCase
):
...
...
@@ -15,5 +16,15 @@ class TestRowwiseAddOp(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
np
.
add
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'b'
])}
class
RowwiseAddGradOpTest
(
GradientChecker
):
def
test_rowwise_add
(
self
):
op
=
create_op
(
"rowwise_add"
)
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
),
"b"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
]).
astype
(
"float32"
)
}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"b"
]),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_sigmoid_op.py
浏览文件 @
78553768
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
as
np
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
class
TestSigmoidOp
(
unittest
.
TestCase
):
...
...
@@ -8,12 +9,20 @@ class TestSigmoidOp(unittest.TestCase):
def
setUp
(
self
):
self
.
type
=
"sigmoid"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
100
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
31
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Y'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
#class TestSigmoidGradOp(unittest.TestCase):
#TODO(qingqing) add unit test
class
TestSigmoidGradOp
(
GradientChecker
):
def
test_grad
(
self
):
op
=
create_op
(
"sigmoid"
)
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)}
# compare gpu and cpu results for backward op.
# this test will be skiped if only compiling CPU version.
self
.
compare_grad
(
op
,
inputs
)
# check gradients
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
,
max_relative_error
=
0.007
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录