Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
76cb83e8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
76cb83e8
编写于
4月 19, 2021
作者:
J
joanna.wozna.intel
提交者:
GitHub
4月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add BF16 Constant Initializer and support for other initializer (#31935)
上级
21dc044a
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
216 addition
and
43 deletion
+216
-43
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+1
-0
paddle/fluid/operators/fill_constant_op.h
paddle/fluid/operators/fill_constant_op.h
+2
-1
paddle/fluid/operators/math/math_function.cc
paddle/fluid/operators/math/math_function.cc
+2
-0
paddle/fluid/operators/math/math_function.cu
paddle/fluid/operators/math/math_function.cu
+2
-0
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+24
-17
python/paddle/fluid/layer_helper_base.py
python/paddle/fluid/layer_helper_base.py
+4
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+1
-1
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+3
-1
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
+27
-1
python/paddle/fluid/tests/unittests/test_initializer.py
python/paddle/fluid/tests/unittests/test_initializer.py
+58
-11
python/paddle/fluid/tests/unittests/test_initializer_nn.py
python/paddle/fluid/tests/unittests/test_initializer_nn.py
+46
-9
python/paddle/fluid/tests/unittests/test_lookup_table_bf16_op.py
...paddle/fluid/tests/unittests/test_lookup_table_bf16_op.py
+46
-0
未找到文件。
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
76cb83e8
...
...
@@ -154,6 +154,7 @@ REGISTER_OP_CPU_KERNEL(fill_constant, ops::FillConstantKernel<float>,
ops
::
FillConstantKernel
<
int
>
,
ops
::
FillConstantKernel
<
bool
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
float16
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
bfloat16
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
complex64
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
complex128
>
);
...
...
paddle/fluid/operators/fill_constant_op.h
浏览文件 @
76cb83e8
...
...
@@ -105,7 +105,8 @@ class FillConstantKernel : public framework::OpKernel<T> {
int
actual_place
=
place_type
;
if
(
actual_place
==
-
1
)
{
bool
cpu_place
=
force_cpu
||
ctx
.
GetPlace
()
==
platform
::
CPUPlace
();
bool
cpu_place
=
(
force_cpu
||
ctx
.
GetPlace
()
==
platform
::
CPUPlace
()
||
data_type
==
framework
::
proto
::
VarType
::
BF16
);
if
(
cpu_place
)
{
actual_place
=
0
;
}
else
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
...
...
paddle/fluid/operators/math/math_function.cc
浏览文件 @
76cb83e8
...
...
@@ -27,6 +27,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/math/math_function_impl.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
#include "unsupported/Eigen/CXX11/Tensor"
...
...
@@ -49,6 +50,7 @@ template struct SetConstant<platform::CPUDeviceContext, platform::complex128>;
#ifdef PADDLE_WITH_XPU
template
struct
SetConstant
<
platform
::
XPUDeviceContext
,
platform
::
float16
>;
template
struct
SetConstant
<
platform
::
XPUDeviceContext
,
platform
::
bfloat16
>;
template
struct
SetConstant
<
platform
::
XPUDeviceContext
,
float
>;
template
struct
SetConstant
<
platform
::
XPUDeviceContext
,
double
>;
template
struct
SetConstant
<
platform
::
XPUDeviceContext
,
uint8_t
>;
...
...
paddle/fluid/operators/math/math_function.cu
浏览文件 @
76cb83e8
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function_impl.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
#include "paddle/fluid/platform/float16.h"
...
...
@@ -33,6 +34,7 @@ using complex64 = paddle::platform::complex64;
using
complex128
=
paddle
::
platform
::
complex128
;
template
struct
SetConstant
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
template
struct
SetConstant
<
platform
::
CUDADeviceContext
,
platform
::
bfloat16
>;
template
struct
SetConstant
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
SetConstant
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
SetConstant
<
platform
::
CUDADeviceContext
,
uint8_t
>;
...
...
python/paddle/fluid/initializer.py
浏览文件 @
76cb83e8
...
...
@@ -238,7 +238,8 @@ class UniformInitializer(Initializer):
block
=
self
.
_check_block
(
block
)
assert
isinstance
(
block
,
framework
.
Block
)
check_variable_and_dtype
(
var
,
"Out"
,
[
"float16"
,
"float32"
,
"float64"
],
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"uniform_random"
)
# Initialization Ops should be prepended and not appended
...
...
@@ -246,7 +247,7 @@ class UniformInitializer(Initializer):
self
.
_seed
=
block
.
program
.
random_seed
# to be compatible of fp16 initializers
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
out_dtype
=
VarDesc
.
VarType
.
FP32
out_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
(
...
...
@@ -275,7 +276,7 @@ class UniformInitializer(Initializer):
},
stop_gradient
=
True
)
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
out_var
},
...
...
@@ -330,14 +331,15 @@ class NormalInitializer(Initializer):
assert
isinstance
(
block
,
framework
.
Block
)
check_variable_and_dtype
(
var
,
"Out"
,
[
"float16"
,
"float32"
,
"float64"
],
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"guassian_random"
)
# Initialization Ops should be prepended and not appended
if
self
.
_seed
==
0
:
self
.
_seed
=
block
.
program
.
random_seed
# to be compatible of fp16 initalizers
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
out_dtype
=
VarDesc
.
VarType
.
FP32
out_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
(
...
...
@@ -363,7 +365,7 @@ class NormalInitializer(Initializer):
},
stop_gradient
=
True
)
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
out_var
},
...
...
@@ -421,7 +423,7 @@ class TruncatedNormalInitializer(Initializer):
self
.
_seed
=
block
.
program
.
random_seed
# to be compatible of fp16 initalizers
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
out_dtype
=
VarDesc
.
VarType
.
FP32
out_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
(
...
...
@@ -446,7 +448,7 @@ class TruncatedNormalInitializer(Initializer):
},
stop_gradient
=
True
)
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
out_var
},
...
...
@@ -526,7 +528,8 @@ class XavierInitializer(Initializer):
block
=
self
.
_check_block
(
block
)
assert
isinstance
(
block
,
framework
.
Block
)
check_variable_and_dtype
(
var
,
"Out"
,
[
"float16"
,
"float32"
,
"float64"
],
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"xavier_init"
)
f_in
,
f_out
=
self
.
_compute_fans
(
var
)
...
...
@@ -539,7 +542,7 @@ class XavierInitializer(Initializer):
self
.
_seed
=
block
.
program
.
random_seed
# to be compatible of fp16 initalizers
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
out_dtype
=
VarDesc
.
VarType
.
FP32
out_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
(
...
...
@@ -581,7 +584,7 @@ class XavierInitializer(Initializer):
},
stop_gradient
=
True
)
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
out_var
},
...
...
@@ -670,7 +673,7 @@ class MSRAInitializer(Initializer):
self
.
_seed
=
block
.
program
.
random_seed
# to be compatible of fp16 initalizers
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
out_dtype
=
VarDesc
.
VarType
.
FP32
out_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
(
...
...
@@ -712,7 +715,7 @@ class MSRAInitializer(Initializer):
},
stop_gradient
=
True
)
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
out_var
},
...
...
@@ -812,7 +815,9 @@ class BilinearInitializer(Initializer):
weight
=
np
.
reshape
(
weight
,
shape
)
# to be compatible of fp16 initalizers
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
or
var
.
dtype
==
VarDesc
.
VarType
.
FP64
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
,
VarDesc
.
VarType
.
FP64
]:
out_dtype
=
VarDesc
.
VarType
.
FP32
out_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
(
...
...
@@ -842,7 +847,9 @@ class BilinearInitializer(Initializer):
value_name
:
values
})
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
or
var
.
dtype
==
VarDesc
.
VarType
.
FP64
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
,
VarDesc
.
VarType
.
FP64
]:
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
out_var
},
...
...
@@ -898,7 +905,7 @@ class NumpyArrayInitializer(Initializer):
assert
isinstance
(
block
,
framework
.
Block
)
# to be compatible of fp16 initalizers
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
out_dtype
=
VarDesc
.
VarType
.
FP32
np_value
=
self
.
_value
.
astype
(
"float32"
)
out_var
=
block
.
create_var
(
...
...
@@ -935,7 +942,7 @@ class NumpyArrayInitializer(Initializer):
},
stop_gradient
=
True
)
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
if
var
.
dtype
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
:
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
out_var
},
...
...
python/paddle/fluid/layer_helper_base.py
浏览文件 @
76cb83e8
...
...
@@ -331,12 +331,14 @@ class LayerHelperBase(object):
if
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
if
dtype
!=
core
.
VarDesc
.
VarType
.
FP32
and
\
dtype
!=
core
.
VarDesc
.
VarType
.
FP64
and
\
dtype
!=
core
.
VarDesc
.
VarType
.
FP16
:
dtype
!=
core
.
VarDesc
.
VarType
.
FP16
and
\
dtype
!=
core
.
VarDesc
.
VarType
.
BF16
:
raise
TypeError
(
"Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
)
else
:
if
not
(
dtype
.
startswith
(
"float"
)
or
dtype
==
"double"
):
if
not
(
dtype
.
startswith
(
"float"
)
or
dtype
in
[
"double"
,
"uint16"
]):
raise
TypeError
(
"Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
76cb83e8
...
...
@@ -491,7 +491,7 @@ def embedding(input,
helper = LayerHelper('embedding', **locals())
check_variable_and_dtype(input, 'input', ['int64'],
'fluid.layers.embedding')
check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
check_dtype(dtype, 'dtype', ['
uint16', '
float16', 'float32', 'float64'],
'fluid.layers.embedding')
if is_distributed:
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
76cb83e8
...
...
@@ -1171,7 +1171,9 @@ class OpTest(unittest.TestCase):
expect
=
self
.
outputs
[
out_name
]
expect_t
=
expect
[
0
]
if
isinstance
(
expect
,
tuple
)
else
expect
if
actual_t
.
dtype
==
np
.
uint16
and
expect_t
.
dtype
==
np
.
float32
:
if
actual_t
.
dtype
==
np
.
uint16
and
expect_t
.
dtype
in
[
np
.
float32
,
np
.
float64
]:
actual_t
=
convert_uint16_to_float
(
actual_t
)
atol
=
0.03
...
...
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
浏览文件 @
76cb83e8
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
op_test
import
OpTest
,
convert_float_to_uint16
import
paddle
import
paddle.fluid.core
as
core
...
...
@@ -425,5 +425,31 @@ class TestFillConstantOpError(unittest.TestCase):
self
.
assertRaises
(
TypeError
,
test_shape_tensor_list_dtype
)
class
TestFillConstantOp_ValueTensorBf16
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value
'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
),
'ValueTensor'
:
convert_float_to_uint16
(
np
.
array
([
self
.
value
]).
astype
(
"float32"
))
}
self
.
attrs
=
{
'value'
:
self
.
value
,
'dtype'
:
core
.
VarDesc
.
VarType
.
BF16
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
value
=
3.0
self
.
dtype
=
np
.
uint16
self
.
mkldnn_data_type
=
"bfloat16"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
core
.
CPUPlace
())
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_initializer.py
浏览文件 @
76cb83e8
...
...
@@ -29,7 +29,7 @@ DELTA = 0.00001
def
check_cast_op
(
op
):
return
op
.
type
==
'cast'
and
\
op
.
attr
(
'in_dtype'
)
==
VarDesc
.
VarType
.
FP32
and
\
op
.
attr
(
'out_dtype'
)
==
VarDesc
.
VarType
.
FP16
op
.
attr
(
'out_dtype'
)
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
def
output_hist
(
out
):
...
...
@@ -53,7 +53,7 @@ class TestConstantInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
ConstantInitializer
())
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'fill_constant'
)
...
...
@@ -72,7 +72,7 @@ class TestConstantInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
ConstantInitializer
(
2.3
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'fill_constant'
)
...
...
@@ -87,6 +87,13 @@ class TestConstantInitializer(unittest.TestCase):
block
=
self
.
test_constant_initializer
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_constant_initializer_bf16
(
self
):
"""Test constant initializer with bfloat16
No cast operator has been added here
"""
self
.
test_constant_initializer_default_value
(
"uint16"
)
self
.
test_constant_initializer
(
"uint16"
)
class
TestUniformInitializer
(
unittest
.
TestCase
):
def
test_uniform_initializer_default_value
(
self
,
dtype
=
"float32"
):
...
...
@@ -101,7 +108,7 @@ class TestUniformInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
UniformInitializer
())
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'uniform_random'
)
...
...
@@ -146,7 +153,7 @@ class TestUniformInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
UniformInitializer
(
-
4.2
,
3.1
,
123
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'uniform_random'
)
...
...
@@ -167,7 +174,7 @@ class TestUniformInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
UniformInitializer
(
-
4.2
,
float
(
i
),
123
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op0
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op0
.
type
,
'uniform_random'
)
...
...
@@ -186,6 +193,16 @@ class TestUniformInitializer(unittest.TestCase):
block
=
self
.
test_uniform_initializer_two_op
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_uniform_initializer_bf16
(
self
):
"""Test uniform initializer with bfloat16
"""
block
=
self
.
test_uniform_initializer_default_value
(
"uint16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
block
=
self
.
test_uniform_initializer
(
dtype
=
"uint16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
block
=
self
.
test_uniform_initializer_two_op
(
"uint16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
class
TestNormalInitializer
(
unittest
.
TestCase
):
def
test_normal_initializer_default_value
(
self
):
...
...
@@ -219,7 +236,7 @@ class TestNormalInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
NormalInitializer
(
2.3
,
1.9
,
123
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'gaussian_random'
)
...
...
@@ -234,6 +251,12 @@ class TestNormalInitializer(unittest.TestCase):
block
=
self
.
test_normal_initializer
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_normal_initializer_bf16
(
self
):
"""Test normal initializer with bfloat16
"""
block
=
self
.
test_normal_initializer
(
"uint16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
class
TestXavierInitializer
(
unittest
.
TestCase
):
def
test_uniform_xavier_initializer
(
self
):
...
...
@@ -337,7 +360,7 @@ class TestXavierInitializer(unittest.TestCase):
name
=
"param"
,
initializer
=
initializer
.
XavierInitializer
(
fan_in
=
12
,
fan_out
=
23
,
seed
=
134
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'uniform_random'
)
...
...
@@ -353,6 +376,12 @@ class TestXavierInitializer(unittest.TestCase):
block
=
self
.
test_xavier_initializer_supplied_arguments
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_xavier_initializer_bf16
(
self
):
"""Test the Xavier initializer with bfloat16
"""
block
=
self
.
test_xavier_initializer_supplied_arguments
(
"uint16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
class
TestMSRAInitializer
(
unittest
.
TestCase
):
def
test_uniform_msra_initializer
(
self
):
...
...
@@ -454,7 +483,7 @@ class TestMSRAInitializer(unittest.TestCase):
name
=
"param"
,
initializer
=
initializer
.
MSRAInitializer
(
fan_in
=
12
,
seed
=
134
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'uniform_random'
)
...
...
@@ -470,6 +499,12 @@ class TestMSRAInitializer(unittest.TestCase):
block
=
self
.
test_msra_initializer_supplied_arguments
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_msra_initializer_bf16
(
self
):
"""Test the MSRA initializer with bfloat16
"""
block
=
self
.
test_msra_initializer_supplied_arguments
(
"uint16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
class
TestBilinearInitializer
(
unittest
.
TestCase
):
def
test_bilinear_initializer
(
self
,
dtype
=
"float32"
):
...
...
@@ -484,7 +519,7 @@ class TestBilinearInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
BilinearInitializer
())
num_ops
=
2
if
dtype
==
"float16"
or
dtype
==
"float64"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
,
"float64"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'assign_value'
)
...
...
@@ -499,6 +534,12 @@ class TestBilinearInitializer(unittest.TestCase):
block
=
self
.
test_bilinear_initializer
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_bilinear_initializer_bf16
(
self
):
"""Test the bilinear initializer with supplied arguments
"""
block
=
self
.
test_bilinear_initializer
(
"uint16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_type_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
test_bilinear_initializer
,
'int32'
)
...
...
@@ -518,7 +559,7 @@ class TestNumpyArrayInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
NumpyArrayInitializer
(
np_array
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'assign_value'
)
...
...
@@ -531,6 +572,12 @@ class TestNumpyArrayInitializer(unittest.TestCase):
block
=
self
.
test_numpy_array_initializer
(
"float16"
)
self
.
assertTrue
(
block
.
ops
[
1
])
def
test_numpy_array_initializer_bf16
(
self
):
"""Test the numpy array initializer with bfloat16
"""
block
=
self
.
test_numpy_array_initializer
(
"uint16"
)
self
.
assertTrue
(
block
.
ops
[
1
])
class
TestSetGlobalInitializer
(
unittest
.
TestCase
):
def
test_set_global_weight_initilizer
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_initializer_nn.py
浏览文件 @
76cb83e8
...
...
@@ -36,7 +36,7 @@ def get_uniform_min_and_max(weight):
def
check_cast_op
(
op
):
return
op
.
type
==
'cast'
and
\
op
.
attr
(
'in_dtype'
)
==
VarDesc
.
VarType
.
FP32
and
\
op
.
attr
(
'out_dtype'
)
==
VarDesc
.
VarType
.
FP16
op
.
attr
(
'out_dtype'
)
in
[
VarDesc
.
VarType
.
FP16
,
VarDesc
.
VarType
.
BF16
]
class
TestConstantInitializer
(
unittest
.
TestCase
):
...
...
@@ -54,7 +54,7 @@ class TestConstantInitializer(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
init_inst
)
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'fill_constant'
)
...
...
@@ -109,6 +109,13 @@ class TestConstantInitializer(unittest.TestCase):
self
.
test_constant_initializer_default_value_dygraph
(
"float16"
)
self
.
test_constant_initializer_dygraph
(
"float16"
)
def
test_constant_initializer_bf16
(
self
):
"""Test constant initializer with bfloat16
No cast operator has been added here
"""
self
.
test_constant_initializer_default_value_static
(
"uint16"
)
#bfloat16
self
.
test_constant_initializer_static
(
"uint16"
)
#bfloat16
class
TestKaimingInitializer
(
unittest
.
TestCase
):
def
static_test_kaiming_initializer_common
(
self
,
...
...
@@ -218,7 +225,7 @@ class TestUniform(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
Uniform
())
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'uniform_random'
)
...
...
@@ -249,7 +256,7 @@ class TestUniform(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
Uniform
())
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'uniform_random'
)
...
...
@@ -280,7 +287,7 @@ class TestUniform(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
Uniform
(
min_value
,
max_vlaue
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'uniform_random'
)
...
...
@@ -310,7 +317,7 @@ class TestUniform(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
Uniform
(
min_value
,
float
(
i
)))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op0
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op0
.
type
,
'uniform_random'
)
...
...
@@ -332,6 +339,16 @@ class TestUniform(unittest.TestCase):
block
=
self
.
test_uniform_initializer_two_op
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_uniform_initializer_bf16
(
self
):
"""Test uniform initializer with bfloat16
"""
block
=
self
.
test_uniform_initializer_default_value
(
"uint16"
)
#bfloat16
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
block
=
self
.
test_uniform_initializer
(
dtype
=
"uint16"
)
#bfloat16
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
block
=
self
.
test_uniform_initializer_two_op
(
"uint16"
)
#bfloat16
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_uniform_initializer_dygraph
(
self
):
"""Test uniform initializer in dygraph model.
"""
...
...
@@ -388,7 +405,7 @@ class TestNormal(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
Normal
(
2.3
,
1.9
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'gaussian_random'
)
...
...
@@ -405,6 +422,12 @@ class TestNormal(unittest.TestCase):
block
=
self
.
test_normal_initializer
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_normal_initializer_bf16
(
self
):
"""Test normal initializer with bfloat16
"""
block
=
self
.
test_normal_initializer
(
"uint16"
)
#bfloat16
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_normal_initializer_dygraph
(
self
):
"""Test normal initializer in dygraph model.
"""
...
...
@@ -455,7 +478,7 @@ class TestTruncatedNormal(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
TruncatedNormal
(
2.3
,
1.9
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'truncated_gaussian_random'
)
...
...
@@ -474,6 +497,14 @@ class TestTruncatedNormal(unittest.TestCase):
block
=
self
.
test_truncated_normal_initializer
(
"float16"
)
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_truncated_normal_initializer_bf16
(
self
):
"""Test truncated normal initializer with bfloat16
"""
paddle
.
enable_static
()
block
=
self
.
test_truncated_normal_initializer
(
"uint16"
)
#bfloat16
self
.
assertTrue
(
check_cast_op
(
block
.
ops
[
1
]))
def
test_truncated_normal_initializer_dygraph
(
self
):
"""Test truncated normal initializer in dygraph model.
"""
...
...
@@ -629,7 +660,7 @@ class TestAssign(unittest.TestCase):
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
Assign
(
np_array
))
num_ops
=
2
if
dtype
==
"float16"
else
1
num_ops
=
2
if
dtype
in
[
"float16"
,
"uint16"
]
else
1
self
.
assertEqual
(
len
(
block
.
ops
),
num_ops
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'assign_value'
)
...
...
@@ -645,6 +676,12 @@ class TestAssign(unittest.TestCase):
block
=
self
.
test_assign_initializer
(
"float16"
)
self
.
assertTrue
(
block
.
ops
[
1
])
def
test_assign_initializer_bf16
(
self
):
"""Test the numpy array initializer with bfloat16
"""
block
=
self
.
test_assign_initializer
(
"uint16"
)
#bfloat16
self
.
assertTrue
(
block
.
ops
[
1
])
def
test_assign_initializer_dygraph_1
(
self
):
"""Test assign initializer in dygraph model.
"""
...
...
python/paddle/fluid/tests/unittests/test_lookup_table_bf16_op.py
浏览文件 @
76cb83e8
...
...
@@ -171,6 +171,52 @@ class TestLookupTableBF16OpIds4DPadding(TestLookupTableBF16OpIds4D):
self
.
check_output_with_place
(
core
.
CPUPlace
(),
check_dygraph
=
False
)
class
TestEmbeddingLayerBF16ConstantInitializer
(
unittest
.
TestCase
):
"""
Test embedding layer api and results for bfloat16
"""
def
set_initializer
(
self
):
self
.
initializer
=
fluid
.
initializer
.
Constant
(
value
=
self
.
value
)
def
setUp
(
self
):
self
.
ids_shape
=
[
4
,
1
]
self
.
w_shape
=
[
10
,
64
]
self
.
ids
=
np
.
random
.
randint
(
low
=
0
,
high
=
9
,
size
=
self
.
ids_shape
).
astype
(
"int64"
)
self
.
flat_ids
=
self
.
ids
.
flatten
()
self
.
value
=
3.0
self
.
w_fp32
=
np
.
full
(
self
.
w_shape
,
self
.
value
)
self
.
place
=
fluid
.
CPUPlace
()
self
.
prog
=
fluid
.
Program
()
self
.
startup_prog
=
fluid
.
Program
()
self
.
set_initializer
()
with
fluid
.
program_guard
(
self
.
prog
,
self
.
startup_prog
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
self
.
ids_shape
,
dtype
=
'int64'
)
self
.
emb
=
fluid
.
layers
.
embedding
(
input
=
x
,
size
=
self
.
w_shape
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"emb_weight"
,
initializer
=
self
.
initializer
),
is_sparse
=
False
,
dtype
=
"uint16"
)
# bfloat16
exe
=
fluid
.
Executor
(
self
.
place
)
exe
.
run
(
self
.
startup_prog
)
self
.
result
=
exe
.
run
(
self
.
prog
,
feed
=
{
'x'
:
self
.
ids
},
fetch_list
=
[
'emb_weight'
,
self
.
emb
])
def
test_embedding_weights
(
self
):
result
=
convert_uint16_to_float
(
self
.
result
[
0
])
self
.
assertTrue
(
np
.
array_equal
(
self
.
w_fp32
,
result
))
def
test_lookup_results
(
self
):
lookup_result
=
convert_uint16_to_float
(
self
.
result
[
1
])
lookup_ref
=
_lookup
(
self
.
w_fp32
,
self
.
ids
,
self
.
flat_ids
)
self
.
assertTrue
(
np
.
array_equal
(
lookup_result
,
lookup_ref
))
if
__name__
==
"__main__"
:
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录