提交 78553768 编写于 作者: Z zchen0211

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

......@@ -137,9 +137,9 @@ set(EXTERNAL_LIBS
)
if(WITH_GPU)
list(APPEND EXTERNAL_LIB ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY})
list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY})
if(NOT WITH_DSO)
list(APPEND EXTERNAL_LIB ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY})
list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY})
endif(NOT WITH_DSO)
endif(WITH_GPU)
......
......@@ -15,6 +15,8 @@
#include "paddle/framework/backward.h"
#include <list>
#include <memory>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
......@@ -43,11 +45,11 @@ static bool AllInSet(
return all_in_set;
}
static std::shared_ptr<OperatorBase> NOP() {
auto net_op = std::make_shared<operators::NetOp>();
static std::unique_ptr<OperatorBase> NOP() {
auto net_op = new operators::NetOp();
net_op->SetType("@NOP@");
net_op->CompleteAddOp();
return net_op;
return std::unique_ptr<OperatorBase>(net_op);
}
// Get backward operator from a forward operator, a recursive implementation.
......@@ -62,11 +64,7 @@ static std::shared_ptr<OperatorBase> NOP() {
// operator, in a complex situation, it maybe a NetOp.
//
// See Backward.h for details
static std::shared_ptr<OperatorBase> BackwardRecursive(
const OperatorBase& forwardOp,
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id);
std::shared_ptr<OperatorBase> BackwardRecursive(
static std::unique_ptr<OperatorBase> BackwardRecursive(
const OperatorBase& forwardOp,
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
// If all input gradients of forwarding operator do not need to calculate,
......@@ -91,7 +89,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
}
// Returned gradient network
auto net = std::make_shared<operators::NetOp>();
auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
if (forwardOp.IsNetOp()) {
// Because forwardOp is a net op, it can static_cast.
......@@ -105,14 +103,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// reversely travel forwardNet and collect all duplicate outputs.
for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
++it, ++local_op_id) {
auto fwd = *it;
auto& fwd = *it;
auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
net->AddOp(bwd);
ForEachVarName(bwd->Outputs(),
[&dup_output_ops, local_op_id](const std::string& out) {
dup_output_ops[out].emplace_back(local_op_id);
return false;
});
net->AddOp(std::move(bwd));
}
// Get unique ID for this method.
auto uid = uniq_id++;
......@@ -122,7 +120,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// to handle this case. For each duplicate output, rename it to an alias
// (original name with a offset), append an `add` op for its operator,
// and finally sum all the alias variable to the final output variable y.
using Pos = std::pair<size_t, std::shared_ptr<OperatorBase>>;
using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
std::list<Pos> insert_position;
for (auto& dup_output_op : dup_output_ops) {
const std::string& name = dup_output_op.first;
......@@ -150,13 +148,13 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
[](const Pos& l, const Pos& r) { return l.first > r.first; });
for (auto& pos : insert_position) {
net->InsertOp(pos.first + 1, pos.second);
net->InsertOp(pos.first + 1, std::move(pos.second));
}
} else {
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
std::unique_ptr<OperatorBase> grad_op(OpRegistry::CreateGradOp(forwardOp));
ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net,
grad_op](const std::string& grad_input) {
ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
const std::string& grad_input) {
if (no_grad_names.count(grad_input)) {
// +1 for \0
std::string prefix = grad_input.substr(
......@@ -190,23 +188,23 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
const auto& stepnet_op =
*static_cast<const OperatorBase*>(&rnnop.stepnet());
// create stepnet's gradient op
auto grad_stepnet = BackwardRecursive(stepnet_op, no_grad_names, uniq_id);
rnn_grad_op->set_stepnet(
std::static_pointer_cast<operators::NetOp>(grad_stepnet));
BackwardRecursive(stepnet_op, no_grad_names, uniq_id));
}
if (net->ops_.empty()) { // Current no aux op is added to network
return grad_op;
}
net->AddOp(grad_op);
net->AddOp(std::move(grad_op));
}
net->SetType("@GENERATED_BACKWARD@");
net->CompleteAddOp();
return net;
} // namespace framework
return std::unique_ptr<OperatorBase>(
static_cast<OperatorBase*>(net.release()));
}
// See header for comments
std::shared_ptr<OperatorBase> Backward(
std::unique_ptr<OperatorBase> Backward(
const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars) {
std::unordered_set<std::string> no_grad_names;
......
......@@ -20,7 +20,7 @@ namespace framework {
// Create the backward operator from a forward operator.
// TODO(yuyang18): Add more API reference comment.
extern std::shared_ptr<OperatorBase> Backward(
extern std::unique_ptr<OperatorBase> Backward(
const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars);
} // namespace framework
......
......@@ -32,9 +32,9 @@ class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input X of Add").AsNoGradient();
AddInput("b", "Bias of Add").AsNoGradient();
AddOutput("Out", "Out of Add").AsNoGradient();
AddInput("X", "Input X of Add").NotInGradient();
AddInput("b", "Bias of Add").NotInGradient();
AddOutput("Out", "Out of Add").NotInGradient();
AddComment("Add Op");
}
};
......@@ -180,8 +180,7 @@ TEST(Backward, simple_op_not_need_grad) {
auto no_input_gop = f::Backward(*fwd, {"x", "b"});
ASSERT_NE(no_input_gop, nullptr);
ASSERT_TRUE(no_input_gop->IsNetOp());
ASSERT_EQ(0UL,
std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
ASSERT_EQ(0UL, static_cast<ops::NetOp *>(no_input_gop.get())->ops_.size());
}
TEST(Backward, net_fc_backward_normal) {
......
......@@ -60,7 +60,7 @@ message OpProto {
optional bool duplicable = 3 [ default = false ];
optional bool intermediate = 4 [ default = false ];
optional bool no_gradient = 5 [ default = false ];
optional bool not_in_gradient = 5 [ default = false ];
}
// AttrProto describes the C++ type Attribute.
......
......@@ -28,7 +28,7 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
const auto& src_arg_list =
src_type == OpArgType::IN ? proto->inputs() : proto->outputs();
for (const auto& arg : src_arg_list) {
if (arg.no_gradient() && !is_grad) continue;
if (arg.not_in_gradient() && !is_grad) continue;
const std::string src_name = arg.name();
std::string dst_name = is_grad ? GradVarName(src_name) : src_name;
dst_inout[dst_name].reserve(src_inout.at(src_name).size());
......
......@@ -26,10 +26,10 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").AsDuplicable().AsNoGradient();
AddInput("In2_mult", "a multiple input").AsDuplicable().NotInGradient();
AddInput("In3_mult", "another multiple input").AsDuplicable();
AddOutput("Out1_mult", "a multiple output").AsDuplicable();
AddOutput("Out2", "a single output").AsNoGradient();
AddOutput("Out2", "a single output").NotInGradient();
AddComment("op with inputs and outputs ignored in gradient calculating");
}
};
......
......@@ -19,7 +19,7 @@ limitations under the License. */
namespace paddle {
namespace framework {
std::shared_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type,
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type,
const VarNameMap& inputs,
const VarNameMap& outputs,
AttributeMap attrs) {
......@@ -28,10 +28,10 @@ std::shared_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type,
"Operator '%s' has not been registered.", type);
it->second.checker_->Check(attrs);
auto op = it->second.creator_(type, inputs, outputs, attrs);
return std::shared_ptr<OperatorBase>(op);
return std::unique_ptr<OperatorBase>(op);
}
std::shared_ptr<OperatorBase> OpRegistry::CreateOp(const OpDesc& op_desc) {
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const OpDesc& op_desc) {
VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs());
VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs());
AttributeMap attrs;
......@@ -55,10 +55,9 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
return ret_val;
}
std::shared_ptr<OperatorBase> OpRegistry::CreateGradOp(const OperatorBase& op) {
std::unique_ptr<OperatorBase> OpRegistry::CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops");
std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op));
return grad_op;
return std::unique_ptr<OperatorBase>(BuildGradOp(&op));
}
} // namespace framework
......
......@@ -77,17 +77,17 @@ class OpRegistry {
}
}
static std::shared_ptr<OperatorBase> CreateOp(const std::string& type,
static std::unique_ptr<OperatorBase> CreateOp(const std::string& type,
const VarNameMap& inputs,
const VarNameMap& outputs,
AttributeMap attrs);
static std::shared_ptr<OperatorBase> CreateOp(const OpDesc& op_desc);
static std::unique_ptr<OperatorBase> CreateOp(const OpDesc& op_desc);
static VarNameMap ConvertOpDescVarsToVarNameMap(
const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars);
static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op);
static std::unique_ptr<OperatorBase> CreateGradOp(const OperatorBase& op);
static std::unordered_map<std::string, const OpInfo>& op_info_map() {
static std::unordered_map<std::string, const OpInfo> op_info_map_;
......@@ -144,8 +144,18 @@ class OpKernelRegistrar : public Registrar {
grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \
static ::paddle::framework::OpRegistrar<op_class, op_maker_class, \
grad_op_class> \
class _OpClass_##op_type##_ : public op_class { \
public: \
DEFINE_OP_CLONE_METHOD(_OpClass_##op_type##_); \
DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_, op_class); \
}; \
class _OpGradClass_##op_type##_ : public grad_op_class { \
public: \
DEFINE_OP_CLONE_METHOD(_OpGradClass_##op_type##_); \
DEFINE_OP_CONSTRUCTOR(_OpGradClass_##op_type##_, grad_op_class); \
}; \
static ::paddle::framework::OpRegistrar< \
_OpClass_##op_type##_, op_maker_class, _OpGradClass_##op_type##_> \
__op_registrar_##op_type##__(#op_type, #grad_op_type); \
int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \
......@@ -176,7 +186,8 @@ class OpKernelRegistrar : public Registrar {
REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
/**
* Macro to mark what Operator and Kernel we will use and tell the compiler to
* Macro to mark what Operator and Kernel
* we will use and tell the compiler to
* link them into target.
*/
#define USE_OP_ITSELF(op_type) \
......@@ -196,7 +207,8 @@ class OpKernelRegistrar : public Registrar {
__attribute__((unused)) = \
TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE()
// TODO(fengjiayi): The following macros seems ugly, do we have better method?
// TODO(fengjiayi): The following macros
// seems ugly, do we have better method?
#ifdef PADDLE_ONLY_CPU
#define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU)
......
......@@ -76,8 +76,7 @@ TEST(OpRegistry, CreateOp) {
attr->set_type(paddle::framework::AttrType::FLOAT);
attr->set_f(scale);
std::shared_ptr<paddle::framework::OperatorBase> op =
paddle::framework::OpRegistry::CreateOp(op_desc);
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
paddle::framework::Scope scope;
paddle::platform::CPUDeviceContext dev_ctx;
op->Run(scope, dev_ctx);
......@@ -118,8 +117,7 @@ TEST(OpRegistry, DefaultValue) {
ASSERT_TRUE(op_desc.IsInitialized());
std::shared_ptr<paddle::framework::OperatorBase> op =
paddle::framework::OpRegistry::CreateOp(op_desc);
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
paddle::framework::Scope scope;
paddle::platform::CPUDeviceContext dev_ctx;
op->Run(scope, dev_ctx);
......
......@@ -67,10 +67,6 @@ class OperatorBase {
OperatorBase(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs);
OperatorBase(const OperatorBase& o) = delete;
OperatorBase& operator=(const OperatorBase& o) = delete;
OperatorBase(OperatorBase&& o) = delete;
virtual ~OperatorBase() {}
template <typename T>
......@@ -116,10 +112,14 @@ class OperatorBase {
void SetType(const std::string& type) { type_ = type; }
const AttributeMap& Attrs() const { return attrs_; }
// Return a new operator instance, which is as same as this.
// Use unique_ptr to prevent caller forget to delete this pointer.
virtual std::unique_ptr<OperatorBase> Clone() const = 0;
protected:
std::string type_;
// NOTE: in case of OpGrad, inputs_ contains:
// I (Inputs)
// I (Inputs)opear
// O (Outputs)
// OG (Output Gradients)
VarNameMap inputs_;
......@@ -130,12 +130,32 @@ class OperatorBase {
AttributeMap attrs_;
};
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
// register it. i.e. `Clone` method is not needed to define by yourself.
#define DEFINE_OP_CLONE_METHOD(CLS) \
std::unique_ptr<OperatorBase> Clone() const final { \
return std::unique_ptr<OperatorBase>(new CLS(*this)); \
}
// Macro for define a default constructor for Operator.
// You can also use
// using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \
CLS(const std::string& type, const VarNameMap& inputs, \
const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
: PARENT_CLS(type, inputs, outputs, attrs) {}
class NOP : public OperatorBase {
public:
using OperatorBase::OperatorBase;
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
std::unique_ptr<OperatorBase> Clone() const override {
return std::unique_ptr<OperatorBase>(new NOP(*this));
}
};
// this class not only make proto but also init attribute checkers.
......@@ -164,11 +184,8 @@ class OpProtoAndCheckerMaker {
return *this;
}
// TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
// means that input/output is not needed when calculate gradient. It does
// not mean no gradient when backward. It should be changed soon.
VariableBuilder& AsNoGradient() {
var_->set_no_gradient(true);
VariableBuilder& NotInGradient() {
var_->set_not_in_gradient(true);
return *this;
}
};
......
......@@ -245,3 +245,21 @@ TEST(OpKernel, multi_inputs) {
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
op->Run(scope, cpu_device_context);
}
class OperatorClone : public paddle::framework::OperatorBase {
public:
DEFINE_OP_CLONE_METHOD(OperatorClone);
OperatorClone(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs,
const paddle::framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(const paddle::framework::Scope& scope) const override {}
void Run(const paddle::framework::Scope& scope,
const paddle::platform::DeviceContext& dev_ctx) const override {}
};
TEST(Operator, Clone) {
OperatorClone a("ABC", {}, {}, {});
auto b = a.Clone();
ASSERT_EQ(a.Type(), b->Type());
}
\ No newline at end of file
......@@ -49,29 +49,6 @@ namespace framework {
using Tensor = framework::Tensor;
template <typename ClassType>
void ExposeOperator(ClassType &m) {
m.def("infer_shape", &ClassType::type::InferShape)
.def("run", &ClassType::type::Run)
.def("type",
[](const typename ClassType::type &op) -> std::string {
return op.Type();
})
.def("outputs",
[](const typename ClassType::type &op)
-> std::map<std::string, std::vector<std::string>> {
return op.Outputs();
})
.def("inputs",
[](const typename ClassType::type &op) { return op.Inputs(); })
.def("__str__", &ClassType::type::DebugString)
.def("no_intermediate_outputs",
[](const typename ClassType::type &op) {
return op.OutputVars(false);
})
.def("support_gpu", &ClassType::type::SupportGPU);
}
static size_t UniqueIntegerGenerator() {
static std::atomic<size_t> generator;
return generator.fetch_add(1);
......@@ -208,10 +185,9 @@ All parameter, weight, gradient are variables in Paddle.
.def(py::init<>())
.def("__str__", string::to_string<const platform::CPUPlace &>);
py::class_<OperatorBase, std::shared_ptr<OperatorBase>> operator_base(
m, "Operator");
operator_base.def_static("create", [](py::bytes protobin) {
py::class_<OperatorBase>(m, "Operator")
.def_static("create",
[](py::bytes protobin) {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
......@@ -219,49 +195,46 @@ All parameter, weight, gradient are variables in Paddle.
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
return OpRegistry::CreateOp(desc);
});
operator_base.def("backward",
})
.def("backward",
[](const OperatorBase &forwardOp,
const std::unordered_set<std::string> &no_grad_vars) {
return Backward(forwardOp, no_grad_vars);
});
ExposeOperator(operator_base);
py::class_<operators::NetOp, std::shared_ptr<operators::NetOp>> net(m, "Net");
return Backward(forwardOp, no_grad_vars).release();
})
.def("infer_shape", &OperatorBase::InferShape)
.def("run", &OperatorBase::Run)
.def("type",
[](const OperatorBase &op) -> std::string { return op.Type(); })
.def("outputs",
[](const OperatorBase &op)
-> std::map<std::string, std::vector<std::string>> {
return op.Outputs();
})
.def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
.def("__str__", &OperatorBase::DebugString)
.def("no_intermediate_outputs",
[](const OperatorBase &op) { return op.OutputVars(false); })
.def("support_gpu", &OperatorBase::SupportGPU);
net.def_static("create",
[]() -> std::shared_ptr<operators::NetOp> {
auto retv = std::make_shared<operators::NetOp>();
py::class_<operators::NetOp, OperatorBase>(m, "Net")
.def_static("create",
[]() -> operators::NetOp * {
auto *retv = new operators::NetOp;
retv->SetType("plain_net");
return retv;
})
.def("add_op", &operators::NetOp::AddOp)
.def("add_op",
[](operators::NetOp &self,
const std::shared_ptr<operators::NetOp> &net) -> void {
self.AddOp(std::static_pointer_cast<OperatorBase>(net));
})
.def("add_op",
[](operators::NetOp &self,
const std::shared_ptr<operators::RecurrentOp> &rnn) -> void {
self.AddOp(std::static_pointer_cast<OperatorBase>(rnn));
})
.def("add_op", [](operators::NetOp &self,
const OperatorBase &op) { self.AddOp(op); })
.def("complete_add_op", &operators::NetOp::CompleteAddOp)
.def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
self->CompleteAddOp();
});
ExposeOperator(net);
// recurrent_op
py::class_<operators::RecurrentOp, std::shared_ptr<operators::RecurrentOp>>
rnn(m, "RecurrentOp");
rnn.def_static(
py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
.def_static(
"create",
[](py::bytes protobin) -> std::shared_ptr<operators::RecurrentOp> {
[](py::bytes protobin) -> operators::RecurrentOp * {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
......@@ -269,14 +242,12 @@ All parameter, weight, gradient are variables in Paddle.
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
auto rnn_op = OpRegistry::CreateOp(desc);
return std::dynamic_pointer_cast<operators::RecurrentOp>(rnn_op);
return static_cast<operators::RecurrentOp *>(rnn_op.release());
})
.def("set_stepnet",
[](operators::RecurrentOp &self,
const std::shared_ptr<operators::NetOp> &net) -> void {
self.set_stepnet(net);
.def("set_stepnet", [](operators::RecurrentOp &self,
const operators::NetOp &net) -> void {
self.set_stepnet(net.Clone());
});
ExposeOperator(rnn);
m.def("unique_integer", UniqueIntegerGenerator);
......
......@@ -57,11 +57,14 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap,
}
void MKLDNNFcLayer::convertWeightsFromPaddle() {
if (FLAGS_use_mkldnn_wgt) {
if (hasInitedWgt_) {
return;
}
if (hasInitedWgt_) {
// TODO(TJ): dst format should get from wgtVal_
int dstFmt = PARAM_FORMAT_MKLDNN_OI;
int srcFmt = weight_->getParameterPtr()->getHeaderFormat();
if (srcFmt == dstFmt) {
return;
}
......@@ -78,6 +81,7 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
MatrixPtr paddleWgtT;
paddleWgt->transpose(paddleWgtT, true);
weight_->getW()->copyFrom(*paddleWgtT);
weight_->getParameterPtr()->setHeaderFormat(dstFmt);
hasInitedWgt_ = true;
}
......
......@@ -330,9 +330,7 @@ void MKLDNNTester::run(const TestConfig& dnn,
log_ = log;
lvl_ = level;
// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt = false;
// reset and run once
// Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
reset(dnn, ref, batchSize);
randomWgtDatas();
clearWgtDiffs();
......@@ -342,17 +340,32 @@ void MKLDNNTester::run(const TestConfig& dnn,
runOnce();
}
// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt = true;
// after run once the mkldnn weight has been stored in dnnlayer
if (parameters_[DNN].empty()) {
// has no paramters
return;
}
// After run some iterations, the mkldnn weight has been stored in dnnLayer
// and we can also get the mkldnn weight parameter header format.
// Weight parameter should always be index 0 (and bias index 1).
// TODO(TJ): should also consider mean and var format when batchnorm ready
int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat();
int refWgtFmt = parameters_[REF][0]->getHeaderFormat();
if (dnnWgtFmt == refWgtFmt) {
// weight format are equal, so no need check more
return;
}
// then save the weights and restart again
vector<VectorPtr> dnnWgts, refWgts;
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
saveWgt(parameters_[DNN], dnnWgts);
saveWgt(parameters_[REF], refWgts);
// restart again with flag true
// restart again with dnn weight format
reset(dnn, ref, batchSize);
// TODO(TJ): should also considerate mean and var format when batchnorm ready
parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt);
// restore wgt
restoreWgt(dnnWgts, parameters_[DNN]);
......
......@@ -108,7 +108,7 @@ private:
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
* The return value should be smaller than eps when passing.
*/
double getDelta(const real* d1,
const real* d2,
......
......@@ -27,7 +27,7 @@ limitations under the License. */
// between host and device. Allocates too much would reduce the amount
// of memory available to the system for paging. So, by default, we
// should set false to use_pinned_memory.
DEFINE_bool(use_pinned_memory, false, "If set, allocate cpu pinned memory.");
DEFINE_bool(use_pinned_memory, true, "If set, allocate cpu pinned memory.");
namespace paddle {
namespace memory {
......
......@@ -13,22 +13,38 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/memory.h"
#include <algorithm> // for transform
#include <cstring> // for memcpy
#include <memory> // for unique_ptr
#include <mutex> // for call_once
#include "glog/logging.h"
#include "paddle/memory/detail/buddy_allocator.h"
#include "paddle/memory/detail/system_allocator.h"
#include "paddle/platform/gpu_info.h"
#include <cstring> // for memcpy
DECLARE_double(fraction_of_gpu_memory_to_use);
namespace paddle {
namespace memory {
detail::BuddyAllocator* GetCPUBuddyAllocator() {
static detail::BuddyAllocator* a = nullptr;
if (a == nullptr) {
a = new detail::BuddyAllocator(new detail::CPUAllocator,
using BuddyAllocator = detail::BuddyAllocator;
std::once_flag cpu_allocator_flag;
std::once_flag gpu_allocator_flag;
BuddyAllocator* GetCPUBuddyAllocator() {
static std::unique_ptr<BuddyAllocator> a{nullptr};
std::call_once(cpu_allocator_flag, [&]() {
a.reset(new BuddyAllocator(new detail::CPUAllocator,
platform::CpuMinChunkSize(),
platform::CpuMaxChunkSize());
}
return a;
platform::CpuMaxChunkSize()));
});
return a.get();
}
template <>
......@@ -48,20 +64,36 @@ size_t Used<platform::CPUPlace>(platform::CPUPlace place) {
#ifndef PADDLE_ONLY_CPU
detail::BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
static detail::BuddyAllocator** as = NULL;
if (as == NULL) {
BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
using BuddyAllocVec = std::vector<BuddyAllocator*>;
static std::unique_ptr<BuddyAllocVec, void (*)(BuddyAllocVec * p)> as{
new BuddyAllocVec, [](BuddyAllocVec* p) {
std::for_each(p->begin(), p->end(),
[](BuddyAllocator* p) { delete p; });
}};
// GPU buddy allocators
auto& allocators = *as.get();
// GPU buddy allocator initialization
std::call_once(gpu_allocator_flag, [&]() {
int gpu_num = platform::GetDeviceCount();
as = new detail::BuddyAllocator*[gpu_num];
allocators.reserve(gpu_num);
for (int gpu = 0; gpu < gpu_num; gpu++) {
platform::SetDeviceId(gpu);
as[gpu] = new detail::BuddyAllocator(new detail::GPUAllocator,
allocators.emplace_back(new BuddyAllocator(new detail::GPUAllocator,
platform::GpuMinChunkSize(),
platform::GpuMaxChunkSize());
}
platform::GpuMaxChunkSize()));
}
VLOG(3) << "\n\nNOTE: each GPU device use "
<< FLAGS_fraction_of_gpu_memory_to_use * 100 << "% of GPU memory.\n"
<< "You can set environment variable '"
<< platform::kEnvFractionGpuMemoryToUse
<< "' to change the fraction of GPU usage.\n\n";
});
platform::SetDeviceId(gpu_id);
return as[gpu_id];
return allocators[gpu_id];
}
template <>
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#pragma once
#include "paddle/platform/gpu_info.h"
#include "paddle/platform/place.h"
namespace paddle {
......
......@@ -45,4 +45,8 @@ TEST(Gather, GatherData) {
for (int i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], i + 4);
for (int i = 4; i < 8; ++i) EXPECT_EQ(p_output[i], i - 4);
delete src;
delete index;
delete output;
}
......@@ -34,7 +34,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
MeanOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of mean op");
AddOutput("Out", "The output of mean op").AsNoGradient();
AddOutput("Out", "The output of mean op").NotInGradient();
AddComment("Mean Operator");
}
};
......
......@@ -55,9 +55,10 @@ class MeanGradKernel : public framework::OpKernel {
IG->mutable_data<T>(context.GetPlace());
T ig_size = (T)framework::product(IG->dims());
Eigen::DSizes<int, 1> bcast(ig_size);
EigenVector<T>::Flatten(*IG).device(context.GetEigenDevice<Place>()) =
EigenScalar<T>::From(*OG) / ig_size;
(EigenVector<T>::From(*OG) / ig_size).broadcast(bcast);
}
};
......
......@@ -85,7 +85,14 @@ NetOp::NetOp(const std::string& type,
const framework::OperatorBase::VarNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
: framework::OperatorBase(type, inputs, outputs, attrs) {}
std::unique_ptr<framework::OperatorBase> NetOp::Clone() const {
PADDLE_ENFORCE(
add_op_done_,
"Must clone a sealed NetOp, invoke Net::CompleteAddOp before clone");
return std::unique_ptr<OperatorBase>(new NetOp(*this));
}
} // namespace operators
} // namespace paddle
......@@ -41,6 +41,16 @@ class NetOp : public framework::OperatorBase {
NetOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs);
NetOp(const NetOp& o) : framework::OperatorBase(o.type_, {}, {}, o.attrs_) {
this->ops_.reserve(o.ops_.size());
std::transform(
o.ops_.begin(), o.ops_.end(), std::back_inserter(this->ops_),
[](const std::unique_ptr<framework::OperatorBase>& op) {
return std::unique_ptr<framework::OperatorBase>(op->Clone());
});
this->CompleteAddOp();
}
/**
* Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch
......@@ -74,21 +84,27 @@ class NetOp : public framework::OperatorBase {
return true;
}
void AddOp(const framework::OperatorBase& op) { AddOp(op.Clone()); }
/**
* @brief Add an operator by ptr
*/
void AddOp(const std::shared_ptr<OperatorBase>& op) {
void AddOp(std::unique_ptr<framework::OperatorBase> op) {
PADDLE_ENFORCE(!add_op_done_, "Cannot AddOp when this network is sealed");
PADDLE_ENFORCE_NOT_NULL(op, "Cannot Insert Null op");
ops_.push_back(op);
ops_.push_back(std::move(op));
}
void InsertOp(size_t pos, const std::shared_ptr<OperatorBase>& op) {
void InsertOp(size_t pos, std::unique_ptr<framework::OperatorBase> op) {
PADDLE_ENFORCE(!add_op_done_,
"Cannot InsertOp when this network is sealed");
PADDLE_ENFORCE_NOT_NULL(op, "Cannot Insert Null op");
PADDLE_ENFORCE_LE(pos, ops_.size(), "Out of range");
ops_.insert(ops_.begin() + pos, op);
ops_.insert(ops_.begin() + pos, std::move(op));
}
void InsertOp(size_t pos, const framework::OperatorBase& op) {
InsertOp(pos, op.Clone());
}
void CompleteAddOp(bool calculate = true);
......@@ -98,7 +114,9 @@ class NetOp : public framework::OperatorBase {
bool IsNetOp() const override;
std::vector<std::string> OutputVars(bool has_intermediate) const override;
std::vector<std::shared_ptr<OperatorBase>> ops_;
std::unique_ptr<framework::OperatorBase> Clone() const override;
std::vector<std::unique_ptr<framework::OperatorBase>> ops_;
private:
bool add_op_done_{false};
......
......@@ -13,6 +13,7 @@ static int run_cnt = 0;
class TestOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
DEFINE_OP_CLONE_METHOD(TestOp);
void InferShape(const Scope& scope) const override { ++infer_shape_cnt; }
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
......@@ -37,15 +38,12 @@ TEST(OpKernel, all) {
auto net = std::make_shared<NetOp>();
ASSERT_NE(net, nullptr);
auto op1 = std::shared_ptr<TestOp>(
net->AddOp(std::unique_ptr<TestOp>(
new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
{{"Out", {"y"}}}, {}));
net->AddOp(op1);
auto op2 = std::shared_ptr<TestOp>(
{{"Out", {"y"}}}, {})));
net->AddOp(std::unique_ptr<TestOp>(
new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}},
{{"Out", {"z"}}}, {}));
net->AddOp(op2);
{{"Out", {"z"}}}, {})));
net->CompleteAddOp();
AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"},
......@@ -60,15 +58,31 @@ TEST(OpKernel, all) {
TEST(NetOp, insert_op) {
NetOp net;
auto op1 = std::shared_ptr<framework::NOP>(
auto op1 = std::unique_ptr<framework::NOP>(
new framework::NOP("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
{{"Out", {"y"}}}, {}));
net.AddOp(op1);
net.InsertOp(0, op1);
net.AddOp(*op1);
net.InsertOp(0, *op1);
ASSERT_EQ(2UL, net.ops_.size());
net.InsertOp(2, op1);
net.InsertOp(2, std::move(op1));
ASSERT_EQ(3UL, net.ops_.size());
}
TEST(NetOp, Clone) {
NetOp net;
net.AddOp(
std::unique_ptr<framework::NOP>(new framework::NOP{"empty", {}, {}, {}}));
net.AddOp(std::unique_ptr<framework::NOP>(
new framework::NOP{"empty2", {}, {}, {}}));
net.CompleteAddOp(true);
auto new_net_op = net.Clone();
ASSERT_NE(new_net_op, nullptr);
ASSERT_TRUE(new_net_op->IsNetOp());
auto* new_net = static_cast<NetOp*>(new_net_op.get());
ASSERT_EQ(2, new_net->ops_.size());
ASSERT_EQ(new_net->ops_[0]->Type(), "empty");
ASSERT_EQ(new_net->ops_[1]->Type(), "empty2");
}
} // namespace operators
} // namespace paddle
......@@ -34,7 +34,8 @@ class RecurrentAlgorithm {
void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const;
void Init(rnn::Argument* arg, std::shared_ptr<NetOp>* stepnet) {
void Init(rnn::Argument* arg,
std::unique_ptr<framework::OperatorBase>* stepnet) {
PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before.");
arg_ = arg;
stepnet_ = stepnet;
......@@ -63,7 +64,7 @@ class RecurrentAlgorithm {
void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const;
private:
std::shared_ptr<NetOp>* stepnet_;
std::unique_ptr<framework::OperatorBase>* stepnet_;
rnn::Argument* arg_;
mutable size_t seq_len_;
};
......@@ -80,7 +81,8 @@ class RecurrentGradientAlgorithm {
* operator.
*/
public:
void Init(rnn::Argument* arg, std::shared_ptr<NetOp>* stepnet) {
void Init(rnn::Argument* arg,
std::unique_ptr<framework::OperatorBase>* stepnet) {
PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before.");
arg_ = std::move(arg);
stepnet_ = stepnet;
......@@ -107,13 +109,20 @@ class RecurrentGradientAlgorithm {
private:
rnn::Argument* arg_;
mutable size_t seq_len_;
std::shared_ptr<NetOp>* stepnet_;
std::unique_ptr<framework::OperatorBase>* stepnet_;
};
class RecurrentOp final : public framework::OperatorBase {
class RecurrentOp : public framework::OperatorBase {
public:
RecurrentOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs);
RecurrentOp(const RecurrentOp& o)
: framework::OperatorBase(
static_cast<const framework::OperatorBase&>(o)) {
// TODO(yuyang18): Implement copy ctor well.
PADDLE_THROW("Not implemented");
}
/**
* InferShape must be called before Run.
*/
......@@ -126,23 +135,32 @@ class RecurrentOp final : public framework::OperatorBase {
alg_.Run(scope, dev_ctx);
}
void set_stepnet(std::shared_ptr<NetOp> net) { stepnet_ = net; }
const NetOp& stepnet() const { return *stepnet_; }
void set_stepnet(std::unique_ptr<OperatorBase> net) {
stepnet_ = std::move(net);
}
const OperatorBase& stepnet() const { return *stepnet_; }
static const rnn::ArgumentName kArgName;
private:
RecurrentAlgorithm alg_;
rnn::Argument arg_;
std::shared_ptr<NetOp> stepnet_;
std::unique_ptr<OperatorBase> stepnet_;
};
class RecurrentGradientOp final : public framework::OperatorBase {
class RecurrentGradientOp : public framework::OperatorBase {
public:
RecurrentGradientOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs,
const framework::AttributeMap& attrs);
RecurrentGradientOp(const RecurrentGradientOp& o)
: framework::OperatorBase(
static_cast<const framework::OperatorBase&>(o)) {
// TODO(yuyang18): Implement Copy ctor.
PADDLE_THROW("Not Implemented");
}
/**
* InferShape must be called before Run.
*/
......@@ -157,12 +175,14 @@ class RecurrentGradientOp final : public framework::OperatorBase {
static const rnn::ArgumentName kArgName;
void set_stepnet(const std::shared_ptr<NetOp>& net) { stepnet_ = net; }
const NetOp& stepnet() const { return *stepnet_; }
void set_stepnet(std::unique_ptr<OperatorBase> net) {
stepnet_ = std::move(net);
}
const OperatorBase& stepnet() const { return *stepnet_; }
private:
RecurrentGradientAlgorithm alg_;
std::shared_ptr<NetOp> stepnet_;
std::unique_ptr<OperatorBase> stepnet_;
rnn::Argument arg_;
};
......
......@@ -17,7 +17,9 @@
namespace paddle {
namespace operators {
class RowWiseAddOp : public framework::OperatorWithKernel {
using framework::Tensor;
class RowwiseAddOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -34,9 +36,9 @@ class RowWiseAddOp : public framework::OperatorWithKernel {
}
};
class RowWiseAddOpMaker : public framework::OpProtoAndCheckerMaker {
class RowwiseAddOpMaker : public framework::OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker(framework::OpProto *proto,
RowwiseAddOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The left input of row-wise add op, must be matrix");
......@@ -49,12 +51,32 @@ for i in xrange(X.shape[0]):
)DOC");
}
};
class RowwiseAddGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"), "b should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto dims0 = ctx.Input<Tensor>("X")->dims();
auto dims1 = ctx.Input<Tensor>("b")->dims();
PADDLE_ENFORCE_EQ(1, dims1.size(), "b dims should be 1")
ctx.Output<Tensor>(framework::GradVarName("X"))->Resize(dims0);
ctx.Output<Tensor>(framework::GradVarName("b"))->Resize(dims1);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(rowwise_add, ops::RowWiseAddOp,
ops::RowWiseAddOpMaker);
REGISTER_OP(rowwise_add, ops::RowwiseAddOp, ops::RowwiseAddOpMaker,
rowwise_add_grad, ops::RowwiseAddGradOp);
REGISTER_OP_CPU_KERNEL(
rowwise_add, ops::RowwiseAddKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
rowwise_add, ops::RowWiseAddKernel<paddle::platform::CPUPlace, float>);
rowwise_add_grad,
ops::RowwiseAddGradKernel<paddle::platform::CPUPlace, float>);
......@@ -17,4 +17,4 @@
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
rowwise_add, ops::RowWiseAddKernel<paddle::platform::GPUPlace, float>);
rowwise_add, ops::RowwiseAddKernel<paddle::platform::GPUPlace, float>);
......@@ -28,7 +28,7 @@ template <typename T, int MajorType = Eigen::RowMajor,
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T>
class RowWiseAddKernel : public framework::OpKernel {
class RowwiseAddKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto out = context.Output<Tensor>("Out");
......@@ -47,5 +47,25 @@ class RowWiseAddKernel : public framework::OpKernel {
}
};
template <typename Place, typename T>
class RowwiseAddGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* dOut = context.Input<Tensor>(framework::GradVarName("Out"));
auto* dX = context.Output<Tensor>(framework::GradVarName("X"));
auto* db = context.Output<Tensor>(framework::GradVarName("b"));
dX->mutable_data<T>(context.GetPlace());
db->mutable_data<T>(context.GetPlace());
auto OutGrad = EigenMatrix<T>::From(*dOut);
auto place = context.GetEigenDevice<Place>();
EigenMatrix<T>::From(*dX).device(place) = OutGrad;
// https://eigen.tuxfamily.org/dox/unsupported/TensorBase_8h_source.html
// colwise add
Eigen::array<int, 1> dims{{1}}; /* dimension to reduce */
EigenVector<T>::Flatten(*db).device(place) = OutGrad.sum(dims);
}
};
} // namespace operators
} // namespace paddle
......@@ -49,4 +49,8 @@ TEST(scatter, ScatterUpdate) {
EXPECT_EQ(output->data<float>()[i], float(i - 4));
for (size_t i = 8; i < 16; ++i) EXPECT_EQ(p_output[i], float(0));
for (size_t i = 8; i < 16; ++i) EXPECT_EQ(output->data<float>()[i], float(0));
delete src;
delete index;
delete output;
}
......@@ -30,7 +30,7 @@ class SGDOpKernel : public framework::OpKernel {
void Compute(const framework::ExecutionContext& ctx) const override {
auto param = ctx.Input<Tensor>("param");
auto grad = ctx.Input<Tensor>("grad");
auto param_out = ctx.Output<Tensor>(0);
auto param_out = ctx.Output<Tensor>("param_out");
float lr = ctx.op_.GetAttr<float>("learning_rate");
param_out->mutable_data<T>(ctx.GetPlace());
......
......@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
ctx.Output<Tensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("Y")->dims());
}
};
......
......@@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel {
auto Y = EigenVector<T>::Flatten(*output);
auto place = context.GetEigenDevice<Place>();
Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp());
Y.device(place) = 1. / (1. + (-X).exp());
}
};
......
......@@ -48,7 +48,8 @@ Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
deviceId_(-1),
sharedCount_(0),
updateCounter_(0),
updated_(false) {
updated_(false),
headerFormat_(PARAM_FORMAT_ORIGINAL) {
setID(-1); /* capture uninitialized id */
if (useGpu_ && FLAGS_parallel_nn) {
/* gpu environment is specified by device property */
......@@ -285,7 +286,7 @@ bool Parameter::save(const std::string& filename) const {
bool Parameter::save(std::ostream& s) const {
CpuVector vec(*bufs_[PARAMETER_VALUE].get());
Header header;
header.version = kFormatVersion;
header.format = headerFormat_;
header.valueSize = sizeof(real);
header.size = getSize();
......@@ -344,8 +345,9 @@ bool Parameter::load(std::istream& s) {
Header header;
CHECK(s.read(reinterpret_cast<char*>(&header), sizeof(header)))
<< "Fail to read parameter " << getName();
CHECK_EQ(header.version, kFormatVersion) << "Incorrect format version: "
<< header.version;
CHECK(isHeaderFormatSupported(header.format)) << "Incorrect format version: "
<< header.format;
headerFormat_ = header.format;
CHECK_EQ(header.size, getSize())
<< "The size (" << header.size << ") in the file does not match the size "
<< "(" << getSize() << ") of the parameter: " << getName();
......
......@@ -34,6 +34,20 @@ limitations under the License. */
namespace paddle {
typedef enum {
/// The paddle original basic format
PARAM_FORMAT_ORIGINAL = 0,
/// See mkldnn_memory_format_t in
/// https://github.com/01org/mkl-dnn/blob/master/include/mkldnn_types.h
/// for a detailed description.
/// 2D weights tensor in the format (output channels, input channels).
PARAM_FORMAT_MKLDNN_OI,
/// The total format items numbers
PARAM_FORMAT_ITEMS,
} PARAM_FORMAT;
class SparsePrefetchRowCpuMatrix;
class Parameter;
......@@ -242,14 +256,30 @@ public:
/// Initialize the value to 0
void zeroMem();
static const int kFormatVersion = 0;
/// file header structure
struct Header {
int32_t version; // = 0, file format version
int32_t format; // = PARAM_FORMAT
uint32_t valueSize; // = sizeof(real)
uint64_t size; // = getSize()
};
/**
* @brief Is the header format supported.
*/
static bool isHeaderFormatSupported(int32_t fmt) {
return fmt < PARAM_FORMAT_ITEMS;
}
/**
* @brief Get the format in header.
*/
int getHeaderFormat() { return headerFormat_; }
/**
* @brief Set the format in header.
*/
void setHeaderFormat(int32_t fmt) { headerFormat_ = fmt; }
/**
* @brief Parameter Update Hook.
*
......@@ -321,6 +351,9 @@ protected:
bool updated_;
SparseFormat format_;
/// The header format for saving or loading param
int32_t headerFormat_;
std::vector<std::shared_ptr<IParameterUpdaterHook>> updaterHooks_;
public:
......
cc_library(cpu_info SRCS cpu_info.cc DEPS gflags glog)
cc_test(cpu_info_test SRCS cpu_info_test.cc DEPS cpu_info)
nv_library(gpu_info SRCS gpu_info.cc DEPS gflags)
nv_library(gpu_info SRCS gpu_info.cc DEPS gflags glog)
cc_library(place SRCS place.cc)
cc_test(place_test SRCS place_test.cc DEPS place glog gflags)
......@@ -9,6 +9,7 @@ cc_test(place_test SRCS place_test.cc DEPS place glog gflags)
add_subdirectory(dynload)
cc_test(enforce_test SRCS enforce_test.cc DEPS stringpiece)
cc_test(environment_test SRCS environment_test.cc DEPS stringpiece)
IF(WITH_GPU)
set(GPU_CTX_DEPS dynload_cuda dynamic_loader)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stdlib.h>
#include <unistd.h>
#include <vector>
#include "paddle/platform/enforce.h"
#include "paddle/string/piece.h"
extern char** environ; // for environment variables
namespace paddle {
namespace platform {
inline void SetEnvVariable(const std::string& name, const std::string& value) {
PADDLE_ENFORCE_NE(setenv(name.c_str(), value.c_str(), 1), -1,
"Failed to set environment variable %s=%s", name, value);
}
inline void UnsetEnvVariable(const std::string& name) {
PADDLE_ENFORCE_NE(unsetenv(name.c_str()), -1,
"Failed to unset environment variable %s", name);
}
inline bool IsEnvVarDefined(const std::string& name) {
return std::getenv(name.c_str()) != nullptr;
}
inline std::string GetEnvValue(const std::string& name) {
PADDLE_ENFORCE(IsEnvVarDefined(name),
"Tried to access undefined environment variable %s", name);
return std::getenv(name.c_str());
}
inline std::vector<std::string> GetAllEnvVariables() {
std::vector<std::string> vars;
for (auto var = environ; *var != nullptr; ++var) {
auto tail = string::Index(*var, "=");
auto name = string::SubStr(*var, 0, tail).ToString();
vars.push_back(name);
}
return vars;
}
} // namespace platform
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/platform/environment.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
TEST(ENVIRONMENT, ACCESS) {
namespace platform = paddle::platform;
namespace string = paddle::string;
platform::SetEnvVariable("PADDLE_USE_ENV", "TRUE");
EXPECT_TRUE(platform::IsEnvVarDefined("PADDLE_USE_ENV"));
EXPECT_EQ(platform::GetEnvValue("PADDLE_USE_ENV"), "TRUE");
platform::UnsetEnvVariable("PADDLE_USE_ENV");
EXPECT_FALSE(platform::IsEnvVarDefined("PADDLE_USE_ENV"));
platform::SetEnvVariable("PADDLE_USE_ENV1", "Hello ");
platform::SetEnvVariable("PADDLE_USE_ENV2", "World, ");
platform::SetEnvVariable("PADDLE_USE_ENV3", "PaddlePaddle!");
std::string env_info;
auto vars = platform::GetAllEnvVariables();
for_each(vars.begin(), vars.end(), [&](const std::string& var) {
env_info += platform::GetEnvValue(var);
});
EXPECT_TRUE(string::Contains(env_info, "Hello World, PaddlePaddle!"));
platform::UnsetEnvVariable("PADDLE_USE_ENV1");
platform::UnsetEnvVariable("PADDLE_USE_ENV2");
platform::UnsetEnvVariable("PADDLE_USE_ENV3");
env_info.clear();
vars = platform::GetAllEnvVariables();
for_each(vars.begin(), vars.end(), [&](const std::string& var) {
env_info += platform::GetEnvValue(var);
});
EXPECT_FALSE(string::Contains(env_info, "Hello World, PaddlePaddle!"));
EXPECT_FALSE(platform::IsEnvVarDefined("PADDLE_USE_ENV1"));
EXPECT_FALSE(platform::IsEnvVarDefined("PADDLE_USE_ENV2"));
EXPECT_FALSE(platform::IsEnvVarDefined("PADDLE_USE_ENV3"));
}
......@@ -13,8 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/platform/gpu_info.h"
#include "gflags/gflags.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/environment.h"
DEFINE_double(fraction_of_gpu_memory_to_use, 0.95,
"Default use 95% of GPU memory for PaddlePaddle,"
......@@ -70,6 +73,13 @@ size_t GpuMaxChunkSize() {
GpuMemoryUsage(available, total);
if (IsEnvVarDefined(kEnvFractionGpuMemoryToUse)) {
auto val = std::stod(GetEnvValue(kEnvFractionGpuMemoryToUse));
PADDLE_ENFORCE_GT(val, 0.0);
PADDLE_ENFORCE_LE(val, 1.0);
FLAGS_fraction_of_gpu_memory_to_use = val;
}
// Reserving the rest memory for page tables, etc.
size_t reserving = (1 - FLAGS_fraction_of_gpu_memory_to_use) * total;
......
......@@ -18,10 +18,15 @@ limitations under the License. */
#include <cuda_runtime.h>
#include <stddef.h>
#include <string>
namespace paddle {
namespace platform {
//! Environment variable: fraction of GPU memory to use on each device.
const std::string kEnvFractionGpuMemoryToUse =
"PADDLE_FRACTION_GPU_MEMORY_TO_USE";
//! Get the total number of GPU devices in system.
int GetDeviceCount();
......
......@@ -1032,8 +1032,8 @@ void ParameterServer2::loadValueVector(const LoadValueRequest& request,
Parameter::Header header;
CHECK(fs.read(reinterpret_cast<char*>(&header), sizeof(header)))
<< "Fail to read parameters in pserver";
CHECK_EQ(header.version, Parameter::kFormatVersion)
<< "Incorrect format version: " << header.version;
CHECK(Parameter::isHeaderFormatSupported(header.format))
<< "Incorrect format version: " << header.format;
CHECK_EQ(header.size, (size_t)size_)
<< "The size (" << header.size << ") in the file does not match the size "
<< "(" << size_ << ") of the pserver: " << serverId_;
......@@ -1063,7 +1063,8 @@ void ParameterServer2::saveValueVector(const SaveValueRequest& request,
CpuVector& vec = vectors_[PARAMETER_APPLY] ? *vectors_[PARAMETER_APPLY]
: *vectors_[PARAMETER_VALUE];
Parameter::Header header;
header.version = Parameter::kFormatVersion;
// TODO(TJ): save param headerFormat_
header.format = PARAM_FORMAT_ORIGINAL;
header.valueSize = sizeof(real);
header.size = size_;
......
......@@ -146,7 +146,8 @@ RUN apt-get update &&\
pip install /*.whl; apt-get install -f -y && \
apt-get clean -y && \
rm -f /*.whl && \
paddle version
paddle version && \
ldconfig
${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_GPU_ENV}
ADD go/cmd/pserver/pserver /usr/bin/
......
......@@ -29,7 +29,6 @@ DECLARE_bool(with_gpu);
DECLARE_bool(parallel_nn);
DECLARE_string(config_args);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
const char *kConfigParserModuleName = "paddle.trainer.config_parser";
const char *kConfigParserFuncName = "parse_config_and_serialize";
......@@ -47,7 +46,6 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
<< ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu
<< ",parallel_nn=" << FLAGS_parallel_nn
<< ",use_mkldnn=" << FLAGS_use_mkldnn
<< ",use_mkldnn_wgt=" << FLAGS_use_mkldnn_wgt
<< ",cudnn_version=" << hl_get_cudnn_lib_version();
if (!FLAGS_config_args.empty()) {
configArgs << "," << FLAGS_config_args;
......
......@@ -27,7 +27,6 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
DEFINE_bool(use_mkldnn, false, "Only support CPU training");
#endif
DEFINE_bool(use_mkldnn_wgt, false, "Init weight from CPU weight");
DEFINE_bool(parallel_nn,
false,
"Whether to use multi-threads to calculate one neural network."
......
......@@ -41,4 +41,3 @@ DECLARE_string(predict_file);
DECLARE_bool(prev_batch_state);
DECLARE_string(init_model_path);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
......@@ -26,3 +26,5 @@ py_test(test_operator SRCS test_operator.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test(test_sgd_op SRCS test_sgd_op.py)
py_test(test_gradient_checker SRCS test_gradient_checker.py)
import unittest
import numpy
import itertools
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
......@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient']
def create_op(op_type):
# TODO need to set attrs
kwargs = dict()
for in_name in Operator.get_op_input_names(op_type):
kwargs[in_name] = in_name
......@@ -66,7 +68,6 @@ def get_numeric_gradient(op,
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace(
))
# TODO(yuyang18): Only CPU is support now.
cpu_ctx = core.DeviceContext.create(core.CPUPlace())
def get_output():
......@@ -109,12 +110,110 @@ def get_numeric_gradient(op,
class GradientChecker(unittest.TestCase):
def assert_is_close(self, numeric_grads, scope, max_relative_error,
msg_prefix):
for name in numeric_grads:
b = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
a = numeric_grads[name]
def __get_gradient(self, forward_op, backward_op, input_value, grad_names,
place):
"""Get the input gradients after running forward and backward operators
on the given places.
:param forward_op: forward operator
:type forward_op: Operator
:param backward_op: backward operator
:type backward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param grad_names: the names of returned input gradients.
:type input_value: a list of string
:param place: the device type.
:type place: CPUPlace or GPUPlace
:return: the input grdients of given grad_names.
:rtype: a list of numpy.array
"""
scope = core.Scope()
ctx = core.DeviceContext.create(place)
inputs = forward_op.inputs()
in_names = [item for k in inputs for item in inputs[k]]
outputs = forward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
# create input var and set value
for name, value in input_value.iteritems():
if name not in in_names:
raise ValueError(name + "does not exist in Op's inputs.")
var = scope.new_var(name).get_tensor()
var.set_dims(value.shape)
var.set(value, place)
# run forward op
for out_name in out_names:
scope.new_var(out_name)
forward_op.infer_shape(scope)
forward_op.run(scope, ctx)
# set output var's shape
# set output grad to ones
for name in out_names:
out_tensor = scope.find_var(name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
grad_tensor.set_dims(out_tensor.shape())
data = numpy.ones(out_tensor.shape(), dtype=numpy.float32)
grad_tensor.set(data, place)
# run backward op
for name in backward_op.outputs():
scope.new_var(name)
backward_op.infer_shape(scope)
backward_op.run(scope, ctx)
outs = [
numpy.array(scope.find_var(name).get_tensor())
for name in grad_names
]
return outs
def compare_grad(self, forward_op, input_value):
""" Compare the input gradients between CPU and GPU for the given forward
operator.
:param forward_op: forward operator
:type forward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:raises: AssertionError, there is different gradient value.
"""
backward_op = core.Operator.backward(forward_op, set())
# return if not compile with GPU or not implementing GPU kernel
if not (core.is_compile_gpu() and backward_op.support_gpu()):
return
outputs = backward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
cpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
out_names, core.CPUPlace())
gpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
out_names, core.GPUPlace(0))
for c_grad, g_grad, name in itertools.izip(cpu_grads, gpu_grads,
out_names):
self.assertTrue(
numpy.allclose(
c_grad, g_grad, atol=1e-4),
"output name: " + name + " has diff")
def __assert_is_close(self, numeric_grads, analytic_grads, names,
max_relative_error, msg_prefix):
"""Use relative error for the comparison.
:param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug.
:type names: a list of string
:param msg_prefix: string info, used to print for debug.
:type msf_prefix: string
"""
for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
abs_a = numpy.abs(a)
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
......@@ -159,106 +258,26 @@ class GradientChecker(unittest.TestCase):
inputs = forward_op.inputs()
in_names = [item for k in inputs for item in inputs[k]]
outputs = forward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
for no_grad in no_grad_set:
if no_grad not in in_names:
raise ValueError("no_grad should be in in_names")
backward_op = core.Operator.backward(forward_op, no_grad_set)
bwd_outputs = backward_op.outputs()
bwd_out_names = [item for k in bwd_outputs for item in bwd_outputs[k]]
places = [core.CPUPlace()]
if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu():
places.append(core.GPUPlace(0))
numeric_grad = dict()
# get numeric gradient
for check_name in inputs_to_check:
numeric_grad[check_name] = \
get_numeric_gradient(forward_op, input_vars, output_name,
check_name)
# get numerical gradients
numeric_grads = [
get_numeric_gradient(forward_op, input_vars, output_name, name)
for name in inputs_to_check
]
# get operator gradient according to different device
check_names = [grad_var_name(name) for name in inputs_to_check]
for place in places:
scope = core.Scope()
ctx = core.DeviceContext.create(place)
# create input var and set value
for name, value in input_vars.iteritems():
if name not in in_names:
raise ValueError(name + " not in op.inputs_")
var = scope.new_var(name).get_tensor()
var.set_dims(value.shape)
var.set(value, place)
# create output var
for out_name in out_names:
scope.new_var(out_name).get_tensor()
# infer the shape of output var and compute/set value of output var
forward_op.infer_shape(scope)
forward_op.run(scope, ctx)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for name in out_names:
out_tensor = scope.find_var(name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
grad_tensor.set_dims(out_tensor.shape())
data = 1.0 * numpy.ones(out_tensor.shape())
grad_tensor.set(data, place)
# create input grad var
for name in bwd_out_names:
scope.new_var(name).get_tensor()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op.infer_shape(scope)
backward_op.run(scope, ctx)
self.assert_is_close(numeric_grad, scope, max_relative_error,
# get analytical gradients according to different device
analytic_grads = self.__get_gradient(forward_op, backward_op,
input_vars, check_names, place)
self.__assert_is_close(numeric_grads, analytic_grads, check_names,
max_relative_error,
"Gradient Check On %s" % str(place))
if __name__ == '__main__':
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
add_op = Operator('add_two', X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32")
arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-2)
def test_softmax_op(self):
def stable_softmax(x):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx = x - numpy.max(x)
exps = numpy.exp(shiftx)
return exps / numpy.sum(exps)
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(Y.shape[0]):
d = numpy.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
softmax_op = Operator("softmax", X="X", Y="Y")
X = numpy.random.random((2, 2)).astype("float32")
Y = numpy.apply_along_axis(stable_softmax, 1, X)
dY = numpy.ones(Y.shape)
dX = label_softmax_grad(Y, dY)
arr = get_numeric_gradient(softmax_op, {"X": X}, 'Y', 'X')
numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2)
unittest.main()
import unittest
import numpy
from paddle.v2.framework.op import Operator
from gradient_checker import GradientChecker
from gradient_checker import get_numeric_gradient
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
add_op = Operator('add_two', X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32")
arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4)
def test_softmax_op(self):
def stable_softmax(x):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx = x - numpy.max(x)
exps = numpy.exp(shiftx)
return exps / numpy.sum(exps)
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(Y.shape[0]):
d = numpy.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
softmax_op = Operator("softmax", X="X", Y="Y")
X = numpy.random.random((2, 2)).astype("float32")
Y = numpy.apply_along_axis(stable_softmax, 1, X)
dY = numpy.ones(Y.shape)
dX = label_softmax_grad(Y, dY)
arr = get_numeric_gradient(softmax_op, {"X": X}, 'Y', 'X')
numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2)
if __name__ == '__main__':
unittest.main()
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy as np
......@@ -12,5 +13,12 @@ class TestMeanOp(unittest.TestCase):
self.outputs = {'Out': np.mean(self.inputs['X'])}
class MeanGradOpTest(GradientChecker):
def test_normal(self):
op = create_op("mean")
inputs = {"X": np.random.random((10, 10)).astype("float32")}
self.check_grad(op, inputs, set("X"), "Out")
if __name__ == '__main__':
unittest.main()
import unittest
from op_test_util import OpTestMeta
import numpy as np
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
class TestRowwiseAddOp(unittest.TestCase):
......@@ -15,5 +16,15 @@ class TestRowwiseAddOp(unittest.TestCase):
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
class RowwiseAddGradOpTest(GradientChecker):
def test_rowwise_add(self):
op = create_op("rowwise_add")
inputs = {
"X": np.random.uniform(0.1, 1, [10, 10]).astype("float32"),
"b": np.random.uniform(0.1, 1, [10]).astype("float32")
}
self.check_grad(op, inputs, set(["X", "b"]), "Out")
if __name__ == '__main__':
unittest.main()
import unittest
from op_test_util import OpTestMeta
import numpy as np
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
class TestSigmoidOp(unittest.TestCase):
......@@ -8,12 +9,20 @@ class TestSigmoidOp(unittest.TestCase):
def setUp(self):
self.type = "sigmoid"
self.inputs = {'X': np.random.random((32, 100)).astype("float32")}
self.inputs = {'X': np.random.random((15, 31)).astype("float32")}
self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}
#class TestSigmoidGradOp(unittest.TestCase):
#TODO(qingqing) add unit test
class TestSigmoidGradOp(GradientChecker):
def test_grad(self):
op = create_op("sigmoid")
inputs = {"X": np.random.uniform(0.1, 1, [11, 17]).astype("float32")}
# compare gpu and cpu results for backward op.
# this test will be skiped if only compiling CPU version.
self.compare_grad(op, inputs)
# check gradients
self.check_grad(op, inputs, set("X"), "Y", max_relative_error=0.007)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册