提交 743cb840 编写于 作者: T Tao Luo

update with comments

test=develop
上级 42359e88
......@@ -97,7 +97,7 @@ void ExecutorThreadWorker::SetDevice() {
static unsigned concurrency_cap = std::thread::hardware_concurrency();
int thread_id = this->thread_id_;
if ((unsigned)thread_id < concurrency_cap) {
if (static_cast<unsigned>(thread_id) < concurrency_cap) {
unsigned proc = thread_id;
cpu_set_t mask;
......
......@@ -103,7 +103,7 @@ struct Argument {
// Model specified with program and parameters files.
DECL_ARGUMENT_FIELD(model_program_path, ModelProgramPath, std::string);
DECL_ARGUMENT_FIELD(model_params_path, ModelParamsPath, std::string);
DECL_ARGUMENT_FIELD(is_memory_load, IsMemoryLoad, bool);
DECL_ARGUMENT_FIELD(model_from_memory, ModelFromMemory, bool);
// The overall graph to work on.
DECL_ARGUMENT_UNIQUE_FIELD(main_graph, MainGraph, framework::ir::Graph);
......
......@@ -46,7 +46,7 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
argument->model_params_path_valid()) {
auto program =
LoadModel(argument->model_program_path(), argument->model_params_path(),
argument->scope_ptr(), place, argument->is_memory_load());
argument->scope_ptr(), place, argument->model_from_memory());
argument->SetMainProgram(program.release());
} else {
PADDLE_THROW(
......@@ -69,9 +69,13 @@ std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
const std::string &program_path, const std::string &params_path,
framework::Scope *scope, const platform::Place &place,
bool is_memory_load) {
bool model_from_memory) {
framework::Executor exe(place);
return Load(&exe, scope, program_path, params_path, is_memory_load);
if (!model_from_memory) {
return Load(&exe, scope, program_path, params_path);
} else {
return LoadFromMemory(&exe, scope, program_path, params_path);
}
}
std::string IrGraphBuildPass::repr() const { return "ir-graph-build-pass"; }
......
......@@ -39,7 +39,7 @@ class IrGraphBuildPass : public AnalysisPass {
std::unique_ptr<framework::ProgramDesc> LoadModel(
const std::string &program_path, const std::string &params_path,
framework::Scope *scope, const platform::Place &place,
bool is_memory_load);
bool model_from_memory);
std::string model_binary_str_;
};
......
......@@ -53,7 +53,7 @@ contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
use_tensorrt_ = other.use_tensorrt_;
tensorrt_max_batchsize_ = other.tensorrt_max_batchsize_;
tensorrt_workspace_size_ = other.tensorrt_workspace_size_;
is_memory_load_ = other.is_memory_load_;
model_from_memory_ = other.model_from_memory_;
if (use_gpu) {
pass_builder_.reset(new GpuPassStrategy(
......@@ -81,7 +81,7 @@ contrib::AnalysisConfig::AnalysisConfig(contrib::AnalysisConfig &&other) {
use_tensorrt_ = other.use_tensorrt_;
tensorrt_max_batchsize_ = other.tensorrt_max_batchsize_;
tensorrt_workspace_size_ = other.tensorrt_workspace_size_;
is_memory_load_ = other.is_memory_load_;
model_from_memory_ = other.model_from_memory_;
pass_builder_ = std::move(other.pass_builder_);
}
......@@ -105,12 +105,13 @@ void contrib::AnalysisConfig::EnableTensorRtEngine(int workspace_size,
pass_builder()->InsertPass(1, "tensorrt_subgraph_pass");
}
void contrib::AnalysisConfig::SetProgBufferAndParamBuffer(
const char *prog_buffer, size_t prog_buffer_size, const char *param_buffer,
void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
size_t prog_buffer_size,
const char *param_buffer,
size_t param_buffer_size) {
prog_file = std::string(prog_buffer, prog_buffer + prog_buffer_size);
param_file = std::string(param_buffer, param_buffer + param_buffer_size);
is_memory_load_ = true;
model_from_memory_ = true;
}
} // namespace paddle
......@@ -308,7 +308,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
argument_.SetUseGPU(config_.use_gpu);
argument_.SetGPUDeviceId(config_.device);
argument_.SetIsMemoryLoad(config_.is_memory_load_);
argument_.SetModelFromMemory(config_.model_from_memory_);
// Analyze inference_program
if (!config_.model_dir.empty()) {
argument_.SetModelDir(config_.model_dir);
......@@ -451,11 +451,12 @@ bool AnalysisPredictor::LoadProgramDesc() {
// Create ProgramDesc
framework::proto::ProgramDesc proto;
if (!config_.is_memory_load()) {
if (!config_.model_from_memory()) {
std::string pb_content;
// Read binary
std::ifstream fin(filename, std::ios::in | std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s", filename);
PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
filename);
fin.seekg(0, std::ios::end);
pb_content.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
......
......@@ -55,11 +55,9 @@ struct AnalysisConfig : public NativeConfig {
bool use_mkldnn() const { return use_mkldnn_; }
// Specify the memory buffer of program and parameter
void SetProgBufferAndParamBuffer(const char* prog_buffer,
size_t prog_buffer_size,
const char* program_buffer,
size_t program_buffer_size);
bool is_memory_load() const { return is_memory_load_; }
void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
const char* program_buffer, size_t program_buffer_size);
bool model_from_memory() const { return model_from_memory_; }
friend class ::paddle::AnalysisPredictor;
......@@ -69,7 +67,7 @@ struct AnalysisConfig : public NativeConfig {
int tensorrt_workspace_size_;
int tensorrt_max_batchsize_;
std::unique_ptr<PassStrategy> pass_builder_;
bool is_memory_load_{false};
bool model_from_memory_{false};
};
// Configurations for Anakin engine.
......
......@@ -70,7 +70,7 @@ void LoadPersistables(framework::Executor* executor, framework::Scope* scope,
const framework::ProgramDesc& main_program,
const std::string& dirname,
const std::string& param_filename,
bool is_memory_load = false) {
bool model_from_memory = false) {
const framework::BlockDesc& global_block = main_program.Block(0);
framework::ProgramDesc* load_program = new framework::ProgramDesc();
......@@ -109,7 +109,7 @@ void LoadPersistables(framework::Executor* executor, framework::Scope* scope,
op->SetType("load_combine");
op->SetOutput("Out", paramlist);
op->SetAttr("file_path", {param_filename});
op->SetAttr("is_memory_load", {is_memory_load});
op->SetAttr("model_from_memory", {model_from_memory});
op->CheckAttrs();
}
......@@ -132,23 +132,17 @@ std::unique_ptr<framework::ProgramDesc> Load(framework::Executor* executor,
"model version %ld is not supported.",
main_program->Version());
// is_memory_load is false in seperate parameters.
// model_from_memory is false in seperate parameters.
LoadPersistables(executor, scope, *main_program, dirname, "",
false /* is_memory_load */);
false /* model_from_memory */);
return main_program;
}
std::unique_ptr<framework::ProgramDesc> Load(framework::Executor* executor,
framework::Scope* scope,
const std::string& prog_filename,
const std::string& param_filename,
bool is_memory_load = false) {
std::unique_ptr<framework::ProgramDesc> Load(
framework::Executor* executor, framework::Scope* scope,
const std::string& prog_filename, const std::string& param_filename) {
std::string program_desc_str;
if (!is_memory_load) {
ReadBinaryFile(prog_filename, &program_desc_str);
} else {
program_desc_str = prog_filename;
}
std::unique_ptr<framework::ProgramDesc> main_program(
new framework::ProgramDesc(program_desc_str));
......@@ -157,15 +151,22 @@ std::unique_ptr<framework::ProgramDesc> Load(framework::Executor* executor,
main_program->Version());
LoadPersistables(executor, scope, *main_program, "", param_filename,
is_memory_load);
false /* model_from_memory */);
return main_program;
}
std::unique_ptr<framework::ProgramDesc> Load(
std::unique_ptr<framework::ProgramDesc> LoadFromMemory(
framework::Executor* executor, framework::Scope* scope,
const std::string& prog_filename, const std::string& param_filename) {
return Load(executor, scope, prog_filename, param_filename,
false /* is_memory_load */);
const std::string& prog_buffer, const std::string& param_buffer) {
std::unique_ptr<framework::ProgramDesc> main_program(
new framework::ProgramDesc(prog_buffer));
PADDLE_ENFORCE(framework::IsProgramVersionSupported(main_program->Version()),
"model version %ld is not supported.",
main_program->Version());
LoadPersistables(executor, scope, *main_program, "", param_buffer,
true /* model_filename */);
return main_program;
}
void SaveVars(const framework::Scope& scope,
......
......@@ -30,7 +30,8 @@ void Init(const std::vector<std::string> argv);
void LoadPersistables(framework::Executor* executor, framework::Scope* scope,
const framework::ProgramDesc& main_program,
const std::string& dirname,
const std::string& param_filename, bool is_memory_load);
const std::string& param_filename,
bool model_from_memory);
std::unique_ptr<framework::ProgramDesc> Load(framework::Executor* executor,
framework::Scope* scope,
......@@ -41,11 +42,9 @@ std::unique_ptr<framework::ProgramDesc> Load(framework::Executor* executor,
const std::string& prog_filename,
const std::string& param_filename);
std::unique_ptr<framework::ProgramDesc> Load(framework::Executor* executor,
framework::Scope* scope,
const std::string& prog_filename,
const std::string& param_filename,
bool is_memory_load);
std::unique_ptr<framework::ProgramDesc> LoadFromMemory(
framework::Executor* executor, framework::Scope* scope,
const std::string& prog_buffer, const std::string& param_buffer);
// Save the variables from a scope to disk.
void SaveVars(const framework::Scope& scope,
......
......@@ -98,8 +98,8 @@ void SetConfig(contrib::AnalysisConfig *cfg, bool memory_load = false) {
std::string buffer_prog, buffer_param;
ReadBinaryFile(FLAGS_infer_model + "/__model__", &buffer_prog);
ReadBinaryFile(FLAGS_infer_model + "/param", &buffer_param);
cfg->SetProgBufferAndParamBuffer(&buffer_prog[0], buffer_prog.size(),
&buffer_param[0], buffer_param.size());
cfg->SetModelBuffer(&buffer_prog[0], buffer_prog.size(), &buffer_param[0],
buffer_param.size());
} else {
cfg->prog_file = FLAGS_infer_model + "/__model__";
cfg->param_file = FLAGS_infer_model + "/param";
......
......@@ -63,7 +63,7 @@ std::ostream &operator<<(std::ostream &os,
os << GenSpaces(num_spaces) << "contrib::AnalysisConfig {\n";
num_spaces++;
os << *reinterpret_cast<const NativeConfig *>(&config);
if (!config.is_memory_load()) {
if (!config.model_from_memory()) {
os << GenSpaces(num_spaces) << "prog_file: " << config.prog_file << "\n";
os << GenSpaces(num_spaces) << "param_file: " << config.param_file << "\n";
} else {
......
......@@ -32,12 +32,12 @@ class LoadCombineOp : public framework::OperatorBase {
const platform::Place &place) const override {
auto filename = Attr<std::string>("file_path");
auto load_as_fp16 = Attr<bool>("load_as_fp16");
auto is_memory_load = Attr<bool>("is_memory_load");
auto model_from_memory = Attr<bool>("model_from_memory");
auto out_var_names = Outputs("Out");
PADDLE_ENFORCE_GT(
static_cast<int>(out_var_names.size()), 0,
"The number of output variables should be greater than 0.");
if (!is_memory_load) {
if (!model_from_memory) {
std::ifstream fin(filename);
PADDLE_ENFORCE(static_cast<bool>(fin),
"Cannot open file %s for load_combine op", filename);
......@@ -112,7 +112,7 @@ class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"LoDTensors will be loaded from \"file_path\".")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<bool>("is_memory_load",
AddAttr<bool>("model_from_memory",
"(boolean, default false)"
"If true, file_path is in memory, and LoDTensors will be "
"loaded directly from memory")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册