diff --git a/python/paddle/fluid/tests/unittests/autograd/test_autograd_functional_dynamic.py b/python/paddle/fluid/tests/unittests/autograd/test_autograd_functional_dynamic.py index e46c532eb05dbad1f01e0e588abaf887d4d1e9f7..8c725fe24e59cdbc43d6e680b6a97aee55a34f7e 100644 --- a/python/paddle/fluid/tests/unittests/autograd/test_autograd_functional_dynamic.py +++ b/python/paddle/fluid/tests/unittests/autograd/test_autograd_functional_dynamic.py @@ -21,6 +21,7 @@ import paddle import paddle.compat as cpt import paddle.nn.functional as F from paddle.autograd.functional import _as_tensors +from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check import config import utils @@ -145,7 +146,7 @@ class TestAutogradFunctional(unittest.TestCase): class TestVJP(TestAutogradFunctional): - def test_vjp_i1o1(self): + def func_vjp_i1o1(self): test_cases = [ [reduce, 'A'], # noqa [reduce_dim, 'A'], # noqa @@ -155,7 +156,7 @@ class TestVJP(TestAutogradFunctional): vjp_result, grad_result = vjp(), grad() self.check_results(grad_result, vjp_result) - def test_vjp_i2o1(self): + def func_vjp_i2o1(self): test_cases = [ [matmul, ['A', 'B']], # noqa [mul, ['b', 'c']], # noqa @@ -165,7 +166,7 @@ class TestVJP(TestAutogradFunctional): vjp_result, grad_result = vjp(), grad() self.check_results(grad_result, vjp_result) - def test_vjp_i2o2(self): + def func_vjp_i2o2(self): test_cases = [ [o2, ['A', 'A']], # noqa ] # noqa @@ -176,7 +177,7 @@ class TestVJP(TestAutogradFunctional): vjp_result, grad_result = vjp(), grad() self.check_results(grad_result, vjp_result) - def test_vjp_i2o2_omitting_v(self): + def func_vjp_i2o2_omitting_v(self): test_cases = [ [o2, ['A', 'A']], # noqa ] # noqa @@ -186,7 +187,7 @@ class TestVJP(TestAutogradFunctional): vjp_result, grad_result = vjp(), grad() self.check_results(grad_result, vjp_result) - def test_vjp_nested(self): + def func_vjp_nested(self): x = self.gen_input('a') test_cases = [ [nested(x), 'a'], # noqa @@ -196,13 +197,22 @@ class TestVJP(TestAutogradFunctional): vjp_result, grad_result = vjp(), grad() self.check_results(grad_result, vjp_result) - def test_vjp_aliased_input(self): + def func_vjp_aliased_input(self): x = self.gen_input('a') ref = self.gen_test_pairs(nested(x), 'a')[0] aliased = self.gen_test_pairs(nested(x), x)[0] ref_result, aliased_result = ref(), aliased() self.check_results(ref_result, aliased_result) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_vjp_i1o1() + self.func_vjp_i2o1() + self.func_vjp_i2o2() + self.func_vjp_i2o2_omitting_v() + self.func_vjp_nested() + self.func_vjp_aliased_input() + @utils.place(config.DEVICES) @utils.parameterize( @@ -210,12 +220,16 @@ class TestVJP(TestAutogradFunctional): ('v_shape_not_equal_ys', utils.square, np.random.rand(3), np.random.rand(1), RuntimeError), )) class TestVJPException(unittest.TestCase): - def test_vjp(self): + def func_vjp(self): with self.assertRaises(self.expected_exception): paddle.autograd.vjp(self.fun, paddle.to_tensor(self.xs), paddle.to_tensor(self.v)) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_vjp() + def jac(grad_fn, f, inputs): assert grad_fn in [paddle.autograd.vjp, paddle.autograd.jvp] @@ -246,7 +260,7 @@ def jac(grad_fn, f, inputs): class TestJVP(TestAutogradFunctional): - def test_jvp_i1o1(self): + def func_jvp_i1o1(self): test_cases = [ [reduce, 'A'], # noqa [reduce_dim, 'A'], # noqa @@ -257,7 +271,7 @@ class TestJVP(TestAutogradFunctional): reverse_jac = jac(paddle.autograd.vjp, f, inputs) self.check_results(forward_jac, reverse_jac) - def test_jvp_i2o1(self): + def func_jvp_i2o1(self): test_cases = [ # noqa [matmul, ['A', 'B']], # noqa ] # noqa @@ -267,7 +281,7 @@ class TestJVP(TestAutogradFunctional): reverse_jac = jac(paddle.autograd.vjp, f, inputs) self.check_results(forward_jac, reverse_jac) - def test_jvp_i2o2(self): + def func_jvp_i2o2(self): test_cases = [ # noqa [o2, ['A', 'A']], # noqa ] # noqa @@ -277,7 +291,7 @@ class TestJVP(TestAutogradFunctional): reverse_jac = jac(paddle.autograd.vjp, f, inputs) self.check_results(forward_jac, reverse_jac) - def test_jvp_i2o2_omitting_v(self): + def func_jvp_i2o2_omitting_v(self): test_cases = [ # noqa [o2, ['A', 'A']], # noqa ] # noqa @@ -288,6 +302,13 @@ class TestJVP(TestAutogradFunctional): results_with_v = paddle.autograd.jvp(f, inputs, v) self.check_results(results_omitting_v, results_with_v) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_jvp_i1o1() + self.func_jvp_i2o1() + self.func_jvp_i2o2() + self.func_jvp_i2o2_omitting_v() + @utils.place(config.DEVICES) @utils.parameterize((utils.TEST_CASE_NAME, 'func', 'xs'), ( @@ -312,7 +333,7 @@ class TestJacobianClassNoBatch(unittest.TestCase): self._actual = paddle.autograd.Jacobian(self.func, self.xs, False) self._expected = self._expected() - def test_jacobian(self): + def func_jacobian(self): Index = collections.namedtuple('Index', ('type', 'value')) indexes = (Index('all', (slice(0, None, None), slice(0, None, None))), Index('row', (0, slice(0, None, None))), @@ -333,6 +354,10 @@ class TestJacobianClassNoBatch(unittest.TestCase): self._dtype) return utils._np_concat_matrix_sequence(jac, utils.MatrixFormat.NM) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_jacobian() + @utils.place(config.DEVICES) @utils.parameterize((utils.TEST_CASE_NAME, 'func', 'xs'), ( @@ -355,7 +380,7 @@ class TestJacobianClassBatchFirst(unittest.TestCase): self._actual = paddle.autograd.Jacobian(self.func, self.xs, True) self._expected = self._expected() - def test_jacobian(self): + def func_jacobian(self): Index = collections.namedtuple('Index', ('type', 'value')) indexes = ( Index('all', (slice(0, None, None), slice(0, None, None), @@ -384,6 +409,10 @@ class TestJacobianClassBatchFirst(unittest.TestCase): return utils._np_transpose_matrix_format(jac, utils.MatrixFormat.NBM, utils.MatrixFormat.BNM) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_jacobian() + class TestHessianClassNoBatch(unittest.TestCase): @classmethod @@ -400,7 +429,7 @@ class TestHessianClassNoBatch(unittest.TestCase): self.x = paddle.rand(shape=self.shape, dtype=self.dtype) self.y = paddle.rand(shape=self.shape, dtype=self.dtype) - def test_single_input(self): + def func_single_input(self): def func(x): return paddle.sum(paddle.matmul(x, x)) @@ -413,7 +442,7 @@ class TestHessianClassNoBatch(unittest.TestCase): np.testing.assert_allclose(hessian[:].numpy(), numerical_hessian, self.rtol, self.atol) - def test_multi_input(self): + def func_multi_input(self): def func(x, y): return paddle.sum(paddle.matmul(x, y)) @@ -429,7 +458,7 @@ class TestHessianClassNoBatch(unittest.TestCase): rtol=self.rtol, atol=self.atol) - def test_allow_unused_true(self): + def func_allow_unused_true(self): def func(x, y): return paddle.sum(paddle.matmul(x, x)) @@ -442,7 +471,7 @@ class TestHessianClassNoBatch(unittest.TestCase): np.testing.assert_allclose(hessian[:].numpy(), numerical_hessian, self.rtol, self.atol) - def test_create_graph_true(self): + def func_create_graph_true(self): def func(x): return paddle.sum(F.sigmoid(x)) @@ -455,13 +484,21 @@ class TestHessianClassNoBatch(unittest.TestCase): np.testing.assert_allclose(hessian[:].numpy(), numerical_hessian, self.rtol, self.atol) - def test_out_not_single(self): + def func_out_not_single(self): def func(x): return x * x with self.assertRaises(RuntimeError): paddle.autograd.Hessian(func, paddle.ones([3])) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_single_input() + self.func_multi_input() + self.func_allow_unused_true() + self.func_create_graph_true() + self.func_out_not_single() + class TestHessianClassBatchFirst(unittest.TestCase): @classmethod @@ -482,7 +519,7 @@ class TestHessianClassBatchFirst(unittest.TestCase): self.weight = paddle.rand(shape=self.weight_shape, dtype=self.dtype) self.y = paddle.rand(shape=self.y_shape, dtype=self.dtype) - def test_single_input(self): + def func_single_input(self): def func(x): return paddle.matmul(x * x, self.weight)[:, 0:1] @@ -496,7 +533,7 @@ class TestHessianClassBatchFirst(unittest.TestCase): np.testing.assert_allclose(actual, expected, self.rtol, self.atol) - def test_multi_input(self): + def func_multi_input(self): def func(x, y): return paddle.matmul(x * x * y * y, self.weight)[:, 0:1] @@ -517,7 +554,7 @@ class TestHessianClassBatchFirst(unittest.TestCase): np.testing.assert_allclose(actual, expected, self.rtol, self.atol) - def test_allow_unused(self): + def func_allow_unused(self): def func(x, y): return paddle.matmul(x * x, self.weight)[:, 0:1] @@ -538,7 +575,7 @@ class TestHessianClassBatchFirst(unittest.TestCase): np.testing.assert_allclose( actual, expected, rtol=self.rtol, atol=self.atol) - def test_stop_gradient(self): + def func_stop_gradient(self): def func(x): return paddle.matmul(x * x, self.weight)[:, 0:1] @@ -554,13 +591,21 @@ class TestHessianClassBatchFirst(unittest.TestCase): np.testing.assert_allclose(actual, expected, self.rtol, self.atol) - def test_out_not_single(self): + def func_out_not_single(self): def func(x): return (x * x) with self.assertRaises(RuntimeError): paddle.autograd.Hessian(func, paddle.ones((3, 3)), is_batched=True) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_single_input() + self.func_multi_input() + self.func_allow_unused() + self.func_stop_gradient() + self.func_out_not_single() + class TestHessian(unittest.TestCase): @classmethod @@ -577,7 +622,7 @@ class TestHessian(unittest.TestCase): self.x = paddle.rand(shape=self.shape, dtype=self.dtype) self.y = paddle.rand(shape=self.shape, dtype=self.dtype) - def test_single_input(self): + def func_single_input(self): def func(x): return paddle.sum(paddle.matmul(x, x)) @@ -589,7 +634,7 @@ class TestHessian(unittest.TestCase): np.testing.assert_allclose(hessian.numpy(), numerical_hessian[0][0], self.rtol, self.atol) - def test_multi_input(self): + def func_multi_input(self): def func(x, y): return paddle.sum(paddle.matmul(x, y)) @@ -605,7 +650,7 @@ class TestHessian(unittest.TestCase): numerical_hessian[i][j], self.rtol, self.atol) - def test_allow_unused_false(self): + def func_allow_unused_false(self): def func(x, y): return paddle.sum(paddle.matmul(x, x)) @@ -617,7 +662,7 @@ class TestHessian(unittest.TestCase): error_msg = cpt.get_exception_message(e) assert error_msg.find("allow_unused") > 0 - def test_allow_unused_true(self): + def func_allow_unused_true(self): def func(x, y): return paddle.sum(paddle.matmul(x, x)) @@ -636,7 +681,7 @@ class TestHessian(unittest.TestCase): else: assert hessian[i][j] is None - def test_create_graph_false(self): + def func_create_graph_false(self): def func(x): return paddle.sum(paddle.matmul(x, x)) @@ -653,7 +698,7 @@ class TestHessian(unittest.TestCase): error_msg = cpt.get_exception_message(e) assert error_msg.find("has no gradient") > 0 - def test_create_graph_true(self): + def func_create_graph_true(self): def func(x): return paddle.sum(F.sigmoid(x)) @@ -667,6 +712,15 @@ class TestHessian(unittest.TestCase): triple_grad = paddle.grad(hessian, self.x) assert triple_grad is not None + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_single_input() + self.func_multi_input() + self.func_allow_unused_false() + self.func_allow_unused_true() + self.func_create_graph_false() + self.func_create_graph_true() + class TestHessianFloat64(TestHessian): @classmethod @@ -702,7 +756,7 @@ class TestBatchHessian(unittest.TestCase): self.weight = paddle.rand(shape=self.weight_shape, dtype=self.dtype) self.y = paddle.rand(shape=self.y_shape, dtype=self.dtype) - def test_single_input(self): + def func_single_input(self): def func(x): return paddle.matmul(x * x, self.weight)[:, 0:1] @@ -713,7 +767,7 @@ class TestBatchHessian(unittest.TestCase): np.testing.assert_allclose(hessian, numerical_hessian, self.rtol, self.atol) - def test_multi_input(self): + def func_multi_input(self): def func(x, y): return paddle.matmul(x * x * y * y, self.weight)[:, 0:1] @@ -729,7 +783,7 @@ class TestBatchHessian(unittest.TestCase): np.testing.assert_allclose(hessian_reshape, numerical_hessian, self.rtol, self.atol) - def test_allow_unused_false(self): + def func_allow_unused_false(self): def func(x, y): return paddle.matmul(x * x, self.weight)[:, 0:1] @@ -741,7 +795,7 @@ class TestBatchHessian(unittest.TestCase): error_msg = cpt.get_exception_message(e) assert error_msg.find("allow_unused") > 0 - def test_allow_unused_true(self): + def func_allow_unused_true(self): def func(x, y): return paddle.matmul(x * x, self.weight)[:, 0:1] @@ -763,7 +817,7 @@ class TestBatchHessian(unittest.TestCase): else: assert hessian[i][j] is None - def test_create_graph_false(self): + def func_create_graph_false(self): def func(x): return paddle.matmul(x * x, self.weight)[:, 0:1] @@ -780,7 +834,7 @@ class TestBatchHessian(unittest.TestCase): error_msg = cpt.get_exception_message(e) assert error_msg.find("has no gradient") > 0 - def test_create_graph_true(self): + def func_create_graph_true(self): def func(x): return paddle.matmul(x * x, self.weight)[:, 0:1] @@ -794,6 +848,15 @@ class TestBatchHessian(unittest.TestCase): triple_grad = paddle.grad(hessian, self.x) assert triple_grad is not None + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_single_input() + self.func_multi_input() + self.func_allow_unused_false() + self.func_allow_unused_true() + self.func_create_graph_false() + self.func_create_graph_true() + class TestBatchHessianFloat64(TestBatchHessian): @classmethod @@ -831,7 +894,7 @@ class TestVHP(unittest.TestCase): self.vx = paddle.rand(shape=self.shape, dtype=self.dtype) self.vy = paddle.rand(shape=self.shape, dtype=self.dtype) - def test_single_input(self): + def func_single_input(self): def func(x): return paddle.sum(paddle.matmul(x, x)) @@ -846,7 +909,7 @@ class TestVHP(unittest.TestCase): np.testing.assert_allclose(vhp[0].numpy(), numerical_vhp[0], self.rtol, self.atol) - def test_multi_input(self): + def func_multi_input(self): def func(x, y): return paddle.sum(paddle.matmul(x, y)) @@ -865,7 +928,7 @@ class TestVHP(unittest.TestCase): np.testing.assert_allclose(vhp[i].numpy(), numerical_vhp[i], self.rtol, self.atol) - def test_v_default(self): + def func_v_default(self): def func(x, y): return paddle.sum(paddle.matmul(x, y)) @@ -885,7 +948,7 @@ class TestVHP(unittest.TestCase): np.testing.assert_allclose(vhp[i].numpy(), numerical_vhp[i], self.rtol, self.atol) - def test_allow_unused_true(self): + def func_allow_unused_true(self): def func(x, y): return paddle.sum(paddle.matmul(x, x)) @@ -903,7 +966,7 @@ class TestVHP(unittest.TestCase): np.testing.assert_allclose(vhp[0].numpy(), numerical_vhp[0], self.rtol, self.atol) - def test_create_graph_true(self): + def func_create_graph_true(self): def func(x): return paddle.sum(F.sigmoid(x)) @@ -921,6 +984,14 @@ class TestVHP(unittest.TestCase): triple_grad = paddle.grad(vhp, self.x) assert triple_grad is not None + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_v_default() + self.func_multi_input() + self.func_single_input() + self.func_allow_unused_true() + self.func_create_graph_true() + class TestJacobian(unittest.TestCase): @classmethod @@ -934,7 +1005,7 @@ class TestJacobian(unittest.TestCase): self.x = paddle.rand(shape=self.shape, dtype=self.dtype) self.y = paddle.rand(shape=self.shape, dtype=self.dtype) - def test_single_input_and_single_output(self): + def func_single_input_and_single_output(self): def func(x): return paddle.matmul(x, x) @@ -945,7 +1016,7 @@ class TestJacobian(unittest.TestCase): np.testing.assert_allclose(jacobian.numpy(), numerical_jacobian[0][0], self.rtol, self.atol) - def test_single_input_and_multi_output(self): + def func_single_input_and_multi_output(self): def func(x): return paddle.matmul(x, x), x * x @@ -958,7 +1029,7 @@ class TestJacobian(unittest.TestCase): numerical_jacobian[i][0], self.rtol, self.atol) - def test_multi_input_and_single_output(self): + def func_multi_input_and_single_output(self): def func(x, y): return paddle.matmul(x, y) @@ -972,7 +1043,7 @@ class TestJacobian(unittest.TestCase): numerical_jacobian[0][j], self.rtol, self.atol) - def test_multi_input_and_multi_output(self): + def func_multi_input_and_multi_output(self): def func(x, y): return paddle.matmul(x, y), x * y @@ -987,7 +1058,7 @@ class TestJacobian(unittest.TestCase): numerical_jacobian[i][j], self.rtol, self.atol) - def test_allow_unused_false(self): + def func_allow_unused_false(self): def func(x, y): return paddle.matmul(x, x) @@ -999,7 +1070,7 @@ class TestJacobian(unittest.TestCase): error_msg = cpt.get_exception_message(e) assert error_msg.find("allow_unused") > 0 - def test_allow_unused_true(self): + def func_allow_unused_true(self): def func(x, y): return paddle.matmul(x, x) @@ -1013,7 +1084,7 @@ class TestJacobian(unittest.TestCase): jacobian[0].numpy(), numerical_jacobian[0][0], self.rtol, self.atol) assert jacobian[1] is None - def test_create_graph_false(self): + def func_create_graph_false(self): def func(x, y): return paddle.matmul(x, y) @@ -1033,7 +1104,7 @@ class TestJacobian(unittest.TestCase): error_msg = cpt.get_exception_message(e) assert error_msg.find("has no gradient") > 0 - def test_create_graph_true(self): + def func_create_graph_true(self): def func(x, y): return paddle.matmul(x, y) @@ -1051,6 +1122,17 @@ class TestJacobian(unittest.TestCase): double_grad = paddle.grad(jacobian[0], [self.x, self.y]) assert double_grad is not None + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_multi_input_and_multi_output() + self.func_multi_input_and_single_output() + self.func_single_input_and_multi_output() + self.func_single_input_and_single_output() + self.func_allow_unused_false() + self.func_allow_unused_true() + self.func_create_graph_false() + self.func_create_graph_true() + class TestJacobianFloat64(TestJacobian): @classmethod @@ -1080,7 +1162,7 @@ class TestJacobianBatch(unittest.TestCase): self.weight = paddle.rand(shape=self.weight_shape, dtype=self.dtype) self.y = paddle.rand(shape=self.y_shape, dtype=self.dtype) - def test_batch_single_input_and_batch_single_output(self): + def func_batch_single_input_and_batch_single_output(self): def func(x): return paddle.matmul(paddle.matmul(x, self.weight), self.y) @@ -1096,7 +1178,7 @@ class TestJacobianBatch(unittest.TestCase): np.allclose(batch_jacobian.numpy().all(), numerical_jacobian[0][0] .all())) - def test_batch_single_input_and_batch_multi_output(self): + def func_batch_single_input_and_batch_multi_output(self): def func(x): return paddle.matmul(paddle.matmul(x, self.weight), self.y), x * x @@ -1113,7 +1195,7 @@ class TestJacobianBatch(unittest.TestCase): numerical_jacobian[i][0], self.rtol, self.atol) - def test_batch_multi_input_and_batch_single_output(self): + def func_batch_multi_input_and_batch_single_output(self): def func(x, y): return x * y @@ -1129,7 +1211,7 @@ class TestJacobianBatch(unittest.TestCase): numerical_jacobian[0][j], self.rtol, self.atol) - def test_batch_multi_input_and_batch_multi_output(self): + def func_batch_multi_input_and_batch_multi_output(self): def func(x, y): return x * y, x * y @@ -1144,7 +1226,7 @@ class TestJacobianBatch(unittest.TestCase): np.testing.assert_allclose(batch_jacobian[i], numerical_jacobian[i], self.rtol, self.atol) - def test_allow_unused_false(self): + def func_allow_unused_false(self): def func(x, y): return x * x @@ -1156,7 +1238,7 @@ class TestJacobianBatch(unittest.TestCase): error_msg = cpt.get_exception_message(e) assert error_msg.find("allow_unused") > 0 - def test_allow_unused_true(self): + def func_allow_unused_true(self): def func(x, y): return x * x @@ -1171,7 +1253,7 @@ class TestJacobianBatch(unittest.TestCase): jacobian[0].numpy(), numerical_jacobian[0][0], self.rtol, self.atol) assert jacobian[1] is None - def test_create_graph_false(self): + def func_create_graph_false(self): def func(x, y): return x * y @@ -1191,7 +1273,7 @@ class TestJacobianBatch(unittest.TestCase): error_msg = cpt.get_exception_message(e) assert error_msg.find("has no gradient") > 0 - def test_create_graph_true(self): + def func_create_graph_true(self): def func(x, y): return x * y @@ -1209,6 +1291,17 @@ class TestJacobianBatch(unittest.TestCase): double_grad = paddle.grad(jacobian[0], [self.x, self.y]) assert double_grad is not None + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_batch_single_input_and_batch_single_output() + self.func_batch_single_input_and_batch_multi_output() + self.func_batch_multi_input_and_batch_single_output() + self.func_batch_multi_input_and_batch_multi_output() + self.func_allow_unused_false() + self.func_allow_unused_true() + self.func_create_graph_false() + self.func_create_graph_true() + class TestJacobianBatchFloat64(TestJacobianBatch): @classmethod diff --git a/python/paddle/fluid/tests/unittests/test_imperative_star_gan_with_gradient_penalty.py b/python/paddle/fluid/tests/unittests/test_imperative_star_gan_with_gradient_penalty.py index 2b8e10d779256a09c92ffd0bad3a17f8b709bc81..be81c15677a3a12854e97c37f1546ff070593789 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_star_gan_with_gradient_penalty.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_star_gan_with_gradient_penalty.py @@ -17,6 +17,7 @@ import paddle.fluid as fluid import numpy as np import unittest from paddle import _C_ops +from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check if fluid.is_compiled_with_cuda(): fluid.core.globals()['FLAGS_cudnn_deterministic'] = True @@ -583,7 +584,7 @@ class StaticGraphTrainModel(object): class TestStarGANWithGradientPenalty(unittest.TestCase): - def test_main(self): + def func_main(self): self.place_test(fluid.CPUPlace()) if fluid.is_compiled_with_cuda(): @@ -615,6 +616,10 @@ class TestStarGANWithGradientPenalty(unittest.TestCase): self.assertEqual(g_loss_s, g_loss_d) self.assertEqual(d_loss_s, d_loss_d) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_main() + if __name__ == '__main__': paddle.enable_static() diff --git a/python/paddle/fluid/tests/unittests/test_imperative_triple_grad.py b/python/paddle/fluid/tests/unittests/test_imperative_triple_grad.py index 3644eead6bc6500d95d7647a75ff5677aa7c69be..027c0002c7103997a5f58ead3079349d77616a46 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_triple_grad.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_triple_grad.py @@ -19,6 +19,7 @@ from paddle.vision.models import resnet50, resnet101 import unittest from unittest import TestCase import numpy as np +from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check def _dygraph_guard_(func): @@ -65,7 +66,7 @@ class TestDygraphTripleGrad(TestCase): allow_unused=allow_unused) @dygraph_guard - def test_exception(self): + def func_exception(self): with self.assertRaises(AssertionError): self.grad(None, None) @@ -95,7 +96,7 @@ class TestDygraphTripleGrad(TestCase): self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1) @dygraph_guard - def test_example_with_gradient_and_create_graph(self): + def func_example_with_gradient_and_create_graph(self): x = random_var(self.shape) x_np = x.numpy() x.stop_gradient = False @@ -145,6 +146,11 @@ class TestDygraphTripleGrad(TestCase): dddx_grad_actual = x.gradient() self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected)) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_exception() + self.func_example_with_gradient_and_create_graph() + class TestDygraphTripleGradBradcastCase(TestCase): def setUp(self): @@ -172,7 +178,7 @@ class TestDygraphTripleGradBradcastCase(TestCase): allow_unused=allow_unused) @dygraph_guard - def test_example_with_gradient_and_create_graph(self): + def func_example_with_gradient_and_create_graph(self): x = random_var(self.x_shape) x_np = x.numpy() x.stop_gradient = False @@ -227,6 +233,10 @@ class TestDygraphTripleGradBradcastCase(TestCase): dddx_grad_actual = x.gradient() self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected)) + def test_all_cases(self): + if _in_legacy_dygraph(): + self.func_example_with_gradient_and_create_graph() + if __name__ == '__main__': unittest.main()