未验证 提交 73cf08d6 编写于 作者: A Aurelius84 提交者: GitHub

fix en_doc api of one-hot and embedding (#20187)

* fix en_doc of one-hot and embedding test=develop, test=document_fix

* modify into fluid.data test=develop, test=document_fix

* modify api.spec test=develop, test=document_fix

* fix api.spec conflict, test=develop, test=document_fix
上级 318d5bba
......@@ -123,11 +123,11 @@ paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywo
paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'eaa04fd68661a3af59abd0e19b3b6eda'))
paddle.fluid.initializer.NumpyArrayInitializer ('paddle.fluid.initializer.NumpyArrayInitializer', ('document', '7b0c371a233f9eb6feab75bbef8a74cc'))
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd4ac047e0d5e6b7b1c5ff6ef7d7cfff5'))
paddle.fluid.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'eef66730acc806088f9e8ba90252bda1'))
paddle.fluid.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'c830c324bdc58e8e023d85eb616c3940'))
paddle.fluid.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'e822420dcdc743526ab5caebd89a4b4f'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, None)), ('document', 'e28421f1253a3545d9bfe81a8028ea68'))
paddle.fluid.layers.center_loss (ArgSpec(args=['input', 'label', 'num_classes', 'alpha', 'param_attr', 'update_center'], varargs=None, keywords=None, defaults=(True,)), ('document', '18112442f55b5862bbec8feee841c905'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd8e405486a1e4e189b51d6ee28d67b1e'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'c51fcac7a4f5786ca41f27fa60bd22c5'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', '6d3ee14da70adfa36d85c40b18716ef2'))
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'c37d51aad655c8a9f9b045c64717320a'))
paddle.fluid.layers.dynamic_gru (ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None, False)), ('document', '83617c165827e030636c80486d5de6f3'))
......@@ -192,7 +192,7 @@ paddle.fluid.layers.group_norm (ArgSpec(args=['input', 'groups', 'epsilon', 'par
paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '9461e67095a6fc5d568fb2ce8fef66ff'))
paddle.fluid.layers.softmax_with_cross_entropy (ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax', 'axis'], varargs=None, keywords=None, defaults=(False, -100, True, False, -1)), ('document', '54e1675aa0364f4a78fa72804ec0f413'))
paddle.fluid.layers.smooth_l1 (ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'cbe8940643ac80ef75e1abdfbdb09e88'))
paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'ec4115591be842868c86b2e5334245c6'))
paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'cdf5dc2078f1e20dc61dd0bec7e28a29'))
paddle.fluid.layers.autoincreased_step_counter (ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1)), ('document', '98e7927f09ee2270535b29f048e481ec'))
paddle.fluid.layers.reshape (ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, False, None)), ('document', 'ca73fdc4551c5765c92eb00f24874289'))
paddle.fluid.layers.squeeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ebbac07662a6e22e8e299ced880c7775'))
......
......@@ -21,26 +21,80 @@ __all__ = ['one_hot', 'embedding']
def one_hot(input, depth, allow_out_of_range=False):
"""
This layer creates the one-hot representations for input indices.
The operator converts each id in the input to an one-hot vector with a
depth length. The value in the vector dimension corresponding to the id
is 1, and the value in the remaining dimension is 0.
The shape of output Tensor or LoDTensor is generated by appending depth dimension
behind the last dimension of the input shape.
.. code-block:: text
Example 1 (allow_out_of_range=False):
input:
X.shape = [4]
X.data = [1, 1, 3, 0]
depth = 4
output:
Out.shape = [4, 4]
Out.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]]
Example 2 (allow_out_of_range=True):
input:
X.shape = [4]
X.data = [1, 1, 5, 0]
depth = 4
allow_out_of_range = True
output:
Out.shape = [4, 4]
Out.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
[1., 0., 0., 0.]]
Example 3 (allow_out_of_range=False):
input:
X.shape = [4]
X.data = [1, 1, 5, 0]
depth = 4
allow_out_of_range = False
output: Throw an exception for Illegal value
The second dimension in X is 5, which is greater than depth.
Allow_out_of_range =False means that does not allow the word id to exceed depth,
so it throws an exception.
Args:
input(Variable): Input indices represent locations, which takes value 1.0
in indices, while all other locations take value 0.
depth(scalar): An interger defining the depth of the one-hot dimension.
input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k]` ,
which contains at least one dimension. The data type is int32 or int64.
depth(int): An integer defining the depth of the one hot dimension. If input
is word id, depth is generally the dictionary size.
allow_out_of_range(bool): A bool value indicating whether the input
indices could be out of range [0, depth). When input indices are
out of range, exceptions is raised if allow_out_of_range is False,
or zero-filling representations is created if it is set True
indices could be out of range :math:`[0, depth)` . When input indices are
out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
is False, or zero-filling representations is created if it is set True.
Default: False.
Returns:
Variable: The one-hot representations of input.
Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = fluid.one_hot(input=label, depth=10)
# Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
label = fluid.data(name="label", shape=[4], dtype="int64")
one_hot_label = fluid.one_hot(input=label, depth=4)
"""
helper = LayerHelper("one_hot_v2", **locals())
......@@ -75,43 +129,105 @@ def embedding(input,
param_attr=None,
dtype='float32'):
"""
**Embedding Layer**
This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
a lookup table. The result of this lookup is the embedding of each ID in the
:attr:`input`.
The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
It automatically constructs a 2D embedding matrix based on the
input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .
The shape of output Tensor is generated by appending an emb_size dimension to the
last dimension of the input Tensor shape.
**Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
otherwise the program will throw an exception and exit.
.. code-block:: text
Case 1:
input is a Tensor. padding_idx = -1
input.data = [[1, 3], [2, 4], [4, 127]]
input.shape = [3, 2]
Given size = [128, 16]
output is a Tensor:
out.shape = [3, 2, 16]
out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
[0.345421456, 0.524563927, ..., 0.144534654]],
[[0.345249859, 0.124939536, ..., 0.194353745],
[0.945345345, 0.435394634, ..., 0.435345365]],
[[0.945345345, 0.435394634, ..., 0.435345365],
[0.0, 0.0, ..., 0.0 ]]] # padding data
The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
It will pad all-zero data when ids is 127.
Case 2:
input is a LoDTensor with 1-level LoD. padding_idx = 0
input.lod = [[2, 3]]
input.data = [[1], [3], [2], [4], [0]]
input.shape = [5, 1]
Given size = [128, 16]
output is a LoDTensor:
out.lod = [[2, 3]]
out.shape = [5, 1, 16]
out.data = [[[0.129435295, 0.244512452, ..., 0.436322452]],
[[0.345421456, 0.524563927, ..., 0.144534654]],
[[0.345249859, 0.124939536, ..., 0.194353745]],
[[0.945345345, 0.435394634, ..., 0.435345365]],
[[0.0, 0.0, ..., 0.0 ]]] # padding data
It will pad all-zero data when ids is 0.
All the input variables are passed in as local variables to the LayerHelper
constructor.
Args:
input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
The value of the input IDs should satisfy :math:`0<= id < size[0]`.
size(tuple|list): The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): It will output all-zero padding data whenever
lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
will automatically be converted to :math:`size[0] + padding\_idx` to use.
Default: None.
param_attr(ParamAttr): Parameters for this layer.
dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
tensor. It can be float32, float_16, int etc.
input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
The value of the input id should satisfy :math:`0<= id < size[0]` .
size(tuple|list): The shape of lookup table parameter. It should have two elements which
indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
affects the performance of the backwards gradient update. It is recommended to set
True because sparse update is faster. But some optimizer does not support sparse update,
such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
:ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
:ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
In these case, is_sparse must be False. Default: False.
is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
in multi-machine distributed CPU training. Default: False.
padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
If set None, it makes no effect to output. Default: None.
param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
The local word vector needs to be transformed into numpy format, and the shape of local word
vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
is used to load custom or pre-trained word vectors. See code example 2 for details.
dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
It must be float32 or float64. Default: float32.
Returns:
Variable: The tensor variable storing the embeddings of the \
supplied inputs.
Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Examples:
.. code-block:: python
import paddle.fluid as fluid
# [batch_size, 20] -> [batch_size, 20, 64]
data = fluid.layers.data(name='sequence', shape=[20], dtype='int64')
emb = fluid.embedding(input=data, size=[128, 64])
import numpy as np
data = fluid.data(name='x', shape=[None, 10], dtype='int64')
# exampel 1
emb_1 = fluid.embedding(input=data, size=[128, 64])
# example 2: load custom or pre-trained word vectors
weight_data = np.random.random(size=(128, 100)) # word vectors with numpy format
w_param_attrs = fluid.ParamAttr(
name="emb_weight",
learning_rate=0.5,
initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
trainable=True)
emb_2 = fluid.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
"""
helper = LayerHelper('embedding', **locals())
......
......@@ -476,42 +476,110 @@ def embedding(input,
param_attr=None,
dtype='float32'):
"""
**Embedding Layer**
This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
a lookup table. The result of this lookup is the embedding of each ID in the
:attr:`input`.
**WARING:** This OP will be deprecated in a future release. This OP requires the
last dimension of Tensor shape must be equal to 1. It is recommended to use
fluid. :ref:`api_fluid_embedding` .
All the input variables are passed in as local variables to the LayerHelper
constructor.
Args:
input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
The value of the input IDs should satisfy :math:`0<= id < size[0]`.
size(tuple|list): The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): It will output all-zero padding data whenever
lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
will automatically be converted to :math:`size[0] + padding\_idx` to use.
Default: None.
param_attr(ParamAttr): Parameters for this layer.
dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
tensor. It can be float32, float_16, int etc.
The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
It automatically constructs a 2D embedding matrix based on the
input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .
Returns:
Variable: The tensor variable storing the embeddings of the \
supplied inputs.
This OP requires the last dimension of Tensor shape must be equal to 1. The shape
of output Tensor is generated by replacing the last dimension of the input Tensor shape
with emb_size.
**Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
otherwise the program will throw an exception and exit.
.. code-block:: text
Case 1:
input is a Tensor. padding_idx = -1
input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
input.shape = [3, 2, 1]
Given size = [128, 16]
output is a Tensor:
out.shape = [3, 2, 16]
out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
[0.345421456, 0.524563927, ..., 0.144534654]],
[[0.345249859, 0.124939536, ..., 0.194353745],
[0.945345345, 0.435394634, ..., 0.435345365]],
[[0.945345345, 0.435394634, ..., 0.435345365],
[0.0, 0.0, ..., 0.0 ]]] # padding data
The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
It will pad all-zero data when ids is 127.
Case 2:
input is a LoDTensor with 1-level LoD. padding_idx = 0
input.lod = [[2, 3]]
input.data = [[1], [3], [2], [4], [0]]
input.shape = [5, 1]
Given size = [128, 16]
output is a LoDTensor:
out.lod = [[2, 3]]
out.shape = [5, 16]
out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
[0.345421456, 0.524563927, ..., 0.144534654],
[0.345249859, 0.124939536, ..., 0.194353745],
[0.945345345, 0.435394634, ..., 0.435345365],
[0.0, 0.0, ..., 0.0 ]] # padding data
It will pad all-zero data when ids is 0.
Args:
input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
The last dimension of Tensor shape must be equal to 1. The value of the input id should
satisfy :math:`0<= id < size[0]` .
size(tuple|list): The shape of lookup table parameter. It should have two elements which
indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
affects the performance of the backwards gradient update. It is recommended to set
True because sparse update is faster. But some optimizer does not support sparse update,
such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
:ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
:ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
In these case, is_sparse must be False. Default: False.
is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
in multi-machine distributed CPU training. Default: False.
padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
If set None, it makes no effect to output. Default: None.
param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
The local word vector needs to be transformed into numpy format, and the shape of local word
vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
is used to load custom or pre-trained word vectors. See code example 2 for details.
dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
It must be float32 or float64. Default: float32.
Returns:
Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[128, 64])
import numpy as np
data = fluid.data(name='x', shape=[None, 1], dtype='int64')
# exampel 1
emb_1 = fluid.embedding(input=data, size=[128, 64])
# example 2: load custom or pre-trained word vectors
weight_data = np.random.random(size=(128, 100)) # word vectors with numpy format
w_param_attrs = fluid.ParamAttr(
name="emb_weight",
learning_rate=0.5,
initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
trainable=True)
emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
"""
helper = LayerHelper('embedding', **locals())
......@@ -7841,25 +7909,83 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
def one_hot(input, depth, allow_out_of_range=False):
"""
This layer creates the one-hot representations for input indices.
**WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .
The operator converts each id in the input to an one-hot vector with a
:attr:`depth` length. The value in the vector dimension corresponding to the id
is 1, and the value in the remaining dimension is 0.
The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
behind the last dimension of the input shape.
.. code-block:: text
Example 1 (allow_out_of_range=False):
input:
X.shape = [4, 1]
X.data = [[1], [1], [3], [0]]
depth = 4
output:
Out.shape = [4, 4]
Out.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]]
Example 2 (allow_out_of_range=True):
input:
X.shape = [4, 1]
X.data = [[1], [1], [5], [0]]
depth = 4
allow_out_of_range = True
output:
Out.shape = [4, 4]
Out.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
[1., 0., 0., 0.]]
Example 3 (allow_out_of_range=False):
input:
X.shape = [4, 1]
X.data = [[1], [1], [5], [0]]
depth = 4
allow_out_of_range = False
output: Throw an exception for Illegal value
The second dimension in X is 5, which is greater than depth.
Allow_out_of_range =False means that does not allow the word id to exceed depth,
so it throws an exception.
Args:
input(Variable): Input indices, last dimension must be 1.
depth(scalar): An interger defining the depth of the one-hot dimension.
input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
which contains at least one dimension and the last dimension must be 1.
The data type is int32 or int64.
depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
is word id, depth is generally the dictionary size.
allow_out_of_range(bool): A bool value indicating whether the input
indices could be out of range [0, depth). When input indices are
out of range, exceptions is raised if allow_out_of_range is False,
or zero-filling representations is created if it is set True
indices could be out of range :math:`[0, depth)` . When input indices are
out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
is False, or zero-filling representations is created if it is set True.
Default: False.
Returns:
Variable: The one-hot representations of input.
Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = fluid.layers.one_hot(input=label, depth=10)
# Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
label = fluid.data(name="label", shape=[4, 1], dtype="int64")
one_hot_label = fluid.layers.one_hot(input=label, depth=4)
"""
helper = LayerHelper("one_hot", **locals())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册